2013七年级下册第六章实数测试卷(一)
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
新人教版初中数学七年级下册第六章《实数》单元测试题(解析版)(1)
人教版七年级下册数学单元检测卷:第六章实数一、填空题1. (1) 若 a<- 1,化简 a+ |a + 1| = ____________;(2) 将,,这三个数按从小到大的次序用”<”连结起来: ____________ ;(3) 如图是一个简单的数值运算程序,若输入x的值为,则输出的数值为____________;(4) 已知- 1<x<0,请把- x,-,,x2按从大到小的次序用”>”连结起来:____________.答案: (1)- 1(2)(3) 2(4)2.5- 1与 0.5的大小关系:5- 1预计________0.5( 填“ >”“ <”或“=” ) .22答案:>3. 若=0,则 x+ y= _____0_______ .4.如图,数轴上 A, B 两点表示的数分别为和5.1 ,则 A, B 两点之间表示整数的点共有___________ 个.答案: 45. 假如 4 是 5m+ 1 的算术平方根,那么2- 10m= __________.答案: -28二、选择题6. 立方根是- 0.2的数是 (D)A. 0.8B.0.08C.- 0.8D.- 0.0087.与最靠近的整数是(B)A.0B.2C.4D.58. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0B.1C.0或 1 D .0或±19.假如是实数,则以下必定存心义的是(D )A.B.C.D.10.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个11. 若x- 3 是 4 的平方根,则x 的值为( C )A. 2B.± 2C.1或 5D. 1612.以下说法正确的选项是 ( D )A.- 1 没有立方根B. 0 没有平方根C. 1 的平方根是1D. 1 的算术平方根是113.一个底面是正方形的水池,容积是11.52m3,池深 2m,则水池底边长是( C ) A. 9.25m B. 13.52mC. 2.4mD.4.2m14. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C. 6.70 D .± 6.7015. 假如,,则人教版七年级下册第六章实数尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.如图,在数轴上表示无理数的点落在()A. 线段 AB 上B线.段 BC上C线.段 CD上D线.段 DE 上2.在-,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是( )A.2个B.个3C.个4D5个3.一个自然数的算术平方根是x,则它后边一个数的算术平方根是()2A. x+1B. x+1C.+1D.4.以下命题:①负数没有立方根;② 一个实数的立方根不是正数就是负数;③ 一个正数或负数的立方根与这个数的符号一致;④ 假如一个数的立方根等于它自己,那么它必定是1或0.此中正确有()个.A. 1B. 2C. 3D. 45.以下说法中,不正确的选项是 ( ).A. 3 是(﹣ 3)2的算术平方根B.是(﹣ 3)2的平方±3根C. ﹣ 3 是(﹣ 3)2的算术平方根D﹣.3 是(﹣ 3)3的立方根6.的算术平方根是()A.4B.C.2D.7.如图,数轴上A, B 两点分别对应实数a、 b,则以下结论中正确的选项是()A. a+b> 0B. ab> 0C.D. a+ab-<b 08.已知一个正数的两个平方根分别是a+3 和 2a-15,则这个正数为()A. 4B.C. -7D. 499.晓影设计了一个对于实数运算的程序:输入一个数后,输出的数老是比该数的平方小1,晓影依据此程序输入后,输出的结果应为()A. 2016B. 2017C. 2019D. 202010.,则 a 与 b 的关系是()A. B. a与 b 相等 C. a与 b 互为相反数D无.法判定二、填空题(共 6 题;共 24 分)11.的平方根是 ________,的算术平方根是________,-216的立方根是________.12.是 9 的算术平方根,而的算术平方根是 4,则= ________.13.已知:( x2+y2+1)2﹣ 4=0,则 x2+y2 =________.14.实数 a 在数轴上的地点如图,则 |a ﹣3|=________ .15.若四个有理数同时知足:,,,则这四个数从小到大的次序是________.16.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为________.三、计算题(共 1 题;共 6 分)17.计算:四、解答题(共 6 题;共 40 分)18.一个数的算术平方根为2M -6,平方根为± (M- 2),求这个数.19.某公路规定行驶汽车速度不得超出80 千米 / 时,当发生交通事故时,交通警察往常依据刹车后车轮滑过的距离预计车辆的行驶速度,所用的经验公式是,此中v 表示车速(单位:千米/ 时),d 表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经丈量 d=32 米,f=2.请你判断一下,闯事汽车当时能否高出了规定的速度?20. a, b,c 在数轴上的对应点如下图,化简+|c ﹣b| ﹣()3.21.阅读以下资料:∵,即,∴的整数部分为2,小数部分为.请你察看上述的规律后试解下边的问题:假如的小数部分为a,的小数部分为b,求的值.22.规定一种新的运算a△ b=ab﹣ a+1,如3△ 4=3 ×4﹣ 3+1,请比较与的大小.23.求以下 x 的值.(1) 2x3=﹣ 16(2)(x﹣1)2=4.答案一、单项选择题1.C2.B3.D4.A5.C6.C7.C8.D9.B 10.C 二、填空题11. ±;;-612.19 13.1 14.3﹣ a 15.16.﹣5三、计算题17. 解:原式 =5+3-6=2四、解答题18.解:应分两种状况: ① 2M -6= M -2,解得 M= 4,2∴2M - 6=8- 6= 2,2 = 4,② 2M -6=- (M- 2),解得 M=,∴ 2M - 6=-6=(不合题意 ,舍去 ),故这个数是 4.19.解:把 d=32, f=2 代入 v=16,v=16=128(km/h )∵128> 80,∴闯事汽车当时的速度高出了规定的速度20.解:依据数轴上点的地点得:a< b< 0<c,且|a|>|b|>|c|,∴a﹣ b< 0, c﹣ b> 0, a+c< 0,则原式 =|a ﹣ b|+|c ﹣ b| ﹣( a+c) =b﹣ a+c﹣ b﹣ a﹣ c=﹣2a21.解:∵<,<,∴ a=﹣2,b=﹣3,∴=﹣2+﹣ 3﹣=﹣ 522.解:∵ a△ b=a ×b﹣ a+b+1,∴(﹣ 3)△=(﹣ 3)×﹣(﹣ 3)++1=4﹣ 2,△(﹣ 3)=×(﹣ 3)﹣+(﹣ 3) +1=﹣4﹣ 2,∵4﹣ 2>﹣ 4﹣ 2,∴﹣ 3△>△(﹣ 3).23.解:( 1)∵ 2x3=﹣ 16,2∴x =﹣ 8,∴x=﹣ 2.(2)∵(x﹣1)2=4,∴x﹣ 1=±2,∴x=﹣ 1 或 3.人教版数学七年级下册第六章实数单元复习卷人教版七年级数学下册第六章实数单元检测卷一、选择题1. 假如 | x| = 4,那么 5-x的算术平方根是()A.±1 B.±4 C.1或9 D.1或32.27 的立方根与 81 的平方根之和是()A. 0B. 6C.-12或6D.0或-63.预计的值在()A.0和1之间B.1和 2之间C.2和 3之间D. 3和 4之间4.若与的整数部分分别为,,则的立方根是()A. B. C. 3 D.75.一个数的算术平方根的相反数是-3,则这个数是 ()949349A. 7B.3C.49D. 96.若一个数的一个平方根是8,则这个数的立方根是()A.2B.4C. 2D. 47.在实数:﹣,0,π,,,, 3.142中,无理数有()A.2 个 B.3个 C.4 个 D.5 个8.实数 a,b, c, d 在数轴上的对应点的地点如下图,则正确的结论是()A. a>﹣ 4B. bd> 0C. |a| > |d| D . b+c> 09. 以下计算正确的选项是()30.012 5= 0.5 B.3273-A.=644331D 3-82C. 3 = 1.-125=-82510. 假如一个正数的两个平方根为x+1和 x-3,那么 x 的值是() A.4 B.2 C.1 D.±2二、填空题11.16的算术平方根是12.- 64 的立方根是1,-3是的立方根.13.大于- 18而小于13的全部整数的和为 __ .14.17的整数部分是 __________ ,小数部分是 ________.15.若3 (4 k) 3k 4 ,则 k 的值为.16.如图,在数轴上有O, A,B, C, D五点,依据图中各点所表示的数,判断18 在数轴上的地点会落在线段上.三、解答题17. 计算:;18.计算:19.求以下各式的值:(1)1+24;(2) 252- 242;(3) (- 3)2.2520.求 x 的值(1) 8x3+125=0( 2) (x+3) 3+27=021. 已知,是 a 的小数部分,求的值.22.已知 1- 3a与b- 27互为相反数,求ab的算术平方根.23.解答以下应用题:⑴某房间的面积为17.6 m 2,房间地面恰巧由110 块同样的正方形地砖铺成,每块地砖的边长是多少?⑵已知第一个正方体水箱的棱长是60 cm,第二个正方体水箱的体积比第一个水箱的体积的 3 倍还多81 000 cm3,则第二个水箱需要铁皮多少平方米?24. 对于实数a,我们规定:用符号表示不大于的最大整数,称为 a 的根整数,。
新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)
新初中数学七年级下册第六章《实数》检测试题(含答案解析)(1)⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2⼈教版数学七下第六章实数能⼒⽔平检测卷⼀.选择题(共10⼩题)1.下列选项中的数,⼩于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-12 3.若实数a,b是同⼀个数的两个不同的平⽅根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.⽤计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想⼀想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=2 C.±20x=20 D.3x=±20 6.下列选项中正确的是()A.27的⽴⽅根是±3B的平⽅根是±4C.9的算术平⽅根是3D.⽴⽅根等于平⽅根的数是17.在四个实数、3、-1.4中,⼤⼩在-1和2之间的数是()A .B .3CD .-1.481-的相反数是()A .1-B 1-C .1-D 1+9a ,⼩数部分为b ,则a-b 的值为()A .- 13B .6-C .8-D 6- 10.下列说法:①-1是1的平⽅根;②如果两条直线都垂直于同⼀直线,那么这两条直线平⾏;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以⽤数轴上的点表⽰,反过来,数轴上的所有点都表⽰有理数;⑤⽆理数就是开放开不尽的数;正确的个数为()A .1个B .2个C .3个D .4个⼆.填空题(共6⼩题)11.已知a 的平⽅根是±8,则它的⽴⽅根是;36的算术平⽅根是.122(3)b ++=0= .13A 的算术平⽅根为B ,则A+B= .14.若45,<<则满⾜条件的整数a 有个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有⼀点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是(M 、N 、P 、R 中选).16.=5,付⽼师⼜⽤计算器求得:=55=555, =5555,个3,2016个4)= .三.解答题(共7⼩题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围⼀个⾯积为50m2的长⽅形场地,⼀边靠旧墙(墙长为10m),另外三边⽤篱笆围成,并且它的长与宽之⽐为5:2.讨论⽅案时,⼩马说:“我们不可能围成满⾜要求的长⽅形场地”⼩⽜说:“⾯积和长宽⽐例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的⽴⽅根是3,3a+b-1的算术平⽅根是4,c(1)求a,b,c的值;(2)求3a-b+c的平⽅根.21.如果⼀个正数的两个平⽅根是a+1和2a-22,求出这个正数的⽴⽅根.22-的⼩数部分,此1事实上,⼩明的表⽰⽅法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,⼈教版七年级数学下册章末质量评估第六章实数⼈教版七年级数学下册第六章实数单元检测卷⼀、选择题1.若⼀个数的算术平⽅根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成⽴的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平⽅根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个⽆理数的和是⽆理数;②两个⽆理数的积是有理数;③⽆理数与有理数的和是⽆理数;④有理数除以⽆理数的商是⽆理数.A.1个 B.2个 C.3个 D.4个6. 下列选项中正确的是( C )A.27的⽴⽅根是±3B.的平⽅根是±4A.6.69 B.6.7 C.6.70 D.±6.708.⼀个底⾯是正⽅形的⽔池,容积是11.52m3,池深2m,则⽔池底边长是( C ) A.9.25m B.13.52m C.2.4m D.4.2m9. ⽐较2, , 的⼤⼩,正确的是(C )A. 2< <B. 2< <C. <2<10.如果⼀个实数的算术平⽅根等于它的⽴⽅根,那么满⾜条件的实数有(C)A.0个B.1个om]C.2个D.3个⼆、填空题11.3的算术平⽅根是____3____.12.(1)⼀个正⽅体的体积是216cm3,则这个正⽅体的棱长是____6________cm;(2) 表⽰_______9_____的⽴⽅根;13.已知a,b为两个连续整数,且a<1514.已知⼀个有理数的平⽅根和⽴⽅根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________.三、解答题17.求下列各数的平⽅根和算术平⽅根:(1)1.44;解:1.44的平⽅根是± 1.44=±1.2,算术平⽅根是 1.44=1.2.(2)169289;解:169289的平⽅根是±169289=±1317,算术平⽅根是169289=1317.(3)(-911)2. 解:(-911)2的平⽅根是±(-911)2=±911,算术平⽅根是(-911)2=911.[] 18.已知⼀个正数x 的两个平⽅根分别是3-5m 和m -7,求这个正数x 的⽴⽅根.由已知得(3-5m)+(m -7)=0,-4m -4=0,解得:m=-1.所以3-5m=8,m -7=-8.所以x=(±8)2=64.所以x 的⽴⽅根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12。
七年级数学下册_第六章实数测试题(答案)
七年级数学下册_第六章实数测试题(答案)七年级数学《实数》基础测试题姓名_____________ 成绩_____________(一) 、精心选一选(每小题分,共分) 1.有下列说法:(1)无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
(二) 、细心填一填 (每小题分,共分)10.在数轴上表示。
设面积为5的正方形的边长为x , 那么x =1411. 9的算术平方根是的平方根是 ,的立方根是 ,927-125的立方根是 .其中正确的说法的个数是() A .1 B .2 C .3 D .42.如果一个实数的平方根与它的立方根相等,则这个数是() A . 0 B .正整数 C . 0和1 D . 1 3. 能与数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数4. 下列各数中,不是无理数的是()A. B. 0.5 C. 2π D. 0.151151115…(两个5之间依次多1个1) 5.(-0.7)2的平方根是()A .-0.7B .±0.7C .0.7D .0.496. 下列说法正确的是() A . 0.25是0.5 的一个平方根B .. 正数有两个平方根,且这两个平方根之和等于0C . 7 2 的平方根是7D .负数有一个平方根7. 一个数的平方根等于它的立方根,这个数是( A.0 B. -1 C.1 D. 不存在8. 下列运算中,错误的是(①25=15,②(-4) 2=±4,③3-1=-3 ④111191441216+25=4+5=20A . 1个 B. 2个 C. 3个 D. 4个9. 若a 2=25,b =3,则a +b 的值为( A .-8 B .±8C .±2D .±8或±2)12. -2的相反数是,2-3= ;13. (-4) 2=; (-6) 3= () 2 3-8.14. 比较大小:;5-120. 5; (填“>”或“17. 10.118. 一个正数x 的平方根是2a -3与5-a ,则a=________;19. 一个圆它的面积是半径为3cm 的圆的面积的25倍,则这个圆的半径为_______.(三) 、用心做一做(分,大概小题)20.(6分)将下列各数填入相应的集合内。
最新人教版初中数学七年级下册第六章《实数》测试卷(含答案)
人教版七年级数学下册 第六章 实数 单元综合能力提升测试卷一、选择题(每小题3分,共30分)1.下列选项中正确的是( )A .27的立方根是±3B .16 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是无理数的是( ) A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平方根是( ) A . B .- C . D .± 4.下列四个数中的负数是( )A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为( )A .5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.一个自然数a 的算术平方根为x ,则a+1的立方根是( )A B C D8.下列结论中正确的个数为( )(1)零是绝对值最小的实数; (2)数轴上所有的点都表示实数; (3)无理数就是带根号的数; (4)-的立方根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是( )A .81B .27C .9D .310.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则-︱a -b 72233722331512512515152)1(-662)2(-1622127132b︱等于( )A .aB .-aC .2b +aD .2b -a二、填空题(每小题3分,共30分)11.在下列各数 中无理数有 个。
,,-,-,,,0,0.5757757775……(相邻两个5之间的7的个数逐次加1).12.一个数的算术平方根等于它本身,则这个数应是__________。
13.如果x-4是16的算术平方根,那么x+ 4的值为________.14.比较大小: 3; 15.若=5.036,=15.906,则=__________。
16.化简:= . 17. 的平方根是 ;125的立方根是 . 18.实、在数轴上的位置如图所示,则化简= .19.一正方形的边长变为原来的倍,则面积变为原来的 倍;一个立方体的体积变为原来的倍,则棱长变为原来的 倍.20.我们知道,黄老师又用计算器求得:,,,则计算:(2001个3,2001个4)= .三、解答题(共60分)21.(16分)计算:(1)(2)16π329251036.256.253253600()23π-94a b ()2a b b a -++m n 53422=+55334422=+55533344422=+55553333444422=+22333444 +)(25.08-⨯-4002254-+(3) (4) 22.(16分)求下列各式中的的值:(1) ; (2) ;(3); (4); 23.(8分)已知实数、、在数轴上的对应点如图所示,化简:24.(10分)若、、是有理数,且满足等式,试计算 的值。
精选初中数学七年级下册第六章《实数》测试卷及答案
人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式;⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2-31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13, ∴这个正数是169. 44-x=44-169=-125, -125的立方根是-5. 21. 解:(1△2)△4 =(12-22)△4 =(-3)人教版七年级下册数学单元检测卷:第六章 实数一、填空题1用“>”或“<”填空).2.我们可以利用计算器求一个正数a 的算术平方根,其操作方法是顺序进行按键输入: a =.小明按键输入16=显示的结果为4,则他按键输入1600=后显示的结果为40.3.若x +3是4的平方根,则x =-1或-5. 4.计算:325≈2.92(结果精确到0.01).5.已知2x +1的平方根是±5,则5x +4的立方根是4.6.点A 在数轴上和原点相距3个单位长度,点B 在数轴上和原点相距5个单位长度,则A ,B 二、选择题7.4的算术平方根是( B )A .4B .2C .-2D .±28.一个正方形的面积为50 cm 2,则该正方形的边长约为( C )A .5 cmB .6 cmC .7 cmD .8 cm 9.±8是64的( A )A .平方根B .相反数C .绝对值D .算术平方根 10.下列说法正确的是( A ) A .-5是25的平方根 B .25的平方根是-5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根 11.下列说法中,不正确的是( D )A .0.027的立方根是0.3B .-8的立方根是-2C .0的立方根是0D .125的立方根是±512.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( A ) A .4 cm ~5 cm 之间 B .5 cm ~6 cm 之间 C .6 cm ~7 cm 之间 D .7 cm ~8 cm 之间13.下列实数中,是无理数的是( B ) A .1B. 2C .-3D.1314.-2的相反数是( C )A .- 2 B.22C. 2 D .-2215.计算-4-|-3|的结果是( B ) A .-1 B .-5 C .1 D .516.下列说法正确的是( D )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5三、解答题17.观察:已知 5.217 (1)0.052 17≈0.228__4, (2)若x ≈0.022 84,则x≈0.000__521__7. 18.求下列各数的平方根与算术平方根: (1)25;解:25的平方根是±5,算术平方根是5.(2)0;解:0的平方根是0,算术平方根是0.(3)110 000. 解:110 000的平方根是±1100,算术平方根是1100.19.求下列各式中x 的值: (1)4x 2-1=0;解:4x 2=1. x 2=14.x =±12.(人教版七年级数学下册第六章 实数复习检测试题一、选择题(每小题3分,共30分) 1.下列各数中最大的数是( )A.3C.πD.-32.下列说法正确的是( ) A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
人教版七年级数学下册 第六章 实数 达标检测卷(含详细解答)
人教版七年级数学下册 第六章 达标检测卷(考试时间:120分钟 满分:120分) 班级:________ 姓名:________ 分数:________第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.下列实数中,是无理数的是 ( ) A.5 B .0 C .13 D . 22.4的算术平方根是( )A .4B .-4C .2D .±2 3.估计38 的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 4.在实数-13 ,-2,0, 3 中,最小的实数是 ( )A .-2B .0C .-13 D . 35.下列计算中正确的是 ( )A .0.9 =0.3B .169 =±13C .327 =±3 D .±0.16 =±0.4 6.立方根等于本身的数是( )A .-1B .0C .±1D .±1或0 7.★若a 2=9,3b =-2,则a +b = ( ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b| 10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为 ( ) A .3 B .4 C .5 D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是 .12.(海宁市期中)选用适当的不等号填空:-31 -π. 13.如果a 的算术平方根是3,那么a = .14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =_ . 15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是 .16.如图,数轴上A ,B 两点对应的实数分别是1和 3 ,若点A 关于点B 的对称点为点C(即AB=BC),则点C所对应的实数为.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ;(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21;(2)(x +2)3+1=78.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{ }; (2)无理数集合:{ }; (3)非负数集合:{ }; (4)分数集合:{ }; 22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A,B两点之间距离为9(A在B的左侧),且A,B两点经折叠后重合,此时点A表示的数是多少,点B表示的数是多少;(3)已知在数轴上点A表示的数是a,点A移动4个单位长度,此时点A表示的数和a是互为相反数,求a的值.参考答案第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列实数中,是无理数的是 ( D ) A.5 B .0 C .13D . 22.4的算术平方根是 ( C ) A .4 B .-4 C .2 D .±23.估计38 的值在 ( C ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间4.在实数-13 ,-2,0, 3 中,最小的实数是 ( A )A .-2B .0C .-13D . 35.下列计算中正确的是 ( D ) A .0.9 =0.3 B .169 =±13 C .327 =±3 D .±0.16 =±0.46.立方根等于本身的数是 ( D )A .-1B .0C .±1D .±1或07.★若a 2=9,3b =-2,则a +b = ( C ) A .-5 B .-11 C .-5或-11 D .5或118.若a 3=-27,则a 的倒数是 ( D ) A .3 B .-3 C .13 D .-139.(杨浦区期中)实数a ,b ,c 在数轴上对应点的位置如图所示,下列结论中正确的是 ( C )A .ac <0B .|a +b|=a -bC .|c -a|=a -cD .|a|>|b|10.★(保定期末)对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对数字65进行如下运算:①[65 ]=8;②[8 ]=2;③[ 2 ]=1.这样对数字65进行3次运算后的值为1,若对数字255进行这样的运算后的值为1,则需进行运算的次数为( A )A .3B .4C .5D .6第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分) 11. 3 -2的绝对值是__2- 3 __. 12.(海宁市期中)选用适当的不等号填空: -31 __<__-π.13.如果a的算术平方根是3,那么a=__9__.14.若325.36 =2.938,3253.6 =6.329,则325 360 000 =__293.8__.15.★如图,将两个边长为 3 的正方形沿对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__ 6 __.16.如图,数轴上A,B两点对应的实数分别是1和 3 ,若点A关于点B的对称点为点C(即AB=BC),则点C所对应的实数为__2 3 -1__.17.★观察数表:1 23 2 5 67 8 3 10 11 1213 14 15 4 17 18 19 20…第1行第2行第3行第4行…根据数表排列的规律,第10行从左向右数第8个数是__98 __.18.若x,y为实数,且||x-2+y+3 =0,则(x+y)2 021的值为__-1__.三、解答题(共66分)19.(6分)计算:(1)0.64 +425-3-64 -30.343 ; 解:原式=0.8+25 -(-4)-0.7=4.5.(2)|1- 2 |+| 3 - 2 |+| 3 -2|+|2- 5 |+| 5 - 6 |. 解:原式= 2 -1+ 3 - 2 +2- 3 + 5 -2+ 6 - 5 = 6 -1.20.(8分)求下列各式中x 的值. (1)(x -3)2-4=21; 解:(x -3)2=25, ∴x -3=±5,∴x -3=5或x -3=-5, ∴x =8或x =-2.(2)(x +2)3+1=78.解:(x +2)3=-18,∴x +2=-12 ,∴x =-212.21.(8分)把下列各数分别填入相应的集合里: 38 , 2 ,-3.141 59,π2 ,227 ,-33 ,-78,0,-0.03,1.732,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0).(1)正有理数集合:{38 ,227,1.732,…}; (2)无理数集合:{ 2 ,π2,-33 ,- 6 ,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(3)非负数集合:{38 , 2 ,π2 ,227 ,0,1.732,1.202 002 000 2…(每两个相邻的2中间依次多1个0),…};(4)分数集合:{-3.141 59,227 ,-78,-0.03,1.732,…}.22.(8分)如图,已知长方体冰箱的体积为1 024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?解:设长方体的长、宽、高分别是x 分米、x 分米、2x 分米,由题意得2x ·x ·x =1 024.解得x =8,则2x =16,答:长方体的长、宽、高分别为8分米、8分米、16分米.23.(10分)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.解:∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=(±2)2=4,2x+y+7=33=27,∴x=6,y=8,∴x2+y2=62+82=100,∴x2+y2的平方根为±x2+y2=±100 =±10.24.(12分)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b 看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若31-2x 与33x-5 互为相反数,求1-x 的值.解:(1)∵2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,∴结论成立.∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,∴x =4,∴1-x =1-2=-1.25.(14分)(北仑区期中)操作探究:已知在纸面上有一数轴(如图所示).(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与什么数表示的点重合;(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与什么数表示的点重合;② 3 表示的点与什么数表示的点重合;③若数轴上A ,B 两点之间距离为9(A 在B 的左侧),且A ,B 两点经折叠后重合,此时点A 表示的数是多少,点B 表示的数是多少;解:(1)折叠纸面,使表示的点1与-1重合,折叠点对应的数为-1+12=0, 设-2表示的点所对应点表示的数为x ,于是有-2+x 2=0,解得x =2, 故答案为2.(2)折叠纸面,使表示的点-1与3重合,折叠点对应的数为-1+32=1, ①设5表示的点所对应点表示的数为y ,于是有5+y 2=1,解得y =-3, ②设 3 表示的点所对应点表示的数为z , 于是有z +32=1,解得z =2- 3 , ③设点A 所表示的数为a ,点B 表示的数为b ,由题意得a +b 2=1且b -a =9, 解得a =-3.5,b =5.5,故答案为-3,2- 3 ,-3.5,5.5.(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位长度,此时点A 表示的数和a 是互为相反数,求a 的值.解:①A 往左移4个单位长度:(a -4)+a =0.解得a =2.②A 往右移4个单位长度:(a +4)+a =0,解得a =-2.答:a 的值为2或-2.。
精选初中数学七年级下册第六章《实数》测试卷(含答案)
人教版七年级下册单元检测卷:第六章 实数一.选择题(共10小题) 1.2的平方根是( )A B .C .D .42.若a 2=4,b 2=9,且ab<0,则a-b 的值为( ) A .-2B .±5C .5D .-53的平方根是则a 的值为( ) A .2B .-2C .5D .-54.下列说法正确的是( ) A .-3是-9的平方根 B .1的立方根是±1 C .a 是2a 的算术平方根 D .4的负的平方根是-25.下列各式中正确的是( )A 3B =xC 3D =-x6.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a7.小明在作业本上做了4;②=4=9=-6,他做对的题有( ) A .1道B .2道C .3道D .4道8.下列实数是无理数的是( )A .227B .C .πD .09.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b>-2B .-b<0C .-a>bD .a>-b10.如图,数轴上的点A,B,C,D,E 对应的数分别为-1,0,1,2,3,那么与实数112-对应的点在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上二.填空题(共6小题)11.有一个数值转换器,原理如图:当输入的x=4时,输出的y 等于 .12.如果某数的一个平方根是-5,那么这个数是 . 13.若3a =-8,则a= .14.已知=2,ab<0,的值为 .15.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .16.实数a 、b 在数轴上的位置如图所示,则化简|a+2b|-|a-b|的结果为 .三.解答题(共7小题)17.将-2,12-在数轴上表示,并将原数用“<”连接.1819.已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b 的平方根.20.解下列方程: (1)(x-2)2-25=0(2)x3-1=21521.已知一个正方体的体积是1000cm3,现要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积是488cm3.(1)截去的每个小正方体的棱长是多少?(2)截完余下部分的表面积是多少?22.阅读完成问题:数轴上,已知点A、B、C.其中,C为线段AB的中点:(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为,C点表示的数为;(2)若点A表示的数为-1,C点表示的数为2,则点B表示的数为;(3)若点A表示的数为t,点B表示的为t+2,则线段AB的长为,若C点表示的数为2,则t=,(4)点A表示的数为1,x点B表示的为2x人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题)1.下列计算错误的是()A.-3+2=-1 B.(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( ) A .9 B .8C .7D .6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a 和3a-8 (1)求a 的值,并求这个正数; (2)求217a -的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数 { } 负有理数 { } 无理数 { }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c 的整数部分,求a+b+c 的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式;⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2- 31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13,∴这个正数是169.44-x=44-169=-125,-125的立方根是-5.21. 解:(1△2)△4=(12-22)△4=(-3)。
新人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)(1)
人教版七年级下册数学第六章实数培优试题一.选择题(共10小题)1.下列实数中,无理数是()A.-1 B.22C.16D.2)A.线段AB上B.线段BC上C.线段CD上D.线段DE上3.下列说法正确的是()A.立方根等于它本身的实数只有0和1B.平方根等于它本身的实数是0C.1的算术平方根是±1D.绝对值等于它本身的实数是正数4是2的()A.倒数B.平方根C.立方根D.算术平方根5-8的立方根之和是()A.0 B.-4 C.4 D.0或-46.已知则以下对m的估算正确的是()A.3<m<4 B.4<m<5 C.5<m<6 D.6<m<77.已知实数a在数轴上的位置如图所示,则化简|a+2|-|a-1|的结果为()A.-2a-1 B.2a+1 C.-3 D.38.数轴上A,B,C,D,E的点在()A.点A与点B之间B.点B与点C之间C.点C与点D之间D.点D与点E之间9.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( ) A .9B .8C .7D .610.最“接近1)-的整数是( ) A .0B .1C .2D .3二.填空题(共6小题)11.若一个数的立方根是-3,则这个数是 .12.9的平方根是 .13=0.102,则x= ,已知=155.8,则y= 14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= .15.如图,在数轴上点A ,B 表示的数分别是1,若点B ,C 到点A 的距离相等,则点C 所表示的数是 .16.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .三.解答题(共7小题) 17.求出下列x 的值(1)3(x-1)2(2)8(x 3+1)=-5618.计算:2018(1)|2|---19.将12--在数轴上表示,并将原数用“<”连接.20.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.21.将一个体积为364cm 的立方体木块锯成8个同样大小的小立方体木块.求每个小立方体木块的表面积.22.对于实数a 、b 定义运算"#"a#b=ab-a-1. (1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系;(3)若x#(-4)=9,求x的值.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=1,4EH M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x为何值时,原点O 恰为线段MN的三等分点.答案:1-5 BCBDD6-10 BBCCA11.-2712. ±3,213. 0.010404 , 378000014.15. 2+16.201917.解:(1)3(x-1)2=9,(x-1)2=3,x-1=±,x1=+1,x2=-+1;(2)x3+1=-7,x3=-8,x=-2.18. 解:原式=-1-(2-)+9-3=-1-2++9-3=3+.19.解:20. 解:(1)∵|a|=5,b2=4,c3=-8.∴a=±5,b=±2,c=-2,∵a<b,∴a=-5,b=±2,∴a+b=-5+2=-3或a+b=-5-2=-7, 即a+b 的值为-3或-7; (2)∵abc >0,c=-2, ∴ab <0,∴a=5,b=-2 或 a=-5,b=2,∴当a=5,b=-2,c=-2时,a-3b-2c=5-3×(-2)-2×(-2)=15, 当 a=-5,b=2,c=-2时,a-3b-2c=-5-3×2-2×(-2)=-7, ∴a-3b-2c=15 或-7.21. 解:根据题意知64÷8=8(cm 3),=2(cm),6×22=24(cm 2)或=4(cm),4÷2=2(cm),22×6=24(cm 2)答:每个小立方体木块的表面积是24cm 222. 解:(1)人教版七年级数学下册 第六章 实数 单元综合检测卷一、选择题(每小题3分,共30分)1、若的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数2、下列各组数中,互为相反数的组是( )A 、-2与B 、-2和C 、-与2 D 、︱-2︱和2 3、下列说法不正确的是( ) A 、的平方根是 B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 4、下列运算中,错误的是 ( ) ①,②,③ ④A 、 1个B 、 2个C 、 3个D 、 4个 5、下列说法正确的是( ) A 、 有理数都是有限小数 B 、 无限小数都是无理数a 2)2(-38-2125115±1251144251=4)4(2±=-3311-=-2095141251161=+=+C 、 无理数都是无限小数D 、有限小数是无理数6、 若m 是169的算术平方根,n 是121的负的平方根,则(+)2的平方根为( )A 、 2B 、 4C 、±2D 、 ±4 7、若 (k 是整数),则k =( )A 、 6B 、7C 、8D 、9 8、下列各式成立的是( ) A 、B 、C 、D 、9. 有一个数值转换器,原理如图所示:当输入的=64时,输出的y 等于( )A 、2B 、8C 、3D 、210、若均为正整数,且,,则的最小值是( )A 、3B 、4C 、5D 、6 二、填空题(每小题3分,共24分)11、 4的平方根是_________;4的算术平方根是__________. 12、比较大小:________.(填“>”,“<”或“=”)13、已知5-a+3+b ,那么.14、在中,________是无理数.16、 若5+的小数部分是,5-的小数部分是b ,则+5b = . 17、 对实数、b ,定义运算☆如下:☆b =例如2☆3=.计算[2☆(-4)]×[(-4)☆(-2)]= . 18、若、互为相反数,、互为负倒数,则=_______.三、解答题(共46分)1k k <<+a b c d19.(6分)计算:231(2)2⎛⎫-- ⎪⎝⎭20. (8分)求下列各式中的x.(1)(x-2)2-4=0; (2)(x+3)3+27=0.21.(6分)求出符合下列条件的数: (1)绝对值小于的所有整数之和; (2)绝对值小于的所有整数.22.把下列各数填入相应的大括号内.32,-32,3-8,0.5,2π,3.141 592 65,-|-25|,1.103 030 030 003…(两个3之间依次多一个0). ①有理数集合{ …}; ②无理数集合{ …}; ③正实数集合{ …}; ④负实数集合{ …}.23.(6分)已知m 是的整数部分,n 是的小数部分,求m -n 的值。
人教版第六章实数测试卷1(含答案)
第六章实数测试卷一、单选题1 ( )A .B .C .±3D .32.下列实数中的无理数是( )A B C D .2273.下列各组数中,两个数相等的是 ( )A .-2B .-2与-12C .-2D .|-2|与-2 4.8的相反数的立方根是( )A .2B .12C .﹣2D .12-5.比较2的大小,正确的是( )A .2<B .2<C 2<D 26.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <07.有一个数值转换器原理如下:当输入x =16时,输出的数是 ( )A .8B .2C D8是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间9 ( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间10.计算:12-的结果是( ) A .1B .2C .0D .-1 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.____.12122-+-=______.132(1)-=_______.14.______,|1=_______________.15a ,小数部分为b ,则a -b =____.16.观察分析下列数据,寻找规律:0,3…,那么第13个数据是______.三、解答题17.已知数-34,-1.••42,π,3.1416,23,0,42,(-1)2,-1.424224222…. (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.18.求下列各式的值.15(3)|a -π|+-a a <π).(精确到0.01)19.如图所示,在△ABC 中,∠B =90°,AB ,BC 边足够长,点P 从点B 开始沿BA 边向点A 以1厘米/秒的速度移动,同时,点Q 也从点B 开始沿BC 边向点C 以2厘米/秒的速度移动,几秒后,△BPQ 的面积为36平方厘米?20.已知2a-1的算术平方根是3,3a+b+4的立方根是2,求3a+b的平方根.21.求下列各式中x的值:(1)2x2-32=0;(2)(x+4)3+64=0.22.(1)已知2a-1的平方根是±3,2是3a+b-1的立方根,求a+2b的值.(2)设x,y,试求x,y的值与x-1的算术平方根.23.已知实数a,b|2b+1|=0,求的值.24.某地气象资料表明:当地雷雨持续的时间t(h)可以用下面的公式来估计:t2=3900d,其中d(km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)?参考答案:1.D【解析】【详解】∠33=27,3=.故选D.2.C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解:,,227是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3.C【解析】【分析】根据算术平方根的定义,立方根的定义以及绝对值的性质对各选项分析后利用排除法求解.【详解】解:A、,∠-2B、-2与-12不相等,故本选项错误;C、,∠-2D、∠|-2|=2,∠|-2|与-2不相等,故本选项错误.故选C.【点睛】本题主要考查了算术平方根,立方根的定义,对各选项正确化简是解题的关键.4.C【解析】【详解】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C .【点睛】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键. 5.C【解析】【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∠26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∠6662<<2<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.6.B【解析】【详解】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意.故选B .考点:实数与数轴.7.D【解析】【分析】把16代入数值转换器,根据要求进行计算,得到输出的数值.【详解】解:,4是有理数,∠继续转换,=2,2是有理数,∠继续转换,∠2,是无理数,∠符合题意,故选D.【点睛】本题考查的是算术平方根的概念和性质,掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数和无理数的区别.8.B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∠4.84<5<5.29,,,故选B.【点睛】是解题关键.9.B【解析】【分析】【详解】解:∠5 ²=25,6 ²=36,25<32<36,∠56,故选B.【点睛】关键.10.C【解析】【分析】根据有理数的运算性质,先化简再求值.【详解】解:原式=12-12=0.【点睛】掌握有理数的相关运算性质是解答本题的关键. 11.3,【解析】【详解】-(∠乘积为1的数互为倒数,∠3得倒数为.12..【解析】【详解】原式=13222-+-=52,故答案为52.13.4【解析】【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.【详解】2(1)514-=-=,故答案为:4.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.14. 1 ±3【解析】【分析】直接利用相反数的定义得出答案;结合绝对值的定义得出答案;,再根据绝对值的性质即可求出.【详解】解:(2) |1|1;(3)∠绝对值为3的数为±3.1; ±3.【点睛】本题主要考查相反数,绝对值的定义以及立方根,关键在于熟练掌握运用相关的性质定理,认真的进行计算.15.【解析】【分析】a,b的值,进而得出答案.【详解】解:∠45,a=4,小数部分为.∠a-b=4-)故答案为【点睛】16.6【解析】【详解】被开方数依次为0,3,6,9,12,15,18,…,每两数相差3,所以第13 6.故答案为6.点睛:本题是数字规律探究题,观察题目找出规律被开方数依次增加3是解题的关键..17.(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222…;(3)见解析.【解析】【分析】(1)按照有理数的定义解答,特别要注意无限循环小数是有理数;(2)根据无理数的定义解答,即无限不循环小数是无理数;(3)根据实数比较大小的法则把各数进行比较,并用“<”连接起来.【详解】解:(1)-34,-1.••42,3.1416,23,0,42,(-1)2.(2)π,-1.424224222….(3)-1.··42<-1.424224222…<-34<0<23<(-1)2<π<3.1416<42.【点睛】本题考查的是有理数、无理数的定义及实数的大小比较,熟知有理数、无理数的定义及实数的大小比较法则是解答此题的关键.18.(1)35;(2)-1.7;(3)1.73.【解析】【分析】(1)先把计算根号的加减运算,然后利用二次根式的性质化简后进行乘法运算;(2)首先进行二次根式的化简,然后合并即可;(3)先根据实数a的取值范围,判断出a-πa的符号,根据绝对值的性质进行解答即可.【详解】解:(1)=7×5=35.(2)13×0.6-15×30=92-0.2-6=-1.7.a<π,∠a-π<0-a<0,∠|a-π|+a|=(π-a)+(a)=π-a+a=π≈3.142-1.414=1.728≈1.73.【点睛】本题考查了二次根式的计算,实数的运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,属于基础题.19.6秒【解析】【分析】设x秒钟后,△PBQ的面积等于36cm2,根据直角三角形的面积公式和路程=速度×时间进行求解即可.【详解】解:设x秒后,△BPQ的面积是36平方厘米,根据题意得PB=x厘米,QB=2x厘米,因此12x×2x=36,所以x2=36,解得x=6(x=-6舍去),所以6秒后,△BPQ的面积是36平方厘米.【点睛】此题考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于36cm2”,找到等量关系是解决问题的关键.20.3a+b的平方根为±2.【解析】【详解】试题分析:先按照题意求出a、b的值,然后再代入即可得解.试题解析:∠2a-1的算术平方根是3,∠2a-1=9 ,∠a=5 ,又∠3a+b+4的立方根是2,∠3a+b+4=8,∠3×5+b+4=8,∠b=-11,∠3a+b=4,∠3a+b的平方根为±2.21.(1)x﹦±4,(2)x﹦﹣8.【解析】【分析】(1)通过求平方根解方程;(2)通过求立方根解方程.【详解】解:(1)2x2﹣32=02x2﹦32x2﹦16x﹦±4,∠x1=4,x2=﹣4;(2)(x+4)3+64=0(x+4)3﹦﹣64x+4﹦﹣4x﹦﹣8.【点睛】本题考核知识点:运用开方知识解方程. 解题关键点:熟练进行开方运算.22.(1)-7;(2【解析】【分析】(1)根据平方根、算术平方根、立方根的定义进行运算即可;(2介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.【详解】解:(1)依题意得2a-1=9,3a+b-1=8,解得a=5,b=-6.所以a+2b=-7.(2)即所以的整数部分是4.由题意知x=4,y-2,则x-1=3,所以x-1【点睛】本题考查了实数的运算,涉及了平方根、立方根、倒数及相反数的知识,无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.23.1 4 -【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:根据题意,得10,4 210, ab⎧-=⎪⎨⎪+=⎩解得1412ab⎧=⎪⎪⎨⎪=-⎪⎩,,则=1-2⎛⎫⎪⎝⎭14.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.24.(1)0.9h(2)9.7km【解析】【分析】(1)根据t2=3900d,其中d=9(km)是雷雨区域的直径,开立方,可得答案;(2)根据t2=3900d,其中t=1h是雷雨的时间,开立方,可得答案.【详解】(1)当d=9时,则t2=3900d,因此t0.9.答:如果雷雨区域的直径为9km,那么这场雷雨大约能持续0.9h.(2)当t=1时,则3900d=12,因此d答:如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是9.7km.【点睛】本题考查了立方根,注意任何数都有立方根.。
(完整版)第六章实数练习题.docx
第六章实数练习题1一.选择题(共23 小题)1.下列运算正确的是()A.﹣=13B.=﹣6C.﹣=﹣ 5D. =±32.若=1.414,=14.14,则 a 的值为()A.20B.2000C. 200 D.200003.已知一个数的两个平方根分别是 a+3 与 2a﹣15,这个数的值为()A.4B.± 7 C.﹣ 7 D.494.若 2m﹣4 与 3m﹣1 是同一个正数的平方根,则m 为()A.﹣ 3 B.1 C.﹣ 1 D.﹣ 3 或 15.的平方根是()A.± 2B.± 1.414 C.D.﹣ 26.若 a,b 为实数,且 | a+1|+=0,则( ab)2014的值是()A.0B.1 C.﹣ 1 D.± 17.在下列说法中:① 10 的平方根是±;②﹣2是4的一个平方根;③的平方根是;④ 0.01的算术平方根是0.1;⑤=±a2,其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个8.一个正数的正的平方根是m,那么比这个正数大 1 的数的平方根是()A.m2+1 B.±C.D.±9.下列说法正确的是()A.± 4 的平方根是 16B.1 的平方根是 1C.的平方根是± 3D.2 是(﹣ 2)2的算术平方根10.下列各式中,正确的个数是()①;②;③﹣32的平方根是﹣3;④的算术平方根是﹣ 5;⑤是的平方根.A.1 个 B.2 个 C.3 个 D.4 个11.的算术平方根是()A.2B.± 2 C.D.12.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0 个 B.1 个 C.2 个 D.3 个13.若 a 是(﹣ 3)2的平方根,则等于()A.﹣ 3 B.C.或﹣D. 3 或﹣ 314.下列命题中,① 9 的平方根是3;②的平方根是± 2;③﹣0.003没有立方根;④﹣ 3 是 27 的负的立方根;⑤一个数的平方根等于它的算术平方根,则这个数是 0,其中正确的个数有()A.1B.2C.3D.415.下列各组数中表示相同的一组是()A.﹣ 2 与B.﹣ 2 与C.﹣ 2 与D.﹣ 2 与16.下列说法:(1)1 的平方根是1;( 2)﹣ 1 的平方根是﹣ 1;(3)0 的平方根是 0;( 4) 1 是 1 的平方根;(5)只有正数才有立方根.其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个17.下列说法,其中错误的个数有()①的平方根是± 9;②是 3 的平方根;③﹣ 8 的立方根为﹣ 2;④=± 2A.1 个 B.2 个 C.3 个 D.4 个18.要使,则 a 的取值范围是()A.a≥4B.a≤4C.a=4 D.任意数19.下列命题正确的个数有:,(3)无限小数都是无理数,( 4)有限小数都是有理数,(5)实数分为正实数和负实数两类.()A.1 个 B.2 个 C.3 个 D.4 个20.已知正方形的面积是 17,则它的边长在()A.5 与 6 之间 B.4 与 5 之间 C. 3 与 4 之间 D.2 与 3 之间21.已知: | a| =3,=5,且 | a+b| =a+b,则 a﹣ b 的值为()A.2 或 8B.2 或﹣ 8 C.﹣ 2 或 8 D.﹣ 2 或﹣ 822.在,1.414,,,π,中,无理数的个数有()A.2 个 B.3 个 C.4 个 D.5 个23.若 0< x<1,则 x,x2,,中,最小的数是()A.x B.C.D.x2二.解答题(共7 小题)24.求下列各式中的x.(1) 4x2﹣ 16=0(2) 27(x﹣3)3 =﹣64.25.已知 5x﹣1 的算术平方根是3,4x+2y+1 的立方根是 1,求 4x﹣2y 的平方根.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<()2<32,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:( 1)的整数部分是,小数部分是( 2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.27.化简:.28.计算:.29.计算:(1)(2)30.计算:第六章实数练习题1参考答案与试题解析一.选择题(共23 小题)1.(2016?赵县模拟)下列运算正确的是()A.﹣=13 B.=﹣6C.﹣=﹣ 5 D.=±3【分析】根据算术平方根,即可解答.【解答】解: A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选: C.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.2.(2015 秋?仁寿县校级期末)若=1.414,=14.14,则 a 的值为()A.20 B.2000C. 200 D.20000【分析】根据算术平方根的性质,根据 1.414×10=14.14,可推出 2× 100=a,即可推出 a=200.【解答】解:∵=1.414,1.414×10=14.14,∴2× 100=a,∴a=200.故选 C.【点评】本题主要考查算术平方根的性质,关键在于熟练掌握算术平方根的性质,认真的计算.3.( 2015 秋?会宁县期中)已知一个数的两个平方根分别是a+3 与 2a﹣ 15,这个数的值为()A.4B.± 7 C.﹣ 7 D.49【分析】根据平方根的性质建立等量关系,求出 a 的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣ 15)=0,解得: a=4.∴( a+3)2=72=49.故选 D【点评】本题是一道关于平方根的计算题,考查了平方根的性质及其对性质的运用.4.(2015 秋?天水期末)若 2m﹣4 与 3m﹣1 是同一个正数的平方根,则 m 为()A.﹣ 3 B.1C.﹣ 1 D.﹣ 3 或 1【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4 与 3m﹣1 互为相反数, 2m﹣4 与 3m﹣ 1 也可以是同一个数.【解答】解:∵ 2m﹣4 与 3m﹣1 是同一个正数的平方根,∴2m﹣ 4+3m﹣1=0,或 2m﹣4=3m﹣1,解得: m=1 或﹣3.故选 D.【点评】本题主要考查了平方根的概念,解题时注意要求是一个正数的平方根.5.(2014?自贡校级自主招生)的平方根是()A.± 2 B.± 1.414 C.D.﹣ 2【分析】先把化为2的形式,再根据平方根的定义进行解答即可.【解答】解:∵=2,2 的平方根是±,∴的平方根是±.故选 C.【点评】本题考查的是平方根的定义,即如果一个数的平方等于 a,这个数就叫做 a 的平方根,也叫做 a 的二次方根.6.(2014?绵阳校级自主招生)若a, b 为实数,且 | a+1|+=0,则( ab)2014的值是()A.0B.1C.﹣ 1 D.± 1【分析】根据非负数的性质列式求出 a、 b 的值,然后代入代数式进行计算即可得解.【解答】解:由题意得, a+1=0,b﹣1=0,解得 a=﹣1,b=1,所以,(ab)2014=(﹣ 1× 1)2014=1.故选 B.【点评】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为0.7.(2014 春?中山校级期末)在下列说法中:① 10 的平方根是±;②﹣ 2 是 4 的一个平方根;③的平方根是;④ 0.01的算术平方根是 0.1;⑤=±a2,其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【解答】解:①10 的平方根是± ,正确;②﹣2 是 4 的一个平方根,正确;③ 的平方根是± ,③错误;④0.01 的算术平方根是 0.1,正确;⑤=a2,⑤错误;正确的是①②④;故选 C.【点评】本题考查了平方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.第 7页(共 19页)8.( 2014 春?定陶县期中)一个正数的正的平方根是m,那么比这个正数大 1 的数的平方根是()A.m2+1B.±C.D.±【分析】这个正数可用m 表示出来,比这个正数大 1 的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大 1 的数为 m2+1,故比这个正数大 1 的数的平方根为:±,故选 D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大 1 的数.9.(2013 春?浏阳市校级期中)下列说法正确的是()A.± 4 的平方根是 16 B.1 的平方根是 1C.的平方根是± 3D.2 是(﹣ 2)2的算术平方根【分析】根据平方根的定义对各选项分析判断后利用排除法.【解答】解: A、说反了,应为16 的平方根是± 4,故本选项错误;B、1 的平方根是± 1,故本选项错误;C、∵=3,∴的平方根是±,故本选项错误;D、∵(﹣ 2)2=4,4 的算术平方根为2,∴ 2 是(﹣ 2)2的算术平方根,正确.故选 D.【点评】本题考查了平方根的定义,正数的平方根有两个,它们互为相反数,负数没有平方根, 0 的平方根是 0,C 选项容易出错,需要小心.10.( 2012 秋?北京校级期中)下列各式中,正确的个数是()①;②;③﹣32的平方根是﹣3;④的算术平方根是﹣ 5;⑤是的平方根.A.1 个 B.2 个 C.3 个 D.4 个【分析】①由于 0.32,故≠ ;=0.090.3②左边是算术平方根,右边是平方根,不正确;③负数没有平方根;④素数平方根是非负数;⑤根据逆运算可知正确.【解答】解:①由于 0.32,故≠ ,此选项错误;=0.090.3②= ,故此选项错误;③﹣ 32=﹣9,负数没有平方根,故此选项错误;④=5,故 5 的算术平方根是,故此选项错误;⑤()2=,故此选项正确.故选 A.【点评】本题考查了算术平方根、平方根,解题的关键是注意算术平方根、平方根的区别和联系.11.( 2016?毕节市)的算术平方根是()A.2B.± 2 C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2, 2 的算术平方根是.故选: C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.12.( 2016 春?饶平县期末)下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0 个 B.1 个 C.2 个 D.3 个【分析】根据负数没有平方根,一个正数有两个平方根, 0 只有一个平方根是0,一个正数的算术平方根只有一个,即可判断①、②;根据一个负数有一个负的立方根,即可判断③.【解答】解:∵负数没有平方根,一个正数有两个平方根,0 只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0 个,故选 A.【点评】本题考查了对平方根、立方根、算术平方根的理解和运用,题目比较典型,但是一道比较容易出错的题目.13.( 2016 秋?萧山区期中)若 a 是(﹣ 3)2的平方根,则等于()A.﹣ 3 B.C.或﹣D. 3 或﹣ 3【分析】根据平方根的定义求出 a 的值,再利用立方根的定义进行解答.【解答】解:∵(﹣ 3)2=(± 3)2=9,∴ a=±3,∴=,或=,故选 C.【点评】本题考查了平方根,立方根的定义,需要注意一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根.14.( 2014 秋?诸城市校级期末)下列命题中,① 9 的平方根是 3;②的平方根是± 2;③﹣ 0.003 没有立方根;④﹣ 3 是 27 的负的立方根;⑤一个数的平方根等于它的算术平方根,则这个数是0,其中正确的个数有()A.1B.2C.3D.4【分析】 9 的平方根是± 3,4 的平方根是± 2,﹣0.003 有立方根,是一个负的立方根, 0 的平方根和算术平方根都是0,根据以上内容判断即可.【解答】解:∵ 9 的平方根是± 3,∴①错误;∵=4,∴的平方根是± 2,∴②正确;∵﹣ 0.003 有立方根,是一个负的立方根,∴③错误;∵ 27 的立方根只有一个,是=3,∴④错误;∵0 的平方根是 0,0 的算术平方根也是 0,∴0 的平方根等于 0 的算术平方根,∴⑤正确;即正确的个数有 2 个,故选 B.【点评】本题考查了立方根和平方根、算术平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.15.( 2013 春?滕州市校级期中)下列各组数中表示相同的一组是()A.﹣ 2 与B.﹣ 2 与C.﹣ 2 与D.﹣ 2 与【分析】 A、根据算术平方根的性质化简即可判定;B、根据立方根的性质化简即可判定;C、根据倒数定义即可判定;D、根据算术平方根的定义求解即可.【解答】解: A、=2,故选项错误B、∵﹣ 2 的立方等于﹣ 8,∴﹣ 8 的立方根等于﹣ 2,∴﹣ 2 与相同,故选项正确;C、﹣ 2 与不同,故选项错误D、=2,故选项错误.故选 B.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.( 2009 秋?澄海区校级期中)下列说法:(1)1 的平方根是 1;( 2)﹣ 1 的平方根是﹣ 1;(3)0 的平方根是 0;(4)1 是 1 的平方根;(5)只有正数才有立方根.其中正确的有()A.1 个 B.2 个 C.3 个 D.4 个【分析】(1)根据平方根的定义即可判定;(2)根据平方根的定义即可判定;(3)根据平方根的定义即可判定;(4)根据平方根的定义即可判定;(5)利用立方根的定义分析即可判定.【解答】解:(1)1 的平方根是± 1,故说法错误;(2)﹣ 1 的平方根是﹣ 1,负数没有平方根,故说法错误;(3) 0 的平方根是 0,故说法正确;(4) 1 是 1 的平方根,故说法正确;(5)只有正数才有立方根,不对,负数也有立方根,故说法错误.故选 B.【点评】此题主要考查了平方根的定义,注意:一个非负数的平方根有两个,一正一负.正值为算术平方根.17.( 2009?萧山区模拟)下列说法,其中错误的个数有()①的平方根是± 9;②是3的平方根;③﹣8的立方根为﹣2;④=±2A.1 个 B.2 个 C.3 个 D.4 个【分析】①根据平方根的定义即可判定;②根据平方根的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可判定.【解答】解:①=9,故选项错误;②是 3 的平方根,故选项正确;③﹣ 8 的立方根为﹣ 2,故选项正确;④=2,故选项错误.故选 B.【点评】本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字的特殊性质.如果一个数x 的立方等于a,即x 的三次方等于a(x3=a),那么这个数 x 就叫做 a 的立方根,也叫做三次方根.读作“三次根号 a”其中, a 叫做被开方数, 3 叫做根指数.( a 不等于 0)如果 x2=a(a≥0),则 x 是 a 的平方根.若a > 0,则它有两个平方根,我们把正的平方根叫 a 的算术平方根.若 a=0,则它有一个平方根,即 0 的平方根是 0,0 的算术平方根也是 0:负数没有平方根.18.要使,则a的取值范围是()A.a≥4B.a≤4C.a=4 D.任意数【分析】由立方根的定义可知,此时根式的值应为4﹣ a,再由题意可得a﹣ 4=4﹣ a,由此即可求出 a 的值.【解答】解:∵=4﹣ a,即a﹣4=4﹣a,解得a=4.故选C.【点评】此题主要考查开立方.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.19.(2016 秋 ?泰州期末)下列命题正确的个数有:,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.()A.1 个 B.2 个 C.3 个 D.4 个【分析】(1),( 2)根据平方和立方的性质即可判断;(3)根据无限不循环小数是无理数即可判定;(4)根据原来的定义即可判定;第13页(共 19页)( 5)根据实数分为正实数,负实数和0 即可判定.【解答】解:(1)根据立方根的性质可知:=a,故说法正确;( 2)根据平方根的性质:可知=| a| ,故说法错误;(3)无限不循环小数是无理数,故说法错误;(4)有限小数都是有理数,故说法正确;(5) 0 既不是正数,也不是负数,此题漏掉了 0,故说法错误.故选: B.【点评】此题主要考查了实数的相关概念及其分类方法,以及开平方和开立方的性质,比较简单.20.( 2016 春?鄂托克旗期末)已知正方形的面积是17,则它的边长在()A.5 与 6 之间B.4 与 5 之间C. 3 与 4 之间D.2 与 3 之间【分析】由正方形的面积等于边长的平方,故根据已知的面积开方即可求出正方形的边长为,由 16≤ 17≤25 可得的取值范围.【解答】解:设正方形的边长为a,由正方形的面积为17 得: a2=17,又∵ a>0,∴ a=,∵16≤17≤25,∴ 4≤5.故选 B.【点评】本题主要考查了正方形的性质,以及平方根的定义和估算无理数的大小,根据题意得出正方形的边长是解答此题的关键.21.( 2016 春?罗平县期末)已知: | a| =3,=5,且 | a+b| =a+b,则 a﹣b 的值为()A.2 或 8B.2 或﹣ 8 C.﹣ 2 或 8 D.﹣ 2 或﹣ 8【分析】利用绝对值的代数意义,以及二次根式性质求出 a 与 b 的值,即可求出a﹣b 的值.【解答】解:根据题意得: a=3 或﹣ 3,b=5 或﹣ 5,∵| a+b| =a+b,∴a=3,b=5;a=﹣3, b=5,则 a﹣b=﹣ 2 或﹣8.故选 D.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.( 2016 春?始兴县校级期中)在,1.414,,,π,中,无理数的个数有()A.2 个 B.3 个 C.4 个 D.5 个【分析】无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数,根据以上内容判断即可.【解答】解:无理数有﹣,,π,共 3 个,故选B.【点评】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数.23.(2016 春 ?宁国市期中)若 0< x<1,则 x,x2,,中,最小的数是()A.x B.C.D.x2【分析】由于正数大于 0, 0 大于负数,正数大于负数,然后根据题意,可取特殊值来判定选择项.【解答】解:∵ 0<x<1,∴设 x= ,∴x2= ,=,=2,根据上图,可知x2最小.故选 D.【点评】此题主要考查了实数的大小比较,解答此题的关键是熟知数轴的特点,利用数轴上右边的数总比左边的数大解决问题.二.解答题(共7 小题)24.( 2016 春?滑县期中)求下列各式中的x.(1) 4x2﹣ 16=0(2) 27(x﹣3)3 =﹣64.【分析】(1)根据移项,可得平方的形式,根据开平方,可得答案;( 2)根据等式的性质,可得立方的形式,根据开立方,可得答案.【解答】解( 1)4x2=16,x2=4x=± 2;( 2)(x﹣3)3=﹣,x﹣3=﹣x=.【点评】本题考查了立方根,先化成乘方的形式,再开方,求出答案.25.( 2016 秋?太仓市期中)已知5x﹣1 的算术平方根是3,4x+2y+1 的立方根是1,求 4x﹣2y 的平方根.【分析】根据算术平方根、立方根的定义求出x、y 的值,求出 4x﹣2y 的值,再根据平方根定义求出即可.【解答】解:∵ 5x﹣1 的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1 的立方根是 1,∴ 4x+2y+1=1,∴ y=﹣4,4x﹣ 2y=4× 2﹣ 2×(﹣ 4)=16,∴ 4x﹣2y 的平方根是± 4.【点评】本题考查了平方根、立方根、算术平方根的应用,解此题的关键是求出x、y 的值,主要考查学生的理解能力和计算能力.26.( 2016 秋?巴中期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1 来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是 1,将这个数减去其整数部分,差就是小数部分.又例如:∵ 22<()2<32,即 2<<3,∴ 的整数部分为2,小数部分为(﹣2).请解答:( 1)的整数部分是3,小数部分是﹣3( 2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.【分析】(1)利用已知得出的取值范围,进而得出答案;( 2)首先得出,的取值范围,进而得出答案.【解答】解:(1)∵<<,∴3<<4,∴的整数部分是 3,小数部分是:﹣3;故答案为: 3,﹣3;( 2)∵<<,∴的小数部分为: a=﹣2,∵<<,∴的整数部分为 b=6,∴ a+b﹣=﹣2+6﹣=4.【点评】此题主要考查了估计无理数,得出无理数的取值范围是解题关键.27.(2014 春?嘉峪关校级期末)化简:.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式 =﹣+﹣1﹣3+=2﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.( 2012 秋?铜陵县期中)计算:.【分析】根据 x3,则,2(≥ )则x=,进行解答.=ax=x =b b0【解答】解:=9﹣3+=.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数; 0 的平方根是 0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数, 0 的立方根式 0.29.( 2012 秋?吴江市校级期中)计算:(1)(2)【分析】本题涉及二次根式和三次根式化简.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1),=2+2﹣4,=0;( 2),=0.7﹣﹣,=0.7﹣(﹣)﹣3,=0.7+0.5﹣3,=﹣1.8.【点评】本题主要考查了实数的综合运算能力,是常见的计算题型,解决此类题目的关键是熟练掌握二次根式和三次根式等考点的运算.30.( 2012 秋?丹阳市校级期中)计算:【分析】在解此题的时候先算根号里面的,再把绝对值去掉,最后把解得的结果加起来即可.【解答】解:原式 =4+(﹣ 2)﹣ 2+,=2﹣2+,=.【点评】本题主要考查了实数的运算,在计算的时候要注意运算符号和运算顺序,解决此类题目的关键是熟练掌握根号和绝对值等考点的运算.。
新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)
人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。
精选初中数学七年级下册第六章《实数》检测试卷(含答案解析)
人教版七年级数学下册第六章实数单元检测题一、选择题。
(每小题3分,共30分)1.下列选项中正确的是()A.27的立方根是±3B.16的平方根是±4C.9的算术平方根是3D.立方根等于算术平方根的数是12.下列各数中是无理数的为()A. 2 B.0 C.12017D.-13. 已知m=4+3,则以下对m的估算正确的() A.2<m<3 B.3<m<4C.4<m<5 D.5<m<64.比较4,17,363的大小,正确的是()A.4<17<363 B.4<363<17C.363<4<17 D.17<363<45.如图6-X-1所示,实数a=3,则在数轴上表示-a的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上6.下列说法中,正确的有( )①只有正数才有平方根;②a一定有立方根;③-a没意义;④3-a=-3a;⑤只有正数才有立方根.A.1个B.2个C.3个D.4个7.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有( )A.0个B.1个om]C.2个D.3个8.已知5+11的整数部分为a,5-11的小数部分为b,则a+b的值为( )A.10 B.211C.11-12 D.12-11[9.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为()A.5 B.6 C.7 D.810. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题。
(每空3分,共15分)1.请写出两个你喜欢的无理数,使它们的和为有理数,你写出的两个无理数是________________.2.化简-(5+7)-|5-7|的结果为________.3.a +3的立方根是2,3a +b -1的平方根是±4,则a +2b 的算术平方根是________.4.规定用符号[m]表示一个实数m 的整数部分,例如:⎣⎢⎡⎦⎥⎤23=0,[3.14]=3.按此规定[10+1]的值为________.5..已知数轴上有A ,B 两点,且这两点之间的距离为4 2,若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为________.三、计算题(10分) (1)2+3 2-5 2;(2)|3-2|+|3-2|-|2-1|;四、解下列方程:(10分)(1)(x -2)3=64;(2)4(3x+1)2-1=0.五、综合题(共35分)1.(8分)在数轴上表示a,b,c三个数的点的位置如图6-X-2所示.化简:|c|-(c+a)2+b2-|a-b|.图6-X-22.(8分)已知一个正数x的两个平方根分别是2a-3和5-a,求a和x的值.3.(9分)已知A=m-2n-m+3是n-m+3的算术平方根,B=2n-17m-12n是7m-12n的立方根,求B+A的平方根.4.(10分)如图所示,长方形内相邻两个正方形的面积分别为2和4,求长方形内阴影部分的面积.参考答案一、选择题。
人教版数学七年级下册第六章实数测试卷试题及答案
人教版数学七年级下册第六章实数测试卷试题一、单选题(共10题;共20分)1.在,,,,中,无理数有().A. 1个B. 2个C. 3个D. 4个2.如果一个实数的平方根与它的立方根相等,则这个数是( )A. 0B. 正整数C. 0或1D. 13.计算的值是()A. 1B.C. 2D. 74.下列整数中、与10- 最接近的是()A. 4B. 5C. 6D. 75.已知a-1=b+1=c-2=d-3,则a、b、c、d这四个数中最小的是( )A. aB. bC. cD. d6.若是整数),则A. 9B. 8C. 7D. 67.如果3a-21和2a+1是正实数m的两个不同的平方根,那么的值为()A. 2B. 3C. 4D. 98.下列说法错误的是()A. 的平方根是B. 的算术平方根是4C. 0的立方根是0D. 64的立方根是9.如图所示,数轴上表示2,的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A. B. C. D.10.关于的叙述,错误的是()A. 表示12的立方根B. 在数轴上可以找到表示的点C. 是有理数D. 体积为12的正方体的棱长是二、填空题(共8题;共32分)11.下列实数中,无理数有________.(填序号)①-2,② ,③ ,④ ,⑤ ,⑥ ,⑦ ,⑧1.101001.12.计算:(1) ________;(2)________.13.的算术平方根是________,= ________.14.若=0.7160,=1.542,则=________,=________.15.一个正数的平方根是和,则的算术平方根为________.16.已有数2、3、x,这三个数中,一个数是另外两个数的乘积的一个平方根,那么x可能是________.17.的整数部分为________,估计≈________(结果精确到0.1).18.规定用符号[m]表示一个实数m的整数部分,例如[ ]=0,[3.14]=3.按此规定的值为________.三、解答题(共5题;共38分)19.把下列各数分别填在相应的集合中:,3.1415926,,,,,,.20.如图,将数轴上标有字母的各点与下列实数对应起来,请在答题卡上填写对应的实数:- ,π,0,,2,- .21.已知A= 是的算术平方根,B = 是的立方根.求6A+3B的平方根.22.“比差法”是数学中常用的比较两个数大小的方法,即:;例如:比较与2的大小∵又∵则∴∴请根据上述方法解答以下问题:比较与的大小.23.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用-1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分。
2013年最新版七年级下册第六章 实数
2013年最新版七年级下册第六章 实数测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共30分)1、下列说法不正确的是( )A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-32、若a 的算术平方根有意义,则a 的取值范围是( )A 、一切数B 、正数C 、非负数D 、非零数3、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、814、在下列各式中正确的是( )A 、2)2(-=-2B 、9±=3C 、16=8D 、22=25、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和96、下列各组数中,互为相反数的组是( )A 、-2与2)2(-B 、-2和38-C 、-21与2 D 、︱-2︱和2 7、在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个8、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应9、以下不能构成三角形边长的数组是( )A 、1,5,2B 、3,4,5C 、3,4,5D 、32,42,5210、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2b -︱a -b ︱等于( )A 、aB 、-aC 、2b +aD 、2b -a 二、填空题(每小题3分,共18分)11、81的平方根是__________,1.44的算术平方根是__________。
12、一个数的算术平方根等于它本身,则这个数应是__________。
13、38-的绝对值是__________。
14、比较大小:27____42。
15、若36.25=5.036,6.253=15.906,则253600=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 实数(一)
姓名: 学校: 年级: 成绩:
一、选择题(第小题3分,共30分) 1.25的平方根是( )
A.5 B .-5 C. ± 5 D. ±5 2.下列说法错误的是( )
A.1的平方根是1 B .-1的立方根是-1 C.
2是2的平方根 D .-3是
()23-的平方根
3.下列各组数中互为相反数的是( ) A .-2与()22- B .-2与38-
C.2与()
2
2-
D. 2-与2
4.数8.032032032是( )
A.有限小数
B.有理数
C.无理数
D.不能确定
5.在下列各数:0.51525354…,10049,0.2,π1,7,11
131,3
27,中,无理数的个数是( )
A.2个
B.3个
C.4个
D.5个
6.立方根等于3的数是( ) A.9B. ± 9C.27D. ±27
7.在数轴上表示5和-3的两点间的距离是( ) A.
5+3 B. 5-3
C .-(5+3) D.
3-5
8.满足-3<x <5的整数是( )
A .-2,-1,0,1,2,3
B .-1,0,1,2,3
C .-2,-1,0,1,2,
D .-1,0,1,2 9.当14+a 的值为最小时,a 的取值为( ) A .-1 B.0 C. 4
1
-
D.1 10. ()
2
9-的平方根是x ,64的立方根是y ,则x +y 的值为( ) A.3 B.7 C.3或7 D.1或7
二、填空题(每小题3分,共30分)
11.算术平方根等于本身的实数是 . 12.化简:()23π-= .
13.
9
4
的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.
15.估计60的大小约等于 或 .(误差小于1) 16.若()03212
=-+
-+-z y x ,则x +y +z = .
17.我们知道
53422=+,黄老师又用计算器求得:
55334422=+,
55533344422=+,
55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .
18.比较下列实数的大小(填上>、<或=).
;②
215- 2
1
;③53. 19.若实数a 、b 满意足
0=+b b a a ,则ab
ab = . 20.实a 、b 在数轴上的位置如图所示,则化简()2
a b b a -++= .
三、解答题(共40分)
21.(4分)求下列各数的平方根和算术平方根: (1)1; (2)4
10
-;
22.(4分)求下列各数的立方根: (1)216
27 ; (2)6
10--;
23.(8分)化简:
(1)5312-⨯; (2)2
36⨯;
(3)(
)(
)
2757
5+⨯-; (4)8
1
4
5032--
24. (1)42
x =25 (2)()027.07.03
=-x .
25.(4分)已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.
26.(5分)请在同一个数轴上用尺规作出2-和5的对应的点.
27.(5分)已知:字母a 、b 满足021=-+-b a .
求
()()()()
()()2001201112211111++++++++++b a b a b a ab 的值.
28.(6分)(1)做一做:画四个宽为1,长分别为2、3、4、5的矩形; (2)算一算:它们的对角线有多长?
(3)试一试:平方等于5,平方等于10,平方等于17,平方等于26的数各有几个? (4)根据上面的探究过程,你能得出哪些结论?
(5)利用其中的某些结论解决下面的问题:如果a >b ,那么a 与b 有何关系?
-3。