【7A文】高中数学导数理科数学试题含答案

合集下载

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.3.已知函数()()()211e 2x f x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.4.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立.5.已知函数()e sin cos xf x x x ax =+--.(1)若函数()f x 在[)0,∞+上单调递增,求实数a 的取值范围; (2)设函数()()()ln 1g x f x x =--,若()0g x ≥,求a 的值.6.己知数列{}n a 和{}n b ,12a =且()11n nb n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.7.已知函数()e 1xf x ax =--,a ∈R .(1)当2a =时,求()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围. 8.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 9.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .10.已知函数2()ln f x a x x =+,其中a R ∈且0a ≠. (1)讨论()f x 的单调性;(2)当1a =时,证明:2()1f x x x ≤+-; (3)求证:对任意的*n N ∈且2n ≥,都有:222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭.(其中e 2.718≈为自然对数的底数)【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln exf x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 3.(1)答案见解析 (2)0a < 【解析】 【分析】(1)求出导函数()(e )x f x x a '=-,对a 分0a ≤、01a <<、1a =、1a >四种情况讨论即可求解;(2)由(1)问结论,对a 分0a <、0a =、1a =、01a <<、1a >讨论即可得答案. (1)解:()e (1)e (e )x x x f x x ax x a '=+--=-,若0a ≤,则当(,0)x ∈-∞时,()0f x '<,当()0,x ∈+∞时()0f x '>, 所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 若0a >,由()0f x '=得0x =或1x na =,①若1a =,则()()e 10xx f x '-=≥,所以()f x 在(),-∞+∞上单调递增;②若01a <<,则ln 0a <,当(,ln )(0,)x a ∈-∞⋃+∞时,()0f x '>;当(ln ,0)x a ∈时,()0f x '<,所以()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减;③若1a >,则ln 0a >,当(,0)(ln ,)x a ∈-∞⋃+∞时,()0f x '>;当(0,ln )x a ∈时,()0f x '<,所以()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; 综上,当0a ≤时,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 当01a <<时,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减; 当1a =时,()f x 在(),-∞+∞上单调递增;当1a >时,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; (2)解:当0a <时,由(1)知,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增, 又()()1010,102f f a =-<=->,取b 满足3b <-且ln(b a <-),则()()()2211122022f b a b ab a b b >---=+->,所以()f x 有两个零点;当0a =时,令()(1)e 0x f x x =-=,解得0x =,所以()f x 只有一个零点; 当1a =时,令()()01x f x e x -==,解得0x =,所以()f x 只有一个零点;当01a <<时,由(1)知,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减,又()01f =-,当ln b a =时,()f x 有极大值()()()2211122022f b a b ab a b b =--=--+<,所以()f x 不存在两个零点;当1a >时,由(1)知,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减,当0x =时,()f x 有极大值()010f =-<,所以()f x 不存在两个零点; 综上,a 的取值范围为0a <. 【点睛】关键点点睛:本题(2)问解题的关键是,当0a <时,取b 满足3b <-且ln(b a <-),从而可得()()()2211122022f b a b ab a b b >---=+->.4.(1)1a > (2)证明见解析 【解析】 【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x .综上,1a >. (2)令()ln 1,()1'-=-+=-=a a x g x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 5.(1)2a ≤ (2)3a = 【解析】【分析】(1)由题意()e cos sin 0xf x x x a '=++-≥,利用分离参数法得到e cos sin x a x x ≤++对[)0,x ∈+∞恒成立.设()e cos sin xh x x x =++,利用导数判断出函数()h x 在[)0,∞+上单调递增,求出2a ≤;(2)把题意转化为(),1x ∀∈-∞,()()0g x g ≥恒成立.由0x =为()g x 的一个极小值点,解得3a =.代入原函数验证成立. (1)由题意知()e cos sin xf x x x a '=++-因为函数()f x 在[)0,∞+上单调递增,所以()e cos sin 0xf x x x a '=++-≥,即e cos sin x a x x ≤++对[)0,x ∈+∞恒成立设()e cos sin xh x x x =++,则()e sin cos 4x x h x x x e x π⎛⎫'=-+=- ⎪⎝⎭当02x π≤<时,()e 1104xh x x π⎛⎫'=->-= ⎪⎝⎭当2x π≥时,()2e e 0h x π'>>> 所以函数()e cos sin xh x x x =++在[)0,∞+上单调递增所以()()min 02a h x h ≤== (2)由题知()()()()()ln 1e sin cos ln 11xg x f x x x x ax x x =--=+----< 所以()1e cos sin 1xg x x x a x'=++-+-,()00g = 因为()0g x ≥,所以(),1x ∀∈-∞,()()0g x g ≥即()0g 为()g x 的最小值,0x =为()g x 的一个极小值点, 所以()010e cos0sin 0010g a '=++-+=-,解得3a = 当3a =时,()()()e sin cos 3ln 11xg x x x x x x =+----<所以()11e cos sin 3e 3141xx g x x x x x x π⎛⎫'=++-+=+-+ ⎪--⎝⎭ ①当01x ≤<时,()11310g x '≥+-+=(当且仅当0x =时等号成立) 所以()g x 在[)0,1上单调递增②当0x <时,若02x π-≤<,()11310g x '<+-+=;若2x π<-,()22132e 3302222g x πππ-'<+<+-+<++ 所以()g x 在(),0∞-上单调递减综上,()g x 在(),0∞-上单调递减,在[)0,1上单调递增 所以当3a =时,()()00g x g ≥= 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.6.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1na ≥,故112n n a a ≥+. 于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022na<≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<; 当3n ≥时,1122222211111153211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n n n b a =-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn kk S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题.7.(1)2a = 时,函数 () f x 的单调增区间是(ln2,)+∞ ,递减区间为 (,ln2)-∞ ; (2)a 的取值范围为 (], 0-∞ 【解析】 【分析】(1)将2a =代入,对()f x 求导,根据导数正负,确定函数增减即可; (2)()x f x e a '=-,根据题意函数单调增,所以需要()0f x '≥在R 上恒成立,利用参变分离即可求解. (1)当2a = 时,()e 21x f x x =--,()e 2x f x '∴=-.令()0f x '> ,即e 20x -> ,解得 : ln 2x > ; 令()0f x '< ,即e 20x -< ,解得 :ln 2x < ;()f x ∴ 在ln 2x =时取得极小值,亦为最小值,即(ln 2)12ln 2f =- .∴ 当2a = 时,函数()f x 的单调增区间是(ln2,)+∞,递减区间为(,ln2)-∞.(2)()e 1x f x ax =-- ()e .x f x a ∴-'=()f x 在R 上单调递增,()e 0x f x a ∴='-≥ 恒成立,即e x a ≤在x ∈R 恒成立,x ∈R时,e (0,)x ∈+∞,0a ∴≤.即 a 的取值范围为(],0∞-.8.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 9.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩【解析】 【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=, 所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增.()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+. (2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a af x x a x x--=+-+=, 当1,22aa ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--.当1e,22e 2aa <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减;在区间()',e ,02af x ⎛⎫> ⎪⎝⎭,()f x 递增.所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭.当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2ef a a a =+-+=-+-.所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩.【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 10.(1)答案见解析; (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)求得()'f x ,对参数a 进行分类讨论,即可求得不同情况下函数的单调性; (2)构造函数()ln 1g x x x =-+,利用导数研究函数单调性和最值,即可证明;(3)根据(2)中所求得2211ln 1n n ⎛⎫+<⎪⎝⎭,结合累加法即可求证结果. (1)函数()f x 的定义域为(0,)+∞,22()2a a xf x x x x'+=+=,①当0a >时,()0f x '>,所以()f x 在(0,)+∞上单调递增;②当0a <时,令()0f x '=,解得x =当0x <<220a x +<,所以()0f x '<,所以()f x 在⎛ ⎝上单调递减,当x >220a x +>,所以()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.综上,当0a >时,函数()f x 在(0,)+∞上调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当1a =时,2()ln f x x x =+,要证明2()1f x x x ≤+-, 即证ln 1≤-x x ,即ln 10x x -+≤, 设()ln 1g x x x =-+,则1()xg x x-'=,令()0g x '=得,可得1x =, 当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<. 所以()(1)0g x g ≤=,即ln 10x x -+≤,故2()1f x x x ≤+-. (3)由(2)可得ln 1≤-x x ,(当且仅当1x =时等号成立), 令211x n =+,1,2,3,n =,则2211ln 1n n ⎛⎫+<⎪⎝⎭, 故2211ln 1ln 123⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭ (222)111ln 123n ⎛⎫++<++ ⎪⎝⎭…21111223n +<++⨯⨯…()11n n +- 1111223⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭…11111lne 1n n n ⎛⎫+-=-<= ⎪-⎝⎭,即222111ln[111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211]lne n ⎛⎫+< ⎪⎝⎭, 故222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭. 【点睛】本题考察利用导数研究含参函数单调性,以及构造函数利用导数证明不等式,以及数列和导数的综合,属综合困难题.。

高中数学导数练习题含答案

高中数学导数练习题含答案

高中数学导数练习题含答案一、解答题1.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围. 2.已知函数()()1ln 0f x a x x a x=-+>.(1)当1≥x 时,()0f x ≤恒成立,求实数a 的取值范围;(2)当1a =时,()()21g x xf x x =+-,方程()g x m =的根为1x 、2x ,且21x x >,求证:211e x x m ->+.3.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数)4.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数. 5.设函数()1eln 1x af x a x -=--,其中0a >(1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥. 6.已知函数()1e xaxf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 7.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.9.用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x x x =+与()g x x ()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小;(2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.10.已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.【参考答案】一、解答题1.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 2.(1)02a <≤ (2)证明见解析 【解析】 【分析】(1)分析可知1≥x ,()()01f x f ≤=,分02a <≤、2a >两种情况讨论,利用导数分析函数()f x 在[)1,+∞上的单调性,验证()()1f x f ≤对任意的1≥x 是否恒成立,由此可求得实数a 的取值范围;(2)利用导数分析函数()g x 的单调性,可得出12101x x e<<<<,证明出31x x >,证明出当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--,可得出()241e 1x x m >=+-,结合不等式的性质可证得结论成立. (1)解:因为()()1ln 0f x a x x a x =-+>,则()222111a x ax f x x x x -+-'=--=,且()10f =,由题意可知,对任意的1≥x ,()()01f x f ≤=, 设21y x ax =-+-,则24a ∆=-,(ⅰ)当02a <≤时,0∆≤,()0f x '≤恒成立且()f x '不恒为零,()f x 在[)1,+∞上是减函数,又因为()10f =,所以()0f x ≤恒成立;(ⅱ)当2a >时,0∆>,方程210x ax -+-=的根为1x =,2x =又因为121=x x ,所以121x x .由()0f x '>得1x ≤<()0f x '<,得x所以()f x 在⎡⎢⎢⎣⎭上是增函数,在⎫+∞⎪⎪⎝⎭上是减函数, 因为()10f =,所以()0f x ≤不恒成立. 综上所述,02a <≤. (2)证明:当1a =时,()()21ln g x xf x x x x =+-=,()1ln g x x '=+,由()0g x '<,可得10e x <<,由()0g x '>,可得1ex >,所以()g x 在10,e ⎛⎫⎪⎝⎭上是减函数,在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数,则()min11e e g x g ⎛⎫==- ⎪⎝⎭, 当01x <<时,()ln 0g x x x =<,所以,12101x x e <<<<,且10em -<<, 当10,ex ⎛⎫∈ ⎪⎝⎭时,ln 1x <-,所以ln x x x <-,即()g x x <-.设直线y x =-与y m =的交点的横坐标为3x ,则3111ln x m x x x =-=->,下面证明当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--, 设()()()111ln 1ln e 1e 1e 1h x x x x x x x ⎡⎤=--=-+⎢⎥---⎣⎦,令()()11ln e 1e 1p x x x =-+--,则()()()()22e 1111e 1e 1x p x xx x --'=-=--,当11ee 1x <<-时,()0p x '<,当11e 1x <<-时,()0p x '>, 所以()p x 在11,e e 1⎛⎫ ⎪-⎝⎭上是减函数,在1,1e 1⎛⎫⎪-⎝⎭上是增函数, 又因为10e p ⎛⎫= ⎪⎝⎭,()10p =,所以当11ex <<时,()0p x <,()0h x <,故当1,1e x ⎛⎫∈ ⎪⎝⎭时,()()11e 1g x x <--. 设直线()111e y x =--与y m =的交点的横坐标为4x ,则41e 1x m -=-,可得()41e 1x m =+-,如下图所示:则()241e 1x x m >=+-,所以21431e x x x x m ->-=+,得证. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. 3.(1)(2e 1y x =-+(2)(ⅰ)(2e 2e ,4e -;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解; (2)(ⅰ)原问题等价于12,x x 22e ex a -=-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>, 所以函数()g x 在10,4⎛⎫ ⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x ->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x21x x -<;再利用()21e 011x x x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax a x =-++++21x x ->4.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x++-=,令()()221ln 24x F x x x +=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+-即2212211ln 1x x x x x -=-+-,即221221ln 20x x x x x -++-= 由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x xx x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x +---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.5.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞, 则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x,所以()f x 在区间0,1上单调递减;当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 6.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意.②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 7.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案.(2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0xx x g x x -++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.8.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx xx ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解. (1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可.令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解. 9.(1)12K K <; (2)1. 【解析】 【分析】(1)对()f x 、()g x 求导,应用曲率公式求出()1,1处的曲率1K ,2K ,即可比较大小;(2)由题设求出()h x 的曲率平方,利用导数求2K 的最大值即可. (1)由()11f x x '=+,()21f x x ''=,则()()()()13332222211112511f K f ''===+'+⎡⎤⎣⎦,由()g x '=,()3214g x x -''=-,则()()()2333222221124511112g K g ''===⎡⎤'+⎡⎤⎛⎫⎣⎦+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以12K K <; (2)由()cos h x x '=,()sin h x x ''=-,则()322sin 1cos xK x =+,()()2223322sin sin 1cos 2sin xxK x x ==+-,令22sin t x =-,则[]1,2t ∈,故232tK t -=, 设()32t p t t -=,则()()32643226t t t t p t t t----'==,在[]1,2t ∈时()0p t '<,()p t 递减, 所以()()max 11p t p ==,2K 最大值为1. 10.(1)25y x =+ (2)0b = 【解析】 【分析】(1)利用切点和斜率求得切线方程.(2)由()2f x ≥恒成立构造函数()()2g x f x =-,对b 进行分类讨论,结合()'g x 研究()g x 的最小值,由此求得b 的值. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为()520y x -=-, 即25y x =+. (2)当1a =时,令函数()()()2e 11xg x f x b x =-=+--,则()2f x ≥恒成立等价于()0g x ≥恒成立. 又()e 1,x g x b '=+-.当1b ≥时,()e 10,x g x b '=+->,g (x )在R 上单调递增,显然不合题意; 当1b <时,令()e 10,x g x b '=+-<,得ln(1)x b <-.令()e 10x g x b '=+->,得()ln 1x b >-,所以函数g (x )在(,ln(1))b -∞-上单调递减,在(ln(1),)b -+∞上单调递增, 所以当ln(1)x b =-时,函数g (x )取得最小值. 又因为()00g =,所以0x =为g (x )的最小值点. 所以ln(1)0b -=,解得0b =.。

高中数学导数练习题含答案

高中数学导数练习题含答案

高中数学导数练习题含答案一、解答题1.已知曲线()1f x x=(1)求曲线在点(1,1)P 处的切线方程. (2)求曲线过点(1,0)Q 的切线方程.2.已知函数2()cos sin e f x x x x -=--,[]0,x π∈. (1)求()f x 的最大值;(2)证明:2e sin e e cos 1x x x x x x x -+>+-;(3)若320()2e f x ax -++≥恒成立,求实数a 的取值范围. 3.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.4.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 5.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 6.已知函数()ln .f x x x ax a =-+(1)若1≥x 时,()0f x ≥恒成立,求a 的取值范围;(2)当1a =,01b <<时,方程()f x b =有两个不相等的实数根12,x x ,求证:12 1.x x <7.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数. 8.已知函数2()ln f x x x ax =-.(1)若()0f x ≤恒成立,求实数a 的取值范围;(2)若()112212ln 2ln 200x ax x ax x x -=-=>>,证明:()1212ln ln 10ln 2x x x x ⋅<<.9.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数.(1)设()'f x 是函数()f x 的导函数,若()'f x 在(2,3)上存在零点,求a 的取值范围; (2)若34ea ≥,证明:()0f x <. 10.设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.【参考答案】一、解答题1.(1)20x y +-= (2)440x y +-= 【解析】 【分析】(1)求得函数的导数()21f x x '=-,得到曲线在点(1,1)P 处的切线的斜率,结合直线的点斜式方程,即可求解;(2)设切线坐标为00(,)A x y ,得出切线的方程为020011()y x x x x -=--,根据点(1,0)Q 在切线上,列出方程求得0x 的值,代入即可求解.(1)由题意,函数()1f x x=,可得()21f x x '=-, 所以()11f '=-,即曲线在点(1,1)P 处的切线的斜率为1k =-, 所以所求切线方程为1(1)y x -=--,即20x y +-=. (2)解:设切点坐标为00(,)A x y ,则切线的斜率为201k x =-, 所以切线的方程为020011()y x x x x -=--, 因为点(1,0)Q 在切线上,可得020011(1)x x x -=--,解得012x =, 所以所求切线的方程为124()2y x -=--,即440x y +-=. 2.(1)2max ()e f x -=-(2)证明见解析 (3)1,6a ⎡⎫∈+∞⎪⎢⎣⎭【解析】 【分析】(1)直接利用导数判断单调性,求出最大值; (2)利用分析法,转化为证明1e x x ->f (x ). 令g (x )=1e xx-,[]0,x π∈,利用导数求出g (x )≥g (2)=-2e -,而2max ()(0)e f x f -==-,即可证明;(3)把问题转化为x cos x -sin x +2ax 3≥0恒成立,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,二次求导后,令()6sin x ax x ϕ=-,对a 分类讨论:i. a ≤-16, ii. a ≥16,iii.-16<a <16,分别利用导数计算即可求解. (1)∵2()cos sin e f x x x x -=--,[]0,x π∈,∴()cos sin cos sin 0f x x x x x x x '=--=-,∴f (x )在[0,π]上单调递减,∴2max ()(0)e f x f -==-.(2)要证2e sin e e cos 1x x x x x x x -+>+-,只要证21cos sin e e x x x x x -->--,即证1e xx ->f (x ), 令g (x )=1e x x -,[]0,x π∈,则()2e xx g x -'=,故g (x )在(0,2)上单调递减;g (x )在(2,π)上单调递增,所以g (x )≥g (2)=-2e -,又 f (x )≤-2e -,且等号不同时取到,所以2e sin e e cos 1x x x x x x x -+>+- (3)()3220f x ax -≥++e ,等价于x cos x -sin x +2ax 3≥0,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,则()2sin 66sin h x x x ax x ax x '=-+=(-),令()6sin x ax x ϕ=-,则()6cos x a x ϕ=-',i.当a ≤-16时,()0x ϕ',所以()ϕx 在[0,π]上递减,所以()(0)0x ϕϕ=, 所以()0h x '≤,所以h (x )在[0,π]上递减,所以h (x )≤h (0)=0,不合题意. ii.当a ≥16时,()0x ϕ',所以()ϕx 在[0,π]上递增,所以()(0)0x ϕϕ= 所以()0h x '≥,所以h (x )在[0,π]上递增,所以h (x )≥h (0)=0,符合题意. iii.当-16<a <16时,因为(0)610a ϕ=-<',()160a ϕπ=+>',且()x ϕ'在[0,π]上递增,所以0x ∃[]0,π∈,使得()00x ϕ'=,所以当0(0,)x x ∈时,()0x ϕ'<,此时()ϕx 在(0,x 0)上递减,所以()(0)0x ϕϕ<=,所以()0h x '<,所以h (x )在(0,x 0)上递减,所以h (x )<h (0)=0,不合题意.综上可得: 1,6a ⎡⎫∈+∞⎪⎢⎣⎭. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 3.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e 1313e e e 222222x x x x x m g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 4.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 5.(1)1a > (2)证明见解析 【解析】【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x . 综上,1a >. (2)令()ln 1,()1'-=-+=-=a a xg x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 6.(1)(,1].-∞ (2)证明见解析 【解析】 【分析】(1)1x ≥,()0ln 0a f x x a x ≥⇔-+≥,设()ln (1)ag x x a x x=-+≥,求导得221()a x ag x x x x-'=-=,分1a ≤与1a >两类讨论,即可求得a 的取值范围;(2)当1a =时,方程()f xb =有两个不相等的实数根1x ,2x ,不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<,而12()()f x f x =,只需证明111()()f x f x <,再构造函数,设1()()()(01)F x f x f x x=-<<,通过求导分析即可证得结论成立. (1)1x ≥,()0f x ∴≥,即ln 0ax a x-+≥, 设()ln (1)ag x x a x x=-+≥,221()a x ag x x x x -'=-=,当1a ≤时,()0g x '≥, ()g x ∴在[1,)+∞上单调递增,()(1)0g x g ∴≥=,满足条件;当1a >时,令()0g x '=,得x a =,当1x a <≤时,()0g x '<;当x a >时,()0g x '>,()g x ∴在区间[1,]a 上单调递减,在区间[,)a +∞上单调递增,min ()()ln 1g x g a a a ∴==-+,()(1)0g a g ∴<=,与已知矛盾.综上所述,a 的取值范围是(,1].-∞ (2)证明:当1a =时,()ln f x x '=,则()f x 在区间(0,1]上单调递减,在区间[1,)+∞上单调递增,由方程()f x b =有两个不相等的实数根12,x x , 不妨设12x x <,则1201x x <<<,要证121x x ⋅<,只需证2111x x <<, ()f x 在区间[1,)+∞上单调递增,只需证121()()f x f x < 又()()12f x f x =,∴只需证明111()()f x f x <,设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0x F x x x x x x-'=-=>,()F x ∴在区间(0,1)上单调递增,()(1)0F x F ∴<=,1()()0f x f x∴-<,即111()()f x f x <成立, ∴原不等式成立,即121x x ⋅<成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用. 7.(1)答案见解析; (2)答案见解析. 【解析】 【分析】(1)求得'()f x ,对参数a 进行分类讨论,根据不同情况下导数的正负即可判断对应的单调性;(2)根据(1)中所求函数的单调性,结合零点存在定理,逐一分析每种情况下函数零点的个数即可. (1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减; 当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增, 当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减.综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减. (2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-, 故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点; 当01a <≤时,ln 0a <,故()f x 在()0,+∞单调递减, 同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ; 若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点; 下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20xx-=<,即2ln y x x =-在()e,∞+单调递减, 故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<> 故()()2ln 2ln 0,e f a a a a a =-. 故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ; e a >时,()f x 有两个零点.【点睛】本题考察利用导数研究含参函数的单调性,以及函数的零点个数,涉及零点存在定理,属综合中档题.8.(1)1,e∞⎡⎫+⎪⎢⎣⎭(2)证明见解析 【解析】 【分析】(1)()0f x ≤恒成立,等价于ln x a x ≥恒成立,即max ln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x =,利用导数求出函数()g x 的最大值,即可得出答案;(2)()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点,即()1212,0x x x x >>为方程ln 2x a x =的两个根,由(1)知102e a <<,且1201x x <<<,则要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x xx x >⋅,即证2122112212ln x x x x x x ->,令12,1x t t x =>,则要证22n 1l t tt ->,令()()12ln 1t t t t t ϕ=-->,利用导数证明()min 0t ϕ>即可.(1)解:因为函数()f x 的定义域为()0,∞+,所以()0f x ≤恒成立, 等价于ln x a x ≥恒成立,所以max ln x a x ⎛⎫≥ ⎪⎝⎭, 令()ln x g x x =,则()21ln x g x x-'=, 当()0,e x ∈时,()0g x '>,()g x 单调递增;当()e,x ∈+∞时,()0g x '<,()g x 单调递减,所以()()max 1e e g x g ==, 故1e a ≥,即实数a 的取值范围是1,e∞⎡⎫+⎪⎢⎣⎭; (2)证明:()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点,即()1212,0x x x x >>为方程ln 20x ax -=的两个根,即()1212,0x x x x >>为方程ln 2x a x =的两个根, 由(1)知102e a <<,即102e a <<,且1201x x <<<, 由11ln 2x ax =,22ln 2x ax =,得()1212ln ln 2x x a x x -=-, 所以1212ln ln 2x x a x x -=-, 要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x xx x >⋅,即证121212ln ln 112ln ln ln ln x x x x x x +=+>⋅,即1211222ax ax +>, 即12114a x x +>,也就是121212ln ln 112x x x x x x -+>⨯-, 整理得221211222ln x x x x x x ->,即证2122112212ln x x x x x x ->, 令12,1x t t x =>,则要证2112ln t t t t t -=->, 令()()12ln 1t t t t tϕ=-->,则()()222221122110t t t t t t t t ϕ--+'=+-==>, 所以()t ϕ在()1,+∞上单调递增,所以()()10t ϕϕ>=,所以当t >1时,12ln t t t ->,故原结论成立,即()1212ln ln 10ln 2x x x x ⋅<<.【点睛】本题考查了不等式恒成立问题和不等式的证明问题,考查了利用导数求函数的最值,考查了分离参数法,考查了转化思想,考查了学生的数据分析能力和逻辑推理能力,难度较大.9.(1)32322e e a <<; (2)证明见解析.【解析】【分析】(1)求出函数()f x 的导数,由()0f x '=分离参数并构造函数,求解其值域作答. (2)将不等式等价转化,构造两个函数,并分别探讨它们的最大、最小值即可推理作答.(1) 依题意,21(1)e ()x x f x ax x -'=-,由()0f x '=得:21(1)e 1(1)e x x x x ax x a x--=⇔=, 令1())(e x x x x ϕ-=,23x <<,则22()(1)e 0xx x x x ϕ+'-=>,即()ϕx 在(2,3)上单调递增,当23x <<时,(2)()(3)x ϕϕϕ<<,即23e 2e ()23x ϕ<<, 由()'f x 在(2,3)上存在零点,则方程1(1)e xx a x -=在(2,3)上有根,因此有23e 12e 23a <<,解得32322e e a <<, 所以a 的取值范围是:32322e e a <<. (2)函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x x x a x f x a x x x <⇔-<⇔->, 令2e ()x a g x x =,0x >,求导得:3e ())(2x a x x g x'-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min 3e 4e 1()(2)4e 4ea g x g ==≥⋅=, 令ln ()x h x x =,0x >,求导得:21ln ()x h x x -'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)eh x h ==, 因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0x ∀>,()()g x h x >成立,即2e ln 0x a x x x ->成立, 所以()0f x <.【点睛】思路点睛:证明不等式常需构造辅助函数,将不等式证明转化为利用导数研究函数的单调性、求最值等解决.10.(1)单调递增区间为(-∞,)+∞;单调递减区间为( (2)55a -<+【解析】【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间;(2)由(1)中所得函数的单调性,得极值,可结合函数的图象得其与直线y a =三个交点时的a 的范围.(1)由已知可得:2()36f x x '=-,令()0f x '=,即2360x -=, 解得12x =-,12x =, 所以当2x >或2x <-时,()0f x '>,当22x -<<时,()0f x '<.所以()f x 的单调递增区间为(2)-∞-,,(2)+∞,; 单调递减区间为(22)-,.(2)由(1)可知()y f x =的图象的大致走势及走向,如图所示,又(2542f -=-2542f =+所以当542542a -<+y a =与函数()y f x =的图象有三个不同的交点,方程()f x a =有三个不等实根.。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。

解析:首先,我们需要找到函数 \( f(x) \) 的导数。

根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。

2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。

解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。

因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。

3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。

解析:这是一个复合函数,我们可以使用链式法则来求导。

首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。

对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)

高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。

导数高中试题及解析答案

导数高中试题及解析答案

导数高中试题及解析答案一、选择题1. 若函数f(x)=x^3-3x+1,则f'(x)等于()。

A. 3x^2-3B. 3x^2+3C. 3x^2-3xD. 3x^2+3x答案:A解析:根据导数的定义,f'(x)=3x^2-3。

2. 函数y=x^2-4x+c的导数是()。

A. 2x-4B. 2x+4C. -2x-4D. -2x+4答案:A解析:对函数y=x^2-4x+c求导,得到y'=2x-4。

二、填空题3. 若f(x)=x^2+2x+1,则f'(1)=______。

答案:4解析:将x=1代入f'(x)=2x+2,得到f'(1)=2*1+2=4。

4. 函数y=ln(x)的导数是______。

答案:1/x解析:对函数y=ln(x)求导,得到y'=1/x。

三、解答题5. 求函数g(x)=x^3-2x^2+x-1的导数。

答案:g'(x)=3x^2-4x+1解析:根据导数的运算法则,对函数g(x)求导得到g'(x)=3x^2-4x+1。

6. 已知f(x)=x^2+3x+2,求f'(-1)。

答案:-2解析:首先求出f'(x)=2x+3,然后将x=-1代入,得到f'(-1)=2*(-1)+3=-2。

四、应用题7. 某物体在t秒时的速度为v(t)=t^2-t,求物体在t=2秒时的瞬时速度。

答案:3解析:首先求出速度函数的导数v'(t)=2t-1,然后将t=2代入,得到v'(2)=2*2-1=3。

8. 函数y=e^x-x^2在x=0处的切线斜率是多少?答案:1解析:求出函数y的导数y'=e^x-2x,然后将x=0代入,得到y'(0)=e^0-2*0=1。

五、证明题9. 证明:若f(x)=x^3+2x,则f'(x)=3x^2+2。

答案:证明如下:∵f(x)=x^3+2x∴f'(x)=3x^2+2证明完毕。

高中导数试题题型及答案

高中导数试题题型及答案

高中导数试题题型及答案1. 计算函数\( f(x) = x^3 - 3x^2 + 2 \)在点\( x = 1 \)处的导数。

答案:首先求导数\( f'(x) \),得到\( f'(x) = 3x^2 - 6x \)。

然后将\( x = 1 \)代入,得到\( f'(1) = 3(1)^2 - 6(1) = -3 \)。

2. 已知函数\( g(x) = \sin(x) + \cos(x) \),求其在\( x =\frac{\pi}{4} \)处的导数。

答案:求导数\( g'(x) \),得到\( g'(x) = \cos(x) - \sin(x) \)。

然后将\( x = \frac{\pi}{4} \)代入,得到\( g'(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) - \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \)。

3. 判断函数\( h(x) = x^2e^x \)在\( x = 0 \)处的单调性。

答案:求导数\( h'(x) \),得到\( h'(x) = 2xe^x + x^2e^x \)。

然后将\( x = 0 \)代入,得到\( h'(0) = 2(0)e^0 + 0^2e^0 = 0 \)。

由于导数为0,无法判断单调性,需要进一步分析。

4. 给定函数\( k(x) = \ln(x) \),求其在区间\( (1, 2) \)上的单调区间。

答案:求导数\( k'(x) \),得到\( k'(x) = \frac{1}{x} \)。

由于\( k'(x) > 0 \)对于所有\( x > 0 \)成立,因此函数\( k(x) \)在区间\( (1, 2) \)上单调递增。

高中数学导数精选题目(附答案)

高中数学导数精选题目(附答案)

高中数学导数精选题目(附答案)(1)函数的单调性与其导数正负的关系一般地,在区间(a,b)内函数的单调性与导数有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常数函数(2)函数图象的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图象越大快比较“陡峭”(向上或向下)越小慢比较“平缓”(向上或向下)(3)极值点与极值①极小值点与极小值如图,函数f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则称点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.②极大值点与极大值函数f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则称点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.③极值点与极值极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(4)求可导函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.②如果在x0附近的左侧f′(x)<0时,右侧f′(x)>0,那么f(x0)是极小值.(5)函数y=f(x)在区间[a,b]上的最值一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(6)函数最值的求法求函数y=f(x)在闭区间[a,b]上的最值的步骤如下:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.(7)如果在区间(a,b)内恒有f′(x)=0,则f(x)有什么特性?答:f(x)为常数函数,不具有单调性.(8)在区间(a,b)内,若f′(x)>0,则f(x)在此区间上单调递增,反之也成立吗?答:不一定成立.比如y=x3在R上为增函数,但其在x=0处的导数等于零.也就是说f′(x)>0是y=f(x)在某个区间上单调递增的充分不必要条件.(9)下图为导函数y=f′(x)的图象,则函数y=f(x)的单调区间是什么?答:单调递增区间:(-∞,-3],[-2,1],[3,+∞);单调递减区间:[-3,-2],[1,3].(10):若函数f(x)为可导函数,且在区间(a,b)上是单调递增(或递减)函数,则f′(x)满足什么条件?答:f′(x)≥0(或f′(x)≤0).(11):若函数f(x)在(a,b)上满足f′(x)>0(或f′(x)<0),则f(x)在(a,b)上具备什么样的单调性?答:若f′(x)>0,则f(x)在(a,b)上为增函数;若f′(x)<0,则f(x)在(a,b)上为减函数.(12):f′(x)>0或f′(x)<0的解集与函数f(x)的单调区间有什么关系?答:f′(x)>0的解集对应函数f(x)的单调递增区间;f′(x)<0的解集对应函数f(x)的单调递减区间.(13):函数的极大值一定大于极小值吗?答:不一定,课本P27图1.3-11中c处的极小值大于f处的极大值.(14):函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?答:一个.x1,x2,x3是极值点,其中x2是极小值点. x1、x3是极大值点.(15):已知x0是函数f(x)定义域内的一点,当满足什么条件时,f(x0)是f(x)的极大值?当满足什么条件时,f(x0)是f(x)的极小值?答:当f′(x0)=0,且在x0附近的左侧f′(x)>0,右侧f′(x)<0时,f(x0)是极大值;当f′(x0)=0,且在x0附近的左侧f′(x)<0,右侧f′(x)>0时,f(x0)是极小值.(16):导数为0的点都是极值点吗?答:不一定,如f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.所以,当f′(x0)=0时,要判断x=x0是否为f(x)的极值点,还要看f′(x)在x0两侧的符号是否相反.(17):函数y=f(x)在给定区间(a,b)内一定有极值点吗?答:不一定,若函数y=f(x)在区间(a,b)内是单调函数,就没有极值点.(18):若a≥f(x)恒成立,则a的取值范围是什么?若a≤f(x)恒成立,则a的取值范围是什么?答:(1)a≥f(x)恒成立⇔a≥f(x)ma x.(2)a≤f(x)恒成立⇔a≤f(x)mi n.1.(1)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()2.(1)函数y=f(x)的图象如图所示,则导函数的图象大致是()(2)函数y=f(x)在定义域R上有导数,其导函数的图象如图所示,则函数y =f(x)的递增区间为____________;递减区间为________________.3.求证:函数f(x)=e x-x-1在(0,+∞)内是增函数,在(-∞,0)内是减函数.利用导数判断函数f(x)在(a,b)内的单调性的步骤(1)求f′(x);(2)确定f′(x)在(a,b)内的符号;(3)得出结论.4.试证明:函数f(x)=ln xx在区间(0,2)上是单调递增函数.5.求下列函数的单调区间:(1)f(x)=x3-2x2+x;(2)f(x)=3x2-2l n x.利用导数求函数单调区间的步骤(1)求函数的定义域;(2)求f′(x),解不等式f′(x)>0(或f′(x)<0);(3)利用不等式的解集与定义域求交集得单调区间.注意事项:①求函数的单调区间,必须在函数的定义域内进行.②如果函数的单调区间有多个时,单调区间不能用“∪”符号连接,只能用“,”或“和”隔开.③导数法求得的单调区间一般用开区间表示.6.求函数f(x)=e xx-2的单调区间.7.已知函数f(x)=x3-a x-1.讨论f(x)的单调区间.提示:由题意,可先求f′(x),然后根据a的取值情况,讨论f′(x)>0或f′(x)<0的解集即可.8.(1)本例中f(x)不变,若f(x)为单调递增函数,求实数a的取值范围;(2)本例中f(x)不变,若f(x)在区间(1,+∞)内为增函数,求a的取值范围;(3)本例中f(x)不变,若f(x)在区间(-1,1)上为减函数,试求a的取值范围;(4)本例中f(x)不变,若f(x)的单调递减区间为(-1,1),求a的取值范围;(5)本例中f(x)不变,若f(x)在区间(-1,1)上不单调,求a的取值范围.9.求下列函数的极值:(1)f(x)=x2e-x; (2)y=ln x x.10.求下列函数的极值:(1)f(x)=13x3-x2-3x+3;(2)f(x)=2xx2+1-2.11.已知f(x)=x3+3a x2+b x+a2在x=-1时有极值0,求常数a,b的值.12.已知f(x)=a x3+b x2+c x(a≠0)在x=±1处取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极大值点还是极小值点,并说明理由.13.求函数f(x)=x3-3a x+b(a≠0)的极值.提示:分类讨论a取不同值时,函数的单调性,进而求极值.14.设函数f(x)=-13x3+x2+(m2-1)x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值15.求下列各函数的最值.(1)f(x)=-x3+3x,x∈[-3,3];(2)f(x)=x2-54x(x<0).16.求下列各函数的最值.(1)f(x)=x3-3x2+6x-2,x∈[-1,1];(2)f(x)=12x+S i n x,x∈[0,2π].17.已知函数f(x)=(4x2+4a x+a2)x,其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.18.已知函数f(x)=a x3-6a x2+b,x∈[-1,2]的最大值为3,最小值为-29,求a,b的值.19.已知f(x)=x l n x,g(x)=-x2+a x-3.(1)求函数f(x)的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.提示:2f(x)≥g(x)恒成立,可转化为2f(x)-g(x)≥0恒成立,然后利用分离参数法求a的取值范围.(1)a≥f(x)(或≤f(x))恒成立⇔a≥f(x)ma x(或≤f(x)mi n);(2)a≥f(x)(或≤f(x))恒有解⇔a≥f(x)mi n(或≤f(x)ma x);(3)f(x)≥g(x)恒成立⇔F(x)mi n≥0(其中F(x)=f(x)-g(x));(4)f (x )≥g (x )恒有解⇔F (x )ma x ≥0(其中F (x )=f (x )-g (x )). 20.设函数f (x )=x e x-x ⎝ ⎛⎭⎪⎫a 2x +1+2.(1)若a =1,求f (x )的单调区间;(2)当x ≥0时,f (x )≥x 2-x +2恒成立,求a 的取值范围.参考答案:1.解: (1)由函数的图象可知:当x <0时,函数单调递增,导数始终为正; 当x >0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.(2)从f ′(x )的图象可以看出,在区间⎝ ⎛⎭⎪⎫a ,a +b 2内, 导数单调递增; 在区间⎝ ⎛⎭⎪⎫a +b 2,b 内,导数单调递减.即函数f (x )的图象在⎝ ⎛⎭⎪⎫a ,a +b 2内越来越陡,在a +b 2,b 内越来越平缓,由此可知,只有选项D 符合.2.解析:选D 因为函数f (x )在(0,+∞)和(-∞,0)上都是单调递减的,即f ′(x )<0.解析:由f ′(x )的图象可知,当x ∈(-2,-1)∪(1,3)∪(4,+∞)时,f ′(x )>0; 当x ∈(-∞,-2)∪(-1,1)∪(3,4)时,f ′(x )<0.故函数f (x )的增区间为(-2,-1),(1,3),(4,+∞);减区间为(-∞,-2),(-1,1),(3,4).3.解: 由于f (x )=e x -x -1, 所以f ′(x )=e x -1,当x ∈(0,+∞)时,e x >1,即f ′(x )=e x -1>0. 故函数f (x )在(0,+∞)内为增函数,当x ∈(-∞,0)时,e x <1,即f ′(x )=e x -1<0. 故函数f (x )在(-∞,0)内为减函数.4.证明:由于f (x )=ln xx ,所以f ′(x )=1x ·x -ln x x 2=1-ln x x 2. 由于0<x <2,所以l n x <l n 2<1, 故f ′(x )=1-ln xx 2>0,即函数f (x )=ln xx 在区间(0,2)上是单调递增函数. 5.解: (1)函数的定义域为R ,∵f (x )=x 3-2x 2+x ,∴f ′(x )=3x 2-4x +1. 令f ′(x )>0,解得x >1或x <13.因此f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,13,(1,+∞).令f ′(x )<0,解得13<x <1.因此f (x )的单调递减区间是⎝ ⎛⎭⎪⎫13,1.(2)函数的定义域为(0,+∞),f ′(x )=6x -2x =2·3x 2-1x .令f ′(x )>0,即2·3x 2-1x >0,解得-33<x <0或x >33,又x >0,∴x >33; 令f ′(x )<0,即2·3x 2-1x <0,解得x <-33或0<x <33,又x >0,∴0<x <33. ∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫33,+∞;单调递减区间为⎝⎛⎭⎪⎫0,33.6.解:函数f (x )的定义域为(-∞,2)∪(2,+∞). f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2.因为x ∈(-∞,2)∪(2,+∞),所以e x >0,(x -2)2>0. 由f ′(x )>0得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3). 7.解: f ′(x )=3x 2-a . (1)当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. (2)当a >0时,令3x 2-a =0,得x =±3a3.当x >3a 3或x <-3a3时,f ′(x )>0; 当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知, 当a ≤0时,f (x )在R 上为增函数.当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.8.解:(1)由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数, 所以a ≤0.即实数a 的取值范围为(-∞,0].(2)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)恒成立, 即3x 2-a ≥0在(1,+∞)恒成立, 所以a ≤3x 2在(1,+∞)恒成立,即a的取值范围为(-∞,3].(3)由f′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在x∈(-1,1)恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围是[3,+∞).(4)由例题可知,f(x)的单调递减区间为-3a3,3a3,∴3a3=1,即a=3.(5)∵f(x)=x3-a x-1,∴f′(x)=3x2-a,由f′(x)=0,得x=±3a3(a≥0),∵f(x)在区间(-1,1)上不单调,∴0<3a3<1,即0<a<3.故a的取值范围为(0,3).9.解:(1)函数的定义域为R.f′(x)=2x e-x-x2e-x=x(2-x)e-x.令f′(x)=0,得x=0或x=2.当x变化时,f′(x),f(x)的变化情况如下表:由上表可以看出,当x=0时,函数有极小值,且f(0)=0.当x=2时,函数有极大值,且f(2)=4 e2.(2)函数y=ln xx的定义域为(0,+∞),y′=1-ln xx2.令y′=0,即1-ln xx2=0,得x=e.当x变化时,y′,y的变化情况如下表:由表可知,当x=e时,函数有极大值1 e.10.解:(1)函数的定义域为R,f′(x)=x2-2x-3.令f′(x)=0,得x=3或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:∴x=-1是f(x)的极大值点,x=3是f(x)的极小值点.∴f(x)极大值=143,f(x)极小值=-6.(2)函数的定义域为R,f′(x)=2(x2+1)-4x2 (x2+1)2=-2(x-1)(x+1)(x2+1)2.令f′(x)=0,得x=-1或x=1.当x变化时,f′(x),f(x)的变化情况如下表:由表可以看出:当x =-1时,函数f (x )有极小值,且f (-1)=-22-2=-3; 当x =1时,函数f (x )有极大值,且f (1)=22-2=-1. 11.解: ∵y =f (x )在x =-1时有极值为0, 且f ′(x )=3x 2+6a x +b ,∴⎩⎨⎧ f ′(-1)=0,f (-1)=0,即⎩⎨⎧3-6a +b =0,-1+3a -b +a 2=0. 解得⎩⎨⎧ a =1,b =3或⎩⎨⎧a =2,b =9.①当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, y =f (x )在R 上为增函数,无极值,故舍去. ②当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,f (x )在x =-1处取极小值且f (-1)=0. ∴a =2,b =9.12.解:f ′(x )=3a x 2+2b x +c , (1)法一:∵x =±1是函数的极值点,∴x =±1是方程3a x 2+2b x +c =0的两根.由根与系数的关系知⎩⎪⎨⎪⎧-2b 3a =0, ①c 3a =-1, ②又f (1)=-1,∴a +b +c =-1,③ 由①②③解得a =12,b =0,c =-32.法二:由f ′(1)=f ′(-1)=0,得3a +2b +c =0,① 3a -2b +c =0,②又f (1)=-1,∴a +b +c =-1,③ 由①②③解得a =12,b =0,c =-32.(2)f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时f ′(x )>0,当-1<x <1时,f ′(x )<0.∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.∴当x =-1时,函数取得极大值,x =-1为极大值点;当x =1时,函数取得极小值,x =1为极小值点.13.解: f ′(x )=3(x 2-a )(a ≠0),当a <0时,f ′(x )>0恒成立,即函数在(-∞,+∞)上单调递增,此时函数没有极值;当a >0时,令f ′(x )=0,得x =-a 或x =a .当x 变化时,f ′(x )与f (x )的变化情况如下表:∴f (x )的极大值为f (-a )=2a a +b , 极小值为f (a )=-2a a +b .14.解:(1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为1.(2)f ′(x )=-x 2+2x +m 2-1.令f ′(x )=0,解得x =1-m 或x =1+m .因为m >0,所以1+m>1-m.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间为(-∞,1-m),(1+m,+∞),递增区间为(1-m,1+m).函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=-23m3+m2-13.函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=23m3+m2-13.15.解:(1)f′(x)=3-3x2=3(1-x)(1+x).令f′(x)=0,得x=1或x=-1,当x变化时,f′(x),f(x)的变化情况如下表:所以x=1和x=-1是函数在[-3,3]上的两个极点,且f(1)=2,f(-1)=-2.又因为f(x)在区间端点处的取值为f(-3)=0,f(3)=-18.所以f(x)ma x=2,f(x)mi n=-18.(2)f′(x)=2x+54x2.令f′(x)=0得x=-3.当x变化时,f′(x),f(x)的变化情况如下表:所以x =-3时,f (x )取得极小值,也就是最小值, 故f (x )的最小值为f (-3)=27,无最大值.16.解:(1)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3, 因为f ′(x )在[-1,1]内恒大于0, 所以f (x )在[-1,1]上为增函数. 故x =-1时,f (x )取最小值为-12, x =1时,f (x )取最大值为2. (2)f ′(x )=12+co S x ,令f ′(x )=0, 又x ∈[0,2π],解得x =2π3或x =4π3.计算得f (0)=0,f (2π)=π,f ⎝ ⎛⎭⎪⎫2π3=π3+32,f ⎝ ⎛⎭⎪⎫4π3=2π3-32.所以当x =0时,f (x )有最小值f (0)=0; 当x =2π时,f (x )有最大值f (2π)=π 17.解: (1)当a =-4时,f ′(x )=2(5x -2)(x -2)x,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,25或x ∈(2,+∞),故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,25和(2,+∞). (2)f ′(x )=(10x +a )(2x +a )2x ,a <0,由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝ ⎛⎭⎪⎫0,-a 10时,f (x )单调递增;当x ∈-a 10,-a 2时,f (x )单调递减;当x∈⎝ ⎛⎭⎪⎫-a 2,+∞时,f (x )单调递增. 易知f (x )=(2x +a )2x ≥0,且f ⎝ ⎛⎭⎪⎫-a 2=0.①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a+a 2=8,得a =±22-2,均不符合题意.②当1<-a 2≤4,即-8≤a <-2时,此时15<-a 10≤45,f (x )在[1,4]上的最小值为f ⎝ ⎛⎭⎪⎫-a 2=0,不符合题意.③当-a2>4,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)=8时没有符合题意的a 值,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意.综上知,a =-10.18.解:由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾.f ′(x )=3a x 2-12a x =3a x (x -4),令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,当x =0时,f (x )取得极大值,也就是函数在[-1,2]上的最大值,∴f (0)=3,即b =3.又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值,也就是函数在[-1,2]上的最小值,∴f (0)=-29,即b =-29.又f (-1)=-7a -29,f (2)=-16a -29>f (-1), ∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.19.解: (1)已知函数f (x )的定义域为(0,+∞),f ′(x )=l n x +1, 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增.所以f (x )mi n =f ⎝ ⎛⎭⎪⎫1e =-1e . (2)2x l n x ≥-x 2+a x -3,则a ≤2l n x +x +3x , 设h (x )=2l n x +x +3x (x >0), 则h ′(x )=(x +3)(x -1)x 2, ①x ∈(0,1),h ′(x )<0,h (x )单调递减; ②x ∈(1,+∞),h ′(x )>0,h (x )单调递增; 所以h (x )mi n =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )mi n =4,即a 的取值范围是(-∞,4]. 20.解:(1)∵a =1, ∴f (x )=x e x -x ⎝ ⎛⎭⎪⎫12x +1+2=x e x -12x 2-x +2, ∴f ′(x )=(e x -1)(x +1), ∴当-1<x <0时,f ′(x )<0; 当x <-1或x >0时,f ′(x )>0,∴f (x )在(-1,0)上单调递减,在(-∞,-1),(0,+∞)上单调递增. (2)由f (x )≥x 2-x +2,得x ⎝ ⎛⎭⎪⎫e x -a +22x ≥0, 当x =0时,显然成立; 当x >0时,即e x x ≥a +22恒成立. 记g (x )=e xx ,则g ′(x )=e x (x -1)x 2, 当0<x <1时,g ′(x )<0,g (x )是减函数, 当x >1时,g ′(x )>0,g (x )是增函数.∴g(x)的最小值为g(1)=e,∴a+22≤e,得a≤2e-2.即a的取值范围是(-∞,2e-2].。

高中数学导数练习题含答案

高中数学导数练习题含答案

高中数学导数练习题含答案一、解答题1.已知函数321()33f x x x ax =-+(1)若()f x 在点(1,(1))f 处切线的倾斜角为4π,求a 的值; (2)若1a =-,求()f x 的单调区间.2.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.3.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数.4.己知数列{}n a 和{}n b ,12a =且()11n nb n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()1e xaxf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围. 7.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性.8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围. 9.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值; (2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题 1.(1)23(2)单调增区间为:(,1)-∞-,(3,)+∞ ;单调减区间为:(1,3)- 【解析】 【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案; (2)求出函数导数,解相应不等式,可得函数的单调区间. (1)由321()33f x x x ax =-+,可得2()23f x x x a '=-+, 故由()f x 在点(1,(1))f 处切线的倾斜角为4π得(1)1f '=, 即21231,3a a -+==; (2)1a =-时,321()33f x x x x =--,2()23f x x x '=--,令2()230f x x x '=-->,则1x <- 或3x > , 令2()230f x x x '=--<,则13x ,故()f x 的单调增区间为:(,1)-∞-,(3,)+∞ ;单调减区间为:(1,3)- . 2.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞. 则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln a b <令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t-+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 3.(1)0a =或4; (2)答案见解析. 【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x xϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a ⎛⎫'-=---< ⎪⎝⎭,()11101h a '=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 4.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1n a ≥,故112nna a ≥+.于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022na<≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221kk-⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<; 当3n ≥时,1122222211111153211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n n n b a =-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn kk S ==<-∑. 1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a x x+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e eee e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e,1t -∃∈,使得()0g t '=,且所以0x t =,020000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)①112y x =-;②证明见解析 (2){}()210,e -⋃【解析】 【分析】(1)①利用导数求出切线的斜率,直接求出切线方程;②令()e 1e x xg x x =+-,利用导数判断出()g x 在(0,)+∞上有唯一零点0x ,利用列表法证明出()f x 在(0,)+∞上有唯一极大值点;(2)令()e xh x a ax =+-.对a 分类讨论:①0a <,得到当1a =-时,()f x 无零点;②0a >,()f x 无零点,符合题意. (1)若1a =,则()1e 1x xf x =-+,()2e 1e (e 1)x x x x f x +-=+'.①在0x =处,()()21110211f '+==+,(0)1f =-. 所以曲线()y f x =在0x =处的切线方程为112y x =-.②令()e 1e x xg x x =+-,()e x g x x '=-,在区间(0,)+∞上,()0g x '<,则()g x 在区间(0,)+∞上是减函数.又(1)10,g =>()22e 10,g =-+<,所以()g x 在(0,)+∞上有唯一零点0x . 列表得:(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若0a <,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.7.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦,即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x ax a x a a f x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增, 2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减, 2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减. 8.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >, 由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 9.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.10.(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解.(1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln xbx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x xb x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题1.设函数21()ln 2f x x ax bx =--.(1)令21()()(03)2a F x f x ax bx x x=+++<≤,以其图象上任意一点()00,P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的取值范围;(2)当0,1a b ==-时,方程22()mf x x =有唯一实数解,求正数m 的值.2.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>.3.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 4.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <.5.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数)6.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eax f x g x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围 7.已知函数21()(1)ln 2f x x ax a x =-+-,(2) 2.f '= (1)求a 的值;(2)求函数()f x 的极小值.8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.9.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)12a ≥ (2)12m = 【解析】 【分析】(1)根据导数的几何意义,得到()002012x a k F x x '-==≤,在0(0,3]x ∈上恒成立,利用分离参数法得到2000max1,(0,3]2a x x x ⎛⎫≥-+∈ ⎪⎝⎭,即可求解; (2)把题意转化为22ln 20x m x mx --=有唯一实数解.设2()2ln 2g x x m x mx =--,利用导数计算得到222ln 10x x +-=.设函数()2ln 1h x x x =+-,由()h x 是增函数,且(1)0h =,得到21x =1=,即可解出m .(1)()ln ,(0,3]aF x x x x=+∈所以()002012x a k F x x '-==≤,在0(0,3]x ∈上恒成立, 所以2000max1,(0,3]2a x x x ⎛⎫≥-+∈ ⎪⎝⎭ 对于()2011122y x =--+,所以当01x =时,20012x x -+取得最大值12.所以12a ≥. (2)因为方程22()mf x x =有唯一实数解, 所以22ln 20x m x mx --=有唯一实数解.设2()2ln 2g x x m x mx =--,则2222()x mx mg x x--'=令()0g x '=,得20x mx m --= 因为0,0m x >>,所以10x =<(舍去),2x =, 当()20,x x ∈时,()0,?()g x g x '<在()20,x 单调递减, 当()2,x x ∈+∞时,()0,()'>g x g x 在()2,x +∞单调递增.当2x x =时,()20,()g x g x '=取最小值()2g x .因为()0g x =有唯一解,所以()20g x =.则()()2200g x g x ⎧=⎪⎨='⎪⎩即22222222ln 200x m x mx x mx m ⎧--=⎨--=⎩ 所以222ln 220,2ln 0m x mx m m x mx m +-=+-= 因为0m >,所以222ln 10x x +-=. 设函数()2ln 1h x x x =+-,因为当0x >时,()h x 是增函数,所以()0h x =至多有一解.因为(1)0h =,所以方程的解为21x =1=,解得12m =. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 2.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证. (1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t t t t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >= 所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t >又()()12h t h t =,所以121()()h t h t >因为21e t <<,所以2101t <<由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 3.(1)1a > (2)证明见解析 【解析】 【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x .综上,1a >. (2)令()ln 1,()1'-=-+=-=a a x g x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 4.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=> 由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x << 令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+- 则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=> 即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <5.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】(1)由导数的几何意义即可求解; (2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>, 所以函数()g x 在10,4⎛⎫ ⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<-所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα->所以21x x ->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x21x x -<;再利用()21e 011x x x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax a x =-++++21x x ->6.(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞ (2)2(e ,).+∞ 【解析】 【分析】 (1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e axf xg x a x a x'==++,则21()ax g x x -'=,再对a 进行分类讨论即可得到答案. (2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()()(21)g x g a na a==-,接下来对a 进行讨论即可得到答案. (1)依题意,()f x 的定义域为(0,)+∞,e()e (ln 1)ax axf x a x x'=++,则()1()ln e ax f x g x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a =,所以,当1(0,)x a∈时,()0g x '<,()g x 递减; 当1(,)x a ∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a,增区间为1(,).a+∞(2)因为()f x 有两个极值点,所以()g x 有两个零点, 由(1)知0a <时不合;当0a >时,min 1()()(21).g x g a na a==-当20e a <<时,1()()0g x g a>>,()g x 没有零点,不合题意;当2e a =时,1()0g a =,()g x 有一个零点1a ,不合题意;当2e a >时,1()0g a<,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21()0g a >, 所以存在1211(,)x a a∈,使得1()0g x =; 又因为1()e 0eg =>,所以存在211(,)ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:e a >综上,a 的取值范围是2(e ,).+∞ 7.(1)1- (2)极小值32【解析】 【分析】(1)求导函数,结合(2)2f '=解方程即可; (2)令()0f x '=进而分析单调性,即可求出极值. (1)由题意可得()1a f x x a x '-=-+,故()12222a f a -'=-+=, 1.a ∴=- (2)由(1)得21()2ln 2f x x x x =+-,所以()()210f x x x x'=+->,令()210f x x x'=+-=,解得1x =,因为 当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,所以函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增, 所以当1x =时,函数()f x 取得极小值()312f =. 8.(1)()3232f x x x =+- (2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >, 由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 9.(1)答案见解析 (2)e π-- 【解析】 【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值. (1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e xf x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增, 当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减, 此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0; 当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞ 上单调递减,极值点个数为1. (2)由()()0af x g x +=,得sin 1xx a e -=.令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根, 所以直线y a =与函数()sin 1xx h x e-=的图像在[]0,π上有两个交点. ()1cos sin 14x xx x x h x e e π⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 4x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=,所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<,所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭.又()01h =-,()e h ππ-=-, e 1π-->-所以当)e ,0xa -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决生活中的优化问题; (4)利用导数研究零点问题,考查数形结合思想的应用. 10.(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解.(1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln xbx x b x b a a+-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e eln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a (1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题1.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围. 2.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈ (1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-3.已知函数()2()2e =+-xf x x a .(1)讨论函数的单调性;(2)若(0,),()x f x a ∈+∞≥-恒成立,求整数a 的最大值. 4.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围. 5.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.6.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值. 7.已知函数()1ln xf x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 8.设函数ln e ()xx f x a x=-,其中a ∈R 且0a ≠,e 是自然对数的底数. (1)设()'f x 是函数()f x 的导函数,若()'f x 在(2,3)上存在零点,求a 的取值范围; (2)若34ea ≥,证明:()0f x <. 9.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题1.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 2.(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)求出函数的导数,通过讨论a 的范围,解关于导函数的不等式,求出函数的单调区间即可;(2)根据导函数在()1,e 上存在零点,则()0f x '=在()1,e 上有解,则有1e 2a <<,即22e a <<,得到函数()f x 的最小值,构造函数2()ln (1ln 2)4x g x x x x =--+,22e <<x ,利用导数判断出其单调性,结合不等式传递性可证.(1)函数()f x 的定义域是(0,)+∞,(2)(1)()2(2)a x a x f x x a x x'--=+-+=, ①0a 时,20x a ->,令()0f x '>,解得:1x >,令()0f x '<, 解得:01x <<,故()f x 在(0,1)递减,在(1,)+∞递增; ②02a <<时,令()0f x '>,解得:1x >或02ax <<,令()0f x '<,解得:12ax <<,故()f x 在0,2a ⎛⎫⎪⎝⎭递增,在,12⎛⎫ ⎪⎝⎭a 递减,在()1,+∞递增;③2a =时,()0f x ',()f x 在(0,)+∞递增;④2a >时,令()0f x '>,解得:2ax >或01x <<,令()0f x '<,解得:12ax <<,故()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a递增;综上:0a 时,()f x 在(0,1)递减,在(1,)+∞递增,02a <<时,()f x 在0,2a ⎛⎫⎪⎝⎭递增,在,12⎛⎫ ⎪⎝⎭a 递减,在(1,)+∞递增;2a =时,()f x 在(0,)+∞递增;2a >时,()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a 递增;(2)因为(2)(1)()2(2)ax a x f x x a xx'--=+-+=, 又因为导函数()'f x 在(1,)e 上存在零点,所以()0f x '=在(1,e)上有解, 则有1e 2a <<,即22e a <<,且当12a x <<时,()0f x '<,()f x 单调递减, 当e 2a x <<时,()0f x '>,()f x 单调递增,所以22()ln (2)ln (1ln 2)22424⎛⎫=+-+=--+ ⎪⎝⎭a a a a a f x f a a a a a ,设2()ln (1ln 2)4x g x x x x =--+,22e x <<,则()ln 1(1ln 2)ln ln 222x xg x x x '=+--+=--,则11()02g x x ''=-<,所以()g x '在(2,2e)上单调递减,所以()g x 在(2,2e)上单调递减,则()()()222e 22e e 2e 1ln 2e 2g eln g =--+=-<,所以()2e g x >-,则根据不等式的传递性可得,当()1,e x ∈时,()2e .f x >-【点睛】本题考查利用导数表示曲线上某点处的斜率,考查函数的单调性,考查导数的综合应用以及分类讨论思想,转化思想,属于难题. 3.(1)答案见解析 (2)4 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)由(0,),()x f x a ∈+∞≥-恒成立分离常数a ,通过构造函数,结合导数求得a 的取值范围,从而求得整数a 的最大值. (1)()'2(22)e x f x x x a =++-①当1a ≤时,()0f x '≥恒成立,故()f x 在R 上恒增; ②当1a >时,当(,1x ∈-∞-时()0f x '>,()f x 单调递增,(11x ∈--时()0f x '<,()f x 单调递减,(1)x ∈-+∞时()0f x '>,()f x 单调递增,综上所述:当1a ≤时,()f x 在R 上恒增; 当1a >时,()f x在(,1-∞-和(1)-++∞上单调递增,在(11--上单调递减.(2)2e (2)(e 1)xxx a +≥-,由于,()0x ∈+∞,2e (2)e 1x x x a +≤-,2e (2)()e 1x x x g x +=-,22e (2e 22)()(e 1)x x x x x x g x ---'=-, 令2()2e 22x h x x x x =---,()(e 1)(22)x h x x '=-+,由于,()0x ∈+∞,则()(e 1)(22)0x h x x '=-+>,故2()2e 22x h x x x x =---单调递增,3334443393338()e 2e 4(e )042162223h =---<-=-<,(1)2e 50h =->, 所以存在03(,1)4x ∈使得0()0h x =,即020002e 22xx x x =++,当00(0,)x x ∈时()0h x <,()g x 单调递减,当00(,)x x ∈+∞时()0h x >,()g x 单调递增; 那么()()00202000e 222e 1x x x a g x xx +≤==++-,03(,1)4x ∈,故034()()(1)54g g x g <<<=,由于a 为整数,则a 的最大值为4. 【点睛】求解含参数不等式恒成立问题,可考虑分离常数法,然后通过构造函数,结合导数来求得参数的取值范围. 4.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案. (2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0xx x g x x -++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.5.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>,所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()max ln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.6.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值. (1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1. ∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =,从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增,又1522g ⎛⎫= ⎪⎝⎭,()1033g =,∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =.7.(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可; (2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x --'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k xf x x++≤+=, 令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤. 8.(1)32322e e a <<; (2)证明见解析. 【解析】 【分析】(1)求出函数()f x 的导数,由()0f x '=分离参数并构造函数,求解其值域作答. (2)将不等式等价转化,构造两个函数,并分别探讨它们的最大、最小值即可推理作答. (1)依题意,21(1)e ()x x f x ax x -'=-,由()0f x '=得:21(1)e 1(1)e x xx x ax x a x--=⇔=, 令1())(e x x x x ϕ-=,23x <<,则22()(1)e 0xx x x xϕ+'-=>,即()ϕx 在(2,3)上单调递增,当23x <<时,(2)()(3)x ϕϕϕ<<,即23e 2e ()23x ϕ<<,由()'f x 在(2,3)上存在零点,则方程1(1)e x x a x-=在(2,3)上有根,因此有23e 12e 23a <<,解得32322e e a <<,所以a 的取值范围是:32322e e a <<. (2)函数()f x 的定义域为(0,)+∞,当34e a ≥时,2ln e e ln ()000x xx a xf x a x x x<⇔-<⇔->, 令2e ()x a g x x =,0x >,求导得:3e ())(2x a x x g x '-=,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(0,2)上单调递减,在(2,)+∞上单调递增,当2x =时,22min3e 4e 1()(2)4e 4ea g x g ==≥⋅=,令ln ()x h x x =,0x >,求导得:21ln ()x h x x-'=,当0e x <<时,()0h x '>,当e x >时,()0h x '<,即函数()h x 在(0,e)上单调递增,在(e,)+∞上单调递减,当e x =时,max 1()(e)eh x h ==, 因此,0x ∀>,min max 1()()()()eg x g x h x h x ≥≥=≥,而()g x 的最大值与()h x 的最小值不同时取得,即上述不等式中不能同时取等号,于是得:0x ∀>,()()g x h x >成立,即2e ln 0x a x x x ->成立, 所以()0f x <.【点睛】思路点睛:证明不等式常需构造辅助函数,将不等式证明转化为利用导数研究函数的单调性、求最值等解决.9.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点;②利用独立重复试验的期望公式代入可求出答案.(1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯. 故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关.(2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值.(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+,又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-.(2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22e f =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值.【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值2.已知函数()32f x x ax bx =++的图象在点(0,(0))f 处的切线斜率为4-,且2x =-时,()y f x =有极值. (1)求()f x 的解析式;(2)求()f x 在3,2上的最大值和最小值.3.直线:l y kx t =+交抛物线24x y =于A ,B 两点,过A ,B 作抛物线的两条切线,相交于点C ,点C 在直线3y =-上. (1)求证:直线l 恒过定点T ,并求出点T 坐标;(2)以T 为圆心的圆交抛物线于PQMN 四点,求四边形PQMN 面积的取值范围.4.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围5.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.6.求函数()31443f x x x =-+在区间1,33⎡⎤⎢⎥⎣⎦上的最大值与最小值.7.已知函数()ln (1af x x a x =+-为常数),且函数()f x 的图象在2x =处的切线斜率小于1.2-(1)求实数a 的取值范围;(2)试判断(1)ln e a -与(e 1)ln a -的大小,并说明理由. 8.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围. 9.已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间; (2)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围. 10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>. 所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)32()24f x x x x =+- (2)最大值为8,最小值为4027-. 【解析】 【分析】(1)由题意可得(0)4,(2)1240,f b f a b ==-⎧⎨-=-+=''⎩从而可求出,a b ,即可求出()f x 的解析式,(2)令()0f x '=,求出x 的值,列表可得(),()f x f x '的值随x 的变化情况,从而可求出函数的最值 (1)由题意可得,2()32f x x ax b '=++.由(0)4, (2)1240,f b f a b ==-⎧⎨-=-+=''⎩解得2,4.a b =⎧⎨=-⎩经检验得2x =-时,()y f x =有极大值. 所以32()24f x x x x =+-. (2)由(1)知,2()344(2)(32)f x x x x x '=+-=+-. 令()0f x '=,得12x =-,223x =,()'f x ,()f x 的值随x 的变化情况如下表:由表可知()f x 在[3,2]-上的最大值为8,最小值为27-. 3.(1)证明见解析,()0,3T ;(2)3230,9⎛⎤ ⎥ ⎝⎦. 【解析】 【分析】(1)设()11,A x y ,()22,B x y ,(),3C m -,利用点斜式写出直线AC ,BC 的方程,由C 在两直线上,即可知直线AB 的方程,进而确定定点.(2)联立抛物线24x y =和圆T :()2223x y r +-=,由题设及一元二次方程根的个数求参数r 的范围,由122PQMN QM PNS y y +=⋅-结合韦达定理得到PQMN S 关于r 的表达式,构造函数并利用导数研究区间单调性,进而求范围. (1)设()11,A x y ,()22,B x y ,(),3C m -,则12AC x k =,22BC xk =,直线AC 为:()1111122x x x y y x x y y -=-⇒=-,同理直线BC 为:222x xy y =-,把(),3C m -代入直线AC ,BC 得:11223232x m y x m y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,∴()11,A x y ,()22,B x y 都满足直线方程32xm y -=-,则32xmy =+为直线AB 的方程,故直线l 恒过定点()0,3T . (2)如图,设圆T 的半径为r ,()11,M x y ,()22,N x y ,()11,Q x y -,()22,P x y -, 把24x y =代入圆T :()2223x y r +-=,整理得22290y y r -+-=,由题意知:关于y 的一元二次方程有两个不等实根,则()21221244902090r y y y y r ⎧∆=-->⎪⎪+=>⎨⎪=->⎪⎩,可得3r <.12121222PQMN QM PNS y y y y y y +=⋅-=-=-==t =,由3r <得:01t <<,则PQMN S =令()()()211f t t t =+-且01t <<,则()()()311f t t t '=--+,故在1(0,)3上()0f t '>,()f t 递增;在1(,1)3上()0f t '<,()f t 递减; 所以132()()327f t f ≤=,又(0)1f =,(1)0f =,故f t 的取值范围是320,27⎛⎤ ⎥⎝⎦,综上,PQMN S 的取值范围是⎛ ⎝⎦.【点睛】关键点点睛:第二问,由圆T :()2223x y r +-=,联立抛物线方程,结合四边形面积公式得到关于参数r 的表达式,再应用函数思想并利用导数求面积的范围. 4.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减,故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 5.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x-+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.6.最小值为()423f =-,最大值为1217381f ⎛⎫= ⎪⎝⎭ 【解析】 【分析】利用导数判断函数的单调性与最值情况.【详解】由()31443f x x x =-+,得()24f x x '=-令()0f x '=.得2x =±1,33x ⎡⎤∈⎢⎥⎣⎦,所以2x =-舍去, 列表如下:()f x ∴的极小值为()23f =-又1217381f ⎛⎫= ⎪⎝⎭,()31f =,所以,()f x 的最小值为()423f =-,最大值为1217381f ⎛⎫=⎪⎝⎭. 7.(1)(1,)+∞ (2)答案见解析 【解析】 【分析】(1)求导后根据题意解不等式(2)化为相同形式,构造函数根据单调性判断 (1)由22(2)1()(1)x a x f x x x '-++=-,且函数()f x 在2x =处的切线斜率小于12-, 知2222(2)11(2)2(21)2a f -++'=<--,解得 1.a > 故a 的取值范围为(1,)+∞ (2)由(1)可知(1)ln e a -与(e 1)ln a -均为正数.要比较(1)ln e a -与(e 1)ln a -的大小,可转化为比较ln ee 1-与ln 1a a -的大小.构造函数ln ()(1)1x x x x ϕ=>-,则211ln ()(1)xx x x ϕ--'=-,再设1()1ln m x x x =--,则21()x m x x -'=, 从而()m x 在(1,)+∞上单调递减,此时()()10m x m <=, 故()0x ϕ'<在(1,)+∞上恒成立,则ln ()1xx x ϕ=-在(1,)+∞上单调递减. 综上可得,当(1,e)a ∈时,(1)lne (e 1)ln a a -<- 当e a =时,(1)lne (e 1)ln a a -=- 当(e,)a ∈+∞时,(1)lne (e 1)ln a a ->- 8.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案.(2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0xx x g x x -++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.9.(1)单调减区间为(0,1),单调增区间为(1,)+∞(2)0a < 或2e a =【解析】【分析】(1)求导,因为函数()f x 再1x =处取得极值,所以f '(1)0=,解得a ,进而可得函数()f x 的解析式,再求导,分析函数()f x 的单调性.(2)分类讨论,利用导数判断函数的单调性,根据函数的零点个数,确定函数的最值情况,从而求得答案.(1)()ln 2,(0)f x ax x x x =->,()ln 2f x a x a '=+-,因为函数()f x 在1x =处取得极值,所以(1)ln120f a a '=+-=,所以2a =,所以()2ln 2f x x x x =-,()2ln f x x '=,故当01x <<时,所以()0f x '<,函数单调递减,当 1x >时,()0f x '>,函数单调递增,所以函数()f x 在1x =处取得极小值,所以实数a 的值为2,函数()f x 的单调减区间为(0,1),单调增区间为(1,)+∞.(2)当0a = 时,22()()2f x h x x x x =-+=-,而0x > ,此时函数无零点,不合题意; 当0a <时,22()()2ln f x h x x a x x x =-+=-,()20,(0)a h x x x x'=-<> , 函数2()ln h x a x x =-单调递减,作出函数2ln ,y a x y x == 的大致图象如图:此时在2ln ,y a x y x ==的图象在(0,1) 内有一个交点,即2()ln h x a x x =-在(0,1)有一个零点;当0a >时,22()2,(0)a a x h x x x x x-'=-=>, 当02a x <<时,22()0a x h x x -'=>,函数2()ln h x a x x =-递增, 当2a x >时,22()0a x h x x-'=<,函数2()ln h x a x x =-递减, 故2max ()()ln ()222a a a h x h a ==- , 作出函数2()ln h x a x x =-的大致图象如图此时要使函数2()()2=-+f x h x x x 有1个零点,需使得2max ()()022a a h x a ==, 即022a a a =,解得2e a = , 综合上述,可知求a 的取值范围为0a < 或2e a = .【点睛】本题考查了利用导数求函数的单调区间以及函数零点问题,解答时要明确函数的单调性以及极值和导数之间的关系,解答的关键是分类讨论,利用导数判断函数单调性,确定函数零点有一个的处理方法.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级导数理科数学试题一、选择题:(每题5分,共60分)1.若000(2)()lim1x f x x f x x∆→+∆-=∆,则0()f x '等于(C )A .2B .-2C .12D .12-2.物体运动方程为4134S t =-,则2t =时瞬时速度为(D )A .2B .4C .6D .83.函数sin y x =的图象上一点(3π处的切线的斜率为(D )A .1BC .124.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( C )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)5.曲线324y x x =-+在点(13),处的切线的倾斜角为(B )A .30°B .45°C .60°D .120° 6.若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[1,)-+∞ B.(1,)-+∞ C.(,1]-∞- D.(,1)-∞-7.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是(C) (A )-1<a <2(B)-3<a <6 (C )a <-3或a >6(D) a <-1或a >28.已知f (x )是定义域R 上的增函数,且f (x )<0,则函数g(x)=x 2f(x)的单调情况一定是(A) (A)在(-∞,0)上递增(B )在(-∞,0)上递减(C )在R 上递增(D )在R 上递减 9.曲线ln(21)y x =-上的点到直线230x y -+=的最短距离是(A )A.B. C.D.010.如果函数y=f(x)的图象如图所示,那么导函数y=)(x f '的图象可能是(A)11.已知x≥0,y≥0,x+3y=9,则x 2y 的最大值为(A ) A.3612.设函数1()ln (0),3f x x x x =->则()y f x = A 在区间1(,1),(1,)e e 内均有零点B 在区间1(,1),(1,)e e内均无零点C 在区间1(,1)e 内有零点,在区间(1,)e 内无零点.D 在区间1(,1)e内无零点,在区间(1,)e 内有零点.解析:由题得xx x x f 33131)`(-=-=,令0)`(>x f 得3>x ;令0)`(<x f 得30<<x ;0)`(=x f 得3=x ,故知函数)(x f 在区间)3,0(上为减函数,在区间),3(+∞为增函数,在点3=x 处有极小值03ln 1<-;又()0131)1(,013,31)1(>+=<-==ee f e e f f ,故选择D 。

二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 13.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为 [-1,2]14.已知x x f lg )(=,函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论:①0(3)(3)(2)(2)f f f f ''<<-<; ②0(3)(2)(3)(2)f f f f ''<<<-;③;0)()(2121>--x x x f x f④.2)()()2(2121x f x f x x f +<+ 上述结论中正确结论的序号是 ①③ . 15.对于函数2()(2)xf x x x e =-(1)(是()f x 的单调递减区间;(2)(f 是()f x 的极小值,f 是()f x 的极大值;(3)()f x 有最大值,没有最小值; (4)()f x 没有最大值,也没有最小值. 其中判断正确的是___________(2)(4)_____.16.若函数52)(23+-+=x ax x x f 在区间(21,31)上既不是单调递增函数,也不是单调递减函数,则实数a 的取值范围是___.(25,45)___________________ 。

三、解答题(本题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数32()f x x bx cx d =+++的图象过点(0, 2)P ,且在点(1, (1))M f --处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y=的解析式;(Ⅱ)求函数)(x f y =的单调区间.(Ⅰ)由)(x f 的图象经过(0, 2)P ,知2d =,所以32()2f x x bx cx =+++.所以2()32f x x bx c '=++. 由在(1, (1))M f --处的切线方程是670x y -+=,知6(1)70f ---+=,即(1)1f -=,(1)6f -=′.所以326,12 1.b c b c -+=⎧⎨-+-+=⎩即23,0.b c b c -=⎧⎨-=⎩解得3b c ==-.故所求的解析式是32()332f x x x x =--+.(Ⅱ)因为2()363f x x x '=--,令23630x x --=,即2210x x --=,解得11x =21x =当1x <1x >()0f x '>,当11x <()0f x '<,故32()332f x x x x =--+在(, 1-∞内是增函数,在(1 1内是减函数,在),21(+∞+内是增函数.18.(12分)已知函数3()3f x x x =-(I )求函数()f x 在3[3,]2-上的最大值和最小值. (II )过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.解:(I )'()3(1)(1)f x x x =+-,……………………………………………2分 当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <,[1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,………………………………5分 所以当3x =-时,min ()18f x =-当1x =-时,max ()2f x =………………………………………………6分 (II )设切点为3(,3)Q x x x -,则所求切线方程为32(3)3(1)()y x x x x x --=--………………………………………………8分由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--, 解得0x =或3x =………………………………………………10分 所以切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --=………………………………………………12分19.(12分)已知函数f(x)=x 3-21x2(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围解(1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2当x=61时,g(x)max =121,∴b≥121(2)由题意知)1('f =0,即3-1+b=0,∴b=- x∈[-1,2]时,f(x)<c 2恒成立,只需f(x)在[-1,2]上的最大值小于c 2即可.因)(x f '=3x 2-x-2,令)(x f '=0,得x=1或x=-32.∵f(1)=-23f(-,21)1(,2722)32c f c +=-+=∴f(x)max =f(2)=2+c,∴2+c<c 2.解得c>2或c<-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).20.(本小题共12分)给定函数x a ax x x f )1(3)(223-+-=和xa x x g 2)(+= (I)求证:)(x f 总有两个极值点;(II)若)(x f 和)(x g 有相同的极值点,求a 的值. 证明:(I)因为)]1()][(1([)1(2)('22--+-=-+-=a x a x a ax x x f ,令0)('=x f ,则1,121-=+=a x a x ,------------------------------------------2分 则当1-<a x 时,0)('>x f ,当11+<<-a x a ,'()0f x <所以1-=a x 为)(x f 的一个极大值点,-----------------------4分同理可证1+=a x 为)(x f 的一个极小值点.-------------------------------------5分 另解:(I)因为'22()2(1)f x x ax a =-+-是一个二次函数,且22(2)4(1)40a a ∆=---=>,-------------------------------------2分所以导函数有两个不同的零点, 又因为导函数是一个二次函数,所以函数()f x 有两个不同的极值点.---------------------------------------5分(II)因为222))((1)('x a x a x x a x g +-=-=,令0)('=x g ,则a x a x -==21,---------------------------------------6分 因为)(x f 和)(x g 有相同的极值点,且a x =1和1,1-+a a 不可能相等,所以当1+=-a a 时,21-=a ,当1-=-a a 时,21=a ,经检验,21-=a 和21=a 时,a x a x -==21,都是)(x g 的极值点.--------------8分21.(12分)把边长为a 的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x ,容积为()V x . (Ⅰ)写出函数()V x 的解析式,并求出函数的定义域;(Ⅱ)求当x 为多少时,容器的容积最大?并求出最大容积.解:(Ⅰ)因为容器的高为x ,则做成的正三棱柱形容器的底边长为()a -则2())V x a x -.-------------------------3分函数的定义域为(0,)6a .-------------------------4分(Ⅱ)实际问题归结为求函数()V x 在区间)上的最大值点. 先求()V x 的极值点.在开区间)内,22'()6V x ax =---------------------6分令'()0V x =,即令2260ax -+=,解得12,( x x 舍去).因为1x =在区间)内,1x 可能是极值点.当10x x <<时,'()0V x >;当1x x <<时,'()0V x <.---------------------8分因此1x 是极大值点,且在区间)内,1x 是唯一的极值点,所以1x x ==是()V x 的最大值点,并且最大值31)54f a =时,容器的容积最大为3154a .---- 22.(14分)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<,(I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+……………………………………3分(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+⎪⎢⎥⎝⎭⎣⎦……4分 当0m <时,有211>+,当x 变化时,()f x 与()f x '的变化如下表:8分 故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+⎪⎝⎭单调递减,在2(1,1)m+单调递增,在(1,)+∞上单调递减.……………………………………………9分 (III )由已知得()3f x m '>,即22(1)20mx m x -++>…………………………10分又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-①设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,……11分所以22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<< 即m 的取值范围为4,03⎛⎫- ⎪⎝⎭………。

相关文档
最新文档