几何概型 知识框架 高中数学知识点

合集下载

总结几何的知识点高中

总结几何的知识点高中

总结几何的知识点高中一、平面几何1. 一次函数直线及方程、直线与圆之间的位置关系。

2. 二次函数抛物线、椭圆、双曲线、双曲函数等图形及其性质、方程解法及绘图。

3. 三角函数基本概念、三角函数的图像和性质、基本三角函数的运算及其应用。

4. 平面向量平面向量的基本概念、平面向量的基本运算、平面向量的数量积和应用。

5. 数列数列的基本概念、等差数列、等比数列、数列的通项公式、数列的和及应用。

6. 统计统计的基本概念、频数分布表、频数分布直方图、频数分布折线图、频数分布的平均数、中位数、众数、范围等。

7. 概率概率的基本概念、概率的性质、事件的概率、互斥事件、对立事件、相关事件、独立事件等。

8. 空间几何直线与平面的位置关系、空间中平行线的判定、空间中垂直平面的判断。

二、立体几何1. 空间图形立体图形的基本概念、长方体、正方体、长方体、圆柱、圆锥、棱台、棱锥等图形的性质和计算。

2. 空间坐标空间直角坐标系与三维坐标系、点在空间中的坐标、直线和平面的方程。

3. 空间向量空间向量的基本概念、空间向量的基本运算、数量积和向量积及其应用。

4. 空间中的位置关系点与直线的位置关系、点与平面的位置关系、直线与平面的位置关系。

5. 空间中的运动关系空间中向量的平移、旋转、镜像、推移等空间运动。

以上是高中几何知识点的总结,学生们在学习几何时,要注重掌握每一个知识点的基本概念和性质,同时要注重运用数学知识解决实际问题。

几何不仅是一门美妙的学科,更是一种思维方式和解决问题的工具。

通过系统的学习和不断的练习,相信学生们一定能够轻松掌握高中几何知识,提高自己的数学水平。

高二数学必修三知识点解析:几何概型

高二数学必修三知识点解析:几何概型

精心整理
高二数学必修三知识点解析:几何概型
【考点分析】
在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。

在高考中有时会以选择题和填
,则不等式 即不等式 点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率.
2.在区间[-3,5]上随机取一个数a ,则使函数f(x)=x2+2ax+4
精心整理
无零点的概率是.
解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式Δ=4a2-16<0,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.。

高中数学几何知识点

高中数学几何知识点

高中数学几何知识点在高中数学的学习中,几何部分是一个重要的组成部分,它不仅能够培养我们的空间想象力和逻辑思维能力,还在实际生活中有着广泛的应用。

下面就让我们一起来梳理一下高中数学几何的主要知识点。

一、平面几何1、直线与方程直线的倾斜角和斜率是描述直线倾斜程度的重要概念。

倾斜角是直线与 x 轴正方向的夹角,范围是0, π)。

斜率则等于倾斜角的正切值。

直线的方程有多种形式,如点斜式、斜截式、两点式、截距式和一般式等。

2、圆与方程圆的标准方程为(x a)²+(y b)²= r²,其中(a, b) 是圆心坐标,r 是半径。

圆的一般方程为 x²+ y²+ Dx + Ey + F = 0 ,需要通过配方判断其是否表示圆以及圆心和半径。

直线与圆的位置关系可以通过圆心到直线的距离与半径的大小比较来判断。

3、三角形三角形的内角和为 180°,正弦定理和余弦定理是解决三角形问题的重要工具。

正弦定理:a/sinA = b/sinB = c/sinC;余弦定理:a²= b²+ c² 2bc cosA 等。

二、立体几何1、空间几何体常见的空间几何体有柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、台体(圆台、棱台)和球体。

要掌握它们的结构特征、表面积和体积的计算公式。

2、点、直线、平面的位置关系公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理 2:过不在一条直线上的三点,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

高中数学必修三《数学与几何》必备知识点整合

高中数学必修三《数学与几何》必备知识点整合

高中数学必修三《数学与几何》必备知识
点整合
本文档整合了高中数学必修三《数学与几何》课程中的必备知识点,旨在帮助学生复和掌握这一部分的内容。

1. 几何基础概念
- 点、线、面的概念及性质
- 平行线与垂直线的判定方法
- 直线与平面的关系
- 圆的概念及性质
2. 三角形与四边形
2.1 三角形
- 三角形的定义及分类
- 三角形内角和外角的性质
- 直角三角形、等腰三角形、等边三角形的特性
- 三角形面积的计算方法
2.2 四边形
- 平行四边形的性质
- 矩形、正方形、菱形的特性和计算公式- 梯形和直角梯形的性质及计算公式
3. 圆的性质与计算
- 弧、弦、切线和圆心角的概念及相互关系- 圆心角与弦的性质
- 切线与圆的判定方法
- 弧长与扇形面积的计算公式
4. 三视图与投影
- 正交投影与轴测投影的概念
- 正投影与斜投影的区别
- 三视图的绘制方法
5. 空间几何与向量
- 空间几何基本概念:直线的位置关系、平面的位置关系等
- 向量的概念及基本运算法则
- 向量的数量积与向量的夹角
- 点、直线、平面与向量之间的关系
6. 解析几何
- 直线的方程与性质
- 圆的方程与性质
- 曲线与方程的关系
以上是高中数学必修三《数学与几何》的必备知识点整合。

希望本文档可以帮助到学生们更好地理解和掌握相关概念,并在学习和考试中取得好成绩。

第5讲 几何概型

第5讲 几何概型

第5讲 几何概型一、知识梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A 是确定事件,(1)若A 是不可能事件,则P (A )=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P (A )=0不能推出A 是不可能事件.(2)若A 是必然事件,则P (A )=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P (A )=1不能推出A 是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B .13C.12D .23解析:选A.令t =2x,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0t 1+t 2>0t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P=14,选A.2.如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为________.解析:设OA =3,则AB =33,所以AP =3,由余弦定理可求得OP =3,∠AOP =30°,所以扇形AOC 的面积为3π4,扇形AOB 的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究) 角度一 与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A.π24+9π B .4π24+9πC.π18+9πD .4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x =2交抛物线y 2=4x 于A ,B 两点.点A ,B 在y 轴上的射影分别为D ,C .从长方形ABCD 中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ­ABC <12V S ­ABC ,故使得V P ­ABC <12V S ­ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V F­AMCD=13×S四边形AMCD×DF=14a3,V ADF­BCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·安徽合肥模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。

几何概型-高考数学知识点

几何概型-高考数学知识点

几何概型-高考数学知识点
知识点总结
1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积或度数)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

2.几何概型的特点(1)试验中所有可能出现的基本事件有无限多个.(2)每个基本事件出现的可能性相等. 几何概型是高中数学课程改革中新增的内容,基础的知识点很好理解,但是在实际解题的时候总是会遇到这样或那样的问题,想要学好几何概型,首先要知道几何概型的思考方法。

高二数学几何知识点

高二数学几何知识点

高二数学几何知识点高二数学学习内容中的几何知识点是学生们需要重点掌握的部分,下面将介绍高二数学几何知识点的重要内容。

文章将按照以下几个方面进行论述:平面几何基本概念、平面几何基本定理、立体几何基本概念、立体几何基本定理和几何证明方法。

一、平面几何基本概念1. 点:没有大小和形状的几何对象,用大写字母表示,如A、B、C等。

2. 直线:由无数个点连成的一条路径,用小写字母表示,如a、b、c等。

3. 射线:起点为一个点,通过该点没有终点的路径,用字母延长一段表示,如AB。

4. 线段:由两个点确定的线段,用两个大写字母表示,如AB。

5. 角:由两条射线共同起点的部分叫做角,用大写字母表示,如∠ABC。

二、平面几何基本定理1. 平行线定理:如果两条直线与第三条直线分别平行,那么这两条直线之间的任意一对对应角相等。

2. 垂线定理:如果两条直线相交,且其中一条直线上有一条垂线,那么垂线和另一条直线所成的对应角相等。

3. 同位角定理:如果两条直线被一条直线所切,那么同位角对应相等。

4. 三角形内角和定理:三角形内角的和为180°。

三、立体几何基本概念1. 点:同平面几何基本概念中的定义相同。

2. 直线:与平面几何中的定义相同。

3. 面:是一个有无限多个点围成的平面区域,例如三角形、矩形、正方形等。

4. 多面体:三维空间中由若干个面所围成的几何图形,例如立方体、棱柱、棱锥等。

五、立体几何基本定理1. 平面角度:两个平面的夹角是两个垂直于这两个平面的直线的夹角。

2. 空间角度:两条直线、两个射线或者一个直线和一个射线所围成的角叫做空间角。

3. 空间几何关系:例如平面与直线的位置关系、直线与直线的位置关系、平面与平面的位置关系等。

4. 空间图形的性质:例如立方体的表面积和体积、棱柱的表面积和体积、棱锥的表面积和体积等。

六、几何证明方法1. 直接证明法:通过列举事实或者运用几何定理、公理等来论证结论的正确性。

高中数学高考总复习---古典概型与几何概型知识讲解及考点梳理

高中数学高考总复习---古典概型与几何概型知识讲解及考点梳理
类型二、与长度有关的几何概型
1.如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为
2.将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被 取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域 中的点,这样的概率模型就可以用几何概型来求解。
位数字也即确定.故共有 6×1=6 种不同的结果,即概率为
.
(2)两个玩具的数字之和共有 2,3,4,5,6,7,8,9,10,11,12 共 11 种不同结果.
从中可以看出,出现 12 的只有一种情况,概率为 .出现数字之和为 6 的共有(1,5),(2,
4),(3,3),(4,2),(5,1)五种情况,所以其概率为 . 【总结升华】使用枚举法要注意排列的方法,做到不漏不重.
(3)应用公式
求值。
5.古典概型中求基本事件数的方法: (1)穷举法; (2)树形图; (3)排列组合法。利用排列组合知识中的分类计数原理和分步计数原理,必须做到不 重复不遗漏。 知识点二、几何概型 1. 定义: 事件 A 理解为区域Ω的某一子区域 A,A 的概率只与子区域 A 的几何度量(长度、面积 或体积)成正比,而与 A 的位置和形状无关。满足以上条件的试验称为几何概型。 2.几何概型的两个特点: (1)无限性,即在一次试验中基本事件的个数是无限的; (2)等可能性,即每一个基本事件发生的可能性是均等的。 3.几何概型的概率计算公式: 随机事件 A 的概率可以用“事件 A 包含的基本事件所占的图形面积(体积、长度)”与 “试验的基本事件所占总面积(体积、长度)”之比来表示。
举一反三: 【变式】某校要从艺术节活动中所产生的 4 名书法比赛一等奖的同学和 2 名绘画比赛一等 奖的同学中选出 2 名志愿者,参加广州亚运会的服务工作。求:(1)选出的 2 名志愿者都 是获得书法比赛一等奖的同学的概率;(2)选出的 2 名志愿者中 1 名是获得书法比赛一等 奖,另 1 名是获得绘画比赛一等奖的同学的概率. 【解析】把 4 名获书法比赛一等奖的同学编号为 1,2,3,4 . 2 名获绘画比赛一等奖的同 学编号为 5,6.

高二数学 几何概型

高二数学 几何概型

高二数学 几何概型01一、知识要点: 1、随机数⑴随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。

⑵随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。

2、几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.3、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 4、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D的测度的测度.说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积. (3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

5、几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积二、典型例题:例1、一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。

高中数学知识点全总结几何

高中数学知识点全总结几何

高中数学知识点全总结几何一、几何基础知识1.1 几何图形基本概念几何是研究形状、大小、相对位置等空间属性的数学分支。

在高中数学中,几何图形主要包括点、线、面和体。

点是没有大小、只有位置的基本元素;线是由点组成的,分为直线、射线和线段;面是由线围成的平面图形,如三角形、矩形、圆等;体是由面围成的立体图形,如立方体、圆柱、圆锥和球等。

1.2 几何图形的性质几何图形的性质包括对称性、相似性和全等性。

对称性是指图形关于某一点或直线能够翻折重合的性质;相似性是指两个图形在形状相同但大小不一定相同的性质;全等性是指两个图形在形状和大小完全相同的性质。

二、平面几何2.1 平面图形的计算平面几何中,重要的计算包括面积、周长和角度。

例如,三角形的面积可以通过底乘高除以2来计算,矩形的面积是长乘宽,圆的面积是半径的平方乘以π。

周长的计算则是根据图形的边长来确定。

2.2 圆的性质和计算圆是平面上所有与给定点(圆心)距离相等的点的集合。

圆的基本性质包括圆周率π的值、圆的直径、半径、弦、弧、切线等。

圆的面积公式为A=πr²,其中r为圆的半径。

圆周长(周长)的公式为C=2πr。

2.3 圆锥曲线圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线都可以通过平面与圆锥体的截面来得到。

椭圆是焦点到圆上任意一点距离之和为常数的轨迹;双曲线是焦点到圆上任意一点距离之差为常数的轨迹;抛物线是焦点和准线到圆上任意一点距离相等的轨迹。

三、立体几何3.1 空间图形的计算立体几何中,体积和表面积的计算尤为重要。

例如,长方体的体积是长、宽、高的乘积,球的体积是4/3πr³。

表面积的计算则涉及到各个面的面积之和,如球的表面积是4πr²。

3.2 多面体的性质多面体是由多个平面图形围成的立体图形。

常见的多面体有正方体、长方体、棱锥、棱柱等。

这些图形的性质包括顶点数、棱数和面数的关系,以及它们的体积和表面积的计算方法。

3.3 旋转体旋转体是由平面图形绕直线旋转而形成的立体图形,如圆柱、圆锥和球。

高二年级数学必修四知识点梳理

高二年级数学必修四知识点梳理

高二年级数学必修四知识点梳理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修四知识点梳理本店铺高二频道为你整理了《高二年级数学必修四知识点梳理》,助你金榜题名!1.高二年级数学必修四知识点梳理1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

高中数学知识框架

高中数学知识框架

高中数学知识框架一、代数基础加减法:实数、有理数、整式的加减法,结合律、交换律、分配律的应用。

乘法:实数、有理数、整式的乘法,乘法交换律、结合律、分配律的应用。

除法:实数、有理数、整式的除法,除法交换律、结合律、分配律的应用。

二、平面几何点:坐标、对称、轨迹。

线:平行、垂直、相交、角平分线、中垂线、等角对等边等概念。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

距离:两点间距离、点到直线距离、直线间距离等概念的计算和应用。

角:锐角、直角、钝角、平角、周角等概念,以及相关的性质与判定定理。

三、立体几何体:立方体、长方体、圆柱体等基本几何体的性质与判定定理。

线:直线、平面、直角坐标系等概念,以及相关的性质与判定定理。

面:三角形、四边形、圆形等基本几何形体的性质与判定定理。

体积:立方体、长方体等基本几何体的体积计算方法。

表面积:立方体、长方体等基本几何体的表面积计算方法。

四、解析几何坐标系:二维坐标系和三维坐标系的建立与表示方法。

直线:斜率、截距、两点式方程等概念,以及直线的性质与判定定理。

圆:圆心、半径、标准方程等概念,以及圆的相关性质与判定定理。

椭圆:焦点、长轴、短轴等概念,以及椭圆的相关性质与判定定理。

抛物线:焦点、准线等概念,以及抛物线的相关性质与判定定理。

双曲线:焦点、实轴、虚轴等概念,以及双曲线的相关性质与判定定理。

五、概率与统计概率:事件概率、独立事件概率、互斥事件概率等概念的计算和应用。

样本空间:样本空间的概念和表示方法。

概率分布:离散型概率分布和连续型概率分布的概念和计算方法。

超几何分布:超几何分布的概念和计算方法。

二项分布:二项分布的概念和计算方法。

正态分布:正态分布的概念和计算方法,以及正态分布曲线族的特点和应用。

六、函数与方程函数:函数的概念和表示方法,函数的单调性、奇偶性等性质。

方程:方程的概念和表示方法,以及方程的解法。

根:根的概念和表示方法,以及根与系数的关系。

高中数学几何知识归纳

高中数学几何知识归纳

高中数学几何知识归纳
高中数学几何知识主要涉及以下几个方面:
1. 空间几何:这是从纯几何的角度来研究点、线、面的位置关系,包括平行与垂直问题。

2. 空间向量与立体几何:从向量和坐标角度,进一步研究点、线、面的位置关系,以及空间距离和夹角问题。

3. 立体几何初步:包括直线与平面的位置关系,以及空间图形的概念和性质。

4. 圆锥曲线:研究圆锥曲线的性质和应用,包括椭圆、双曲线和抛物线等。

5. 立体几何的面积和体积:包括四面体、棱柱、棱锥、棱台等几何体的面积和体积计算。

6. 直线与平面的方程:研究直线和平面的方程,以及它们之间的位置关系。

7. 参数方程与极坐标:研究参数方程和极坐标方程,以及它们在几何中的应用。

8. 解析几何:解析几何是使用代数方法研究几何问题的一门学科,主要研究点、直线、平面、圆锥曲线等基本几何对象的性质。

以上是高中数学几何知识的主要内容,建议根据教材和课程进行系统学习,并多做习题以加深理解和记忆。

高中数学-几何概型知识点

高中数学-几何概型知识点

(1)几何概型:几何概型知识点一般地,一个几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为P(A)=_________(一般地,线段的测度为该线段的长度;平面多边形的测度为该图形的面积;立体图像的测度为其体积 ) (2)几何概型的基本特点:① ____________ ② _______________例题精选例1. 如图,在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求<AM AC 的概率? 【分析】点M 随机的落在线段AB 上,故线段AB 为区域D ,当点M 位于如图的AC '内时<AM AC ,故线段 AC '即为区域d解: 在AB 上截取'=AC AC ,于是P AM AC P AM AC AC AB AC AB <=<===''()22)(【变式训练】如图,在等腰直角三角形ABC 中,在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求<AM AC 的概率?解:在∠ACB 内的射线是均匀分布的,所以射线CM 作在任何位置都是等可能的,在AB 上截取'=AC AC ,则ACC '67.5∠=︒ ,故满足条件的概率为=67.5900.75例2. 如图,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ) A.-π24 B.-π44C.-π22D.-π42【解析】设正方形的边长为2,则1片阴影部分的面积为⎝⎭⎪--⋅⨯=-⎛⎫ππ42111211222,所以阴影部分的面积⎝⎭⎪=-=-⎛⎫ππS A 24124,=-πP A 22)(,故选C.课堂练习与作业1.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ). A .B .C .D .2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31B .π2C .21D .323.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .1614.如图,在边长为 3 的正方形内有区域 A (阴影部分所示),张明同学用随机模拟的方法求区域 A 的面积.若每次在正方形内随机产生 10000 个点,并记录落在区域 A 内的点的个数.经过多次试验,计算出落在区域 A 内点的个数的平均值为 6600 个,则区域 A 的面积约为 ( ) A. 5B. 6C. 7D. 85. 如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(1,0),且点 C 与点 D 在函数 f (x )={x +1,x ≥0−12x +1,x <0 的图象上.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率等于 ( )A. 16 B. 14C. 38D. 126. 如图,在半径为 2R ,弧长为 4π3R 的扇形 OAB 中,以 OA 为直径作一个半圆.若在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是 ( )51525354A. 38B. 58C. 34D. 787.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是 ( )A. 13B. 12C. 23D. 348.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31C .21D .329.在棱长为 2 的正方体 ABCD −A 1B 1C 1D 1 中,点 O 为底面 ABCD 的中心,在正方体 ABCD −A 1B 1C 1D 1 内随机取一点 P ,则点 P 到点 O 的距离大于 1 的概率为 ( )A. π12B. 1−π12C. π6D. 1−π610. 在区间 [−2,1] 上随机取一个实数 x ,则 x 使不等式 ∣x −1∣≤1 成立的概率为 .11.已知函数f (x )=log 2x , x ∈,在区间上任取一点x 0,使f (x 0)≥0的概率为 .参考答案1.解析:区域Ω为[-2,3],子区域A 为(1,3],而两个区间的长度分别为5,2.选B2.解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使的值介于0到之间,需使-≤x ≤-或≤x ≤,两区间长度之和为,由几何概型知的值介于0到之间的概率为=.故选A.3.解析:所求概率为=.故选D4.B 【解析】设区域 A 的面积约为 S ,根据题意有 660010000=S3×3, 所以,S =5 94,所以区域 A 的面积约为 6.⎥⎦⎤⎢⎣⎡221 ,⎥⎦⎤⎢⎣⎡221 ,cos x 212π3π3π2π3πcos x 21π3π31224π1π⨯⨯ 1615. B 【解析】易知点 C 的坐标为 (1,2),点 D 的坐标为 (−2,2),所以矩形 ABCD 的面积为 6,阴影部分的面积为 32,故所求概率为 14.6.B 【解析】阴影部分的面积为 S 1=12×4π 3×2R −12R 2=5π6R 2,扇形 OAB 的面积为S 2=4π3R 2,所以在扇形 OAB 内随机取一点,则此点取自阴影部分的概率 P =S S==58.7. B 【解析】解法一:7:30的班车小明显然是坐不到的.当小明在7:50之后8:00之前到达,或者8:20之后8:30之前到达时,他等车的时间将不超过 10 分钟,故所求概率为10 1040=12.解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过 10 分钟,7:50~8:30的其他时刻到达车站时,等车时间将不超过 10 分钟,故等车时间不超过 10 分钟的概率为 1−2040=12.8.解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比.选A9.B 【解析】点 P 到点 O 的距离大于 1 的点位于以 O 为球心,以 1 为半径的半球的外部.记点 P 到点 O 的距离大于 1 为事件 A ,则 P (A )=2 − ××12=1−π12.10.【解析】因为 ∣x −1∣≤1⇔−1≤x −1≤1⇔0≤x ≤2,所以在区间 [−2,1] 上使不等式 ∣x −1∣≤1 成立的 x 的范围为 x [0,1],故所求概率 P =1−01−(−2)=13.11.解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2].答案:.32。

高考数学复习:几 何 概 型

高考数学复习:几 何 概 型
10
()
(4)与面积有关的几何概型的概率与几何图形的形状有
关. ( )
提示:(1)√.这是几何概型与古典概型的区别. (2)√.这是几何概型与古典概型的共同点. (3)×.从区间[1,10]内任取一个数,取到1的概率是0. (4)×.无论长度、角度、面积、体积、“测度”只与大 小有关,而与形状和位置无关.
3
6
=6 . 1
3
2
【规律方法】 长度、角度等测度的区分方法 (1)如果试验的结果构成的区域的几何度量可用长度表 示,则把题中所表示的几何模型转化为长度,然后求解. 解题的关键是构建事件的区域(长度).
(2)当涉及射线的转动、扇形中有关落点区域问题时, 应以角度的大小作为区域度量来计算概率,且不可用线 段的长度代替,这是两种不同的度量手段.
【题组练透】
1.(2019·西宁模拟)函数f(x)=2x(x<0),其值域为D,在
区间(-1,2)上随机取一个数x,则x∈D的概率是 ( )
A. 1
B. 1
C. 1
D. 2
2
3
4
3
【解析】选B.函数f(x)=2x(x<0)的值域为(0,1),即
D=(0,1),则在区间(-1,2)上随机取一个数x,则x∈D的
【解析】以A为圆心,以AD=1为半径作圆弧 DB 交 AC,AP,AB分别为C′,P′,B′.
依题意,点P′在 B上D任何位置是等可能的,且射线AP
与线段BC有公共点,则事件“点P′在 B上C”发生.
又在Rt△ABC中,易求∠BAC=∠B′AC′= .
故所求事件的概率P=BA=C
BAD
答案: 1
=75(s)的时间长度.根据几何概型的概率公式 可得,事件A发生的概率P(A)= 40 = 8 .

高中数学 3.3 几何概型 知识框架素材 新人教版必修3

高中数学 3.3 几何概型 知识框架素材 新人教版必修3
1.概率与频率框架图
概率的定义
用频率估计概率

概率的意义

概率的加法公式:如果事件

互斥事件
A与事件B互斥,则P(A∪B)

=P(A)+P(B)

概率的基本性质
对立事件
如果事件A与事件B互为对立 事件,则P(A)+P(B)=1
并、交(和、积)事件
2.随机事件的概率知识框架图
A包含的基本事件的个数
概率公式:P(A)=
基本事件的总数
古典概型

计算机模拟试验



构成事件A的区域

长度(面积或体积)

概率公式:P(A)= 试验的全部结果所构成

的区域长度(面积或体积)
几何概型
实物模拟试验
计算机模拟试验
3.概率框架图



随机事件
频率
概率,概率的

意义与性质


实际古典概型 Nhomakorabea几何概型
问 题
随机数与随机模拟

高中数学几何定理知识点总结_学习总结_

高中数学几何定理知识点总结_学习总结_

高中数学几何定理知识点总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即s=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

高中数学几何知识点思维导图

高中数学几何知识点思维导图

高中数学几何知识点思维导图1. 平面几何- 点、线、面的基本概念点、线、面的基本概念- 点:没有大小和形状的几何元素。

- 线:由无数点连成的一根直线。

- 面:有无穷多个点组成的平面。

- 角的概念和分类角的概念和分类- 角:由两条射线共享一个端点构成的几何图形。

- 顶点:角的公共端点。

- 分类:锐角、直角、钝角、平角等。

- 三角形的性质三角形的性质- 三角形:由三条线段连接而成的图形。

- 性质:内角和为180度,外角和为360度,等边三角形的三条边相等。

- 四边形的性质四边形的性质- 四边形:由四条线段连接而成的图形。

- 性质:对角线相互平分,平行四边形的对边对应相等。

- 圆的基本概念和性质圆的基本概念和性质- 圆:平面上一组到一个固定点距离相等的点的集合。

- 弧:圆上的一段弯曲的线段。

- 性质:半径相等的圆相似,圆内任意两点间的线段最短。

2. 空间几何- 立体图形的表面积和体积立体图形的表面积和体积- 表面积:立体图形表面的总面积。

- 体积:立体图形所占的空间大小。

- 常见立体图形:球体、圆柱体、正方体等。

- 平行线与平面的关系平行线与平面的关系- 平行线:在同一个平面上永不相交的两条线。

- 平面:空间中没有限制的延伸的面。

- 射影定理和相似三角形射影定理和相似三角形- 射影定理:平行线与平面相交时,对应的线段成比例。

- 相似三角形:对应角相等,对应边成比例的三角形。

- 球体的性质和计算球体的性质和计算- 性质:球体表面积和体积的计算公式。

- 计算:根据给定的半径或体积计算球体的表面积或体积。

3. 向量几何- 向量的定义和运算向量的定义和运算- 向量:有大小和方向的几何量。

- 定义:用起点和终点表示的有向线段。

- 运算:向量的加法、减法和数乘运算。

- 向量的数量积和向量积向量的数量积和向量积- 数量积:两个向量的数量积为它们的模乘积与夹角余弦的乘积。

- 向量积:两个向量的向量积为它们的模乘积与夹角正弦的乘积。

高考数学讲析几何概型知识点总结拓展文理通用

高考数学讲析几何概型知识点总结拓展文理通用

高考数学讲析几何概型知识点总结拓展文理通用几何概型概念几何概型中事件A的概率计算公式:1.几何概型的两个特征:(1)试验结果有无限多;(2)每个结果的出现是等可能的.事件A可以理解为区域的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关.2.解决几何概型的求概率问题关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.3.用几何概型解简单试验问题的方法(1)适当选择观察角度,把问题转化为几何概型求解.(2)把基本事件转化为与之对应的总体区域 D.(3)把随机事件A转化为与之对应的子区域 d.(4)利用几何概型概率公式计算.4.均匀随机数在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的ra nd()函数可以产生0~1之间的均匀随机数.a~b之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= r an d(),然后利用伸缩和平移变换x=r a nd()*(b-a)+a,就可以产生[a,b]上的均匀随机数,试验的结果是产生a~b之间的任何一个实数,每一个实数都是等可能的.5.均匀随机数的应用(1)用随机模拟法估计几何概率;(2)用随机模拟法计算不规则图形的面积.高考考点(1)几何概型的计算:具体题型可以分为:①长度型;②面积型;③体积型;④角度型;⑤约会型.(2)几何概型与其它知识的交汇:与定积分、立体几何、解析几何、函数与方程等知识联合命题.几何概型应用实例1.长度型概率计算的前提是判断类型,涉及区间长度问题为几何概型,总的基本事件与满足条件的基本事件构成的区域均为区间,所以概率与长度有关.方法技巧:我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,概率模型就可以用几何概型来求解.2.面积型二维空间的几何概型主要涉及到面积的度量问题,一般情况下抓住题目中的关键信息即“任意选取的位置”为平面即可确定该种类型,准确度量出欲求事件所包含的基本事件构成区域的面积与总的基本事件构成区域的面积,然后利用几何概型的计算公式即可.3.体积型准确判断概率模型概型后,以体积作为度量的几何概型计算问题相对容易判断,题目中的关键词信息一般是很明显的,主要注意体积的计算,然后代入几何概型的概率计算公式即可.4.约会型涉及到两个变量问题,需要在平面直角坐标系中作出其表示的平面区域,然后利用数形结合的思想,准确计算相关的面积测度,然后利用几何概型知识解题.。

高中数学几何整理总结归纳

高中数学几何整理总结归纳

高中数学几何整理总结归纳高中数学几何是数学的一个重要分支,其内容丰富且实用,对于学生的思维能力和逻辑推理能力的培养具有重要意义。

在这篇文章中,我将对高中数学几何的知识进行整理总结归纳,希望对广大学生有所帮助。

一、平面几何平面几何是数学几何的基础,其中包括点、线、面的概念以及它们之间的关系。

在学习平面几何时,我们需要掌握以下几个重要的定理:1. 点、线、面的基本概念:- 点是几何图形中最基本的元素,用一个大写字母表示,如点A、点B。

- 线是由一系列无限延伸的点组成,用小写字母表示,如线ab、线cd。

- 面是由无数个点和线围成的平坦表面,用大写字母表示,如面ABC。

2. 直线与角:- 直线是由无数个点组成的连续集合,可以延伸到无限远。

- 角是由两条线段的公共端点和相邻的线段确定,用∠表示,如∠ABC。

3. 圆与圆周角:- 圆是平面上一组与一个确定点的距离相等的点的集合。

- 圆周角是由圆上的两条弧所夹的角,用∠AOB表示,其中O为圆心。

4. 相似三角形:- 相似三角形是指对应的角相等,对应的边成比例的三角形。

- 判定相似三角形的条件包括AAA、AA和SAS三种情况。

二、立体几何立体几何是平面几何的延伸,它研究的是三维空间中的几何图形。

在学习立体几何时,我们需要掌握以下几个重要的定理:1. 直体与曲面:- 直体是指无限延伸的点组成的几何图形,如棱柱、棱锥等。

- 曲面是由无数个点围成的平坦表面,如球面、圆柱面等。

2. 体积和表面积:- 体积是指立体图形所包围的空间的大小。

- 表面积是指立体图形所有面的总和。

3. 空间几何关系:- 平行关系是指两个直线或平面永不相交。

- 垂直关系是指两个相交直线或平面之间的角为90度。

三、解析几何解析几何是数学几何和代数的结合,通过坐标系来研究几何图形。

在学习解析几何时,我们需要掌握以下几个重要的定理:1. 坐标系与坐标变换:- 坐标系是指由两个数轴组成的平面,通常为x轴和y轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典概型
随 机 事 件 的 概 率 几何概型
计算机模拟试验
构成事件A的区域 长度(面积或体积) 概率公式:P(A)= 试验的全部结果所构成 的区域长度(面积或体积)
实物模拟试验计算机模拟试验3. Nhomakorabea率框架图
随机事件
频率
概率,概率的 意义与性质
古典概型
几何概型
应 用 概 率 解 决 实 际 问 题
随机数与随机模拟
1.概率与频率框架图
概率的定义 用频率估计概率 概 率 与 频 率 概率的意义 互斥事件 概率的加法公式:如果事件 A与事件B互斥,则P(A∪B) =P(A)+P(B)
概率的基本性质
对立事件
如果事件A与事件B互为对立 事件,则P(A)+P(B)=1
并、交(和、积)事件
2.随机事件的概率知识框架图
A包含的基本事件的个数 概率公式:P(A)= 基本事件的总数
相关文档
最新文档