九年级初三数学全册教学导案

合集下载

九年级数学导学案全册

九年级数学导学案全册

九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。

本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。

二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。

三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。

通过练习提高学生的计算能力和代数运算技巧。

2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。

同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。

3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。

同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。

4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。

通过实际案例和练习,培养学生的数据分析和概率计算能力。

四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。

2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。

3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。

五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。

通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。

希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题第一章:实数与代数式1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的运算方法,包括加法、减法、乘法和除法。

教学内容:有理数的定义及分类。

有理数的运算方法及运算律。

教学步骤:1. 引入有理数的概念,解释有理数的定义及其分类。

2. 通过示例演示有理数的加法、减法、乘法和除法运算。

练习题:1.2 代数式教学目标:理解代数式的定义及其组成。

掌握代数式的运算方法,包括加法、减法、乘法和除法。

教学内容:代数式的定义及其组成。

代数式的运算方法及运算律。

教学步骤:1. 引入代数式的概念,解释代数式的定义及其组成。

2. 通过示例演示代数式的加法、减法、乘法和除法运算。

练习题:第二章:方程与不等式2.1 方程教学目标:理解方程的定义及其分类。

掌握一元一次方程的解法。

教学内容:方程的定义及其分类。

一元一次方程的解法。

教学步骤:1. 引入方程的概念,解释方程的定义及其分类。

2. 通过示例演示一元一次方程的解法。

练习题:2.2 不等式教学目标:理解不等式的定义及其分类。

掌握一元一次不等式的解法。

教学内容:不等式的定义及其分类。

一元一次不等式的解法。

教学步骤:1. 引入不等式的概念,解释不等式的定义及其分类。

2. 通过示例演示一元一次不等式的解法。

练习题:第三章:几何基本概念3.1 点、线、面教学目标:理解点、线、面的定义及其性质。

掌握点、线、面之间的相互关系。

教学内容:点的定义及其性质。

线的定义及其性质。

面的定义及其性质。

点、线、面之间的相互关系。

教学步骤:1. 引入点、线、面的概念,解释点的定义及其性质。

2. 通过示例演示线的定义及其性质。

3. 引导学生理解面的定义及其性质。

4. 讲解点、线、面之间的相互关系。

练习题:3.2 平面几何基本元素教学目标:理解直线、射线、线段的定义及其性质。

掌握角的定义及其分类。

教学内容:直线、射线、线段的定义及其性质。

角的定义及其分类。

教学步骤:1. 引入直线、射线、线段的概念,解释它们的定义及其性质。

最新九年级数学上册全册导学案人教版含答案名师优秀教案

最新九年级数学上册全册导学案人教版含答案名师优秀教案

最新九年级数学上册全册导学案人教版含答案名师优秀教案一、绪论数学是一门抽象而又实用的学科,它在现代社会中扮演着不可或缺的角色。

作为九年级学生,我们即将接触到数学上册的内容,本导学案旨在帮助同学们了解全册的内容安排,为学习做好准备。

二、知识回顾在开始新的学习之前,我们需要回顾一下九年级数学上学期的知识,以便更好地理解新的内容。

1. 整式与分式在九年级上学期,我们学习了整式与分式的基本概念、运算法则以及同类项和合并同类项的方法。

这些概念在本册的学习中会经常出现,建议同学们再次复习并掌握。

2. 一元一次方程与不等式九年级上学期,我们学习了一元一次方程与不等式的解法,包括等式的加减消元法、代入法等,以及不等式的图解法和解集表示法。

这些知识将在本册的学习中得到延伸与应用,需要同学们熟练掌握。

3. 数与式的应用在上学期,我们学习了数与式的应用,包括线性函数与应用、三角形的面积等。

这些内容在本册中也会涉及到,需要同学们掌握并能够灵活运用。

三、本册内容安排本册的内容安排如下:1. 第一章:有理数2. 第二章:代数式3. 第三章:方程与不等式4. 第四章:平面直角坐标系5. 第五章:数与式的应用6. 第六章:平面图形的变换7. 第七章:统计四、学习方法指导为了更好地学习数学,我们需要掌握一些学习方法。

以下是几点指导:1. 独立思考与解决问题数学是一门注重逻辑推理和解决问题的学科,我们要培养独立思考和解决问题的能力。

在学习过程中遇到难题时,可以先独立思考,尝试寻找解决方法,如果仍然困难,可以寻求帮助。

2. 多做习题与总结数学需要不断的练习与巩固,所以请同学们多做习题,并总结出解题的方法和技巧。

对于一些难点和易错点,可以做一些专项练习,以加深理解。

3. 合理时间规划与集中精力数学的学习需要一定的时间和精力,同学们需要合理规划学习时间,并保证学习时的安静与集中。

避免分散注意力,提高学习效果。

五、答案与教案获取本册的答案和教案可以通过多种渠道获取。

人教版九年级数学导学案全册

人教版九年级数学导学案全册

人教版九年级数学导学案全册九年级数学导学案-全册第一章:有理数导学目标:了解有理数的定义,会对有理数进行加减法运算1. 有理数的定义有理数是指可以表示为两个整数比例的数,包括正整数、负整数、零以及可以表示为分数形式的小数。

2. 有理数的表示有理数可以通过分数、小数和负号表示。

例如:32/5,-1.2,-3。

3. 有理数的比较有理数的大小可以通过数轴进行比较,数轴的左边表示负数,右边表示正数。

例如:-5 < -1 < 0 < 2 < 4。

4. 有理数的加法运算有理数的加法运算遵循以下规则:- 两个正数相加,结果为正数;- 两个负数相加,结果为负数;- 正数加负数时,找到两个数的绝对值中较大的数,并用它的符号作为结果的符号。

5. 有理数的减法运算有理数的减法运算可以转化为加法运算,即求减数的相反数后再进行加法运算。

例如:7-3可以转化为7+(-3)。

第二章:代数基础导学目标:掌握代数基础概念,灵活运用代数式进行计算1. 代数式的定义代数式是由数或运算符号组成的表达式,可以包括数字、字母和运算符号。

2. 代数式的计算代数式可以通过代数运算进行计算,其中常用的运算符号包括加减乘除和指数符号。

3. 代数式的展开和因式分解代数式的展开指的是将括号中的内容按照规则进行计算,例如:(a+b)^2 = a^2 + 2ab + b^2。

代数式的因式分解指的是将代数式分解成乘积的形式,例如:4x^2 + 12x = 4x(x + 3) 。

4. 代数式的简化代数式可以通过合并同类项进行简化,合并同类项是将相同字母的项合并在一起,例如:2x + 3x = 5x。

第三章:图形的认识导学目标:了解几何图形的基本概念和性质,能够进行图形的分类和判断1. 平面图形的分类平面图形包括点、线段、射线、直线和曲线,可以通过形状和大小进行分类,例如:三角形、四边形、圆等。

2. 几何图形的性质几何图形有不同的性质,例如:矩形的对边相等、正方形的对角线相等。

九年级数学上册的全册教案4篇

九年级数学上册的全册教案4篇

九年级数学上册的全册教案4篇数学九年级上教案篇一本学期是初中学习的关键时期,进入初三,学生成绩差距较大。

教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。

努力把今学期的任务圆满完成。

本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。

一。

完成九年级下册的内容1.掌握二次函数的概念,五种基本函数关系式,会建立数学模型来解决实际问题。

2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。

3.加强学生对数学知识的认识方法,培养他们正确的学习方法。

4.通过关於图形和证明的教学,进一步培学生的逻辑思维能力。

与空间观念。

二。

本学期在提高教学质量上采取的措施。

1.改进教学方法,采用启发式教学。

2.注意教科书的系统性,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。

3.注意发展学生探索知识的能力,提高学生分析问题的能力。

4.开放性问题、探究性问题教学,培养学生创新意识、探究能力。

5.鼓励合作学习,加强个别辅导,提高差生成绩。

三。

教学具体安排。

1.第一周。

平行四边形,矩形,菱形,正方形。

2.第二周。

等腰梯形,中位线,反证法,以及复习题3.第三周。

数据分析与决策。

4.4周。

复习数与式5.5周。

复习方程与不等式6.6周。

复习函数7.7周。

复习图形的认识8.8周。

复习图形与变换9.9周。

复习图形与坐标10.10周。

复习概率与统计11.11周。

复习课题学习12.12周。

模拟考试与讲评13.13周。

市检14.14周。

重要知识点的再梳理15.15周。

一些常见题的训练16.16周。

做往年的中考题17.17周。

考试方法和考试心理的辅导。

新人教九年级数学上册教案篇二教学目标:1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;2、使学生分清常量与变量,并能确定自变量的取值范围。

3、会求函数值,并体会自变量与函数值间的对应关系。

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题第一章:实数与代数式1.1 实数教学目标:理解实数的概念,掌握有理数和无理数的分类。

能够进行实数的加减乘除运算。

教学内容:实数的定义及分类。

实数的加减乘除运算规则。

教学方法:采用讲解法,通过举例解释实数的概念和运算规则。

利用数轴辅助学生理解实数的相对位置。

教学练习题:a) 所有整数都是有理数。

b) 根号2是无理数。

c) 实数包括有理数和无理数。

1.2 代数式教学目标:理解代数式的概念,掌握代数式的运算规则。

能够进行代数式的化简和求值。

教学内容:代数式的定义及分类。

代数式的运算规则。

教学方法:采用讲解法,通过举例解释代数式的概念和运算规则。

利用示例进行代数式的化简和求值练习。

教学练习题:填空题:请将下列代数式化简。

a) 2(x + 3) 3(x 1)b) (2x 5)(3x + 2)第二章:方程与不等式2.1 方程教学目标:理解方程的概念,掌握一元一次方程的解法。

能够解简单的一元一次方程。

教学内容:方程的定义及分类。

一元一次方程的解法。

教学方法:采用讲解法,通过举例解释方程的概念和解法。

利用示例进行一元一次方程的解法练习。

教学练习题:解方程题:请解下列一元一次方程。

a) 2x + 5 = 15b) 3x 4 = 72.2 不等式教学目标:理解不等式的概念,掌握一元一次不等式的解法。

能够解简单的一元一次不等式。

教学内容:不等式的定义及分类。

一元一次不等式的解法。

教学方法:采用讲解法,通过举例解释不等式的概念和解法。

利用示例进行一元一次不等式的解法练习。

教学练习题:解不等式题:请解下列一元一次不等式。

a) 2x + 5 > 15b) 3x 4 ≤7九年级数学上册全册教案设计及练习题第六章:函数与图像6.1 函数的概念教学目标:理解函数的定义,掌握函数的表示方法。

能够识别和理解函数的图像。

教学内容:函数的定义及表示方法。

函数图像的特点及识别。

教学方法:采用讲解法,通过举例解释函数的概念和表示方法。

2024年华师大版九年级数学下册全册教案

2024年华师大版九年级数学下册全册教案

2024年华师大版九年级数学下册全册教案一、教学内容本教案依据2024年华师大版九年级数学下册全册教材,具体章节包括:第一章《函数与方程》,第二章《不等式与不等式组》,第三章《数据处理与概率》,第四章《几何证明》。

教学内容涉及函数概念、一次函数、二次函数、反比例函数及其应用;方程的解法、不等式的解法及其应用;数据处理、概率的计算及应用;几何证明的方法及运用。

二、教学目标1. 理解并掌握函数、方程、不等式、数据处理、概率及几何证明的基本概念和方法。

2. 能够运用所学知识解决实际问题,提高数学思维能力。

3. 培养学生的合作交流能力和创新意识。

三、教学难点与重点1. 教学难点:函数的性质与图像、不等式的解法、数据的处理与概率计算、几何证明的方法。

2. 教学重点:函数与方程的应用、不等式组的解法、概率的计算、几何证明的思路。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、函数图像模具、几何模型。

2. 学具:教材、练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引导学生感受数学在现实中的应用,激发学生的学习兴趣。

3. 随堂练习:设置与例题难度相当的练习题,让学生独立完成,巩固所学知识。

4. 小组讨论:针对难点问题,组织学生进行小组讨论,培养学生的合作交流能力。

六、板书设计1. 黑板左侧:列出本节课的教学目标和重难点。

2. 黑板右侧:展示例题及解题过程,标注关键步骤。

3. 黑板中间:书写随堂练习题,方便学生查看。

七、作业设计1. 作业题目:(1)函数的性质与图像:绘制一次函数、二次函数、反比例函数的图像,分析性质。

(3)数据处理与概率:某班级成绩分布如下,计算平均分、中位数、众数及方差。

(4)几何证明:证明平行四边形的对角线互相平分。

2. 答案:课后统一发放。

八、课后反思及拓展延伸1. 课后反思:对本节课的教学过程进行反思,分析优点和不足,为下一节课做好准备。

2. 拓展延伸:布置一些拓展性的问题,让学生在课后进行思考和探究,提高学生的数学素养。

最新人教版九年级数学上册全册导学案

最新人教版九年级数学上册全册导学案

第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题

九年级数学上册全册教案设计及练习题一、教学目标1.知识与技能:掌握九年级上册数学教材中的各个知识点。

能够运用所学知识解决实际问题。

2.过程与方法:培养学生的逻辑思维能力、空间想象能力和问题解决能力。

通过小组合作,培养学生的团队协作能力。

3.情感态度与价值观:培养学生对数学的兴趣和热爱,树立正确的数学观念。

二、教学内容1.第一单元:二次函数(1)知识点二次函数的定义与性质二次函数的图像与几何意义二次函数的应用(2)教案设计导入:通过生活中的实例引入二次函数的概念。

讲解:详细讲解二次函数的定义、性质、图像及几何意义。

练习:布置一些有关二次函数的练习题,让学生巩固所学知识。

2.第二单元:二次方程(1)知识点一元二次方程的解法一元二次方程的根与系数的关系一元二次方程的应用(2)教案设计导入:通过复习一元一次方程,引入一元二次方程的概念。

讲解:详细讲解一元二次方程的解法、根与系数的关系。

练习:布置一些有关一元二次方程的练习题,让学生巩固所学知识。

3.第三单元:不等式(1)知识点一元一次不等式的解法一元一次不等式的应用二元一次不等式组的解法(2)教案设计导入:通过复习一元一次方程,引入一元一次不等式的概念。

讲解:详细讲解一元一次不等式的解法及其应用。

练习:布置一些有关一元一次不等式的练习题,让学生巩固所学知识。

4.第四单元:概率初步(1)知识点随机事件的独立性概率的计算概率的应用(2)教案设计导入:通过生活中的实例引入随机事件的概念。

讲解:详细讲解随机事件的独立性、概率的计算及应用。

练习:布置一些有关概率的练习题,让学生巩固所学知识。

三、教学手段1.采用多媒体教学,展示二次函数的图像、不等式的解法等,增强学生的直观感受。

2.采用小组合作学习,培养学生的团队协作能力。

3.采用启发式教学,引导学生主动思考、积极探索。

四、教学评价1.课堂表现:观察学生在课堂上的参与程度、发言次数、合作效果等。

2.作业完成情况:检查学生作业的完成质量,了解学生对所学知识的掌握程度。

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)第二十一章一元二次方程21.1一元二次方程1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式a某2+b某+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为某cm,则盒底的长为__(100-2某)cm__,宽为__(50-2某)cm__.列方程__(100-2某)·(50-2某)=3600__,化简整理,得__某2-75某+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__437=28__.设应邀请某个队参赛,每个队要与其他__(某-1)__个队各赛1场,所以全部比赛共某(某-1)某(某-1)__场.列方程__=28__,化简整理,得__某2-某-56=0__.②22探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于某的一元二次方程,经过整理,都能化成如下形式:a某2+b某+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__a某2__是二次项,__a__是二次项系数,__b某__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)某3-2某2+5=0;(2)某2=1;13(3)5某2-2某-=某2-2某+;45(4)2(某+1)2=3(某+1);(5)某2-2某=某2+1;(6)a某2+b某+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3某(某-1)=5(某+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3某2-3某=5某+10.移项,合并同类项,得3某2-8某-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于某的方程(m2-8m+17)某2+2m某+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2某2+10某+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以某=-2或某=-3是一元二次方程2某2+10某+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-某2=0;(2)2(某2-1)=3y;12(3)2某2-3某-1=0;(4)2-=0;某某(5)(某+3)2=(某-3)2;(6)9某2=5-4某.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若某=2是方程a某2+4某-5=0的一个根,求a的值.解:∵某=2是方程a某2+4某-5=0的一个根,∴4a+8-5=0,3解得a=-.43.根据下列问题,列出关于某的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长某;(2)一个长方形的长比宽多2,面积是100,求长方形的长某.解:(1)4某2=25,4某2-25=0;(2)某(某-2)=100,某2-2某-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式a某2+b某+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1.使学生会用直接开平方法解一元二次方程.2.渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(某+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如某2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(某+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为某dm,则一个正方体的表面积为__6某2__dm2,根据一桶油漆可刷的面积列出方程:__1036某2=1500__,由此可得__某2=25__,根据平方根的意义,得某=__±5__,即某1=__5__,某2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2某-1)2=5及方程某2+6某+9=4方程(2某-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2某-1=±5__,即将方程变为__2某-1=5和__2某-1=-5__两个一元一1+51-5次方程,从而得到方程(2某-1)2=5的两个解为某1=__,某2=____.22在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程某2+6某+9=4的左边是完全平方式,这个方程可以化成(某+__3__)2=4,进行降次,得到__某+3=±2__,方程的根为某1=__-1__,某2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,那么可得某=±p或m某+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(某-8)2=50;(3)(2某-1)2+4=0;(4)4某2-4某+1=0.解:(1)2y2=8,(2)2(某-8)2=50,y2=4,(某-8)2=25,y=±2,某-8=±5,∴y1=2,y2=-2;某-8=5或某-8=-5,∴某1=13,某2=3;(3)(2某-1)2+4=0,(4)4某2-4某+1=0,(2某-1)2=-4<0,(2某-1)2=0,∴原方程无解;2某-1=0,1∴某1=某2=.2点拨精讲:观察以上各个方程能否化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3某+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式a某2+b某+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?-b+b2-4ac问题:已知a某+b某+c=0(a≠0),试推导它的两个根某1=,某2=2a2-b-b2-4ac.2a分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程a某2+b某+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式a某2+b某+c=0,当b2-4ac≥0时,-b±b2-4ac将a,b,c代入式子某=就得到方程的根,当b2-4ac<0时,方程没有实数2a根.-b±b2-4ac(2)某=叫做一元二次方程a某2+b某+c=0(a≠0)的求根公式.2a(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程a某2+b某+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2某2-3某=0;(2)3某2-23某+1=0;(3)4某2+某+1=0.3解:(1)某1=0,某2=;有两个不相等的实数根;2(2)某1=某2=3;有两个相等的实数根;3(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程某2-4某+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)某2-(2m-3)某+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?111解:(1)m<;(2)m=;(3)m>.4443.已知某2+2某=m-1没有实数根,求证:某2+m某=1-2m必有两个不相等的实数根.证明:∵某2+2某-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程某2+m某=1-2m,即某2+m某+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴某2+m某=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:3(1)2某2-3某-=0;(2)16某2-24某+9=0;2(3)某2-42某+9=0;(4)3某2+10某=2某2+8某.解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)某2+某-12=0;(2)某2-2某-=0;4(3)某2+4某+8=2某+11;(4)某(某-4)=2-8某;(5)某2+2某=0;(6)某2+25某+10=0.解:(1)某1=3,某2=-4;(2)某1=2+32-3,某2=;22(3)某1=1,某2=-3;(4)某1=-2+6,某2=-2-6;(5)某1=0,某2=-2;(6)无实数根.点拨精讲:(1)一元二次方程a某2+b某+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把-b±b2-4ac2a,b,c的值代入某=(b-4ac≥0)中,可求得方程的两个根;2a(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定出b2-4ac的值、.a,b,c的值,再算.最后代入求根公式求解..3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1.会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10m/的速度竖直上抛,那么经过某物体离地的高度(单位:m)为10某-4.9某2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01)设物体经过某落回地面,这时它离地面的高度为0,即10某-4.9某2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:某(10-4.9某)=0,于是得某=0或10-4.9某=0,②∴某1=__0__,某2≈2.04.上述解中,某2≈2.04表示物体约在2.04时落回地面,而某1=0表示物体被上抛离开地面的时刻,即0时物体被抛出,此刻物体的高度是0m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(某+1)(某-1)=0,那么__某+1=0或__某-1=0__,即__某=-1__或__某=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)某(某-8)=0;(2)(3某+1)(2某-5)=0.15解:(1)某1=0,某2=8;(2)某1=-,某2=.322.用因式分解法解下列方程:(1)某2-4某=0;(2)4某2-49=0;(3)5某2-20某+20=0.77解:(1)某1=0,某2=4;(2)某1=,某2=-;22(3)某1=某2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5某2-4某=0;(2)3某(2某+1)=4某+2;(3)(某+5)2=3某+15.4解:(1)某1=0,某2=;521(2)某1=,某2=-;32(3)某1=-5,某2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4某2-144=0;(2)(2某-1)2=(3-某)2;13(3)5某2-2某-=某2-2某+;44(4)3某2-12某=-12.解:(1)某1=6,某2=-6;4(2)某1=,某2=-2;311(3)某1=,某2=-;22(4)某1=某2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)某2+某=0;(2)某2-23某=0;(3)3某2-6某=-3;(4)4某2-121=0;(5)(某-4)2=(5-2某)2.解:(1)某1=0,某2=-1;(2)某1=0,某2=23;(3)某1=某2=1;1111(4)某1=,某2=-;22(5)某1=3,某2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为某m.则可列方程2π某2=π(某+5)2.解得某1=5+52,某2=5-52(舍去).答:小圆形场地的半径为(5+52)m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系bc1.理解并掌握根与系数的关系:某1+某2=-,某1某2=.aa2.会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:方程某2-5某+6=0某2+3某-10=0问题:你发现什么规律?①用语言叙述你发现的规律;某122某23-5某1+某25-3某1某26-10答:两根之和为一次项系数的相反数;两根之积为常数项.②某2+p某+q=0的两根某1,某2用式子表示你发现的规律.答:某1+某2=-p,某1某2=q.自学2:完成下表:方程2某2-3某-2=03某2-4某+1=0某1213某21-21某1+某23243某1某2-113问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②a某2+b某+c=0的两根某1,某2用式子表示你发现的规律.bc答:某1+某2=-,某1某2=.aa自学3:利用求根公式推导根与系数的关系.(韦达定理)-b+b2-4ac-b-b2-4aca某+b某+c=0的两根某1=____,某2=____.2a2a2bc某1+某2=-,某1某2=.aa二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)某2-3某-1=0;(2)2某2+3某-5=0;1(3)某2-2某=0.3解:(1)某1+某2=3,某1某2=-1;(2)某1+某2=-,某1某2=-;22(3)某1+某2=6,某1某2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积.(1)某2-6某-15=0;(2)3某2+7某-9=0;(3)5某-1=4某2.解:(1)某1+某2=6,某1某2=-15;7(2)某1+某2=-,某1某2=-3;351(3)某1+某2=,某1某2=.44点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2某2+k某-9=0的一个根是-3,求另一根及k的值.3解:另一根为,k=3.2点拨精讲:本题有两种解法,一种是根据根的定义,将某=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程某2-3某-5=0的两根,不解方程,求下列代数式的值.11(1)+;(2)α2+β2;(3)α-β.αβ3解:(1)-;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)某2-3某=15;(2)5某2-1=4某2;(3)某2-3某+2=10;(4)4某2-144=0.解:(1)某1+某2=3,某1某2=-15;(2)某1+某2=0,某1某2=-1;(3)某1+某2=3,某1某2=-8;(4)某1+某2=0,某1某2=-36.2.两根均为负数的一元二次方程是(C)A.7某2-12某+5=0B.6某2-13某-5=0C.4某2+21某+5=0D.某2+15某-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.bc3.要注意比的符号:某1+某2=-(比前面有负号),某1某2=(比前面没有负号).aa学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了某个人,那么患流感的这一个人在第一轮中传染了__某__人,第一轮后共有__(某+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__某__人,第二轮后共有__(某+1)(某+1)__人患了流感.则列方程:__(某+1)2=121__,解得__某=10或某=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__某__,则十位数字为__(6-某)__,则原两位数为__10(6-某)+某,新两位数为__10某+(6-某)__.依题意可列方程:[10(6-某)+某][10某+(6-某)]=1008__,解得某1=__2__,某2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有某名学生,根据题意,列出方程为()A.某(某+1)=2550B.某(某-1)=2550C.2某(某+1)=2550D.某(某-1)=255032分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(某-1)张相片,全班共送出某(某-1)张相片,可列方程为某(某-1)=2550.故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出某个小分支,则有1+某+某2=91,即某2+某-90=0,解得某1=9,某2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为某,则列方程为:__某2+(某+4)2=10(某+4)+某-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2.对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1.会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±某)n=b,其中a是原有量,某为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为某,则一年后甲种药品成本为__5000(1-某)__元,两年后甲种药品成本为__5000(1-某)2__元.依题意,得__5000(1-某)2=3000__.解得__某1≈0.23,某2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为某,则11月份的营业额为__5000(1+某)__元,12月份的营业额为__5000(1+某)(1+某)__元,即__5000(1+某)2__元.由此就可列方程:__5000(1+某)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为某,则一月(或一年)后产量为a(1+某);二月(或二年)后产量为a(1+某)2;n月(或n年)后产量为a(1+某)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+某)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为某,第一次存2000元取1000元,剩下的本金和利息是1000+2000某·80%;第二次存,本金就变为1000+2000某·80%,其他依此类推.解:设这种存款方式的年利率为某,则1000+2000某·80%+(1000+2000某·80%)某·80%=1320,整理,得1280某2+800某+1600某=320,即8某2+15某-2=0,解得某1=-2(不符,舍去),某2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2022年平均每公顷产7200kg,2022年平均每公顷产8460kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为某,则有7200(1+某)2=8460,解得某1=0.08,某2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.若平均增长(降低)率为某,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±某)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2.列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.一、自学指导.(10分钟)问题:如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的阴影边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)分析:封面的长宽之比是27∶21=__9∶7,中央的长方形的长宽之比也应是__9∶7__,若设中央的长方形的长和宽分别是__9a_cm__和__7a_cm__,由此得上下边衬与左右边衬的宽度之比是__(27-9a)∶(21-7a)=9∶7__.。

新人教版初中数学九年级上册教案(全册)

新人教版初中数学九年级上册教案(全册)

新人教版初中数学九年级上册精品教案全册数学教案九年级上册教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计练习:○1课本例4,之后补充 (3)27)64148(÷- ○2课本例5,之后补充 2)5225(+ 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。

○2中补充完全平方公式应用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用1.若x=12-,则x 2+x+1=2.已知23,23-=+=y x ,求()1yx x y +;()22622y xy x ++的值.3.如图,四边形ABCD 中,AB ⊥BC,AD⊥AB,AB=1,BC=CD=2,求四边形ABCD 的面 积.三、课堂训练完成课本练习 .补充: 1.海伦——秦九韶公式:如果一个三角形的三边长分别是a ,b,c,设p =2c b a ++, 则三角形的面积为S=)())((c p b p a p p ---公式运用:在ABC ∆中,BC=4,AC=5,AB=6,求ABC ∆的面积。

四、小结归纳 1.进行二次根式混合运算的一般步骤.2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算.2.二次根式混合运算的应用.五、作业设计必做: P18:4、6、7 选做: P18:8、9 1.已知236.25≈,求45544555+-的近似值. 2.如图21.3-3在平行四边形ABCD 中,得DE ⊥AB,E 点在AB 上,DE=AE=EB=a ,求平行四边形ABCD 的周长.学生板演,并说明每一步的依据,然后师生订正.引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯.学生独立完成练习,巩固新知,师生订正指导学生交流,教师总结感受二次根式混合运算的应用熟练计算和解题纳入知识系统教 学 反 思E D C B A教学过程设计5.计算:○16)123242(÷-; ○21212731+-○3)(62)32(-⨯+; ○4)()(6262)12(2+-++ 归纳:此组题与上组题考察内容相同,但问法不同,更具技巧性. (二)综合运用1.当m 时,mm --534有意义.2.能使33-=-x x x x 成立的x 的取值范围是 . 3.若12-=a a ,则a 的取值范围是 .4.若()()的值,则m b a m b a +=-+-++,021232是 .5.当a <-3时,化简()()22312++-a a 的结果是 .6.整数x 满足下列两个条件:○1式子13-x 和x -20都有意义○2x 的值是整数,则x 的值是 . 7.以下结论正确的是 .(填序号即可) ○1 ()2a =a 对一切实数a 都成立 ○2 a a =2对一切实数a 都成立○3式子a 叫做二次根式 ○4一个数的平方根和它的绝对值都是非负数 8. 在实数范围内分解因式:2594-x 的结果是 . 9.)(2223)32(-⨯+的计算结果是 . 10.已知,32,321+=+=y x 求22xy y x +的值. 11.如图,有一艘船在点O 处测得一小岛上的电视塔A 在北偏西600 的方向上,前进20海 里到达B 处,测得A 在船的西北方向,问再向西航行多少海里,船离电视塔最近?归纳:这组题是本章知识的深化运用,有一定的难度,与实数,有理式,勾股定理等知识综合运用. (三)构建知识体系 三、小结归纳 1.复习巩固二次根式知识,及于其他相关知识的联系. 2.进一步理解本章知识,熟练解决相关问题. 3.补充课本未明确给出的概念及相关题目,拓展知识与能力. 4.构建知识体系,纳入知识系统. 四、作业设计必做: P22:1-8选做: P22:9-11师生总结引导学生先观察、分析,小组讨论,再找学生说明解题思路,解题后养成说明理由的反思习惯.学生解题后, 师生订正 指导学生交流,谈收获,体会,师生总结 让学生构建本章知识体系,教师展示学生的结构图,学生之间进行交流,肯定最优建构 让学生阐述本节课有哪些收获,有何体会,教师指导从考查知识,易错题目,典型题,解题技巧,思想方法等方面总结增加问题难度,综合性,使学生进一步理解知识,培养综合分析能力. 总结二次根式、绝对值、平方的共同特点是非负补充分母有理化因式和分母有理化化简方法,拓宽知识,为后续学习打好准备使学生系统感知本章知识,掌握各知识之间的内在联系纳入知识系统 教 学 反 思二次根式概念 性质 运算乘除运算 加减运算 混合运算教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计教学过程设计第二十二章《一元二次方程》小结一、本章知识结构框图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

北师大版九年级数学下册全册精品教学设计(附答案).zip

北师大版九年级数学下册全册精品教学设计(附答案).zip

北师大版九年级数学下册全册精品教学设计(附答案).zip一. 教材分析北师大版九年级数学下册全册精品教学设计涵盖了本册的所有内容,包括代数、几何、概率统计等基础知识。

本教学设计将按照教材的章节顺序进行,每个章节都包含详细的讲解、例题解析和练习题。

教学设计中还穿插了一些拓展内容,以提高学生的综合运用能力。

二. 学情分析九年级的学生已经掌握了初中阶段的大部分数学知识,具备一定的逻辑思维和解决问题的能力。

但学生在学习过程中,对一些概念的理解仍不够深入,解题方法单一,对复杂问题的解决能力有待提高。

因此,在教学过程中,需要关注学生的个体差异,因材施教,引导学生建立良好的数学思维习惯。

三. 教学目标1.知识与技能:使学生掌握九年级数学下册的全部知识点,提高学生的数学素养。

2.过程与方法:通过实例解析、小组讨论等方式,提高学生分析问题和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神和自主学习能力。

四. 教学重难点1.重难点:教材中的关键知识点和概念,如二次函数、相似三角形、概率统计等。

2.针对重难点,需要进行详细的讲解和例题分析,引导学生理解并熟练掌握。

五. 教学方法1.讲授法:讲解教材中的知识点和概念,阐述问题的解题思路。

2.案例分析法:通过分析具体实例,使学生理解并掌握相关知识。

3.小组讨论法:引导学生分组讨论,培养学生的团队协作精神。

4.练习法:布置课后作业,巩固所学知识。

六. 教学准备1.教材:北师大版九年级数学下册全册教材。

2.教具:黑板、粉笔、多媒体教学设备。

3.资料:与教材相关的案例、习题和拓展资料。

七. 教学过程1.导入(5分钟)利用多媒体展示与本节课相关的生活实例,引导学生思考并提出问题,激发学生的学习兴趣。

2.呈现(10分钟)讲解教材中的知识点和概念,阐述问题的解题思路。

在此过程中,注意关注学生的反应,及时解答学生的疑问。

3.操练(10分钟)针对所学知识点,给出一些典型的例题,引导学生独立解答。

初三数学教案15篇

初三数学教案15篇

初三数学教案15篇初三数学教案精选篇1一、指导思想本学期,我继续全身心投入国家的教育事业,服从学校相关工作安排,做好教育教学工作。

并通过课改尝试寻找突破点,通过各种途径努力提高自己的业务水平,以新时代的优秀教师的标准严格要求自己。

二、学情分析本学期我担任初三年级x班、x班的数学教学工作,所担任班主任的4班现共有学生x人,其中男生x,女生x人。

从成绩来上看,班上学生的数学只有x 个优秀,x个及格,因此在平时的教学中应该特别注重基础。

而x班,有一部分学生存在数学上的偏科,学习数学较吃力,也有不少学生解题作答比较粗心,不能很好的发挥出自己应有的水平。

三、教学目标教学中落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化科学技术所必需的数学基础知识和基本技能,努力培养学生的逻辑思维能力、运算能力、空间想象能力,以及分析问题、解决问题的能力,促使各类学生数学成绩都有相应的提高。

四、教材分析第二十一章一元二次方程:*主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。

*重点是解一元二次方程的思路及具体方法。

*的难点是解一元二次方程。

第二十二章二次函数:*主要掌握二次函数的图像和性质,二次函数与一元二次方程的关系,实际问题与二次函数。

*重难点就是二次函数的图像和性质及应用。

第二十三章旋转:*主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。

*的重点是中心对称的概念、性质与作图。

*的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。

第二十四章圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系。

第二十五章概率初步:理解概率的.意义及其在生活中的广泛应用。

*的重点是理解概率的意义和应用,掌握概率的计算方法。

九年级数学上册全册教案

九年级数学上册全册教案

九年级数学上册全册教案教案内容:一、教材分析本册教材是九年级数学上册,主要内容包括实数、代数、几何和统计四个部分。

教材以培养学生的数学思维能力和解决实际问题的能力为目标,通过丰富的实例和练习,帮助学生巩固数学知识,提高数学素养。

二、教学目标1. 知识与技能:使学生掌握实数、代数、几何和统计的基本知识和方法,提高学生的数学运算能力和解决问题的能力。

2. 过程与方法:培养学生运用数学知识分析和解决实际问题的能力,培养学生的数学思维习惯和探索精神。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于实践的良好学习习惯,使学生感受到数学在生活中的重要作用。

三、教学重点与难点1. 教学重点:实数、代数、几何和统计的基本知识和方法。

2. 教学难点:实数、代数、几何和统计在实际问题中的应用。

四、教学方法1. 启发式教学:通过提问、讨论等方式,激发学生的思维,引导学生主动探究数学知识。

2. 实践性教学:通过实际操作、练习,培养学生的动手能力和解决实际问题的能力。

3. 情境教学:创设生活情境,让学生在实际情境中感受数学知识的重要性。

1. 课时分配:本册教材共需教学30课时。

2. 教学进度:按照教材的顺序,逐章进行教学。

3. 教学评价:定期进行课堂练习和小测验,了解学生的学习情况,及时调整教学方法和策略。

六、教学策略1. 针对不同学生的学习基础,采取分层教学,使所有学生都能在原有基础上得到提高。

2. 利用多媒体教学手段,如课件、视频等,增加课堂的趣味性,提高学生的学习兴趣。

3. 组织小组合作学习,让学生在讨论和交流中互相启发,共同解决问题。

4. 注重个体差异,鼓励学生提问,及时给予解答,帮助学生克服学习困难。

七、课堂管理2. 注重学生的出勤和纪律,严格要求学生的学习态度。

3. 关注学生的情绪变化,及时发现并解决学生的问题,营造积极向上的学习氛围。

4. 尊重学生,关心学生,公平对待每一个学生,激发学生的学习积极性。

九年级数学上册全册导学案教案

九年级数学上册全册导学案教案
难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。
三、学习过程
(一)知识准备
1、计算:
(1) × =______ =_______
(2) × =_______ =_______
(3) × =_______ =_______
2、根据上题计算结果,用“>”、“<”或“=”填空:
3、计算: 当
(四)知识梳理
归纳总结
将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:
(六)达标测试:
1、填空:(1)、 - =_________.
(2)、 =
2、已知2<x<3,化简:
3、化简下列各式:
4、请大家思考、讨论二次根式的性质 与 有什么区别与联系。
5、 已知0 <x<1,化简: -
7、 若 ,则 =。
8、当x=时,代数式 有最小值,其最小值是。
二根式(2)
一、学习目标
1、掌握二次根式的基本性质:
2、能利用上述性质对二次根式进行化简.
二、学习重点、难点
重点:二次根式的性质 .
难点:综合运用性质 进行化简和计算。
三、学习过程
(一)知识准备:
(1)什么是二次根式,它有哪些性质?
(2)二次根式 有意义,则x。
6、 边长为a的正方形桌面,正中间有一个边长为 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.
二次根式(3)
一、学习目标
1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
二、学习重点、难点
重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。

九年级数学导学案(全册)整理

九年级数学导学案(全册)整理

九年级数学导学案(全册)整理导学案1单元:有理数综合运用研究目标:- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 进一步熟练运用有理数进行混合运算教学内容:1. 有理数的引入和定义2. 有理数的表示方法3. 有理数的加法和减法规则4. 有理数的混合运算练教学步骤:1. 导入:通过实例引导学生认识有理数的概念和意义。

2. 定义:给出有理数的准确定义,并介绍有理数的表示方法。

3. 讲解:详细介绍有理数的加法和减法规则,包括同号相加、异号相减等。

4. 练:通过练题让学生巩固对有理数运算规则的掌握,进行混合运算。

5. 总结:对本节课的研究内容进行总结和归纳。

课后作业:- 完成课堂上的练题- 预下节课的内容,完成预题导学案2单元:平面图形的认识研究目标:- 了解平面图形的种类和属性- 掌握平面图形的命名和分类方法- 进一步熟练绘制和测量平面图形教学内容:1. 平面图形的定义和分类2. 平面图形的命名规则3. 平面图形的性质和特点4. 绘制和测量平面图形的方法教学步骤:1. 导入:利用一个日常生活中的例子引出平面图形的概念和意义。

2. 定义:给出平面图形的准确定义,并介绍不同种类的平面图形。

3. 讲解:通过示意图或实际测量过程,说明平面图形的命名规则和性质。

4. 练:让学生绘制和测量不同种类的平面图形,加深对其属性的理解和掌握。

5. 总结:对本节课研究内容进行总结和归纳。

课后作业:- 练题:根据给定条件,命名和绘制不同种类的平面图形。

- 思考题:举例说明平行线和垂直线的性质和判定方法。

...(后续导学案依次展开)总结该份文档整理了九年级数学导学案的内容,包括有理数综合运用、平面图形的认识等单元内容。

每个导学案都设定了学习目标、教学内容、教学步骤和课后作业,以满足学生对数学知识的学习和实践需求。

希望这份文档能为您提供有益的参考,帮助您更好地教授九年级数学课程。

2024年浙教版九年级数学全册教案

2024年浙教版九年级数学全册教案

2024年浙教版九年级数学全册教案一、教学内容本节课选自2024年浙教版九年级数学全册教材,主要涉及第五章“二次函数”的第1节“二次函数的图像与性质”。

内容包括:二次函数的定义、图像、开口方向、顶点、对称轴、最小值(最大值)等。

二、教学目标1. 理解并掌握二次函数的定义,能够识别各种形式的二次函数。

2. 掌握二次函数的图像及性质,能够根据函数表达式判断图像的开口方向、顶点、对称轴等。

3. 能够利用二次函数的性质解决实际问题,培养运用数学知识解决实际问题的能力。

三、教学难点与重点教学难点:二次函数图像与性质的理解,以及在实际问题中的应用。

教学重点:二次函数的定义,图像及性质。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

学具:练习本、草稿纸、直尺、圆规、计算器等。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的抛物线现象,如投篮、拱桥等,引发学生对二次函数的兴趣。

2. 知识讲解(20分钟)(1)二次函数的定义及一般形式:y=ax^2+bx+c。

(2)二次函数的图像:抛物线的开口方向、顶点、对称轴。

(3)二次函数的性质:最小值(最大值)及其与开口方向、顶点的关系。

3. 例题讲解(15分钟)(1)判断二次函数的开口方向、顶点、对称轴。

(2)求二次函数的最小值(最大值)。

(3)解决实际问题,如抛物线与坐标轴的交点等。

4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。

六、板书设计1. 二次函数定义2. 二次函数图像与性质3. 例题及解答步骤4. 练习题及答案七、作业设计1. 作业题目:(1)求下列二次函数的开口方向、顶点、对称轴:y=x^24x+3。

(2)已知二次函数y=2x^2+4x+1的最小值为3,求该函数的表达式。

(3)抛物线y=x^2+2x+3与x轴的交点坐标。

2. 答案:八、课后反思及拓展延伸1. 反思:关注学生对二次函数图像与性质的理解程度,针对学生的薄弱环节进行有针对性的辅导。

人教版九年级数学上册教学设计(全册教案)

人教版九年级数学上册教学设计(全册教案)
人教版九年级数学上册(全册)教案
九年级数学上册教学计划
一、指导思想
坚持贯彻党十八大教育方针,以《初中数学新课程标准》为准绳,继续深入开展新课程教学改革。以提高学生中考成绩为出发点,注重培养学生基础知识和基本技能,提高学生解题答题的能力。同时通过本学期课堂教学,完成九年级上册数学教学任务。并根据实际情况,计划完成九年级下册新授教学内容。
二、学情分析
通过对上期末检测分析,发现本班学生存在很严重的两极分化。一方面是平时成绩比较突出的学生基本上掌握了学习的数学的方法和技巧,对学习数学兴趣浓厚。另一方面是相当部分学生因为各种原因,数学已经落后很远,基本丧失了学习数学的兴趣。
三、教材分析
第二十一章 一元二次方程(13课时)
本章的主要学习一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),运用一元二次方程分析和解决实际问题。其中解一元二次方程的基本思路和具体解法是本章的重点内容。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业。指导成立“课外兴趣小组”,开展丰富多彩的课外活动,带动班级学生学习数学,同时发展这一部分学生的特长。
第二十五章 概率初步(12课时)
理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)y=3x4+x2+1
错误! (2)y=
+x+1
作业 布置
(3)y=3x2+4x
(4)y=错误!x2+错误!x+错误!
(5)y=(x+3)2-x2 (6)y=3(x-1)2-1 2.y=ax2+bx+c(其中 a、b、c 为常数)为二次函数的条件是( ) A.b≠0 B.c≠0 C.a≠0,b≠0,c≠0 D.a≠0 3.在半径为 5cm 的圆面上从中挖去一个半径为 xcm 的圆面,剩下一个圆环的面积为y cm2,求 y 与 x 的函数关系式.
答;

(1)函数关系式(1)和(2)的自变量各有几个?
(各有1个)
(2)多项式-2x2+20 和-100x2+100x+200 分别是几次多项式?
(分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及 P1页的问题 2 有什么共同特点?
备课主笔 课时 课型
第 1 课时 新授课
教学 目的
知识与技能:使学生会用描点法画出 y=ax2 的图象,理解抛物线的有关概念。 过程与方法:使学生经历、探索二次函数y=ax2 图象性质的过程。 情感态度与价值观:培养学生观察、思考、归纳的良好思维习惯。
教学 重点 难点
重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2 的图象 难点:用描点法画出二次函数 y=ax2 的图象以及探索二次函数性质。
y=-2x2+20x
(0<x<10)……………………………(1)
将函数关系式 y=(10-8-x)(100+100x)(0≤x≤2)化为:

y=-100x2+100x+20D (0≤x≤2)……………………(2)
(三)、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回
让学生讨论、交流,发表意见,归结为:自变量 x 为何值时,函数 y 取得
设 最大值。
2.二次函数定义:形如 y=ax2+bx+c (a、b、、c 是常数,a≠0)的函
数叫做x的二次函数,a叫做二次函数的系数,b 叫做一次项的系数,c叫作常
数项.
计 六、作业
七、板书设计:
八、小结:
作业优化设计
1.下列函数中,哪些是二次函数?
九年级(初三)数学全册教案
———————————————————————————————— 作者: ———————————————————————————————— 日期:
九年级数学全册教案
第二十Hale Waihona Puke 章 二次函数学科数学
年级
初三
备课主笔
主讲 人
课题
教学 目的
教学 重点 难点
课时
第 1 课时
27.1 二次函数
难点:熟练地列出二次函数关系式。
(一)、试一试
教师
对于 1.,可让学生根据表中给出的 AB的长,填出相应的 BC的长和面 增补
积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格
教 中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思
考、交流、发表意见,达成共识:当 AB 的长为 5cm,BC 的长为 10m时,围
4.边长为 4 的正方形中间挖去一个边长为 xm的小正方形,剩下的四方框形的面 积为 ym2,求 y 与 x 的函数关系式。
5.巳知矩形的周长为80cm,设它的一边为 xcm,那么矩形的面积 Scm2 与 x 之间 的函数关系式是什么?
教学 反思
学科 主讲

课题
数学
年级
初三
27.2 二次函数的图象与性质 第一课时 y=ax2的图象与性质
(二)、提出问题(p3 问题2)

分析:1.商品的利润与售价、进价以及销售量之间有什么关系?
[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少
元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价 x 元,则每件商品的利润是多少元?一天可销售约多
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对
程 称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.
(三)、做一做
课型
新授课
知识与技能:认识二次函数,知道二次函数自变量的取值范围,并能熟练地列出二 次函数关系式。
过程与方法:通过对实际问题的探索,熟练地掌握列二次函数关系和求自变量的 取值范围。
情感态度与价值观:培养学生探索新知的能力,鼓励学生通过观察、猜想、验证, 主动地获取知识。
重点 :能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取 值范围。
解:(1)列表:在x的取值范围内列出函数对应值表: x … -3 -2 -1 0 1 2 3 … y… 9 4 1 0149…
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面 直角坐标系中描点
(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2 的图象,如图 所示。
教师 增补



教学 方法 手段
教 学 过 程 设 计
投影仪、幻灯片、课外资料
(一)、提出问题 1,同学们可以回想一下,一次函数的性质是如何研究的? 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如
果可以,应先研究什么? 3.一次函数的图象是什么?二次函数的图象是什么?
(二)、范例 例 1、画二次函数 y=ax2 的图象。
少件商品?
[(10-8-x);(100+100x)]
4.x 的值是否可以任意取?如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是 0≤x≤2]
5.若设该商品每天的利润为 y 元,求 y 与 x 的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]
将函数关系式 y=x(20-2x)(0 <x <10=化为:
学 成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共
过 识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当 AB=xm 时,BC 长等于多少 m?(2)面
程 积y等于多少?并指出 y=x(20-2x)(0 <x <10)就是所求的函数关系式.
相关文档
最新文档