浙江大学版 线性代数07-08(1)A
线性代数(2007年清华大学出版社出版的图书)
线性代数的研究对象是什么?线性代数的研究对象是线性空间,包括其上的线性变换.它与高等代数、近世代 数的研究对象略有所不同.
本书在内容的编排上考虑到下面几点:
1.主要内容以矩阵为主线,以向量和线性方程组为纽带,以矩阵的初等变换为基本方法,将线性代数的主要 内容紧密地结合起来,形成一个有机的整体。
2.结合多年的教学实践,将向量与线性方程组两部分内容分为两章介绍,而非按传统将两部分内容穿插安排。 这样做更能明确主题,便于教学。
感谢观看
13年出版
前言 图书简介
目录
线性代数本书涵盖了教育部非数学专业教学指导委员会最新制定的经济管理类本科数学基础课程教学基本要 求。全书共6章,内容包括行列式、矩阵、向量的线性相关性与秩、线性方程组、矩阵的特征值与特征向量、二次 型。每章分若干节,章末配有习题,书末附有习题参考答案。
本书可作为高等学校经济管理类、理工类、农学类等专业教材或教学参考书。
线性代数(2007年清华大学 出版社出版的图书)
2007年清华大学出版社出版的图书
01 清大出版
03 07年出版 05 14年出版
目录
02 05年出版 04 13年出版
《线性代数》是2007年5月清华大学出版社出版的图书,作者是陈殿友、术洪亮。
清大出版
目录 1.行列式 2.矩阵 3.线性方程组 4.向量空间与线性变换 5.特征值和特征向量、矩阵的对角化 6.二次型 7.应用问题
05年出版
内容简介
线性代数_浙江大学中国大学mooc课后章节答案期末考试题库2023年
线性代数_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.【图片】中【图片】的系数等于().参考答案:-12.设【图片】是【图片】阶正定矩阵,则下列结论正确的是参考答案:__也是正定矩阵_3.任意一个对称的可逆实矩阵一定与同阶的单位矩阵().参考答案:(相抵)等价4.设【图片】的三个特征值为【图片】下列结论正确的是 ( )参考答案:如果则__如果的三个特征值互不相同, 则一定可以对角化.5.设E+A可逆,E-A不可逆,则下列正确的是( ).参考答案:1是A的一个特征值_-1不是A的一个特征值6.已知【图片】为一线性方程组的通解. 则下述陈述中正确的是:参考答案:该方程组系数矩阵的秩是2._该方程组至少含有两个方程.7.设有向量【图片】, 下列哪个向量【图片】可以与【图片】组成【图片】的基?参考答案:_8.关于向量线性关系说法正确的是参考答案:若向量组的秩小于向量个数, 则向量组线性相关._若向量组由一个可逆矩阵的列向量组成, 则向量组线性无关.9.已知向量组【图片】和【图片】,下列结论正确的是( ).参考答案:若存在不全为零的数,使得,则向量组线性相关10.下列各项中,是【图片】元向量组【图片】【图片】线性相关的充要条件的是 ( ).参考答案:中至少有一个部分组线性相关11.空间中过下列哪两个点的直线是平行的?【图片】和【图片】【图片】和【图片】【图片】和【图片】【图片】和【图片】参考答案:(d),(a)12.矩阵【图片】其中【图片】为待定常数, 则 ( ).参考答案:当时, 秩为 1_当且时, 秩为 3_当时, 秩为 213.假设【图片】是【图片】矩阵,【图片】是【图片】元非零列向量,【图片】是【图片】元零列向量, 下列说法正确的是 ( )参考答案:若有唯一解, 则仅有零解_若有无穷多解, 则有非零解_若仅有零解,则有唯一解14.下列结论正确的是( ).参考答案:任意一个方阵一定可以表示为一个对称矩阵与一个反对称矩阵的和._与任意n阶方阵均乘法可交换的矩阵一定是n阶数量矩阵._秩为r(r>1)的矩阵中,一定存在不为零的r-1阶子式.15.设非零方阵【图片】满足【图片】,则下列结论不正确的是().参考答案:不可逆16.已知【图片】, 其中【图片】为【图片】阶可逆矩阵,【图片】为【图片】阶可逆矩阵,则下列结论不正确的是 ( ).参考答案:_G不可逆_17.以下结论正确的是( ).参考答案:若或不可逆,则必有不可逆_若均可逆,则必有可逆18.下列矩阵方程解正确的是( ).参考答案:的解是_的解是_的解是_的解是19.设P是数域,【图片】是【图片】的一个特征值.记【图片】,则下列结论正确的是( ).参考答案:_是空间的线性子空间20.设【图片】为实对称矩阵,则下列成立的是()。
线2
浙江理工大学2007~2008学年第二学期《线性代数A 》期末考试试题(A 卷)参考答案与评分标准一.单项选择题(每小题3分,共3⨯8分=24分)1.A 2.D 3.C 4.C 5.B 6.A 7.B 8.C二.填空题(每小题3分,共3⨯7分=21分)1.⎪⎪⎭⎫⎝⎛-808715 2.0=x 3.23=λ 4.2 5.4 6.2-=a 7.6三.计算题(前4题各6分,第5题10分,第6题11分,满分45分)1.解:14,3,21111111*********r r i i x x x xD -==+--+=00001111xxx x x x x -----+ ………3分000000111xx x x--=4x -= ………6分2.解: B X AX =+2,B X E A =+)2(, ……………………1分⎪⎪⎪⎭⎫⎝⎛----=+225221215110020121),2(B E A ………………3分 ⎪⎪⎪⎭⎫ ⎝⎛→20510010010205001. 所以⎪⎪⎪⎭⎫⎝⎛=205010205X . ……6分 3.解:由题设知,A 有两个特征值,2,521==λλ ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=21,3221ξξ是分别对应于特征值5,2的特征向量,即22112,5ξA ξξA ξ==, …………2分又215ξξξ+-=, …………3分所以 21215)5(ξA ξA ξξA ξA n n n n +-=+-=⎪⎪⎭⎫⎝⎛⋅+⋅-⋅+⋅-=⋅+-=+12125532552255n n n n nnξξ. …………6分 4.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=1110523130110321),,,(4321αααα …………1分 ⎪⎪⎪⎪⎪⎭⎫⎝⎛→000000011100321⎪⎪⎪⎪⎪⎭⎫⎝⎛-→000000011102101…………4分 由此可见2),,,(4321=ααααR ,21,αα就是一个所求的极大线性无关组,且.2,214213αααααα+-=+= …………6分5.解:对增广矩阵作初等行变换, ⎪⎪⎪⎭⎫⎝⎛---+-----=213112111121)(2λλλλb A,⎪⎪⎪⎭⎫⎝⎛-+-+---→3220211012122λλλλλλλr …………4分(1) 当022≠-+λλ,即1≠λ且2-≠λ时,),(3)(b A A R R ==,有惟一解;(2) 当2-=λ时,3),(,2)(==b A A R R ,方程组无解; …………7分 (3) 当1=λ时,32),()(<==b A A R R ,方程组有无穷多个解,通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛101025321k x x x ,k 为任意常数. …………10分6.解:二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=a 11122122A , …………2分 (1) 因为正交变换UY X =可将f 化为标准形2322212by y y f ++-=,所以矩阵A 的特征值为b ,2,1-, …………4分由,02,0=-=+E A E A 得1=a ,由b tr ++-=21)(A ,得4-=b ; …………6分(2) 当1=a 时,对应特征值1-,解方程组0)(=+X E A ,可得()T3131311,,-=η,对应特征值2,解方程组0)2(=-X E A ,可得()T6261612,,=η,对应特征值4-,解方程组0)4(=+X E A ,可得()T0,,21213-=η,…….. 9分因此,所求的正交矩阵为⎪⎪⎪⎪⎭⎫⎝⎛--=06231216131216131U . …………….11分四、证明题(每小题5分,满分10分)1.证:设t ξξξ,,,21 是方程组0=AX 的基础解系,因为0=AB ,所以B 的每一个列向量都是0=AX 的解,…………….2分因而,B 的列向量组能由t ξξξ,,,21 线性表示,因此)()(A B R n t R -=≤,即n R R ≤+)()(B A . …………….5分2.证:设n λλλ,,,21 是A 的特征值,因为A 是正定矩阵,所以0>∀i λ,…2分 而t E +A 的特征值为n t t t λλλ+++,,,21 ,有t t i >+∀λ,因此nn t t t t t >+++=+)())((21λλλ A E . …………….5分。
浙江大学数学分析参考解答
浙江大学 数学分析 1. 计算定积分:20sin xdx π⎰解:22001cos 21sin cos 2242x xdx dx xdx πππππ-==-=⎰⎰⎰2. 假设f(x)在[0,1]Rieman 可积,13()2f x dx =⎰,求11lim 4ln[1()]nn i i f n n →∞=+∑ 解:利用可积的定义和Taylor 展开作2222221111101201220111ln(1)()2()1114ln[1()]4()2()4()13()()2max{()}11lim |2()|2lim |max{|()|}|2lim ||0li nnnni i i i ni nn x n n n x i i x x x o x i f i i in f f f o n n n n n n n i f f x dx nn f x i f f x n n n n =====≤≤→∞→∞→∞≤≤==+=-++=++==≤==∑∑∑∑∑⎰∑∑同理,2211()1m 4()0,lim 4ln[1()]23n nn n i i i f i n o f n n n →∞→∞===⇒+=∑∑3. 设a,b,c 是实数,b>-1,c ≠0,试确定a,b,c ,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:不断利用L ’Hospital 法则30032320000322200ln(1)lim(sin )0,0lim 00sin cos cos sin cos limlim lim limln(1)3ln(1)31112sin 1cos 12lim lim .033616xbx x x x x x x b x x t ax x c dt tb ax x ax x x a x x x a xc t x x x dt t x a x a x b x x c →→→→→→→→+-=≠⇒==---+-====+++⇒=⎧⎪=⎪-==⇒=⎨=⎰⎰不难得到⎪⎪⎩4. f(x)在[a,b]上连续,对于1[,],[,],|()||()|2x a b y a b f y f x ∀∈∃∈≤,求证:[,],()0a b f ξξ∃∈=证明:利用实数系的几个定理就可以了000[,],(1)()0,(2)()0,{},lim ()0{}{}{}lim ,()[,]()lim ()lim ()0n n n n n n n n n x yn x a b f x f x x f x x x y y y f x a b f y f x f y →∞→∞→→∞∈=≠==⇒===不妨设则命题得证则根据题意,可以得到一个序列然后,有界,所以不难得到存在一个收敛的子列由于在连续,5.(1)设f(x)在[a,+∞]上连续,且()af x dx +∞⎰收敛,证明:存在数列{}[,)n x a ⊂+∞,使得满足,lim ,lim ()0n n n n x f x →∞→∞=+∞=(2) 设f(x)在[a,+∞]上连续,f(x)≥0,且()af x dx +∞⎰收敛,问:是否必有lim ()0n n f x →∞=,为什么? 证明:(1)此题也可以用反证法来解决,也非常简单。
线性代数(浙江大学出版社)第一章作业参考答案
第一章作业参考答案1-1. 求以下排列的逆序数:(1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10(2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1)2(1)2n n n n -⨯=-1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a解:()12(234516)4,•3126454t t t t ====128t t t =+=为偶数,故该项带正号。
1-3. 用行列式的定义计算:(1)0004004304324321(3)123100010001xx x a a a x a ---+解:(1)12412312400040043(1)(1)444425604324321tq q q a a a ++=-=-⨯⨯⨯⨯=∑(3)1320123100010()(1)(1)001xx x x x x a x x a x a a a x a --=⨯⨯⨯++-⨯⨯⨯-⨯-+233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-⨯-⨯-⨯+-⨯-⨯=++++1-4. 计算下列行列式:(1)1111111111111111--- (3)1200340000130051-(5)1111111111111111aa b b+-+- (7)n a b b b b a b b D b b b a=解:(1)11111111111102001(2)(2)(2)81111002011110002--==⨯-⨯-⨯-=-----(3)()120034001213(1423)113532001334510051-=⨯=⨯-⨯⨯-⨯-⨯=⎡⎤⎣⎦-(5)111111111111111000001111000011110000a a a a a a a b a ba bbab ab++----==+-------2221111110000000000000000a a a b a a a b b b bab+--===---(7)(1)(1)(1)n a b b ba nb a n b a n b b a b b b a b D b b b a bb a+-+-+-==111111100[(1)][(1)][(1)]()0000n b a b a b a n b a n b a n b a b b b aa b--=+-=+-=+---1-5. 证明:(1)332()xy x y y x y x x y x yx y ++=-++ (3)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++=++++++证明:(1)2()2()2()xy x y x y x y x y y x y x y x y x x yx y x y x y +++++=+++1111112()2()00x y y x y x x y xx y x yx yyx=++=+-+--2332()[()]2()x y x y x y x y =+-+-=-+(3)22222222222222222222(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469a a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d ++++++++++++=++++++++++++222221262126021262126a ab bc cd d ++==++1-6. 计算下列行列式:(1)001000000100n a a D a a =(3)1231110000220001(1)n n n n ------解:(1)2001000000000(1)10000000100100n n a a a a a D aa a aa==+-⨯⨯2nn a a-=-(3)1231123211100011000022000220001(1)(1)n n n n n n n ----=-------11232334211000(1)!(1)002002(1)n n n n n n n n +++++++++++--+===----1-7. 解下列方程:(1)24211231223()023152319x D x x -==-解:要使原方程有解,观察可知只有两种可能:①当221x -=时,即1x =±时,4()0D x = ②当295x -=时,即2x =±时,4()0D x = 综上所述,原方程的解为1,-1,2,-21-8. 设1578111120963437D --=--,试证:414243440A A A A +++=证明:根据拉普拉斯定理可知4142434411110A A A A ⨯+⨯+⨯+⨯=即414243440A A A A +++=1-9. 用Cramer 法则解下列方程组:(1)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩解:该方程组的系数行列式为215113062702121476D ---==--,常数向量8950β⎛⎫⎪⎪= ⎪- ⎪⎝⎭1815193068152120476D ---==--- 22851190610805121076D --==----321811396270252146D --==-- 4215813092702151470D --==--- 312412343,•4,•1,•1D D D Dx x x x D D D D∴====-==-==1-10. (1)问λ取何值时,下列齐次方程组有非零解?12312313220300x x x x x x x x λλ++=⎧⎪++=⎨⎪-=⎩解:要使原方程有解,由定理1.8知2223112001λλλλ=+-=- 解得11λ=或22λ=-。
线性代数(同济六版珍藏版)
正交变换和配方法化简二次型
正交变换
通过正交矩阵对二次型进行变换,使得变换 后的二次型保持原有的性质,如形状、大小 等。正交变换可以简化二次型的计算过程。
配方法
通过配方的方法将二次型化为完全平方的形 式,从而更容易地找到其标准形。配方法适
用于特征值不易求解的情况。
正定矩阵概念及判别方法
要点一
正定矩阵定义
初等变换与等价关系
初等变换
对矩阵实施以下三种变换称为初等变换:(1) 对换两行;(2) 以非零数乘某一行; (3) 把某一行的若干倍加到另一行上。
等价关系
若两个矩阵可以通过有限次初等变换相互转化,则称这两个矩阵等价。等价关 系具有自反性、对称性和传递性。
02
行列式及其应用
n阶行列式定义及性质
01
两个矩阵行数相等、列 数相等且对应元素相等 。
只有同型矩阵才能相加 ,即把两个矩阵对应位 置的元素分别相加。
用数$k$乘以矩阵A的每 一个元素。
设$A=(a_{ij})$是$m times n$矩阵, $B=(b_{ij})$是$n times s$矩阵,那么规定A与B 的乘积是一个$m times s$矩阵C,其中C的第$i$ 行第$j$列元素是A的第 $i$行元素与B的第$j$列
特征值和特征向量在物理中应用
振动问题
在振动问题中,系统的质量和刚度矩阵 的特征值和特征向量决定了系统的固有 频率和振型。
VS
量子力学
在量子力学中,哈密顿算符的特征值和特 征向量分别对应于系统的能量本征值和波 函数。通过求解哈密顿算符的特征问题, 可以得到系统的能级和波函数。
06
二次型与正定矩阵
二次型概念及标准形
线性方程组解结构
课程简介-浙江大学数学科学学院
微分流形简介课程号:06191040课程名称:微分流形英文名称:Calculus on Manifolds周学时:3-0 学分: 3预修要求:点集拓扑初步,数学分析,线性代数内容简介:本课程主要包括流形,切问题,张量与外微分形式等概念和一些主要定理,以及流形上的积分和Stokes定理。
通过对本课程的学习,可使学生掌握必要的现代数学基础知识,为学生进一步学习现代数学和近代理论物理,阅读科学论文,进行科学研究打下必要的基础。
选用教材或参考书:白正国沈一兵等编《黎曼几何初步》(前二章)(高教版)《微分流形》教学大纲一、课程的教学目的和基本要求随着近代科学的飞速发展,有关流形,张量及外微分形式,Stokes定理等较现代的知识不仅业已成为数学本身的最基本,最重要且最活跃的研究领域,而且在数学的其他分支中,在力学及物理学(特别是爱因斯坦的广义相对论及规范场论)中,已获得越来越广泛,深刻而富有成效的应用。
今天,流形理论象分析和代数学一样,已不只是某些大学数学系的必修课,而且业已成为其他有关学科的入门学科。
本课程属于大范围分析与几何范畴。
主要论述与流形有关的最重要,最基本的知识,包括流形,切向量,张量与外微分形式等概念和一些主要定理,以及流形上的积分和Stokes定理。
通过对本课程的学习,使学生掌握必要的现代数学基础知识,为学生进一步学习现代数学和近代理论物理,阅读科学论文,进行科学研究打下必要的基础。
二相关教学环节安排1.每周布置作业, 周作业量2~3小时。
2.定期安排习题课,每次1~2学时。
三课程主要内容及学时分配(打▲号为重点讲授部分,打*为选用部分)每周3学时,共17周。
主要内容:(一)欧氏空间的映射1.映射的微分链规则2学时2.反函数定理2学时3.秩定理Sard定理2学时4.习题课1学时(二)多重线性代数1.向量空间对偶空间2学时2.张量积张量代数3学时3.对称和反对称张量2学时4.外代数3学时5.欧氏空间2学时6.习题课2学时(三)微分流形的基本概念1.微分流形的定义2学时*2. 实射影空间Grassmann流形2学时3.流形的映射2学时4.浸入与淹没子流形4学时*5.单位分解2学时6.习题课2学时(四)向量场1.切空间切映射3学时2.切丛向量场3学时3.单参数变换群3学时4.习题课2学时(五)张量场1.张量场2学时2.外微分3学时3.黎曼度量3学时4.习题课2学时(六)流形上的积分Stokes定理1.流形的定向 1.5学时2.带边界流形 2.5学时3.流形上的积分与Stokes定理2学时4.习题课2学时四教材及主要参考书教材:白正国沈一兵等编《黎曼几何初步》(前二章)(高教版)参考书:1.徐森林等编《流形》(高教版)2.米尔诺(Milnor,J.W.) <从微分观点看拓扑>3.斯皮瓦克(Spivak,M.) <流形上的微积分>(科学出版社)4.James R. Munkres, <Analysis on Manifolds>, Addison-Wesley Publishing Company,1991五有关说明本课程所涉及的内容比较抽象, 适宜在数学系基础数学专门化方向的高年级学生中开设。
浙江大学城市学院线性代数期中考试试卷汇集
城院线性代数期中试卷汇集浙江大学姜豪汇编2012年3月目录第一部分:试卷真题11—12学年第一学期期中试卷 (2)10—11学年第二学期期中试卷 (4)10—11学年第一学期期中试卷 (6)09—10学年第二学期期中试卷 (9)09—10学年第一学期期中试卷 (13)第二部分:答案与评估11—12学年第一学期期中试卷答案 (15)11—12学年第一学期期中试卷难度与题量评估 (16)10—11学年第二学期期中试卷答案 (16)10—11学年第二学期期中试卷难度与题量评估 (18)10—11学年第一学期期中试卷答案 (18)10—11学年第一学期期中试卷难度与题量评估 (19)09—10学年第二学期期中试卷答案 (20)09—10学年第二学期期中试卷难度与题量评估 (21)09—10学年第一学期期中试卷答案 (21)09—10学年第一学期期中试卷难度与题量评估 (22)第三部分:试题详解11—12学年第一学期期中试卷详解 (22)10—11学年第二学期期中试卷详解 (28)10—11学年第一学期期中试卷详解 (34)09—10学年第二学期期中试卷详解 (39)09—10学年第一学期期中试卷详解 (44)第一部分:试卷真题城院线代2011—2012学年第一学期期中试卷一,填空题(每空2分,共20分)1. 5阶行列式||ij a 的项2532511344a a a a a 的符号是_______ .2. _____002013112, _____21501102=-=-.3. 已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=100030002 ,200010001B A ,则==AB A , ____||4. 若矩阵[]42⨯=ija A ,且j i a ij 2-=,则=A5. 已知⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=22111602 ,51240321B A ,则=+B A 2 ,=-B A 26. ()()=-⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-211223 , _____223211二,问答题(每题5分,共25分)1. 排列)12(135)2(246-n n 的逆序数是多少?请说明理由。
introduction to linear algebra 每章开头方框-概述说明以及解释
introduction to linear algebra 每章开头方框-概述说明以及解释1.引言1.1 概述线性代数是数学中的一个重要分支,主要研究向量空间和线性变换的性质及其应用。
它作为一门基础学科,在多个领域如物理学、计算机科学以及工程学等都有广泛的应用。
线性代数的研究对象包括向量、向量空间、矩阵、线性方程组等,通过对其性质和运算法则的研究,可以解决诸如解线性方程组、求特征值与特征向量等问题。
线性代数的基本概念包括向量、向量空间和线性变换。
向量是指在空间中具有大小和方向的量,可以表示为一组有序的实数或复数。
向量空间是一组满足一定条件的向量的集合,对于向量空间中的任意向量,我们可以进行加法和数乘运算,得到的结果仍然属于该向量空间。
线性变换是指将一个向量空间映射到另一个向量空间的运算。
线性方程组与矩阵是线性代数中的重要内容。
在实际问题中,常常需要解决多个线性方程组,而矩阵的运算和性质可以帮助我们有效地解决这些问题。
通过将线性方程组转化为矩阵形式,可以利用矩阵的特殊性质进行求解。
线性方程组的解可以具有唯一解、无解或者有无穷多解等情况,而矩阵的行列式和秩等性质能够帮助我们判断线性方程组的解的情况。
向量空间与线性变换是线性代数的核心内容。
向量空间的性质研究可以帮助我们理解向量的运算和性质,以及解释向量空间的几何意义。
线性变换是一种将一个向量空间映射到另一个向量空间的运算,通过线性变换可以将复杂的向量运算问题转化为简单的矩阵运算问题。
在线性变换中,我们需要关注其核、像以及变换的特征等性质,这些性质可以帮助我们理解线性变换的本质和作用。
综上所述,本章节将逐步介绍线性代数的基本概念、线性方程组与矩阵、向量空间与线性变换的相关内容。
通过深入学习和理解这些内容,我们能够掌握线性代数的基本原理和应用,为进一步研究更高级的线性代数问题打下坚实的基础。
1.2文章结构在文章结构部分,我们将介绍本文的组织结构和各章节的内容概述。
线性代数(A)及答案详细解析
b a b
b b a
当 2 7 时, (-7I-A )=0,解得
1 / 2 3 1 , 3 即为对应于 2 7 的线性无关特征向量。 1
= [a (n 1)b] 三. 解:
= [a (n 1)b] (a b) n1
, 则矩阵 A 的秩 rA
x ty z 0 2 x y z 0 ty 3 z 0
其是否可对角化. ( 10' ) 六. 用合同变换化二次型 f ( x1 , x2 , x3 ) x12 x2 2 4x1 x2 2x2 x3 为标准型,并求变换 矩阵. ( 10' )
1 2 / 3
0 1 0 0
3 1 1 4 0 11 0 0
故向量组α 1 ,α 2 , α 3 , α 4 线性相关, 其一个极大无关组为α 1 ,α 2 ,α 4 或α 1 , α
1
2 2 4 = ( 2) 2 ( 7) =0 2
5 2 0 0 2 0 1 0
2 5 4 1 , B 2 1 ,则 A-2B 1 2
1
四. 判断向量组α 1 =(1,-1,2,4), α 2 =(0,3,1,2),α 3 =(3,0,7,14), α 4 =(1,-2,-2,0)的线性相关性,并求出它的一个极大无关组. ( 10' )
2 1 3 3 3 6
第
1
页
共
1 页
南 京 理 工 大 学 课 程 考 试 答 案 ( A)
课程名称:
试卷编号: 组卷日期: 2005 年 学生班级: 线性代数 考试方式: 闭卷 学分 2 教学大纲编号: 考试时间: 120 分钟 满分分值: 100 沐雨芳
浙江大学本科教学大类课程替换关系一览表2010.6版
学分 4.0 1.0
替换关系 课程代码 课程中文名称 ≥ 091C0070 过程工程原理及实验
学分 3.5
≈ ≈
111Z0020 电路分析原理 111Z0030 电路分析原 电路原理(乙) 101C0090 电路原理实验(乙)
3.0 1.0
38
≥
101C0010 电工电子学 101C0020 电工电子学实验
4.5 1.5
≥
101C0030 电工电子学及实验
3.5
101C0140 数字电子技术基础实验 39 40 41 101C0120 模拟电子技术基础实验 111C0010 模拟电子线路 111C0020 模拟电子线路实验 111C0030 数字电路 111C0040 数字电路实验 111C0010 模拟电子线路 111C0020 模拟电子线路实验 111C0030 数字电路 111C0040 数字电路实验 43 44 45 261C0020 材料力学(甲)Ⅱ 46 261C0061 理论力学(甲) 111C0061 信号与系统(甲) 121C0011 测量学(甲) 261C0010 材料力学(甲)Ⅰ
≈ ≥ ≥
射频与微波通信电路实 验 101C0110 模拟电子技术基础 111Z0050 101C0120 模拟电子技术基础实验 101C0130 数字电子技术基础 101C0140 数字电子技术基础实验 101C0110 模拟电子技术基础 101C0120 模拟电子技术基础实验 101C0130 数字电子技术基础 101C0140 数字电子技术基础实验 111C0062 信号与系统(乙) 121C0012 测量学(乙) 261C0031 材料力学(乙) 261C0062 理论力学(乙)
081C0261 工程训练加强实习(乙) 1.5 081C0182 机械设计(乙) 081C0192 机械设计基础(乙) 091C0050 过程工程原理(乙) 091C0060 过程工程原理实验(乙) 4.5 1.5 4.0 1.0
浙江大学数学建模第四章基于线性代数与差分方程方法的模型
2.移位密码体制
移位密码采用移位法进行加密,明文中的字母重新排列,本 身不变,只是位置改变了。 另一种移位 法采用将字母表中的字母平移若干位的方法来构造 早在4000多年前,古希腊人就用一种名 叫“天书”的器械 密文字母表,传说这类方法是由古罗马皇帝凯撒最早使用的, 来加密消息。该密码器械是用一条窄长的草纸缠绕在一个 故这种密文字母表被称为凯撒字母表。例如,如用将字母表向 直径确定的圆筒上,明文逐行横写在纸带上,当取下纸带 右平移3位的方法来构造密文字母表,可 得: 时,字母的次序就被打乱了,消息得以隐蔽。收方阅读消 明文字母表: ABCDEFGHIJKLMNOPQRSTUVWXYZ 息时,要将纸带重新绕在直径与原来相同的圆筒上,才能 密文字母表: DEFGHIJKLMNOPQRTSUVWXYZABC 看到正确的消息。在这里圆筒的直径起到了密钥的作用。 “WKDQN BRX” 因此 “THANK YOU” 以上两种移位较易被人破译,为打破字母表中原有的顺序还可 采用所谓路线加密法,即把明文字母表按某种既定的顺序安排 在一个矩阵中,然后用另一种顺序选出矩阵中的字母来产生密 文表。
§4.2 密码的设计,解码与破译
密码的设计和使用至少可从追溯到四千多年前的埃及 ,巴 比伦、罗马和希腊,历史极为久远 。古代隐藏信息的方法 主要有两大类: 其一为隐藏信息载体,采用隐写术 等; 其二为变换信息载体,使之无法为一般人所理解 。
浙江大学本科教学大类课程层次关系一览表
浙江大学本科教学大类课程层次关系一览表 - 20110907
说明:
1.粗线边框内的课程为一个基本单元。
2.符号“≥”为单向关系,表示修读高层次课程后可免修低层次课程。
例如:“011A0011,宏观经济学(甲),
3.0”≥“011A0012,宏观经济学(乙),2.0”表明修读“宏观经济学(甲)”后可以免修“宏观经济学(乙)”,反之不可。
3.符号“≈”为相似关系。
例如:“111Z0040,射频微波通信电路,
4.0”≈“‘11120050,高频电子线路,3.5’+‘11120741,射频与微波电路及其设计,2.0’”表明“射频微波通信电路”和“‘高频电子线路’+‘射频与微波电路及其设计’”中任学一组课程后可免修另一组课程。
4.对于上表中未列出的相近课程,学生申请免修需填写《浙江大学本科课程免修申请表》,经开课院(系)同意后方可免修,申请表可到现代教务管理系统网页下载。
5.其他学院学生及2011年7月前修读电路分析原理或电路分析原理实验的电气学院学生,原则同意进行“电路分析原理”与“电路原理(甲)Ⅰ、Ⅱ”课程的替换;“电路分析原理实验”与“电路原理实验(甲)Ⅰ、Ⅱ”课程的替换。
本科生院教务处
二○一一年九月。
王晓峰著《线性代数》习题解答
王晓峰著《线性代数》习题解答第一章1. 解下列方程组, 并在直角坐标系中作出图示.1)⎩⎨⎧=-=+21y x y x ;2)⎩⎨⎧=+=+5331y x y x ; 3)⎩⎨⎧=-=-2221y x y x .解: 1) 将第一个方程减去第二个方程, 得2y =-1, y =-1/2, 再代入第个方程解得x =1+1/2=3/2,⎪⎭⎫ ⎝⎛-21,23方程有唯一解.2) 将第二个方程除以3得35=+y x , 与第一个方程相比较知此方程组为矛盾方程组, 无解,3) 将第2个方程除以2, 可以得到第一个方程, 令y =t 为任意实数, 则x =1+t , 方程组的解集.2. 用Gauss 消元法解下列线性方程组.1)⎪⎩⎪⎨⎧-=-+=++-=-+333693132472321321321x x x x x x x x x2)⎩⎨⎧-=-+=+-223252321321x x x x x x3)⎪⎪⎩⎪⎪⎨⎧=+-=-=--=+54212302433214243241x x x x x x x x x x4)⎪⎩⎪⎨⎧=++=-+=+033803403232132121x x x x x x x x解: 1) 对增广矩阵进行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000751010301)2(000075104721)3/1(12115302115304721)3()2(333693131124721123323121r r r r r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=10-3t , x 2=5t -7, 方程有无穷多解, 解集为(10-3t , 5t -7, t ).2) 对增广矩阵进行变换:⎥⎦⎤⎢⎣⎡--−−−→−+⨯⎥⎦⎤⎢⎣⎡---−−−→−⨯⎥⎦⎤⎢⎣⎡---−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---121001012121025218/1816802521)3(2123252112221r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=-t , x 2=2t -1,解集为(-t , 2t -1, t ).3) 对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−→−+-⨯+⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----−−−−→−+-⨯+⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----−−−−→−⨯-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−+⨯+⨯↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----11000101001001010001)3()32()35()43(34340003235100313201043001)7(461370032351003641043001)12/1()1(613700820120036410430012336410120300112043001)2(50412120300112043001142434443233242324241r r r r r r r r r r r r r r r r r r r r r方程有唯一解x 1=x 2=x 3=x 4=1.4) 此为齐次方程, 对系数矩阵进行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−+⨯+⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003000211)6/1(6001301021)3(390130032)4()2(3381340321323312323121r r r r r r r r r r r r r可知方程有唯一零解x 1=x 2=x 3=0.3. 确定下列线性方程组中k 的值满足所要求的解的个数. 1) 无解: 2) 有唯一解:⎩⎨⎧=++=++;486362z y x kz y x⎩⎨⎧-=-=+123214y x y kx3) 有无穷多解:⎪⎩⎪⎨⎧=+-=++=++12524z y x z y x kz y x解:1) 对增广矩阵作变换:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡143800621)3(486362121k k r r k因此, 要使方程组无解, 须使8-3k =0, 解得k =8/3, 即当k 取值为8/3时, 方程无解. 2) 对增广矩阵作变换:⎥⎥⎦⎤⎢⎢⎣⎡++--−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡--−−−→−↔⎥⎦⎤⎢⎣⎡--14612301232)2(141123212321412121k k r kr k r r k因此, 如要方程组有唯一解, 必须有0123≠+k , 即32-≠k . 3) 对增广矩阵作变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0440*******1331301110411)1()1(11215121411323121kkk r r k k k r r r r k因此, 如要方程组有无穷多解, 必须4-4k =0, 即当k =1时, 方程组才有无穷多解.4. 证明: 如果对所有的实数x 均有ax 2+bx +c =0, 那么a =b =c =0.证: 既然对所有的实数x 都有ax 2+bx +c =0成立, 那么具体地分别取x =0, x =1, x =2代入上式也成立, 则有⎪⎩⎪⎨⎧=++=++=02400c b a c b a c , 这是关于a ,b ,c 的齐次线性方程组, 对其系数矩阵作变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→−↔↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100320111)4(100124111124111100213221r r r r r r看出此方程只有唯一零解, 因此有a =b =c =0.5. 讨论以下述阶梯矩阵为增广矩阵的线性方程组是否有解; 如有解区分是唯一解还是无穷多解.1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---0000320003212)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--410030201231 3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00004000320040214)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0000010013201021 解: 1) 方程组有一个自由变元x 2, 因此方程组有无穷多解. 2) 方程组的三个变元均为首项变元, 因此方程组有唯一解. 3) 第三个方程0=4说明此方程无解.4) 方程组的三个变元均为首项变元, 因此方程组有唯一解.6. 对给定方程组的增广矩阵施行行初等变换求解线性方程组..1)⎪⎩⎪⎨⎧=-=+-=+-3284432253y x y x y x 2)⎩⎨⎧=--+=--+302859322207124w z y x w z y x 3)⎪⎩⎪⎨⎧=+-+=--+=+-+222242*********w z y x w z y x w z y x 解: 1) 对增广矩阵进行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---781007231032811974190723103281)28/1(74190922803281)3()3(2253443328132814432253322312113r r r r r r r r r方程组无解.2) 对增广矩阵进行变换⎥⎦⎤⎢⎣⎡--−−−−→−+⨯⎥⎥⎦⎤⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⨯⎥⎦⎤⎢⎣⎡----5452100100960317/4545210021154731422713410021154731)3(302859321154731)4/1(302859322207124122211r r r r r r可以看出y 和w 为自由变元, 则令y =s , w =t , s 与t 为任意常数, 则x =100-3s +96t , z =54+52t . 方程的解集表示为(100-3s +96t , s , 54+52t , t ). 3) 对增广矩阵进行变换()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-−−−−−→−+⨯⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000100021021211)2/1(2/1)2(04002000212121211)4()2(2222411112212121211222242121212111111212232312121r r r r r r r r r r r 可知y 与z 为自由变元, 令y =s , z =t , s 与t 均为任意实数, 则,212121=+-=w t s x , 方程组的解集为⎪⎭⎫ ⎝⎛+-0,,,212121t s t s7. 对给定齐次线性方程组的系数矩阵施行行初等变换求解下列方程组.1) ⎪⎩⎪⎨⎧=-+=+=+-02020z y x yx z y x 2)⎪⎩⎪⎨⎧=+-=+-=+++0202202w z y w y x w z y x解: 1) 对系数矩阵作初等变换.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−→−+-⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001)3/1()3/2()5/3(350032103101)2(320321011131320230111)1()2(21101211113233321223121r r r r r r r r r r r r r r方程只有零解, x =y =z =0.2) 对系数矩阵作初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110000102001)2()2/1(11002/12/1100201)3/1()2/1(3300112002012)1(114011201121112011401121)1(11202021112113233232123221r r r r r r r r r r r r r r因此, w 为自由变元, 令w =t 为任意实数, 则x =-2t , y =0, z =t , 方程组的解集为 (2t , 0, t , t ).8. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--32223411121α求α的值使得此方程组有唯一解.解: 对增方矩阵求初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−→−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--420034601121126034601121)2(32223411121323121αααr r r r r r因此, 此方程组要有唯一解, 就必须满足α+2≠0, 即α≠-2.9. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0410*******β1) 此方程有可能无解吗? 说明你的理由. 2) β取何值时方程组有无穷多解?解: 1) 此方程一定有解, 因为此方程是齐次方程, 至少有零解. 2) 对此增广矩阵做初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−++⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0500011001216016001100121204103520121323121βββr r r r r r因此, 只有当β+5=0, 即β=-5时,方程才有无穷多解.10. 求λ的值使得下述方程组有非零解.⎩⎨⎧=-+-=+-0)2(0)2(y x y x λλ 解: 对系数矩阵作初等行变换:⎥⎦⎤⎢⎣⎡+---−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---−−−→−↔⎥⎦⎤⎢⎣⎡---1)2(021)2(1221211222121λλλλλλλr r r r因此, 要使方程有非零解, 必须有(λ-2)2+1=0, 但(λ-2)2+1≥0对λ取任何实数值总是成立, 因此必有(λ-2)2+1≠0, 因此, 无论λ取什么值此方程组都不会有非零解.11. 求出下列电路网络中电流I 1,I 2,I 3的值.解: 根据基尔霍夫定律可得如下方程组:⎪⎩⎪⎨⎧=+=+=+-52384202132321I I I I I I I 对增广矩阵做初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-13/1510013/2201013/7001)3()2(13/1510042104301)13/1(151300421043011)5(535042100111)2/1()3(502384200111132331232231r r r r r r r rr r r r最后得I 1=7/13, I 2=22/13, I 3=15/1312. 一城市局部交通流如图所示.(单位: 辆/小时)51) 建立数学模型2) 要控制x 2至多200辆/小时, 并且x 3至多50辆小时是可行的吗? 解: 1} 将上图的四个结点命名为A , B , C , D , 如下图所示:5则每一个结点流入的车流总和与流出的车流总和应当一样, 这样这四个结点可列出四个方程如下:⎪⎪⎩⎪⎪⎨⎧=+=++-=-+=+D x x C x x x Bx x x A x x 3502001503005453243121对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−−−−→−++-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--000000350110002001011050010101)1()1(35011000350110001500111015001101)1()1(35011000200101101500111030000011)1(350110002001011015001101300000111323431232221r r r r r r r r r r r r r可见x 3和x 5为自由变量, 因此令x 3=s , x 5=t , 其中s ,t 为任意正整数(车流量不可能为负值), 则可得x 1=500-s -t , x 2=s +t -200, x 4=350-t .2) 令x 2=200, x 3=s =50, 代入上面的x 2的表达式, 得200=50+t -200, 求出t =350, 则x 1=500-s -t =100, x 4=0, 是可行的.13. 在应用三的货物交换经济模型中, 如果交换系统由下表给出, 试确定农作物的价值x 1, 农具及工具的价值x 2, 织物的价值x 3的比值.313131313131313131CM F C M F解: 根据上表可得关于x 1, x 2,x 3的三个齐次方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+-=++-032313103132310313132321321321x x x x x x x x x对系数矩阵做行初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⨯⨯⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---0001101012000110121)3/1(1330330121)1(221111212133332313131323131313212232312121321r r r r r r r r r r r r r r可见方程有非零解, x 3为自由变量, 令x 3=t 为任意正实数, 则有x 1=x 2=x 3=t , 即三种价值的比值为1:1:1.第二章1. 1. 写出下列方程组的矩阵形式:1) x 1-2x 2+5x 3=-1;2) ⎩⎨⎧=+=-1223231x x x x 3) ⎪⎩⎪⎨⎧=-=+=++002045z x z y z y x 解:1) []15,2,1321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-x x x ; 2)⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡12110102321x x x ;3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000101120415z y x2. 设⎥⎦⎤⎢⎣⎡=212121A , ⎥⎦⎤⎢⎣⎡--=212234B求: 1) 3A -2B ;2) 若X 满足A T +X T =B T , 求X .. 解: 1)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-10110105)4(623)4(64366834244686363632122342212121323B A2)因X 满足A T +X T =B T , 等号两边同时转置, 有 A +X =B ,等号两边同时减去A , 得 X =B -A , 因此有⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-=404113221122122314212121212234A B X3. 计算下列矩阵的乘积:1)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-213121; 2) []214321-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡; 3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-103110021212321; 4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡011011120101130213 解:1)[]1211231213121=⨯+⨯+⨯-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯-⨯⨯-⨯⨯-⨯⨯-⨯=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8463422124)1(423)1(322)1(221)1(12143213)⎥⎦⎤⎢⎣⎡---==⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯-⨯+⨯+⨯-⨯+⨯+⨯--⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1341410)1(21102021122320112)1(312010312213302111031100212123214)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⨯+-⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯+⨯-⨯--⨯+⨯⨯+-⨯+⨯⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡83)2(1)2(310)2(2)2(11322113021300)1(11101)1(21001)1(011130213011011120101130213 4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201210003,310120101B A求: 1) (A +B )(A -B );2) A 2-B 2.比较1)和2)的结果, 可得出什么结论? 解: 1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+567063519111110102511330104)201210003310120101)(201210003310120101())((B A B A2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-655142418405612009105055041120121000320121000331012010131012010122B A 可得出的结论: 大家知道, 在代数公式上有a 2-b 2=(a +b )(a -b ), 而将此公式中的a 和b 换成矩阵A 与B , 就不一定成立了, 这是因为矩阵乘法一般不满足交换律, 即一般AB ≠BA , 当然也就有A 2-B 2≠(A +B )(A -B ).5. 已知矩阵A ,B ,C , 求矩阵X ,Y 使其满足下列方程:⎩⎨⎧+=+=-T B A Y X CY X )(2解: 将此方程编上号, 用类似解线性方程组一样的办法来解,⎩⎨⎧+=+=-)2()()1(2T B A Y X C Y X将方程(1)的左边和(2)的左边和左边相加, 右边和右边相加, 等号还是成立, 得: 3X =C +(A +B )T 两边同乘1/3, 得TB AC X )(3131++=(3)(2)式等号两边都加上X , 得 Y =(A +B )T -X (4) 将(3)式代入到(4)式, 得CB A B AC B A Y T T T 31)(32)(3131)(-+=+--+=因此⎪⎩⎪⎨⎧-+=++=CB A YC B A X T T T T 3132323131316. 如矩阵AB =BA , 则称A 与B 可交换, 试证:1) 如果B 1, B 2都与A 可交换, 那么B 1+B 2, B 1B 2, 也与A 可交换; 2) 如果B 与A 可交换, 那么B 的k (k >0)次幂B k 也与A 可交换. 证: 1) 因B 1, B 2都与A 可交换, 即AB 1=B 1A , AB 2=B 2A , 则 (B 1+B 2)A =B 1A +B 2A =AB 1+AB 2=A (B 1+B 2) 即B 1+B 2与A 可交换. 而且(B 1B 2)A =B 1(B 2A )=B 1(AB 2)=(B 1A )B 2=(AB 1)B 2=A (B 1B 2), 因此B 1B 2与A 可交换.2)因B 与A 可交换, 即AB =BA , 则用归纳法, 当k =1时, 有B 1=B , 结论显然成立. 假设当k =m 时假设成立, 即AB m =B m A , 则当k =m +1时, 有AB m +1=AB m B =B m AB =B m BA =B m +1A , 结论也成立.7. 如矩阵A =A T , 则称A 为对称矩阵.设A ,B 都是n 阶对称矩阵, 证明AB 是对称矩阵的充分必要条件是AB =BA . 证: 已知A =A T , B =B T ,充分性: 假设AB =BA , 则(AB )T =B T A T =BA =AB , 因此AB 为对称矩阵. 必要性: 如果AB 为对称矩阵, 即(AB )T =AB , 则因 (AB )T =B T A T =BA , 可得BA =AB . 8. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A21其中a i ≠a j , 当i ≠j (i , j = 1,2, …, n ). 试证: 与A 可交换的矩阵一定是对角矩阵. 证:假设矩阵B ={b ij }n 与A 可交换, 即有BA =AB , 而BA 相乘得到的矩阵为B 的第j 列所有元素都乘上a j 得到的矩阵, AB 相乘得到的矩阵为B 的第i 行元素都乘上a i 得到的矩阵. 即BA ={a j b ij }n , AB ={a i b ij }n , 但对于任给的i ,j ,i ≠j , 因AB =BA , 因此有a j b ij =a i b ij , 因a i ≠a j , 所以必有b ij =0, 即B 只能是对角矩阵.9. 检验以下两个矩阵是否互为可逆矩阵?⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000210012100121,1000210032104321B A解: 计算AB 和BA 如下:410000100001000011100012)2(1110013)2(21112)2(111014)2(31213)2(21112)2(11110002100121001211000210032104321I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯+⨯⨯+-⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41000010000100001110001)2(211100112)2(311)2(21110213)2(41112)2(311)2(21111000210032104321100021********21I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯-+⨯⨯⨯+⨯-+⨯⨯-+⨯⨯⨯+⨯-+⨯⨯+⨯-+⨯⨯-+⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=因此A 与B 确实互为逆矩阵.10. 设A ,B ,C 为n 阶方阵, 且C 非奇异, 满足C -1AC =B , 求证B m =C -1A m C (m 为正整数). 证: 用归纳法, 当m =1时条件已经成立为C -1AC =B , 假设当m =k 时, 命题成立, 即有 B k =C -1A k C , 则当m =k +1时, 有B k +1= B k B =C -1A k CC -1AC = C -1A k (CC -1)AC = C -1A k IAC = C -1A k AC = C -1A k +1C , 命题得证.11. 若n 阶矩阵A 满足A 2-2A -4I =0, 试证A +I 可逆, 并求(A +I )-1. 证: 将A 2-2A -4I =0改写为A 2-2A -3I =I ,先解一元二次方程组x 2-2x -3=0, 根据公式a acb b x 2422,1-±-=其中a =1, b =-2, c =-3, 则⎩⎨⎧-=+±=13212422,1x , 因此可将多项式x 2-2x -3因式分解为x 2-2x -3=(x -3)(x +1), 那么, 根据矩阵相乘相加的性质也就能将A 2-2A -3I 因式分解为 A 2-2A -3I =(A -3I )(A +I )=(A +I )(A -3I ), 因此我们有(A -3I )(A +I )=(A +I )(A -3I )=I , 即A +I 与A -3I 互为逆矩阵, (A +I )-1=A -3I .12. 证明: 如果A =AB , 但B 不是单位矩阵, 则A 必为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则对于A =AB 两边同时左乘A -1, 得 A -1A =A -1AB , 即I =B , 这与B 不是单位矩阵相矛盾, 因此A 必为奇异矩阵.13. 判别下列矩阵是否初等矩阵?1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001, 2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100201, 4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100410001 解: 1) 是初等矩阵P (2(-2)),2) 是初等矩阵P (1,3), 3) 不是初等矩阵,4) 是初等矩阵P (3(-4), 2).14. 求3阶方阵A 满足⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211555a a a a a a a a a a a a a a a a a a a a a A解: 从等式看出A 左乘一矩阵相当于对此矩阵作初等行变换r 3×(-5)+r 1, 因此A 为一相应的初等矩阵, 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=100010501)1),5(3(P A15. 设A ,B ,C 均为n 阶可逆矩阵, 且ABC =I , 证明BCA =I证: 因B ,C 为可逆矩阵, 则BC 也是可逆矩阵, 且(BC )-1=C -1B -1, 因ABC =I , 对此等式两边右乘(BC )-1, 即ABC (BC )-1=I (BC )-1, 因为BC (BC )-1=I , 因此上式化简为A =(BC )-1, 因此当然有 BCA =BC (BC )-1=I .16. 设A ,B 均为n 阶方阵, 且)(21I B A +=, 证明: A 2=A 的充分必要条件是B 2=I .证: 充分性: 假设B 2=I , 则A IB I B I B B I B A =+=+=++=+=)(21)22(41)2(41)(41222必要性: 如果A 2=A , 则有)2(41)(41)(2122I B B I B I B ++=+=+等式两边乘4得I B B I B ++=+2222,等式两边同时减去2B +I 得 B 2=I 证毕.17. 如果n 阶矩阵A 满足A 2=A , 且A ≠I , 则A 为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则上式两边左乘(或者右乘)A -1, 得 AAA -1=AA -1, 即A =I , 但这与A ≠I 相矛盾, 因此A 的逆不存在, 即A 为奇异矩阵.18. 求下列矩阵的逆矩阵:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=285421122A ; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1111111111111111A 3)),,2,1,0(000000000000121n i a a a a a A i n n=≠⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-解: 用对[A |I ]进行行初等变换为[I |A -1]的办法来求:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100285001122010421100285010421001122]|[21r r I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯11390002196003/13/111)3/1()3(15018180021960010421)5()2(12323121r r r r r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+9/19/13/11006/16/13/10109/19/23/20019/16/11139001120609/19/23/2001)9/1(321323r r r r r r 因此, 最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-9/19/13/16/16/13/19/19/23/21A 2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=10001111010011110010111100011111]|[I A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+-⨯+-⨯+-⨯10010220010120200011220000011111)1()1()1(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−↔1001022000112200010120200001111123r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−−→−+⨯+-⨯11002200001122000101202002/102/10101)2/1()1(1242r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+⨯+-⨯11114000001122000101202002/12/1010012/1)1(1343r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−→−+⨯+⨯+⨯111140002/12/12/12/102002/12/12/12/100204/14/14/14/100012/12/14/1342414r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−⨯-⨯-⨯4/14/14/14/110004/14/14/14/101004/14/14/14/100104/14/14/14/100014/1)2/1()2/1(432r r r 因此有A A 414/14/14/14/14/14/14/14/14/14/14/14/14/14/14/14/11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-3)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-10000000000010000001000]|[121n n a a aa I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−↔↔↔----01000000100000001000100000012121211n n n n n n a a a a r r r r r r ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−⨯⨯⨯--0/1010000/100100000/10010/1000001/1/1/11211121n n n n n a a a a a r a r a r因此, 最后得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--0/10000/10000/1/10001211n n a a a a A19. 解下列矩阵方程, 求出未知矩阵X .1) ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡12643152X 2) ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--132321433312120X解: 令⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=12643152B A , 则要解的方程为AX =B将方程两边左乘上A 的逆A -1, 可得A -1AX =A -1B , 即 X =A -1B 下面求A -1:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡−−−→−↔⎥⎦⎤⎢⎣⎡=21101031)2(0152103110310152]|[2121r r r r I A⎥⎦⎤⎢⎣⎡--−−−→−-⨯+⨯21105301)1(3212r r r 因此有⎥⎦⎤⎢⎣⎡--=-21531A 因此⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--==-80232126421531B A X 2) 令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=132321433312120B A 则矩阵方程为XA =B设A 的逆存在为A -1, 则方程两边右乘A -1, 得XAA -1=BA -1,即X =BA -1 下面求A -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10043300112002/102/32/112/1100433010312001120|121r r r I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−⨯+⨯12/302/12/30002/12/11002/102/32/112/13231r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−+-⨯+⨯12/34/34/100002/12/11002/14/14/701)2/3(2/13212r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯463100002/12/11002/14/14/701)4(3r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+-⨯4631002310107115001)4/7()2/1(1323r r r r因此,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-46323171151A 最后得⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-==-47411246323171151323211BA X20. 求矩阵X 满足AX =A +2X , 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410011103A解: 将方程两边减去2X , 得AX -2X =A因2X =2IX , 因此上面的方程可以从右边提取公因子X , 得 (A -2I )X =A假设A -2I 可逆, 则方程两边同时左乘(A -2I )-1, 得(A -2I )-1(A -2I )X =(A -2I )-1A , 即X =(A -2I )-1A设B =A -2I , 则X =B -1A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210011101200020002410011103B 下面用行初等变换求B 的逆B -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100210011110001101)1(100210010011001101|21r r I B⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯+⨯111100122010112001)1()1(111100011110001101)1(11323232r r r r r r r则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1111221121B最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-3222342254100111031111221121A B X 验算:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+1054459341364446844104100111032X A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10544593413322234225410011103AX21. 利用分块的方法, 求下列矩阵的乘积:1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100110201110021; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d d c c b b a a00000010001010001000000解:1) 将乘积分块为[]⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2|100110201110021I C B A其中[]10,201102,101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C B A[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡30111220110210001020110210101|22BI AC I C B A2) 将乘积分块为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡22222220000001000110001000000dI O cI I bI I O aI d d c c b b a a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=bd c bd c ac a ac a I bd c I acI aI 010*******)(2222第三章1. 计算下列行列式:1) 4321; 2) 22b b a a ; 3) 7040-解: 1) 26432414321-=-=⨯-⨯=;2) )(2222a b ab b a ab b b a a -=-=;3) 0)4(0707040=-⨯-⨯=-.2. 计算下列三阶行列式:1)241130421--; 2) 320001753-; 3) b a c a c b cb a 解: 1) 将行列式按第一列展开81021342124131241130421=+-=⨯-⨯-=-- 2) 将行列式按第二行展开172353275320001753=⨯-⨯==- 3)3333333c b a abc c b a abc abc abc b a c a c b cb a ---=---++=3. 计算下列行列式:1)000000005544332222211111b a b a b a e d c b a e d c b a ;2)x yy x y x y x D n 0000000000=;3) f e d c b a 0000000000解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得nn n n n y x y x y x y y x y x y x x D 11)1(0000000)1(0000000++-+=-+=3) 先对第一列展开, 然后对第二列展开, 得abdfbadf fe dbafe dab D -=-=-=-=000004. 利用行列式的性质计算下列行列式1) 2605232112131412-; 2)ef cf bf de cd bd ae ac ab ---;3) 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a解: 下面都将所求行列式的值设为D .1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得abcdef abcdef adfbce ef cfbfde cd bd ae ac ab 4020200111111111111=-=---=---3) 将第2,3,4列都展开, 并统统减去第1列, 得9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得62126212621262122222=++++=d d c cb b a a D5. 把下列行列式化为上三角形行列式, 并计算其值1) 1502321353140422-----; 2) 2164729541732152-----解:1)121034805350024211203840553004221)2/3(2150232135314042232413121------↔=-----+⨯+⨯+⨯=-----c c r r r r r r 131002050021102042101300520001210024258535034801210024243423242---↔=--+⨯+⨯=-----↔=c c r r r r r r270)27(512270002050021102042)2(43-=-⨯⨯⨯=----+-⨯=r r2)0210311061202251)1()2(12461759243712251216472954173215241312113----+-⨯+-⨯+⨯=------↔=-----r r r r r r c c93000030031102251133000300311022511)2(021061203110225143423232-=--+⨯=--+⨯+-⨯=---↔=r r r r r r r r6. 计算下列n 阶行列式1) 12125431432321-n n n2) a bbba b a解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为)1(21321+=++++n n n , 将此公因式提出, 因此有121125411431321)1(21-+=n nn n D再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得11111111111111111)1(21111011101110321)1(21-----+=--+=n n n n n n n n n n n n D 1)1(21)()1)(1(21)000000111111111)(1(21----+=---++=n n n n n n n n nn n2) 此题和第3题的2)一样, 因此有n n nb a D 1)1(+-+=7. 证明下列行列式1) ))()((111a c c b b a ab ca bc c b a ---=2) nb a n ab a ba b b a b a ba )(222-=证: 1)=----=----+-⨯+-⨯=)()()()(001)1()1(1113221c a b b a c ac a b c a b b a c bc a c a b a c c cc ab ca bc c b a))()(())()((11))((a c c b b a b c c a b a b c c a b a ---=---=----=2) 用归纳法, 设D n 为所求行列式值, 当n =1时,221b a a b ba D -==, 等式成立. 假设当n =k 时假设成立, 即有kk b a k aba b a b b a ba ba D )(222-==当n =k +1时,按第一列展开=+=+221k aba b ab b a b a ba D k=+++=1212k aba b b a ba b bk aa bab ba ba a12222222222)()()()(+-=--=-=-=k kk k k b a b a b a b a D D b D a证毕.8. 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210111302A 的伴随矩阵A *, 并求A -1. 解:31130,32130,12111312111=-==--==--=A A A 11132,42032,22011322212=-=-=-==--=A A A 2112,21002,11011332313-=-=-=-==-=A A A因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221142331332313322212312111*A A A A A A A A A A A 的行列式为5132012||131312121111=⨯+⨯+⨯=++=A a A a A a A 因此有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==-22114233151||1*1A A A9. 设A 为三阶方阵, A *是A 的伴随矩阵, 且|A |=1/2, 求行列式|(3A )-1-2A *|的值.解: 因11**121||,||1---===A A A A A A A , 以及1131)3(--=A A , 还有2||1||1==-A A ,则27162278||32|32||31||2)3(|13111*1-=⨯-=⎪⎭⎫⎝⎛-=-=-=------A A A A A A10. 设A 为n 阶可逆阵, A 2=|A |I , 证明: A 的伴随矩阵A *=A . 证: 因A 可逆, 则在等式A 2=|A |I 两边乘A -1, 得A =|A |A -1, 即A A A ||11=-, 而因为*1||1A A A =-, 所以有A =A *, 证毕.11. 用克莱姆法则解下列方程组.(1) ⎪⎩⎪⎨⎧=+-=++=++10329253142321321321x x x x x x x x x(2) ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++24324322256511322121432143214321x x x x x x x x x x x x x x x x解: (1) 方程的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113215421A , 常数向量T ]102931[=β, 则求A 的逆矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10311700151890001421)3()5(1001130102150014213121r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯103117009/19/5210001421)9/1(2r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯19/79/830009/19/521009/29/10017)2(3212r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯3/127/727/810009/19/521009/29/10013/13r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯3/127/727/81003/227/1127/101009/29/1001)2(23r r 因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-3/127/727/83/227/1127/109/29/11A则方程的解X 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5431029313/127/727/83/227/1127/109/29/11321βA x x x X即x 1=3,x 2=4,x 3=5.(2) 方程的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43114312251151132A , 常数向量[]T 2226=β先求A 的逆A -1:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10004311010043120001511320010251110004311010043120010251100015113221r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯+-⨯10102200012007100021111000102511)1()2()2(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+⨯+-⨯101022000141160000211110003114011)1(3212r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯↔014116002/102/1011000021111000311401)2/1(343r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯311150002/102/1011002/102/512010201150016)1()4(332313r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯5/35/15/15/110002/102/1011002/102/51201020115001)5/1(4r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯5/35/15/15/1100010/15/110/75/1010010/75/210/295/70010110000011)2()5(342414r r r r r r 因此有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=-5/35/15/15/110/15/110/75/110/75/210/295/711001A则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-002022265/35/15/15/110/15/110/75/110/75/210/295/7110014321βA x x x x X 即x 1=0, x 2=2, x 3=0, x 4=0.12. 如果齐次线性方程组有非零解, k 应取什么值?⎪⎩⎪⎨⎧=-+=-+=++-0)4(20)6(2022)5(z k x y k x z y x k解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=k kk A 402062225要使方程组有非零解, 必须有det(A )=0.而k k k k kr r rr k kk A ---+--+⨯+-⨯=---=402242242252)2(402062225)det(2321k kk k r r rr k kk --+---+⨯+-⨯=-----=4022121005)2(2)2(402212225)2(1213)8)(5)(2(80061020122402212201)5)(2(3121----=---+⨯+⨯=-----=k k k kr r rr k k k因此, 只有当k =5或者k =2或者k =8时, 此方程组才有非零解.13. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ 有非零解?解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1211111μμλA , 要使方程组有非零解, 必须det(A )=0,而012101111)1()1(1211111)det(3121----+-⨯+-⨯==μλμλλμμλr r rr Aμλμμλμλμλ)1(12111)1(121113-=---=----=列展开按第因此, 只有当λ=1或者μ=0时, 方程组才有非零解.第四章1. 设α1=(1,1,1), α2=(-1,2,1), α3=(2,3,4), 求β=3α1+2α2-α3解: β=3α1+2α2-α3=3(1,1,1)+2(-1,2,1)-(2,3,4)=(3,3,3)+(-2,4,2)-(2,3,4) =(3-2-2, 3+4-3, 3+2-4)=(-1, 4, 1)2. 设3(α1-α)+2(α2+α)=5(α3+α), 求α, 其中α1=(2,5,1,3), α2=(10,1,5,10), α3=(4,1,-1,1) 解: 将上述方程整理: 3α1-3α+2α2+2α=5α3+5α -3α+2α-5α=-3α1-2α2+5α3 (-3+2-5)α=-3α1-2α2+5α3 -6α=-3α1-2α2+5α3 最后得)4,3,2,1()6531023,653521,653125,3103101()65,65,65,310()310,35,31,310()23,21,25,1()1,1,1,4(65)10,5,1,10(31)3,1,5,2(21653121321=-+++-+-+=--+=--+=-+=αααα3. 设R 为全体实数的集合, 并且设}0,,,|),,,({11211=++∈==n n n x x R x x x x x X V 满足, }1,,,|),,,({11212=++∈==n n n x x R x x x x x X V 满足.问V 1,V 2是否向量空间? 为什么?解: (一般的技巧: 凡是对R n 作一个齐次线性方程的约束的集合都是向量子空间, 而作非齐次线性方程的约束的集合则因为它不穿过原点, 就不是向量子空间).V 1是向量空间, 且是R n 的向量子空间, 因为nR V ⊂1, 而任给R k V Y X ∈∈,,1, 设0),,,,(0),,,,(121121=+==++=n n n n y y y y y Y x x x x x X则令),,,(2211n n y x y x y x Y X Z +++=+= ,则因=++++++=+++n n n y x y x y x z z z 221121011=+++++=n n y y x x , 则1V Y X ∈+,因为),,,(21n kx kx kx kX =, 而0)(11=++=++n n x x k kx kx 则1V kX ∈,因此, V 1是R n 的向量子空间.而V 2不是向量空间, 是因为1000≠+++ , 零向量O 不属于V 2, 2V O ∉.4. 试证: 由)1,1,1(),1,1,0(),1,0,0(321===ααα所生成的向量空间就是R 3证: 因为3321),,(R Span ⊂ααα, 只须证),,(3213αααSpan R ⊂, 任给3321),,(R d d d D ∈=, 试求实数x 1,x 2,x 3使。
线性代数资料(PDF)
模拟试卷七参考答案一、填空题(每空4分,共24分)1、设(1,1,1)T α=,(1,1,1)T β=−,则T βα=1解:1(1,1,1)111T αβ⎛⎞⎜⎟=−=⎜⎟⎜⎟⎝⎠2、设{0}V x Ax ==,则V 是(是/不是)向量空间解:因为0x V Ax ∀∈⇒=,0y V Ay ∀∈⇒=,k R ∀∈,则()000A x y Ax Ay x y V +=+=+=⇒+∈,()()00A kx k Ax k kx V ===⇒∈所以{0}V x Ax ==是向量空间。
3、已知3阶矩阵A 有特征值1,1,2−,则*22A A E +−=-16解:因为3阶矩阵A 有特征值1,1,2−,所以A 可逆,且2A =−,而*21212224A A E A A A E A A E−−+−=+−=−+−令24()1f x x x=−+−,则(1)4f −=,(1)4f =−,(2)1f =,从而*22(1)(1)(2)16A A E f f f +−=−=−4、设矩阵1234(,,,)A αααα=,其中234,,ααα线性无关,且12332ααα=−,1234βαααα=+++,则Ax β=的通解为:(1,1,1,1)(1,3,2,0)T Tx c =+−(c R ∈)解:因为1234(,,,)A αααα=,且12332ααα=−,则123,,ααα线性相关,从而1234,,,αααα也线性相关,又234,,ααα线性无关,所以()3R A =。
由此,Ax β=对应的齐次方程组0Ax =的基础解系所含向量的个数为:4()431R A −=−=;又12332ααα=−,所以(1,3,2,0)T −是0Ax =的一个非零解,即可作为其基础解系;而1234βαααα=+++,则(1,1,1,1)T 是Ax β=的一个解,所以Ax β=的通解为:(1,1,1,1)(1,3,2,0)T T x c =+−(c R ∈)5、设5032326120531614A ⎛⎞⎜⎟−−⎟⎜=⎜⎟−⎜⎟−⎝⎠,则A 的列向量组的一个最大线性无关组为:,()R A =3解:因为1424314150163214326104112020531271116140168123r r r r A r r r r −↔⎛⎞⎛⎞⎜⎟⎜⎟−−−−−⎟⎜⎜⎟=⎯⎯⎯⎯→⎜⎜⎟⎟−−−−⎜⎟⎜⎟−−−−⎠⎝⎠⎝3243421614161404110411340048004800048000r r r r r r −−⎛⎞⎛⎞⎜⎟⎜⎟−−−−−−⎟⎟⎜⎜⎯⎯⎯⎯⎯⎯⎯⎯→→⎜⎜⎟⎟−−−⎜⎟⎜⎟−⎝⎠⎝⎠所以()3R A =,A 的列向量组的一个最大线性无关组为:3321⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠,2206⎛⎞⎜⎟−⎜⎟⎜⎟⎜⎟⎝⎠,5651⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟−⎝⎠(4列中任选3列即可)二、选择题(每小题4分,共24分)6、设矩阵000110001020010003A ⎛⎞⎛⎞⎟⎜⎟⎜=⎟⎜⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠,则1A −=(D )(A )010001121⎛⎞⎜⎟⎟⎜⎜⎟⎝⎠(B )10010021003⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠(C )001001100⎛⎞⎜⎟⎟⎜⎜⎟⎝⎠(D )00110021003⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠解:因为000110000102010003A ⎛⎞⎛⎞⎜⎟⎜⎟=⎟⎜⎟⎜⎜⎟⎜⎟⎝⎠⎝⎠,所以111100001000100101110002010000100223001001001100033A −−−⎛⎞⎛⎞⎜⎟⎜⎟⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎜⎜⎟⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎜⎟⎜⎟⎝⎠⎝⎠,选D 。
线性代数教学中的几个问题
题 会使 得 学 生 思 路 清 晰 ,对 数 学 问题 的 理 解 更 深 刻 , 到 事半 功倍 的效 果 . 文 介 绍 了我 们 关 于数 起 本 学 分析 若干 共性 问题 的教学 研究 和实 践.
步深 入则 是一 门经 典 的数学 分 支 L b s u e eg e积分 .
B =
从 而
A 一 ( AUT 一 U U 一 A. U ) A
结 论 1表 明 : 在 正 交 矩 阵使 之对 角 化 的矩 阵 存
只有 实对称 矩 阵.
问题 2 如果 已知 ,阶实方 阵 A 的所 有特 征值 z 为 , , , , … 能否 由此 确定 矩 阵 A 的秩 rA) ( ?
在 长期 的线 性代 数 教 学 中 , 时 会碰 到有 学 生 不
而 且往 往是 有 志于学 的好 学 生 不拘 于教 材提 出 的一
的单 根 , 齐 次线 性方 程组 则
( E — A) 一 0 0 ,
些 问题 . 些 问题 大 都是 教材 内容 的延拓 , 于思 考 这 勤
,
也 即
阵 P, 得 Q使
A— p p, T
从 而 A = p B T Q— Q P 1Q ( )
)
B一 Q,
Q一
Q.
, ’
对这 个 问题 的答 复是 否 定 的 . 为正 定 矩 阵定 因
义 为正定 二 次型 的矩 阵 , 以正 定 矩 阵 必 须 是 实对 所
. 2 ; … △ 【 1 > 0 ( 一 1 2 … , ), ,, , z
上式 两边 同时左 乘 A 得 叫
一 一
.
从而 U ( B) 为正定 矩 阵 , 也表 明 A 与正定 矩 A U 这 B 阵相似 ,故 A 正定 . B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙 江 工 业 大 学
《线 性 代 数》试 卷 (A)
(2007—2008学年第一学期) 2008.6
任课教师:
学院 专业班级 学号 姓名
题 号 一 二 三 四 五 分数 得 分
一、填空(每空2分,共24分) 1、在四阶行列式中,乘积项43213412a a a a 的符号为 号。
2、设,B C 为n 阶可逆方阵,0
0B A C ⎛⎫= ⎪⎝⎭
,则T A = ;1A -= 。
3、设,A B 均为n 阶方阵,且满足2,3A B ==,则()AB *= 。
4、设 100010b A a c ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,当,,a b c 分别为 时,A 为对称阵;A 的伴
随阵为 ;当,,a b c 满足条件 时,A 为正交阵。
5、向量组⎛⎫ ⎪ ⎪ ⎪⎝⎭141、k ⎛⎫ ⎪ ⎪ ⎪⎝⎭14、⎛⎫ ⎪ ⎪ ⎪⎝⎭
120为3R 的一组基, 则k 必须满足的条件是 。
6、线性方程组AX β=有无穷多解的充要条件是 。
7向量T T )0,1,0,1,0(,)1,0,1,0,1(==βα
8、设二阶方阵A 、B 相似,A 的特征值为2、3,则1-B 的特征值为 ,
而*B 的特征值为 。
得 分
二、单项选择题(每小题2分,共12分)
1、以下结论正确的是( )。
A 、若2=A 0,则A =0;
B 、若方阵A 的行列式0=A ,则A =0;
C 、若=AB 0,则A =0或B =0;
D 、若方阵A 对称,则2A 也对称。
2、下列四项中,向量组T 线性相关的充分必要条件是( )。
A 、 向量组T 中至少有一个是零向量;
B 、 向量组T 中至少有两个向量的分量成比例;
C 、 向量组T 中至少有一个向量能由其余向量线性表示;
D 、 向量组T 中至少有一个部分向量组线性相关。
3、下列矩阵中,( )不是初等矩阵。
A 、100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭ ;
B 、001010101⎛⎫ ⎪ ⎪ ⎪⎝⎭;
C 、100015001⎛⎫ ⎪ ⎪ ⎪⎝⎭;
D 、001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭。
4、若n 阶方阵A 可逆,则下列各项中不是A 可逆的充分必要条件的是( )。
A 、矩阵A 与n 阶单位阵等价;
B 、矩阵A 的行(列)向量组线性无关;
C 、矩阵A 可表为有限个n 阶初等阵的乘积;
D 、矩阵A 不是零矩阵。
5、与向量12111,011αα⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭
都正交的向量是( )。
A 、121β⎛⎫ ⎪=- ⎪ ⎪⎝⎭
; B 、021β⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ;
C 、120β⎛⎫ ⎪=- ⎪ ⎪⎝⎭
; D 、101β⎛⎫ ⎪= ⎪ ⎪⎝⎭ 。
6、下列结论错误的是( )。
A 、同一矩阵不同的特征值对应的特征向量必定线性无关。
B 、若n 阶方阵有n 个互不相同的特征值,则该矩阵必可对角化。
C 、相似矩阵的特征值相同,特征多项式也相同。
得 分
D、n阶方阵A与它的伴随阵*A必不可交换。
三、计算题(共56分)
1、(10分)计算n阶行列式
1222
2122
2212
2221 n
D=。
2、(10分)解矩阵方程:
033
2110
123
X X,
A A A=
⎛⎫
⎪=+ ⎪
⎪
-
⎝⎭
其中。
得分
3、(12分)设A=
1151
1123
3181
1397
--
⎛⎫
⎪
-
⎪
⎪
-
⎪
⎝⎭
,(1)试通过行初等变换求出A的行阶梯形
矩阵和行最简形矩阵, 再通过列初等变换求出A的标准形;(2)求矩阵A的列向量组的一个极大无关组,并用它表示出A的其余列向量。
4、(12分) 已知线性方程组1232221110x a x b x c a b c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,(1)问,,a b c 满足何种
关系时,方程组只有零解;(2)问,,a b c 满足何种关系时,方程组有无穷多组解,此时求出基础解系,并用基础解系表示出全部解。
5、(12分)设 B=200010114-⎛⎫ ⎪ ⎪ ⎪⎝⎭
, 已知矩阵A 与B 相似 , (1)求A 的特征值和B 的特征向量;(2)问B 能否对角化? 若能,求出相似变换矩阵。
四、证明题(8分)
得分
证明:线性方程组AXβ
=有解的充分必要条件是它的系数矩阵与增广矩阵的秩相等。