2.2.3二次函数的图象和性质(3)

合集下载

新版北师大九年级下2.2二次函数的图象与性质(3)课件

新版北师大九年级下2.2二次函数的图象与性质(3)课件

向上
向下
直线x=h 直线x=h
(h,k)
(h,k)
2.y=a(x-h)2+k的图象与y=ax2的图象的关系.
抓着今天,你就会前进一步;丢弃今天, 你就会停滞不动.
C.y=(x-2)2-3
D.y=(x+2)2-3
【解析】选C.根据以直线x=2为对称轴可知选项A,C符 合,再根据图象经过点(0,1)知选项C符合.
2.(西宁·中考)将抛物线
y 2 ( x 1)
2
向左平移1个单位后所得到的新抛物线的表达式为 _______________.
【答案】
y 2x
2
的图象
o
x
【归纳升华】
函数y=ax2与y=a(x-h)2的图象关系: 函数y=a(x-h)2的图象: 对称轴是 直线x=h ; 顶点是(h ,0) 函数y=a(x-h)2的图象 向右平移h(h﹥0)个单位 函数 y ax
2
y
y ax 2
y a(x h) 2 (h<0)
y a(x h) 2 (h>0)
顶点: (h,k)
【跟踪训练】
抛物线 开口方向 向上 对称轴 y 轴(或直线x=0) y 轴(或直线x=0) 直线x=-1 直线x=1 顶点坐标 (0,0) (0,2)
y x2
y x2 2 y ( x 1) 2 2 y ( x 1) 2 2 y ( x 1) 2 2 y ( x 1) 2 2
2
向右 平移 1个 单位
向右 平移 1个 单位
【规律方法】
y a ( x h ) 2 k(当k,h都大于0时)的图象特点. 2 y ax 的图象

高中数学常见幂函数、二次函数、三次函数的图象及其性质

高中数学常见幂函数、二次函数、三次函数的图象及其性质
(2)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递减,在 上单调递增,所以函数 的最大值为 或 ,最小值为 .
(1)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(2)当 时, 在 上单调递减,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递增,在 上单调递减,所以函数 的最大值为 ,最小值为 或 .
单调增区间为: 和 ;
单调减区间为:
在R上单调递增
单调增区间为:
单调减区间为: 和
在R上单调递减
三次函数的图象和性质
定 义
我们把形如 的函数,称为三次函数.
导 数
判别式
我们把 叫做三次函数的导函数 的判别式.
极值点
当 时,导函数 有两个零点,原函数 有两个极值点,不妨记为 、 ,且 .
拐 点
令三次函数 的二阶导数 ,即 ,解得 ,我们把点 叫做三次函数的拐点.
图 象
定义域
R
值 域
R
对称中心
单调性
高中常见幂函数的图象和性质
定义
形如 的函数(其中 是常数, 是自变量)称为二次函数.
常见的五种幂函数图象
性质
(1)当幂指数 为奇数时,幂函数为奇函数;当幂指数 为偶数时,幂函数为偶函数.
(2)当 时,幂函数的图象都过 、 点,且在 上单调递增;
(3)当 时,幂函数的图象都过 点,不过 点,且在 上单调递减;
(4)在直线 的右侧,幂指数 越大,图象越高.
幂函数
定义域
单调增区间
单调减区间





二次函数的图象和性质

人教初中数学 《二次函数的图象和性质(第3课时)》教案 (公开课获奖)

人教初中数学 《二次函数的图象和性质(第3课时)》教案 (公开课获奖)

22.1 二次函数的图象和性质让学生观察函数y=-13x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。

四、练习:P7练习。

五、小结1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?作业设计必做教科书P14:5(1)选做练习册P109-114教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.(二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. (演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .D CA B[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,D CABDC A B标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD .EDCABPD C A B又∵DE∥AP,∴∠4=∠P.∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

2.2 二次函数的图象与性质 第3课时 教案

2.2  二次函数的图象与性质 第3课时 教案

一、情境导入二次函数y =ax 2+c (a ≠0)的图象可以由y =ax 2(a ≠0)的图象平移得到: 当c >0时,向上平移c 个单位长度; 当c <0时,向下平移-c 个单位长度.问题:函数y = (x -2)2的图象,能否也可以由函数y = x 2平移得到?本节课我们就一起讨论. 二、合作探究探究点:二次函数y =a (x -h )2的图象与性质 【类型一】 二次函数y =a (x -h )2的图象顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =2,把a=-12,h =2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 二次函数y =a (x -h )2的性质若抛物线y =3(x +2)2的图象上的三个点,A (-32,y 1),B (-1,y 2),C (0,y 3),则y 1,y 2,y 3的大小关系为________________.解析:∵抛物线y =3(x +2)2的对称轴为x =-2,a =3>0,∴x <-2时,y 随x 的增大而减小;x >-2时,y 随x 的增大而增大.∵点A 的坐标为(-32,y 1),∴点A 在抛物线上的对称点A ′的坐标为(2,y 1).∵-1<0<2,∴y 2<y 3<y 1.故答案为y 2<y 3<y 1.方法总结:函数图象上点的坐标满足解析式,即点在抛物线上.解决本题可采用代入求值方法,也可以利用二次函数的增减性解决.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 二次函数y =a (x -h )2的图象与y =ax 2的图象的关系将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位解析:抛物线y =-2x 2的顶点坐标是(0,0),抛物线y =-2(x +1)2的顶点坐标是(-1,0).则由二次函数y =-2x 2的图象向左平移1个单位即可得到二次函数y =-2(x +1)2的图象.故选C.方法总结:解决本题要熟练掌握二次函数的平移规律.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型四】 二次函数y =a (x -h )2与三角形的综合如图,已知抛物线y =(x -2)2的顶点为C ,直线y =2x +4与抛物线交于A 、B 两点,试求S △ABC .解析:根据抛物线的解析式,易求得点C 的坐标;联立两函数的解析式,可求得A 、B 的坐标.画出草图后,发现△ABC 的面积无法直接求出,因此可将其转换为其他规则图形的面积求解.解:抛物线y =(x -2)2的顶点C 的坐标为(2,0),联立两函数的解析式,得⎩⎪⎨⎪⎧y =2x +4,y =(x -2)2,解得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=6,y 2=16.所以点A 的坐标为(6,16),点B 的坐标为(0,4).如图,过A 作AD ⊥x 轴,垂足为D ,则S △ABC =S 梯形ABOD -S △ACD -S △BOC =12(OB +AD )·OD -12OC ·OB-12CD ·AD =12(4+16)×6-12×2×4-12×4×16=24. 方法总结:解决本题要明确以下两点:(1)函数图象交点坐标为两函数解析式组成的方程组的解;(2)不规则图形的面积通常转化为规则图形的面积的和差.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 【类型五】 二次函数y =a (x -h )2的探究性问题某抛物线是由抛物线y =-2x 2向左平移2个单位得到. (1)求抛物线的解析式,并画出此抛物线的大致图象; (2)设抛物线的顶点为A ,与y 轴的交点为B . ①求线段AB 的长及直线AB 的解析式;②在此抛物线的对称轴上是否存在点C ,使△ABC 为等腰三角形?若存在,求出这样的点C 的坐标;若不存在,请说明理由.解析:(1)抛物线y =-2x 2向左平移2个单位所得的抛物线的解析式是y =-2(x +2)2;(2)①根据(1)得出的抛物线的解析式,即可得出其顶点A 和B 点的坐标,然后根据A ,B 两点的坐标即可求出直线AB 的解析式;②本题要分三种情况进行讨论解答.解:(1)y =-2(x +2)2,图略;(2)①根据(1)得出的抛物线的解析式y =-2(x +2)2,可得A 点的坐标为(-2,0),B 点的坐标为(0,-8).因此在Rt △ABO 中,根据勾股定理可得AB =217.设直线AB 的解析式为y =kx -8,已知直线AB 过A 点,则有0=-2k -8,k =-4,因此直线AB 的解析式为y =-4x -8;②本题要分三种情况进行讨论:当AB =AC 时,此时C 点的纵坐标的绝对值即为AB 的长,因此C 点的坐标为C 1(-2,217),C 2(-2,-217);当AB =BC 时,B 点位于AC 的垂直平分线上,所以C 点的纵坐标为B 点的纵坐标的2倍,因此C 点的坐标为C 3(-2,-16);当AC =BC 时,此时C 为AB 垂直平分线与抛物线对称轴的交点.过B 作BD 垂直于抛物线的对称轴于D ,那么在直角三角形BDC 中,BD =2(A 点横坐标的绝对值),CD =8-AC ,而BC =AC ,由此可根据勾股定理求出AC =174,因此这个C 点的坐标为C 4(-2,174). 综上所述,存在四个点,C 1(-2,217),C 2(-2,-217 ),C 3(-2,-16),C 4(-2,-174).方法总结:本题主要考查了二次函数图象的平移及等腰三角形的构成情况,主要涉及分类讨论、数形结合的数学思想方法的运用.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 三、板书设计二次函数y =a (x -h )2的图象与性质。

二次函数的图象及性质3

二次函数的图象及性质3

顶点分别是 (1,2)和(1,-2).
y
y 3x 1 2
2
y 3 x 2
y 3x 1 2
2
y 3x 1
2
开口向下, 当x=1时y有 最大值:且 对称轴仍是平行于y轴的直线 (x=1);增减性与y= -3x2类似. 最大值= 2 (或最大值=-2).
X=1
2
y 3x 1
2
X=1
对称轴仍是平行于y轴的直 线(x=1);增减性与y=3x2类似.
开口向上,当 X=1时有最小 值:且最小值=2.
顶点是(1,2).
先猜一猜,再做一做,在同一坐标系中 作二次函数y=3(x-1)2-2,会是什么样?
二次函数y=3(x-1)2-2的
y 3x 2
y 3x 1
二次函数y=-3(x-1)2+2与 y=-3(x-1)2-2的图象和抛物 线y=-3x² ,y=-3(x-1)2有什 么关系? 它的开口方向,对 称轴和顶点坐标分别是什 么? 2
二次函数y=-3(x-1) +2与 y=-3(x-1)2+2的图象可 以看作是抛物线y=-3x2 先沿着x轴向右平移1个 单位,再沿直线x=1向上 (或向下)平移2个单位后 得到的.
2
图象与抛物线y=3x2和 y=3(x-1)2有何关系?它的 开口方向、对称轴和顶点 坐标分别是什么?
二次函数y=3(x-1)2-2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 下平移2个单位后得到的.
y 3x 1 2
2
顶点是(1,-2).
X=1 对称轴仍是平行于y轴的直线 (x=1);增减性与y=3x2类似. 开口向上, 当x=1时y有 最小值:且 最小值= -2.

2.2.3 二次函数的图像与性质(第3课时)(课件)-九年级数学下册同步精品课堂(北师版)(共41张PPT)

2.2.3 二次函数的图像与性质(第3课时)(课件)-九年级数学下册同步精品课堂(北师版)(共41张PPT)

练一练
将二次函数y=-2x2的图象平移后,可得到二次函 数y=-2(x+1)2的图象,平移的方法是( C )
A.向上平移1个单位 B.向下平移1个单位 C.向左平移1个单位 D.向右平移1个单位
解析:抛物线y=-2x2的顶点坐标是(0,0),抛物 线y=-2(x+1)2的顶点坐标是(-1,0).则由二次函 数y=-2x2的图象向左平移1个单位即可得到二次函 数y=-2(x+1)2的图象.故选C.
四 二次函数y=a(x-h)2+k与y=ax2的关系
合作探究
怎样移动抛物线
y
1 2
x2
就可以得到抛物线
y
1 2
(x
1)2
1?
平移方法1
y 1
y 1 x2 2
1
个 单 位
向 下 平 移
y 1 (x 1)2 1 向左平移 y 1 x2 1
2
1个单位
2
-5 -4 -3 -2 -1-1 O1 2 3 4 5 x
向右平移 1个单位
y 1 x 12
2
知识要点 二次函数y=a(x-h)2的图象与y=ax2 的图象的关系
可以看作互相平移得到(h>0). 当向右平移 ︱h︱ 时
y=ax2 当向左平移 ︱h︱ 时
左右平移规律:
括号内左加右减;括号外不变.
y=a(x-h)2 y=a(x+h)2
例2 抛物线y=ax2向右平移3个单位后经过点(-1,4), 求a的值和平移后的函数关系式.
解析:抛物线y=-(x-1)2+1的对称轴为直线x=1, ∵a<0, ∴抛物线开口向下, ∵-1<x1<0,3<x2<4, ∴y1>y2.
12.抛物线 y x2 4与x轴交于B,C两点,顶点为A, 则△ABC的周长为( B )

2.2 二次函数的图象与性质 第3课时湘教版九年级下册

2.2  二次函数的图象与性质  第3课时湘教版九年级下册

1.(成都·中考)把抛物线 y x 2 向右平移1个单位,所得 抛物线的函数表达式为( A. y x 1
2

B.
y ( x 1)
2
C. y x 1
2
D. y
( x 1)
2
【答案】D
2.(哈尔滨·中考)在抛物线y=x2-4上的一个点 是( ). B.(1,一4)
抛物线 2 y=x 2 y=X +1
开口方向
对称轴
顶点坐标
向上 向上 向上
X=0 X=0 X=0
(0,0) (0,1) (0,-1)
y=x2-1
(4)把抛物线y=x2向上平移1个单位,就得到抛物线 y=x2+1;把抛物线y=x2向下平移1个单位,就得到抛物 线y=x2-1.
(5)它们的位置是由+1、-1决定的.
2
的开口方
向、对称轴及顶点吗?它与抛物线 y
2
x
2
有什么关系?
画出二次函数 y x 1 , y x 1 的图象,并
2 2
1
1
2
2
考虑它们的开口方向、对称轴和顶点.
x
y y 1 2 1 2
·· · ·· ·
-3
-2
1 2
-1
0
1 2
1
2
3
·· · ·· · ·· ·
2.2
二次函数的图象与性质
第3课时
1.经历探索二次函数y=ax2+k(a≠0)及y=a(x+m)2(a≠0) 的图象作法和性质的过程. 2.能够理解函数y=ax2+k(a≠0)及y=a(x+m)2(a≠0)与 y=ax2的图象的关系,理解a,m,k对二次函数图象的影响. 3.能正确说出函数y=ax2+k,y=a(x+m)2的图象的开口方 向,顶点坐标和对称轴.

人教版数学九年级上册22.1《二次函数的图象和性质(3)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(3)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(3)》教学设计一. 教材分析人教版数学九年级上册22.1《二次函数的图象和性质(3)》的内容包括:二次函数的顶点坐标、开口方向和增减性。

这部分内容是整个九年级数学的重要内容,也是中考的热点。

通过这部分的学习,学生能够掌握二次函数的基本性质,从而更好地解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本概念和性质,对本节课的内容有一定的了解。

但学生在理解和运用方面还存在一些问题,如对顶点坐标、开口方向和增减性的理解不够深入,解决实际问题的能力有待提高。

三. 教学目标1.理解二次函数的顶点坐标、开口方向和增减性的含义。

2.能够运用二次函数的性质解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次函数的顶点坐标、开口方向和增减性的理解。

2.运用二次函数的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数的性质。

2.运用多媒体辅助教学,直观展示二次函数的图象和性质。

3.采用小组合作学习,培养学生团队合作精神。

六. 教学准备1.多媒体教学设备。

2.二次函数图象和性质的相关教学素材。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生运用二次函数的知识解决。

例如,一个物体从地面上升,其高度与时间的关系可以表示为一个二次函数。

让学生思考,如何根据这个二次函数的图象,求出物体上升到最高点的时间和高度。

2.呈现(10分钟)通过多媒体展示二次函数的图象,引导学生观察和分析图象的顶点坐标、开口方向和增减性。

同时,让学生结合之前的学习经验,总结二次函数的性质。

3.操练(10分钟)让学生分成小组,进行合作学习。

每个小组选一个二次函数,分析其顶点坐标、开口方向和增减性。

然后,让学生互相交流,分享各自的成果。

4.巩固(10分钟)针对学生总结的二次函数性质,进行一些巩固性的练习。

【精】 《二次函数的图象和性质(第3课时)》精品教案

【精】 《二次函数的图象和性质(第3课时)》精品教案

《二次函数(第3课时)》精品教案
(1)抛物线顶点坐标___________;
(2)对称轴为________;
(3)当x=____时,y有最大值是_____;
(4)当________时,y随着x得增大而增大.(5)当____________时,y>0.
4.将函数y=3x+1的图象向______平行移动_____个单位,可使它经过点(1,-1).
5.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到________________。

课堂小结通过本节课的内容,你有哪些收获?
(2)对称轴是x=h.
(3)顶点是(h,k).
(4)平移规律:h值正右移,负左移;k值正上移,负下移. 学会总结学
习收获,巩
固知识点,
理清知识间
的联系。

让学生
来谈本
节课的
收获,培
养学生
自我检
查、自我
小结的
良好习
惯,将知
识进行
整理并
系统化。

《二次函数的图象与性质(第3课时)》优秀课件

《二次函数的图象与性质(第3课时)》优秀课件

小结:
本节课主要运用了数形结合的思想方法,通过对
函数图象的讨论,分析归纳出 y a(x h)2 k
的性质:(1)a的符号决定抛物线的开口方向 (2)对称轴是直线x=h
(3)顶点坐标是(h,k)
抛物线
开口方向 对称轴 顶点坐标
y ax2 (a 0)
y ax 2 k(a 0) y a(x h)2 (a 0)
开口向上 开口向上 开口向上
直线X=0 直线X=0 直线X=h
(0,0) (0,k)
(h,0)
y a(x h)2 k(a 0) 开口向上 直线X=h (h,k)
2
直线x=-1
(- 1, 0)4,y2)(
1 4
,y3)为二次函数
y=(x-2)2图象上的三点,则y1 ,y2 ,y3的大小关系为
___y_3_<__y_2_<__y1____.
典例精析
例1 抛物线y=ax2向右平移3个单位后经过点(-1,4), 求a的值和平移后的函数关系式.
解:设平移后的函数关系式为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2, ,

1 a=
4
∴平移后二次函数关系式为y= 1 (x-3)2.
4
小结
比较y=ax2 , y=ax²+k , y=a(x-h)²的图像的不同
y=ax2 y=ax²+k
对称轴 Y轴
Y轴
(直线x=0) (直线x=0)
2) 如何将抛物线y=2(x-1) 2+3经过平移得到 抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平移得 到抛物线y=2(x+2)2-1
4) 若抛物线y=2(x-1)2+3沿x轴方向平移后,经 过(3,5),求平移后的抛物线的解析式_______

北师大版九年级下册数学2.2.3:二次函数图像与性质 教案设计

北师大版九年级下册数学2.2.3:二次函数图像与性质 教案设计

1.温故引新在同一坐标系内画出 2ax y =、21y ax =+ 的图象2ax y = 向上平移1个单位长度 21y ax =+2.新课讲解 (1)做一做在直角坐标系中做出22(1)y x =-的图像(2)议一议22y x = 向 平移 个单位 22(1)y x =+ 22y x = 向 平移 个单位 22(1)y x =-(2)想一想○1二次函数图像平移的方法 左加右减 上加下减 ○2二次函数的图像有哪些性质?3.巩固练习 随堂练习4.拓展提高1)若抛物线y=-x 2向左平移2个单位,再向下平移4个单位所得抛物线的解析式是________2)如何将抛物线y=2(x-1) 2+3经过平移得到抛物线y=2x 2?3) 将抛 物线y=2(x -1)2+3经过怎样的平移得到抛物线y=2(x+2)2-1? 4)若抛物线y=2(x-1)2+3沿x 轴方向平移后,经过(3,5),平移后的抛物线的解析式是______.5.作业设计 习题 第1题、第2题6.课堂反思学生在想一想的环节中,可能猜想的结果或许很多,老师不要急于表态,而是要引导学生画图验证,从而使学生经历猜想、验证等数学活动,形成自己对本节课重点内容的理解和有效的学习策略,有利于培养学生的数学直觉和感悟能力,加深对数学学习的体验,进一步突破重难点.在学生的探究过程中,教师要注意引导学生进行图象和图象之间的比较、表达式和表达式之间的比较,建立图象和表达式之间的联系, 是否理解表达式的变化将引起图象的何种变化,或者图象的变化将要引起表达式的何种变化. 要引导学生从感性认识上升到理性认识.五、教学策略选择与信息技术融合的设计教师活动预设学生活动 设计意图 在同一坐标系内画出2ax y =、21y ax =+ 的图象 2ax y = 21y ax =+向上平移1个单位长度回顾上一节课所学内容,过渡到新课学习。

在直角坐标系中做出22(1)y x =-的图像锻炼学生绘做二次函数的图像的能力并为下一环节的图像对比做准备。

最新版九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.3 二次函数y=a(x-h)2,y=a(x-h)2

最新版九年级数学下册 第二章 二次函数 2.2 二次函数的图像与性质 2.2.3 二次函数y=a(x-h)2,y=a(x-h)2

课时作业(十一)[第二章 2 第3课时二次函数y=a(x-h)2,y=a(x-h)2+k的图象与性质]一、选择题1.2018·临安区抛物线y=3(x-1)2+1的顶点坐标是( )A.(1,1) B.(-1,1)C.(-1,-1) D.(1,-1)2.如图K-11-1,在平面直角坐标系中,抛物线的函数表达式为y=-2(x-h)2+k,则下列结论正确的是( )图K-11-1A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<03.2018·虹口区一模如果将抛物线y=-x2-2向右平移3个单位长度,那么所得到的新抛物线的表达式是链接听课例3归纳总结( )A.y=-x2-5 B.y=-x2+1C.y=-(x-3)2-2 D.y=-(x+3)2-24.2018·徐汇区一模对于二次函数y=-(x+2)2+3,下列结论中正确的个数为( ) 链接听课例2归纳总结①其图象开口向下;②其图象的对称轴是直线x=-2;③其图象不经过第一象限;④当x >2时,y随x的增大而减小.A.4 B.3 C.2 D.15.2018·枣庄如图K-11-2是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,则下列结论正确的是( )图K-11-2A.b2<4ac B.ac>0C.2a-b=0 D.a-b+c=06.下列抛物线中,以直线x=2为对称轴,且经过点(0,1)的是 ( )A.y=(x-2)2+1 B.y=(x+2)2+1C.y=(x-2)2-3 D.y=(x+2)2-37.2017·宜宾如图K -11-3,抛物线y 1=12(x +1)2+1与y 2=a(x -4)2-3交于点A(1,3),过点A 作x 轴的平行线,与两条抛物线分别交于B ,C 两点,且D ,E 分别为顶点.则下列结论:①a =23;②AC =AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是( )图K -11-3A .1B .2C .3D .4二、填空题8.已知二次函数y =(x -2)2+3,当x________时,y 随x 的增大而减小.9.如果二次函数y =a(x -h)2+k 的图象的对称轴为直线x =-1,那么h =________;如果它的顶点坐标为(-1,-3),那么k =________.10.2018·江西模拟把抛物线y =3x 2先向上平移2个单位长度,再向右平移3个单位长度,所得抛物线的表达式是________.链接听课例3归纳总结11.如图K -11-4是二次函数y =a(x +1)2+2的图象的一部分,该图象在y 轴右侧与x 轴的交点坐标是________.图K -11-412.二次函数y =a(x +m)2+n 的图象的顶点在第四象限,则一次函数y =mx +n 的图象经过第________象限.13.如图K -11-5,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一个新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是________.图K -11-5三、解答题14.二次函数y =a(x -3)2+4的图象是由二次函数y =-12x 2的图象经过平移得到的.(1)请指出a 的值,并说明平移的方法;(2)说出二次函数y =a(x -3)2+4的图象的开口方向、对称轴和顶点坐标.链接听课例3归纳总结15.已知抛物线y =a(x +2)2过点(1,-3). (1)求抛物线的函数表达式;(2)指出抛物线的对称轴、顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.如图K -11-6,已知二次函数y =a(x -h)2+3的图象经过原点O(0,0),A(2,0). (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA′,试判断点A′是不是该函数图象的顶点.图K -11-617.2017·金华甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图K -11-7,甲在O 点正上方1 m 的点P 处发出一球,羽毛球飞行的高度y(m )与水平距离x(m )之间满足函数表达式y =a(x -4)2+h.已知点O 与球网的水平距离为5 m ,球网的高度为1.55 m .(1)当a =-124时,①求h 的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O 的水平距离为7 m ,离地面的高度为125 m 的点Q处,在此处乙扣球成功,求a 的值.图K -11-7分类讨论已知二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,求m +n 的值.详解详析【课时作业】 [课堂达标]1.[解析] A ∵y =3(x -1)2+1是顶点式,∴抛物线的顶点坐标是(1,1).故选A. 2.[解析] A 根据题意可得抛物线的顶点坐标为(h ,k ),而从图象中可看出顶点在第一象限,根据第一象限内点的坐标特征,可得h >0,k >0.故选A.3.[解析] C y =-x 2-2的顶点坐标为(0,-2),∵向右平移3个单位长度,∴平移后的抛物线的顶点坐标为(3,-2),∴所得到的新抛物线的表达式是y =-(x -3)2-2.故选C.4.[解析] A ∵y =-(x +2)2+3,∴抛物线的开口向下,对称轴为直线x =-2,顶点坐标为(-2,3),故①②都正确;在y =-(x +2)2+3中,令y =0可求得x =-2+3<0,或x =-2-3<0,∴抛物线不经过第一象限,故③正确;∵抛物线开口向下,对称轴为x =-2,∴当x >-2时,y 随x 的增大而减小,∴当x >2时,y 随x 的增大而减小,故④正确.综上可知正确的结论有4个,故选A.5.[解析] D ∵抛物线与x 轴有两个交点, ∴b 2-4ac >0,即b 2>4ac ,∴A 选项错误; ∵抛物线开口向上,∴a >0.∵抛物线与y 轴的交点在x 轴下方,∴c <0, ∴ac <0,∴B 选项错误;∵二次函数图象的对称轴是直线x =1,∴-b2a=1,∴2a +b =0,∴C 选项错误;∵抛物线过点A (3,0),二次函数图象的对称轴是直线x =1, ∴抛物线与x 轴的另一个交点坐标为(-1,0), ∴a -b +c =0,∴D 选项正确.故选D. 6.[答案] C7.[解析] B 把点A 的坐标代入y 2,求出a 的值,即可得到函数的表达式;令y =3,求出B ,C 两点的横坐标,然后求出BD ,AD 的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.∵抛物线y 1=12(x +1)2+1与y 2=a (x -4)2-3交于点A (1,3),∴3=a (1-4)2-3,解得a =23,故①正确;∵E 是抛物线y 2的顶点,∴E (4,-3). 当y 2=3时,即23(x -4)2-3=3,解得x 1=1,x 2=7.故C (7,3).则AC =6,AE =(3+3)2+(1-4)2=3 5, ∴AC ≠AE .故②错误;当y 1=3时,即3=12(x +1)2+1,解得x 1=1,x 2=-3,故B (-3,3),D (-1,1),则AB =4,AD =BD =22,∴AD 2+BD 2=AB 2,∴△ABD 是等腰直角三角形,故③正确; 令12(x +1)2+1=23(x -4)2-3, 解得x 1=1,x 2=37,∴当1<x <37时,y 1>y 2,故④错误.故选B. 8.[答案] <2[解析] 对于二次函数y =(x -2)2+3,其中二次项系数a =1>0,抛物线开口向上,在对称轴的左侧,y 随x 的增大而减小,即当x <2时满足要求.9.[答案] -1 -310.[答案] y =3(x -3)2+2[解析] 把y =3x 2先向上平移2个单位长度,得到y =3x 2+2,再向右平移3个单位长度,得到y =3(x -3)2+2.故所得抛物线的表达式为y =3(x -3)2+2.11.[答案] (1,0) 12.[答案] 二、三、四[解析] 二次函数y =a (x +m )2+n 的图象的顶点坐标为(-m ,n ),因为该点在第四象限,所以-m >0,n <0,即m <0,n <0,所以一次函数y =mx +n 的图象经过第二、三、四象限.故填二、三、四.13.[答案] y =12(x -2)2+4[解析] 连接AB ,A ′B ′,则S 阴影=S 四边形ABB ′A ′.由平移可知,AA ′=BB ′,AA ′∥BB ′,所以四边形ABB ′A ′是平行四边形.分别延长A ′A ,B ′B 交x 轴于点M ,N .因为A (1,m ),B (4,n ),所以MN =4-1=3.因为S ▱ABB ′A ′=AA ′·MN ,所以9=3AA ′,解得AA ′=3,即原抛物线沿y 轴向上平移了3个单位长度,所以新图象的函数表达式为y =12(x -2)2+4.14.解:(1)a =-12,将二次函数y =-12x 2的图象先向右平移3个单位长度,再向上平移4个单位长度得到二次函数y =-12(x -3)2+4的图象(平移方法不唯一).(2)开口向下,对称轴为直线x =3,顶点坐标为(3,4). 15.解:(1)∵抛物线经过点(1,-3), ∴-3=9a ,a =-13,∴抛物线的函数表达式为y =-13(x +2)2.(2)对称轴是直线x =-2,顶点坐标为(-2,0). (3)∵a =-13<0,∴当x <-2时,y 随x 的增大而增大.16.解:(1)∵二次函数y =a (x -h )2+3的图象经过原点O (0,0),A (2,0),∴该函数图象的对称轴是直线x =0+22=1.(2)点A ′是该函数图象的顶点.理由如下: 如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′, ∴OA ′=OA =2, ∠A ′OA =60°,∴在Rt △A ′OB 中,∠OA ′B =30°, ∴OB =12OA ′=1,A ′B =3OB =3,∴点A ′的坐标为(1,3),由(1)知函数的表达式为y =a (x -1)2+3, ∴点A ′为该函数图象的顶点.17.[解析] (1)①把(0,1),a =-124代入y =a (x -4)2+h 即可求得h 的值;②把x =5代入y =a (x -4)2+h 可求得网球的高度,与1.55 m 比较大小,做出正确的判断.(2)由题意,把点(0,1),(7,125)代入y =a (x -4)2+h 即可求得a 的值.解:(1)①把(0,1),a =-124代入y =a (x -4)2+h ,得1=-124×16+h ,解得h =53. ②把x =5代入y =-124(x -4)2+53,得y =-124×(5-4)2+53=1.625.∵1.625>1.55,∴此球能过网.(2)把点(0,1),(7,125)代入y =a (x -4)2+h ,得⎩⎪⎨⎪⎧16a +h =1,9a +h =125,解得⎩⎪⎨⎪⎧a =-15,h =215.∴a 的值为-15.[素养提升]解:二次函数y =-(x -1)2+5的大致图象如图. ①若m <0<n <1, ∵m ≤x ≤n ,∴当x =m 时y 取得最小值,即2m =-(m -1)2+5, 解得m =-2或m =2(不合题意,舍去);当x =n 时y 取得最大值,即2n =-(n -1)2+5,解得n =2或n =-2(均不合题意,舍去). ②若m <0<1≤n , ∵m ≤x ≤n ,∴当x =1时y 取得最大值,即2n =-(1-1)2+5,解得n =52.此时,若函数在x =m 时取得最小值,则由①可知m =-2;若函数在x =n 时取得最小值,则2m =-(n -1)2+5,由n =52解得m =118(不合题意,舍去).综上,m +n =-2+52=12.。

《二次函数的图象与性质(3)》课件 (同课异构)2022年精品课件

《二次函数的图象与性质(3)》课件 (同课异构)2022年精品课件

注意:这个根指数3绝| 对不可省略.
3a
3叫做根指数
a叫做被开方数
求一个数a的立方根的运算叫做开立方 ,a叫做被开方数
求一个数的立方根的运算叫作 "开立方〞. "开立方〞与 "立方〞互为逆运算
逆向思维
与学习开平方运算的过程一样 ,表达着一种 重要的数学思想方法 ,你有体会了么 ?
典例精析
例1 求以下各数的立方根:
(1)y=(x+1)2 (2)y=-(x-5)2
(3)y=2(x-3)2 (4)y=- 2(x-1)2
1
(5)y=- 2 (x+
3)2
2、根据下列函数的解析式回答 当x为何值时,y随x的增大而增大?
(1)y=(x+1)2
(2)y=-(x-5)2
(3)y=2(x-3)2
(4)y=- 2(x-1)2
1
20
16
12
8
-12 - -8 -
10
6
4 2
-4 -2 0 2
y 1 x2 2
y 1 x 22
2
x 2 4 6 8 10 12
y
O2
两个二次函数的图象 形状相二同次,项可系以数看作是 抛物线相y同= 1ax>2整0, 体 沿x轴开向口右2都平向移上了, 2 x 个单位
函数y
=1
2
(x
-2)2的图象与12y
立方根是它本身的数有 1, -1, 0与立方根的异同
被开方数 正数 负数 零
平方根 有两个互为相反数
无平方根 零
立方根 有一个,是正数 有一个,是负数

二 开立方及相关运算
每个数a都有一个立方根 ,记作 3 a,读作 "三次 根号a〞. 如:x3 =7时 ,x是7的立方根.

《二次函数的图像和性质》第三课时教案

《二次函数的图像和性质》第三课时教案

5.4二次函数的图像和性质(3)教材分析:本节课是在学习了二次函数y=ax 2+k,y=a(x-h)2的图象和性质的基础上的再一次提高和升华,是在探索抛物线y=ax 2+k,y=a(x-h)2与y=ax 2的关系基础上,进一步讨论更一般的二次函数y=a(x-h)2+k 的性质,在本章中起到承前启后的作用.教学设想:在本节中,要让学生充分的参与到课堂学习中来,让学生成为学习的主人,鼓励学生自己动手,大胆猜想,敢于归纳,由此培养学生的归纳能力与逻辑思维能力. 教学目标:知识与技能:1.正确理解经过x 轴与y 轴的平移,可由抛物线y=ax 2得到y=a(x-h)2+k .2.理解二次函数y=a(x-h)2+k 图象和性质,并能够利用性质解决相关问题.过程与方法:经历探索抛物线y=a(x-h)2+k 与y=ax 2的关系的过程,发展学生学习数学中的转换、化归思维方法,体会平移知识在二次函数中的应用.情感态度和价值观:在合作探索、自主学习的过程中,让学生体验数学学习活动充满探索性、创造性和趣味性,培养学生学习数学的热情和自信心.教学重难点:重点:抛物线y=a(x-h)2+k 与y=ax 2的关系及二次函数y=a(x-h)2+k 的性质.难点:应用抛物线y=a(x-h)2+k 的性质解决相关问题.课前准备教具准备 教师准备PPT 课件课时安排:4课时教学过程:知识回顾:(1)抛物线 的开口方向、对称轴、顶点各是什么?(2)抛物线 与抛物线有什么关系? 可以看出,抛物线 的开口向下,对称轴是经过点(-1,0)且与x 轴垂直的直线,我们把它记为x =-1,顶点是(-1,0);抛物线 的开口向_____,对称轴是___________,顶点是_____________.可以发现,把抛物线 向左平移1个单位,就得到抛物线 ;把抛物线 向右平移1个单位,就得到抛物线 . 【设计意图】:通过对二次函数y=ax 2+k ,y=a(x-h)2与y=ax 2的图象、开口方向、对称轴和顶点坐标以及相互关系的回顾,为引入本节课的教学做好准备.合作探究: 二次函数y=a(x-h)²+k 的图象221,1y x y x =+=-221,1y x y x =+=-2y x =()2112y x =-+()2112y x =--212y x =-()2112y x =-+212y x =-()2112y x =--画出函数 的图象, 解:(1)作函数 的图象: (2)指出它的开口方向、对称轴及顶点.抛物线 的开口方向向下、对称轴是 x =-1,顶点是(-1,-1). (3)抛物线 经过怎样的变换可以得到抛物线 向下平移1个单位,再身左平移1个单位,得到的. 归纳:二次函数y =a (x -h )²+k 与y =ax ²的关系一般地,由y =ax ²的图象便可得到二次函数y =a (x -h )²+k 的图象:y =a (x -h )²+k (a ≠0) 的图象可以看成y =ax ²的图象先沿x 轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.因此,二次函数y=a(x-h)²+k 的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k 的值有关.归纳:二次函数y =a (x -h )²+k 的性质归纳:二次函数y =a (x -h )²+k 与y =ax ²的区别与联系1.相同点:(1)形状相同(图像都是抛物线,开口方向相同).(2)都是轴对称图形.(3)都有最(大或小)值.(4)a>0时, 开口向上,在对称轴左侧,y 都随x 的增大而减小,在对称轴右侧,y 都随 x 的增大而增大. a<0时,开口向下,在对称轴左侧,y 都随x 的增大而增大,在对称轴右侧,y 都随 x 的增大而减小.2.不同点:(1)顶点不同:分别是(h,k)和(0,0).(2)对称轴不同:分别是直线x= h 和y 轴.(3)最值不同:分别是k 和0.3.联系: y=a(x-h)²+k(a ≠0) 的图象可以看成y=ax ²的图象先沿x 轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.【设计意图】:对相应的问题组织学生自己独立完成,然后小组讨论得出结论.例题讲解:例1:试讨论二次函数 的性质 解:由函数 的表达式可知,它有以下性质 ()21112y x =-+-()21112y x =-+-212y x =-()21112y x =-+-()522y =-x +3-2()522y =-x +3-2(1)图象是抛物线(2)对称轴为直线x=-3(3)顶点是图象的最高点,坐标为(-3,-2)(4)当x<-3时,函数值随x的增大而增大;当x>-3时,函数值随x的增大而减小.【设计意图】:通过例题讲解引导学生再一次经历探索过程,有助于对那点的突破,同时激发学生思维的宽度与广度.当堂检测:1.说出下列抛物线的开口方向、对称轴及顶点:(1)y =2( x+3)2+5; (2)y = -3(x-1)2-2;(3)y = 4(x-3)2+7; (4)y = -5(x+2)2-6.解:(1)a =2>0开口向上,对称轴为x=-3,顶点坐标为(-3,5)(2)a =-3<0开口向下,对称轴为x=1,顶点坐标为(1,-2)(3)a =4>0开口向上,对称轴为x=3,顶点坐标为(3,7)(4)a =-5<0开口向下,对称轴为x=-2,顶点坐标为(-2,-6).课堂小结:本节课学习了二次函数y=a(x-h)2+k的图象和性质作业:课本 P.38第1,2题板书设计:5.4二次函数的图像和性质(3)知识回顾:合作探究:二次函数y=a(x-h)²+k的图象归纳:二次函数y=a(x-h)²+k与y=ax²的关系归纳:二次函数y=a(x-h)²+k的性质归纳:二次函数y=a(x-h)²+k与y=ax²的区别与联系例1。

2.2.3二次函数的图像和性质

2.2.3二次函数的图像和性质

通过本节课的学习,你有哪些收获? 对于本节课的表现,你给自己打多少分?
书中38页 随堂练习
由二次函数y=2x2的图象,你能得到y=2(x+3)2-1 的图像吗?你是怎样得到的?
y=2(x+3)²
y=2x²
(1)y=2x2向左平
移3个单位长度,得到
y=2(x+3)2
y=2(x+3)²-1
(2)y=2(x+3)2 向下平移1个单位长度, 得到y=2(x+3)2-1
一般地,抛物线y=a(x-h)2+平移,可 以得到抛物线y=a(x-h)2+k.平移的方向、距离要根 据h、k的值来决定.
3.怎样由函数y=2x²的图像得到函数y=2(x-1)²+3的 图像?对于函数y=2(x-1)²+3,当x取哪些值时, y随x的增大而增大?当x取哪些值时,y随x的增大 而减小?
4.分别写出符合下列条件的二次函数表达式: (1)两个函数的图像都不经过第三、四象限; (2)两个函数的图像只有顶点坐标不同。
(3)类似地,你能发现函数y=2x2的 图象与y=2(x+1)2图象有什么关系?
二 次 函 数 y=2x2 , y=2(x-1)2 , y=2(x+1)2的图象都是抛物线,并且形 状相同,只是位置不同。将函数y=2x2
的图象向右平移1个单位长度,就得到 函数y=2(x-1)2的图象;将函数 y=2x2 的图象向左平移1个单位长度,就得到 函数y=2(x + 1)2的图象。
追问:抛物线y =-4(x-3)2+7能够由抛物线y=4x2 平移得到吗?
不能,平移不改变开口方向
二次函数y=a(x-h)2 +k图像的特点。
y=a(x-h)2 +k(a≠0) 开口方向 顶点坐标 对称轴 增 减 性

2.2.3二次函数的图像与性质(3)

2.2.3二次函数的图像与性质(3)
二次函数y=ax2的图象的性质:
(a>0)
(a<0) 下
开口方向 顶点坐标 对称轴

都是(0,0)
都是y轴
增减性
“左降右升”
“左升右降”
y最大值为0
极值 当x=0时 y最小值为0
探究 二、关于三条抛物 线,你有什么看法?
左右平移得到
2 1 -4 -3 -2 -1-1 0 1 2 3 4 x -2 -3 1 2 -4 y x -5 2 1 1 2 2 y ( x 1) -6 y ( x 1) 2 -7 2 -8
三、观察三条抛物线: y
(5)增减性怎么样?
归纳 二次函数 y a( x h) 的图象及性质:
2
1.图象是一条抛物线,对称轴为直线x=h,顶 点为(h,0)。 2.当a>0时,开口向上; 在对称轴的左侧,y随x的增大而减小, 在对称轴的右侧,y随x的增大而增大; 当x=h时,y取最小值为0。 3.当a<0时,开口向下; 在对称轴的左侧,y随x的增大而增大, 在对称轴的右侧,y随x的增大而减小; 当x=h时,y取最大值为0。
y
归纳 用平移观点看函数: 抛物线 y a( x h) 可以看作是由 2 抛物线 y ax 平移得到。 y
2
(1)当h>0时,向右平移 h 个单位; (2)当h<0时,向左平移 h 个单位。
o
x
巩固
4、二次函数y ( x 2) 是由二次函 2 数 y x 向 平移 个单位得到的。
2
小结
二次函数 y a( x h) 的图象及性质:
2
(1)形状、对称轴、顶点坐标;
(2)开口方向、极值、开口大小; (3)对称轴两侧增减性。

2.2二次函数的图象与性质(3)

2.2二次函数的图象与性质(3)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/172021/9/172021/9/172021/9/179/17/2021 ❖14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月17日星期五2021/9/172021/9/172021/9/17 ❖15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/172021/9/172021/9/179/17/2021 ❖16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/172021/9/17September 17, 2021 ❖17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/172021/9/172021/9/172021/9/17
当 x=h 时,y 最大值=0
2 二次函数的图象与性质
知识点二 二次函数 y=ax2 与 y=a(x-h)2 的图象的关系 二次函数 y=a(x-h)2 的图象与 y=ax2 的图象的形状完全相 同,开口方向也相同,但 y=a(x-h)2 的图象的对称轴是直 线 x=h,顶点坐标为(h,0).实际上,只要把 y=ax2 的图象 向左(h<0)或右(h>0)平移|h|个单位长度,就可以得到 y =a(x-h)2 的图象.
2-2-15 所示.
❖9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/172021/9/17Friday, September 17, 2021 ❖10、阅读一切好书如同和过去最杰出的人谈话。2021/9/172021/9/172021/9/179/17/2021 11:44:30 PM ❖11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/172021/9/172021/9/17Sep-2117-Sep-21 ❖12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/172021/9/172021/9/17Friday, September 17, 2021
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开口方向 对称轴 顶点坐标 最值

1 探讨二次函数y= -1/2 x² , y= -1/2 (x-1)² , y= -1/2(x-1)² +1
的图象的平移关系,确定它 们的图象的三大特征; 并判 断增减情况.
返回
y
-3.
-2
-1
4. 0. -1 -2. -3.

1.
2.
3.
x
1 2 y x 1 2
y随x变 化规律
最值 开口大小
在对称轴的左侧,y随 着x的增大而减小. 在对称轴的右侧, y 随着x的增大而增大.
在对称轴的左侧,y随 着x的增大而增大. 在对称轴的右侧, y 随着x的增大而减小.
当x=h时,最小值为0. 当x=h时,最大值为0.
a
越大,开口越小
a
越大,开口越小
随手一练
1 2 1. y (x 2) 2 1 2 2. y 2(x ) 2 2 3. y (x 1)
3 总结抛物线y=a(x-h)² +k的 特征, 给出它的开口方向, 对称轴和顶点坐标与a , h , k 的值的关系, 以及最值和 增减情况与a , h , k 的值的 关系.
2
y=a(x 对 顶点 称 h)² +k 轴 a>0 (h,k) x=h
开口方 向
最值
增减情况
向上
a<0 (h,k) x=h
2.2.3二次函数的 图象和性质
函数y=ax² +c和函数y=ax² 的图像有什么性质? 函数关 系式 y=ax2 图像
抛物线
开口方 向
a>0向上 a<0向下 a>0向上 a<0向下
对称轴
y轴
顶点 坐标
(0 ,0 ) (或直线x=0)
y轴
(或直线x=0)
y=ax2+c
抛物线
(0,c)
函数y=ax² +c和函数y=ax² 的图像有什么联系?
y 2x 1
2
1 2 y ( x 4) 2
1 2 猜测函数 y x 2
1 2 y ( x 4) 2
的图像有何关系?它们 有怎样的性质呢?
1 2 y x 2
1 y ( x 4) 2 2
1 y ( x 4) 2 2
y=a(x-h)2 (a>0) y=a(x-h)2 (a<0) ( h, 0) 顶点坐标 (h,0) 对称轴 直线x=h 直线x=h 向上 向下 开口方向 抛物线
二次函数y=2(x-1)2与y=2x2的增减性类似.
y 2x
2
y 2x 1
2
在对称轴(直线:x=1)左侧 (即x<1时), y的值随x的增 大而减少
在对称轴(直 线:x=1)右侧 (即x>1时), y 的值随x的增大 而增大,.
顶点是最低点 函数有最小值当 x=1时, 最小值是0
函数 y=2x2 y=2(x-1)2
向下
x=h时, x<h时, y随x的增大而 有最小 减小; x>h时,y随x的 值y=k 增大而增大. x=h时, x<h时, y随x的增大而 有最大 增大; x>h时, y随x的 值y=k 增大而减小.
1 2 y x 2
-4.
1 y ( x 1)2 1 2
y
-3.
-2
-1
4. 0. -1 -2. -3.
1.
2.
3.
x
1 y ( x 1)2 1 2
1 2 y x 2
-4.
1 y ( x 1)2 2
2 探索上面三个函数 之间的相同点,不同点 和联系.
开口 图像 方向 抛物 线 抛物 线
顶点 坐标
对称 轴
y随x变化 规律
直线 以直线x=0 上 (0,0) x=0 为界线 直线 以直线x=1 上 (1,0) x=1 为界线
猜一猜,在同一坐标系中作二次函数y=2(x+1)2 的图象,会在什么位置?
y 2x 1
2
y 2x 1
2
把y=2x² 的图像沿轴向右平移1个单位就得 到y=2(x-1)² 的图像 把y=2x² 的图像沿轴向左平移1个单位就得 到y=2(x+1)² 的图像
y 2x
2
y 2x 1
2
(3) 函数 y=2(x-1)2 的图象与 y=2x2 的图象 , 它 的开口方向、顶点坐标和对称轴分别是什么?
y 2x
图象是轴对称 图形对称轴是 平行于y轴的直 线:x=1.
2
y 2x 1
2
二次项系数相同 a>0,开口都向上
顶点坐标 是点(1,0).
相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最高点. (4) 在对称轴左侧,都随 x 的增大而减小,在对 称轴右侧,都随 x 的增大而增大. 不同点: (1)对称轴不同. (2)顶点不同. (3)最大值不相同.
1 2 y x 的图象向右平移1个 单位, 就得到 联系: 将函数 2 1 2 y ( x 1) 的图象; 在向上平移1个单位, 就得到函数 2 1 y ( x 1)2 1 的图象. 2
-2 8 18
-1 2 8
0 0 2
1 2 0
2 8 2
3 18 8
4
y 2x2
y 2x 1
18
比较y=2x² 和y=2(x-1)² 的值,它们之间有什么 关系?
y=2(x-1)² 的值比y=2x² 的值落后
y 2x
2
y 2x 1
2
观察图象,回答问题
(2) 函数 y =2( x -1) 2 的图 象 与 y=2x2 的 图 象 有 什 么关系? 把y=2x² 的 图像沿轴向右 平移1个单位就 得到y=2(x-1)² 的 图像
都是抛物线且开口方向及大小完全相同, 只是图像位置不同y=ax² +c的图象可以由 y=ax² 的图象沿对称轴平移得到。
y=ax2+c可由 y=ax2的图像上下平移而得到
当c>0 时,向上平移c个单位;
当c<0 时,向下平移︱c︱个单位。
探索y=2(x-1)² 的图像。
⑴完成下表
x -3 18
2
相关文档
最新文档