湖南省长沙市一中高三第一次月考数学(理)试题

合集下载

湖南省长沙市一中2012届高三第一次月考数学(理)试题及答案

湖南省长沙市一中2012届高三第一次月考数学(理)试题及答案

湖南省长沙一中2012届高三上学期第一次月考试卷(数学理)时量:120分钟 满分:150分(考试范围:集合,常用逻辑用语,算法初步与框图,函数,导数及其应用) 一、选择题:本大题共8小题,每小题5分,共40分. 1.命题:00R,21xx ∃∈≥的否定是A .00R,21x x ∃∈<B .00R,21xx ∃∉≥ C .R,21x x ∀∈≥ D .R,21x x ∀∈< 答案:D2.下列函数中,在区间(0,2)上为增函数的是A .y =-x +1B .12y x = C .y =x 2-4x +5 D .1y x=答案:B3.设全集U =R ,集合A ={x | x(x +3)<0},B ={x | x <-1},则右图中阴影部分表示的集合为A .{x |-3<x <-1}B .{x |-1≤x <0}C .{x |-3<x <0}D .{x |-1<x <0} 答案: B4.方程log 3x +x -3=0的实数解所在的区间是A .(0,1)B .A .(1,2)C .(2,3)D .(3,4)答案:C5.设函数f(x)是定义在R 上的以3为周期的奇函数,若f(1)>1且23(2)1a f a -=+,则 A .23a < B .213a a <≠-且 C .213a a ><-或 D .213a -<<答案:D6.在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列最接近的函数(其中a 、b 、c 为待定系数)是 A .y =a +bx B .y =a +b xC .y =ax 2+b D .b y a x=+答案:B7.已知函数f(x)=(x -a)(x -b)(其中a >b),若f(x)的图象如右图所示,则函数g(x)=a x+b 的图象大致为A B C D答案:A8.已知函数13()ln 144f x x x x=-+-,g(x)=x 2-2bx +4,若对任意x 1∈(0,2),存在x 2∈[1,2],使f(x 1)≥g(x 2),则实数b 的取值范围是 A .17(2,]8 B .[1,+∞] C .17[,)8+∞ D .[2,+∞] 答案:C 解析:2(1)(3)()4x x f x x ---'=,令f ′(x)=0得x 1=1,x 2=3∉(0,2).当x ∈(0,1)时,f ′(x)<0,函数f(x)单调递减;当x ∈(1,2)时,f ′(x)>0,函数f(x)单调递增,所以f(x)在(0,2)上的最小值为1(1)2f =-. 由于“对任意x 1∈(0, 2),存在x 2∈[1,2],使f(x 1)≥g(x 2)”等价于“g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值12-”. (*) 又g(x)=(x -b)2+4-b 2,x ∈[1,2],所以①当b <1时,因为[g(x)]min =g(1)=5-2b >0,此时与(*)矛盾;②当b ∈[1,2]时,因为[g(x)]min =4-b 2≥0,此时与(*)矛盾; ③当b ∈(2,+∞)时,因为[g(x)]min =g(2)=8-4b .解不等式1842b -≤-,可得178b ≥.综上,b 的取值范围是17[,)8+∞.二、填空题:本大题共7小题,每小题5分,共35分.9.幂函数f(x)=x α(α为常数)的图象经过(3,3),则f(x)的解析式是 .答案:12()f x x =10.已知f(x)是偶函数,它在[0,+∞)上是 增函数,若f(lgx)<f(1),则x 的取值范围是 . 答案:1(,10)1011.如图所示的程序框图运行后,输出的S 的值是 .答案:3112.若函数()(4)2(1)2x a f x ax x ⎧⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围是 .答案:[4,8) 13.先作与函数1ln3y x=-的图象关于原点对称的图象,再将所得图象向右平移3个单位得到图象C 1.又y =f(x)的图象C 2与C 1关于y =x 对称,则y =f(x)的解析式是 .答案:y =e x14.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y =f ′(x)的图象如图所示:则f(x)的单调递增区间是 ;f(x)的最大值是 . 答案:[-1,0]和[2,4] 215.定义min{p ,q}表示p 、q 中的较小者,若函数214()min{log ,3log }f x x x =+,则满足f(x)<2的x 的取值范围是 . 答案:(0,4)∪(4,+∞)三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)已知a >0且a ≠1,设命题p :函数y =a x +1在R 上单调递减,命题q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,如果“p ∨q ”为真,且“p ∧q ”为假,求a 的取值范围. 解析:若命题p 为真,则0<a <1. …………2分 若命题q 为真,则(2a -3)2-4>0,即1522a a <>或. …………5分 ∵“p ∨q ”为真,“p ∧q ”为假,∴p 与q 有且只有一个为真. …………7分(1)若p 真q 假,则01151122a a a <<⎧⎪⎨≤<<≤⎪⎩或,∴112a ≤<.…………9分(2)若p 假q 真,则11522a a a ≥⎧⎪⎨<>⎪⎩或,∴52a >.…………11分 综上所述,a 的取值范围是15[,1)(,)22+∞.…………12分 17.(本小题满分12分)设函数21()x x f x x--=的值域是集合A ,函数g(x)=lg[x 2-(a +1)2x +a(a 2+a +1)]的定义域是集合B ,其中a 是实数. (1)分别求出集合A 、B ;(2)若A ∪B =B ,求实数a 的取值范围. 解析:(1)由1()1f x x x=+-知,A =(-∞,-3]∪[1,+∞).…………4分 由x 2-(a +1)2x +a(a 2+a +1)=(x -a)[x -(a 2+a +1)]>0得x <a 或x >a 2+a +1,即B =(-∞,a)∪(a 2+a +1,+∞).…………8分(2)∵A ∪B =B ,∴23,11a A B a a >-⎧⊆⎨++<⎩有,记得a 的取值范围是(-1,0).…………12分18.(本小题满分12分)已知函数2()(0,)af x x x a x=+≠∈R . (1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a 的取值范围.解析:(1)当a =0时,f(x)=x 2为偶函数;…………2分 当a ≠0时,f(x)既不是奇函数,也不是偶函数.…………5分(2)设x 2>x 1≥2,2212121212121212()()[()]x x a a f x f x x x x x x x a x x x x --=+--=⋅+-.…………8分 由x 2>x 1≥2得x 1x 2(x 1+x 2)>16,x 1-x 2<0,x 1x 2>0,要使f(x)在 [2,+∞)上是增函数,只需f(x 1)-f(x 2)<0, 即x 1x 2(x 1+x 2)-a >0恒成立,则a ≤16.…………12分 另解:2()2af x x x '=-,要使f(x)在 [2,+∞)上是增函数, 只需当x ≥2时,f ′(x)≥0恒成立, ………8分 即220ax x-≥恒成立.…………10分 ∴a ≤2x 2.又x ≥2,∴a ≤16,故当a ≤16时,f(x)在 [2,+∞)上是增函数. …………12分 19.(本小题满分13分)市场营销人员对过去几年某商品的销售价格与销售量的关系作数据分析发现如下规律:该商品的价格上涨x%(x >0),销售数量就减少kx%(其中k 为正数),预测规律将持续下去.目前该商品定价为每件10元,统计其销售数量为1000件. (1)写出该商品销售总金额y 与x 的函数关系,并求出当12k =时,该商品的价格上涨多少,就能使销售总额达到最大?(2)如果在涨价过程中只要x 不超过100,其销售总金额就不断增加,求此时k 的取值范围.解析:(1)y =10(1+x%)×1000(1-kx%)=-kx 2+100(1-k)x +10000(k >0).……4分 取12k =,22115010000(50)1125022y x x x =-++=--+, 当x =50时,即商品价格上涨50%时,y max =11250.…………7分(2)y =-kx 2+100(1-k)x +10000(k >0)为二次函数,其图象开口向下,对称轴为50(1)k x k-=, 在适当的涨价过程中,销售总金额不断增加,即要求此函数当自变量x ∈(0,100]时是增函数.…………9分 ∴50(1)100k k-≥. 又k >0,∴50(1-k)≥100k ,∴103k <≤,即符合题意的k 的范围是1(0,]3. (13)20.(本小题满分13分)已知函数f(x)=(a 2+8)e x ,函数g(x)=(x 2+ax -2a -3)e 3-x. (1)若a =0,求g(x)的单调递增区间; (2)若a >0,且存在ξ1,ξ2∈[0,4]使得| f(ξ1)-g(ξ2)|min <3,求实数a 的取值范围.解析:(1)g′(x)=(2x +a)e 3-x -(x 2+ax -2a -3)e 3-x =e 3-x [-x 2+(2-a)x +3a +3].令-x 2+(2-a)x +3(a +1)=0,因为a =0,所以当-1<x <3时,g′(x)>0, 所以g(x)的单调递增区间为(-1,3). …………5分(2)因为对任意的a 值,f ′(x)>0恒成立,所以当a >0时函数f(x)=(a 2+8)e x在[0,4]上单调递增,所以f(x)min =f(0)=a 2+8. …………7分令g′(x)=0,得x 1=3,x 2=-(a +1).因为a >0,所以x 2=-(a +1)<0.所以g(x)max =g(3)=6+a .…………10分由a 2+8>6+a ,即f(x)min >g(x)max ,所以| f(ξ1)-g(ξ2)|min <3,即a 2-a +2<3, 所以223a a a >⎧⎨-+<⎩,解得15(0,)2a +∈.…………13分 21.(本小题满分13分)定义F(x ,y)=(1+x)y,x ,y ∈(0,+∞).(1)令函数f(x)=F(1,log 2(x 3+ax 2+bx +1))的图象为曲线C ,若存在实数b 使得曲线C 在x 0(-4<x 0<-1)处有斜率为-8的切线,求实数a 的取值范围;(2)令函数g(x)=F(1,log 2[(lnx -1)e x+x]),是否存在实数x 0∈[1,e],使曲线y =g(x)在点x =x 0处的切线与y 轴垂直?若存在,求出x 0的值;若不存在,请说明理由; (3)当x ,y ∈N *,且x <y 时,求证:F(x ,y)>F(y ,x).解析:(1)f(x)=F(1,log 2(x 3+ax 2+bx +1))=x 3+ax 2+bx +1,设曲线C 在x 0(-4<x 0<-1)处有斜率为-8的切线,又由题设知log 2(x 3+ax 2+bx +1)>0,令φ(x)=x 3+ax 2+bx +1,则φ′(x)=3x 2+2ax +b ,∴存在实数b 使得200032000328410x ax b x x ax bx ⎧++=-⎪-<<-⎨⎪++>⎩①②③有解.…………3分 由①得b =-8-3x 02-2ax 0,代入③得-2x 02-ax 0-8<0,∴由200028041x ax x ⎧++>⎪⎨-<<-⎪⎩有解,当x 0∈[1,e]时,0001e e 0,ln 10x x x ≥>+-≥, ∴00001()(ln 1)e 110x g x x x '=+-+≥>.…………8分 曲线y =g(x)在点x =x 0处的切线与y 轴垂直等价于方程g ′(x 0)=0有实数解. 而g ′(x 0)>0,即方程g ′(x 0)=0无实数解.故不存在实数x 0∈[1,e],使曲线y =g(x)在点x =x 0处的切线与y 轴垂直.…………9分(3)令ln(1)(),1x h x x x +=≥,由2ln(1)1()xx x h x x-++'=. 又令()ln(1),01x p x x x x =-+>+,∴2211()01(1)(1)x p x x x x -'=-=<+++, ∴p(x)在[0,+∞)上单调递减,∴当x >0时,有p(x)<p(0)=0,∴当x ≥1时,有h′(x )<0,∴h(x)在[1,+∞)上单调递减, ∴当1≤x <y 时,有ln(1)ln(1)x y x y++>, ∴yln(1+x)>xln(1+y),∴(1+x)y>(1+y)x,∴当x ,y ∈N *,且x <y 时,F(x ,y)>F(y ,x).…………13分。

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(附答案)

高三数学第一次月考试题(注意:答案一律写在答题纸上)一、填空题 (本大题共12小题,每小题4分,共48分)1. 已知集合A ={x |x 2-p x +15=0}B ={x |x 2-5x +q =0},如果A ∩B ={3},那么p +q =2. 已知集合}2,1,1{-=M ,集合},|{2M x x y y N ∈==,则N M = 3. 设A 、B 、C 是三个集合,则“A ∩B=A ∩C ”是“B=C ”的 条件。

4. 已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)= 。

5. 设函数 f (x )在 (-∞,+∞)内有定义,下列函数(1) y =-|f (x )|; (2) y = x f (x 2); (3) y =-f (-x ); (4) y =f (x )-f (-x ) 中必为奇函数的有▁▁▁▁▁▁(要求填写正确答案的序号)。

6.⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,则方程()1(12)f x x x +=-的各个解之和为7.已知函数y =f (x )是奇函数,周期T =5,若f (-2)=2a -1则f (7)= 8.函数 )0(12≤-=x x y 反函数是9.某班有50名学生,其中 15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是 (结果用分数表示). 10.若不等式|2|6ax +<的解集为(-1,2),则实数a = 。

11.当不等式61022≤++≤px x 恰有一个解时,实数p 的值是____。

12. 已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M 的所有非空子集,这些和的总和是 . 二、选择题(本大题共4小题,共16分)13.若函数y =f (x ) (f (x )不恒为零)的图象与函数y =-f (x )的图象关于原点对称,则函数y =f (x ) ( )(A )是奇函数而不是偶函数 (B )是偶函数而不是奇函数(C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数设函数14.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍然回到甲手中,则不同的传球方式有 ( ) (A ) 6种 (B ) 8种 (C ) 10种 (D )16种 15、已知关于x 的方程:2x =x 2解的个数为 ( ) (A )1 (B )2 (C )3 (D ) 4 16. 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R ∈x ,有()f x M ≤,则M 是函数()f x 的最大值; (2)若存在R ∈0x ,使得对任意R ∈x ,且0x x ≠,有)()(0x f x f <,则)(0x f 是函数()f x 的最大值;(3)若存在R ∈0x ,使得对任意R ∈x ,有)()(0x f x f ≤,则)(0x f 是函数()f x 的最大值.。

湖南省长沙市2023-2024学年高一上学期第一次月考数学试题含解析

湖南省长沙市2023-2024学年高一上学期第一次月考数学试题含解析

2023年下学期高一第一次月考数学(答案在最后)(时量:120分钟分值:150分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“200,1x x ∃∈≠R ”的否定是()A.2,1x x ∀∈=RB.2,1x x ∀∉=RC.200,1x x ∃∈=R D.200,1∃∉=x x R 【答案】A 【解析】【分析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“200,1x x ∃∈≠R ”的否定是“2,1x x ∀∈=R ”.故选:A.2.设集合A 含有2-,1两个元素,B 含有1-,2两个元素,定义集合A B ,满足1x A ∈,2x B ∈且12x x A B ∈e ,则A B 中所有元素之积为()A.8- B.16- C.8D.16【答案】C 【解析】【分析】根据集合A B 的定义先求出集合A B ,然后再把集合中所有元素相乘即可求解.【详解】由题意{}2,1A =-,{}1,2B =-,由集合A B 的定义可知,集合A B 中有以下元素:①()212-⨯-=,②224-⨯=-,③()111⨯-=-,④122⨯=,根据集合中元素满足互异性去重得{}4,1,2A B =--e ,所以A B 中所有元素之积为()4128-⨯-⨯=.故选:C.3.若函数()31y f x =+的定义域为[]2,4-,则()y f x =的定义域是()A.[]1,1- B.[]5,13- C.[]5,1- D.[]1,13-【答案】B 【解析】【分析】根据函数()31y f x =+中[]2,4x ∈-,即可得出[]315,13x +∈-,即可选出答案.【详解】因为函数()31y f x =+的定义域为[]2,4-,即24x -≤≤所以53+113x -≤≤所以()y f x =的定义域是[]5,13-故选:B.【点睛】本题考查隐函数的定义域,属于基础题.解本题的关键在于正确理解函数的定义域是x 的取值范围与同一个函数其括号里面的取值范围一样.4.下列命题正确的是()A.“a b >”是“22a b >”的充分条件B.“a b >”是“22a b >”的必要条件C.“a b >”是“22ac bc >”的充分条件D.“a b >”是“22ac bc >”的必要条件【答案】D 【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:对于A :由a b >推不出22a b >,如0a =,1b =-满足a b >,但是22a b <,故A 错误;对于B :由22a b >推不出a b >,如1a =-,0b =满足22a b >,但是a b <,即a b >不是22a b >的必要条件,故B 错误;对于C :由a b >推不出22ac bc >,当0c =时220ac bc ==,故C 错误;对于D :若22ac bc >,则20c ≠,即20c >,所以a b >,即a b >是22ac bc >的必要条件,故D 正确;故选:D5.用C (A )表示非空集合A 中的元素个数,定义A *B =()()()()()()()(),,C A C B C A C B C B C A C A C B ⎧-≥⎪⎨-<⎪⎩若A ={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于()A.1B.3C.5D.7【答案】B 【解析】【分析】根据题意可得()1C B =或()3C B =,进而讨论a 的范围,确定出()C B ,最后得到答案.【详解】因为()2C A =,*1A B =,所以()1C B =或()3C B =,由20x ax +=,得120,x x a ==-,关于x 的方程220x ax ++=,当=0∆时,即a =±()3C B =,符合题意;当0>∆时,即a <-或a >0,-a 不是方程220x ax ++=的根,故()4C B =,不符合题意;当<0∆时,即a -<<时,方程220x ax ++=无实根,若a =0,则B ={0},()1C B =,符合题意,若0a -<<或0a <<,则()2C B =,不符合题意.所以{0,S =-,故()3C S =.故选:B .【点睛】对于新定义的问题,一定要读懂题意,一般理解起来不难,它一般和平常所学知识和方法有很大关联;另外当<0∆时,容易遗漏a =0时的情况,注意仔细分析题目.6.函数[]y x =在数学上称为高斯函数,也叫取整函数,其中[]x 表示不大于x 的最大整数,如[1.5]1,[2.3]3,[3]3=-=-=.那么不等式24[]12[]50x x -+≤成立的充分不必要条件是()A.15[,22B.[1,2]C.[1,3)D.[1,3]【答案】B 【解析】【分析】先解不等式,再结合充分条件和必要条件的定义求解即可.【详解】因为24[]12[]50x x -+≤,则[]()[]()21250x x --≤,则[]1522x ≤≤,又因为[]x 表示不大于x 的最大整数,所以不等式24[]12[]50x x -+≤的解集为:13x ≤<,因为所求的时不等式24[]12[]50x x -+≤成立的充分不必要条件,所以只要求出不等式24[]12[]50x x -+≤解集的一个非空真子集即可,选项中只有[1,2]⫋[)1,3.故选:B .7.已知1,0,0x y y x +=>>,则121x x y ++的最小值为()A.54B.0C.1D.2【答案】A 【解析】【分析】根据“1”技巧,利用均值不等式求解.【详解】1x y += ,12x y ∴++=,1(1)11221441x y x y x x y x y +++∴+=++++,0,0y x >> ,10,041y x x y +∴>>+,111152144144x y x x y x y +∴+=++≥+++,当且仅当141y x x y +=+,即23x =,13y =时等号成立,故选:A8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当q x p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则()注:p ,q 为互质的正整数()p q >,即q p为已约分的最简真分数.A.()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B.()()()R a b R a R b ⋅≥⋅C.()()()R a b R a R b +≥+ D.以上选项都不对【答案】B 【解析】【分析】设q A x x p ⎧⎫==⎨⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C 选项:分①a A ∈,b A ∈;②a B ∈,b B ∈;③a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【详解】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数,故选项A 错误;对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅;②当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;③当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误,故选:B.【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.若不等式20ax bx c -+>的解集是(1,2)-,则下列选项正确的是()A.0b <且0c >B.0a b c -+>C.0a b c ++> D.不等式20ax bx c ++>的解集是{|21}x x -<<【答案】ABD 【解析】【分析】根据一元二次不等式的解集可判断出a 的正负以及,,a b c 的关系,由此可判断各选项的对错.【详解】因为20ax bx c -+>的解集为()1,2-,解集属于两根之内的情况,所以a<0,又因为0420a b c a b c ++=⎧⎨-+=⎩,所以2b ac a =⎧⎨=-⎩;A .0,20b a c a =<=->,故正确;B .因为()11,2∈-,所以0a b c -+>,故正确;C .因为解集为()1,2-,所以0a b c ++=,故错误;D .因为20ax bx c ++>即为2220ax ax a +->,即220x x +-<,解得()2,1x ∈-,故正确;故选:ABD.10.命题:p x ∃∈R ,2220x x m ++-<为假命题,则实数m 的取值可以是()A.1- B.0 C.1D.2【答案】ABC 【解析】【分析】先求出命题为真命题时实数m 的取值范围,然后利用补集思想求出命题为假命题时m 的取值范围,由此可得出合适的选项.【详解】若命题:p x ∃∈R ,2220x x m ++-<为真命题,则()2Δ242440m m =--=->,解得1m >,所以当命题:p x ∃∈R ,2220x x m ++-<为假命题时,1m £,符合条件的为A 、B 、C 选项.故选:A BC.11.设a ,b 为两个正数,定义a ,b 的算术平均数为()2a bA a b +=,,几何平均数为()G a b =,,则有:()(),,G a b A a b ≤,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即()11,p pp p p a b L a b a b--+=+,其中p 为有理数.如:()0.50.50.50.50.5,11a b L a b a b --+==+.下列关系正确的是()A.()()0.5,,L a b A a b ≤ B.()()0,,L a b G a b ≥C.()()21,,L a b L a b ≥D.()()1,,n n L a b L a b +≤【答案】AC 【解析】【分析】根据新定义逐个选项代入,化简后根据基本不等式与柯西不等式判断即可.【详解】A :()()0.5,,112a bL a b A a b +===,故A 对;B:001102(,)(,)a b ab L a b G a b a b a b --+==≤++,故B 错;C :()222,a b L a b a b+=+,()1,2a b L a b +=,而()()()()()22222222222222122,1,22a b a b L a b a b a b L a b a b ab a b aba b +++++===≥+++++,故C 对;D :由柯西不等式,()()()()()112111112211(,)1(,)n n n n n n n n n n n n n n n n n n n n a b a b a b a b L a b a b a b L a b a b a b a b++++--+--+++++==≥=++++,故D 错.故选:AC.12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A.224a b -≤B.214a b+≥C.若不等式20x ax b +-<的解集为()12,x x ,则120x x >D.若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【答案】ABD 【解析】【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.13.已知111f x x ⎛⎫=⎪+⎝⎭,那么f (x )的解析式为________.【答案】()(0,1)1xf x x x x=≠≠-+.【解析】【分析】用1x代换已知式中的x ,可得,注意x 有取值范围.【详解】解:由111f x x ⎛⎫=⎪+⎝⎭可知,函数的定义域为{x |x ≠0,x ≠﹣1},用1x代换x ,代入上式得:f (x )=111x+=1x x +,故答案为:()(0,1)1xf x x x x=≠≠-+.【点睛】本题考查求函数解析式,掌握函数这定义是解题关键.求解析式时要注意自变量的取值范围.14.设集合{43}M xx =-<<∣,={+2<<21,}N x t x t t -∈R ∣,若M N N ⋂=,则实数t 的取值范围为____________.【答案】(],3-∞【解析】【分析】由M N N ⋂=可知N M ⊆,讨论N =∅与N ≠∅,即可求出答案.【详解】因为M N N ⋂=,所以N M ⊆,当N =∅时:2213t t t +≥-⇒≤,满足题意;当N ≠∅时:+2<21>34+262132t t t t t t t --≤⇒≥--≤≤⎧⎧⎪⎪⎨⎨⎪⎪⎩⎩,无解;所以实数t 的取值范围为(],3-∞.故答案为:(],3-∞15.已知函数()2f x x =-,()()224R g x x mx m =-+∈,若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,则m 的取值范围______.【答案】54⎡⎢⎣【解析】【分析】由题意可判断(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤,由此求出()[]2,3f x ∈,可得相应不等式恒成立,转化为函数最值问题,求解即可.【详解】由题意知(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤;当[]4,5x ∈时,()[]2,3f x ∈,故()()224R g x x mx m =-+∈需同时满足以下两点:①对[]1,2x ∀∈时,()2243g x x mx =-+≤∴12m x x≥+恒成立,由于当[]1,2x ∀∈时,1y x x=+为增函数,∴1522,24m m ≥+∴≥;②对[]1,2x ∀∈时,()2242g x x mx =-+≥,∴22m x x≤+恒成立,由于2x x+≥2x x =,即[1,2]x =时取得等号,∴2m m ≤∴≤∴54m ⎡∈⎢⎣,故答案为:54⎡⎢⎣16.若,a b R ∈,且22231a ab b +-=,则22a b +的最小值为_______.【答案】14【解析】【分析】根据a 2+2ab ﹣3b 2=1得到(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,用x ,y 表示a ,b ,然后代入a 2+b 2,利用均值不等式求解.【详解】由a 2+2ab ﹣3b 2=1得(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,则xy =1且a 34x y +=,b 4x y-=,所以a 2+b 2=(34x y +)2+(4x y -)22252184x y ++=≥,当且仅当x 2=,y 25=时取等号.故答案为14.【点睛】本题主要考查均值不等式的应用,还考查了转化求解问题的能力,属于中档题.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(其中第17题10分,18~22题每题12分,共70分)17.已知全集U =R ,集合502x A x x ⎧⎫-=≤⎨⎬-⎩⎭,{}11,B x a x a a =-<<+∈R .(1)当2a =时,求()()U UA B ⋂痧;(2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【答案】(1)()(){1U UA B x x ⋂=≤痧或}5x >(2){}34a a ≤≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用补集和交集的定义可求得集合()()U U A B ⋂痧;(2)分析可知,BA ,利用集合的包含关系可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【小问1详解】因为{}50252x A x x x x ⎧⎫-=≤=<≤⎨⎬-⎩⎭,当2a =时,{}13B x x =<<,因为全集U =R ,则{2U A x x =≤ð或}5x >,{1U B x x =≤ð或}3x ≥,因此,()(){1U U A B x x ⋂=≤痧或}5x >.【小问2详解】易知集合{}11,B x a x a a =-<<+∈R 为非空集合,因为x A ∈是x B ∈的必要不充分条件,则BA ,所以,1215a a -≥⎧⎨+≤⎩,解得34a ≤≤.因此,实数a 的取值范围是{}34a a ≤≤.18.已知a ,b ,c 均为正实数,且1a b c ++=.(1)求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭;(2)求111a b c++的最小值.【答案】(1)证明见解析(2)9【解析】【分析】(1)根据111111111++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---=---⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭a b c a b c a b c a b c a b c 结合基本不等式即可得证;(2)根据111a b c a b c a b c a b c a b c++++++++=++结合基本不等式即可得解.【小问1详解】原式111a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭()()()b c a c a b abc+++=222bc ac ababc≥8abc abc=8=.当且仅当13a b c ===是取等号,所以1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭;【小问2详解】原式a b c a b c a b c a b c++++++=++3b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3≥2339=⨯+=.当且仅当13a b c ===是取等号,所以111a b c++的最小值为9.19.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值..【答案】(1)64(2)18【解析】【分析】(1)利用基本不等式构建不等式即可得结果;(2)将28x y xy +=变形为分式型281y x +=,利用“1”的代换和基本不等式可得结果.【小问1详解】∵0x >,0y >,280x y xy +-=,∴28xy x y =+≥=,当且仅当28x y =时取等号,8≥∴64xy ≥,当且仅当416x y ==时取等号,故xy 的最小值为64.【小问2详解】∵28x y xy +=,则281y x+=,又∵0x >,0y >,∴2828()()101018x y x y x y y x y x +=++=++≥+=,当且仅当212x y ==时取等号,故x y +的最小值为18.20.济南市地铁项目正在加火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量;(2)若该线路每分钟的净收益为()()8265660p t Q t t -=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【答案】(1)2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩;450(2)发车时间间隔为4分钟时,每分钟的净收益最大为132元.【解析】【分析】(1)由题设,有2()500(10)p t k t =--且(2)=372p ,求k 值,进而写出其分段函数的形式即可.(2)由(1)写出()Q t 解析式,讨论210t ≤<、1020t ≤≤求最大值即可.【小问1详解】由题设,当210t ≤<时,令2()500(10)p t k t =--,又发车时间间隔为2分钟时的载客量为372人,∴2(2)500(102)372p k =--=,解得=2k .∴2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩,故=5t 时,2(5)5002(105)450p =-⨯-=,所以当发车时间间隔为5分钟时,列车的载客量为450人.【小问2详解】由(1)知:25626016,2<10()=134460,1020t t t Q t t t--≤-≤≤⎧⎪⎪⎨⎪⎪⎩,∵210t ≤<时,()260132Q t ≤-当且仅当=4t 等号成立,∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==,综上,时间间隔为4分钟时,每分钟的净收益最大为132元.21.已知二次函数22y ax bx =++(a ,b 为实数)(1)若1x =时,1y =且对()2,5x ∀∈,0y >恒成立,求实数a 的取值范围;(2)若1x =时,1y =且对[]2,1a ∀∈--,0y >恒成立,求实数x 的取值范围.【答案】(1)3a >-(2)11,44⎛⎫-+ ⎪ ⎪⎝⎭【解析】【分析】(1)由题意求出1b a =--可得()2120y ax a x =-++>对()2,5x ∀∈恒成立,分离参数,即得2max 2x a x x -⎛⎫> ⎪-⎝⎭,令()20,3t x =-∈,则可得()123f t t t=++,利用基本不等式即可求得答案;(2)由题意()212y ax a x =-++,变更主元:令a 为主元,视x 为参数,则()()220g a x x a x =-+->,对[]2,1a ∀∈-恒成立,由此可得不等式组,即可求得答案.【小问1详解】将1x =,1y =代入得1,1a b b a +=-∴=--∴()2120y ax a x =-++>对()2,5x ∀∈恒成立,即()22a x x x ->-对()2,5x ∀∈恒成立,当()2,5x ∈时,由于2y x x =-在()2,5上单调递增,故22220x x ->->,∴2max2x a x x -⎛⎫> ⎪-⎝⎭,()2,5x ∀∈,令()20,3t x =-∈,则()()()2213232223t t f t t t t t t t ===≤=-+++-+++,当且仅当2t t=,即()0,3t =时等号成立,∴3a >-【小问2详解】由题意()()21,12b a y ax a x =-+∴=-++,变更主元:令a 为主元,视x 为参数,令()()22g a x x a x =-+-,对[]2,1a ∀∈-,()()220g a x x a x =-+->恒成立,故只需()()()2222220120g x x x g x x x ⎧-=-++->⎪⎨-=--+->⎪⎩,即2222020x x x ⎧--<⎨-<⎩,解得1111,,4444x x x ⎧⎛⎫<<+⎪∴∈ ⎪⎨ ⎪⎝⎭⎪<<⎩.22.已知函数()f x =,()g x =.(1)求函数()f x 的定义域和值域;(2)已知a 为非零实数,记函数()()()x x h f g x a =-的最大值为()m a ,求()m a .【答案】(1)[]0,2,2⎤⎦(2)12,0211(),2222a a am a a aaa⎧⎛⎫⎪-<≠⎪⎪⎝⎭⎪⎛⎪=+≤≤⎨⎝⎭⎪⎛⎫>⎪⎪⎝⎭⎩且【解析】【分析】(1)根据根式的概念可得()f x定义域,再计算()22f x=+求解可得()f x值域;(2)令2t⎤=⎦,设函数()22aF t t t a=-++,2t⎤∈⎦,再根据二次函数对称轴与区间的位置关系分类讨论求解即可.【小问1详解】定义域:[]0,220xxx≥⎧⇒∈⎨-≥⎩,()222f x x x=+=+-+2=+当[]0,2x∈时,()[]2110,1x--+∈,∴()[]()22,4,0f x f x∈≥,∴()2f x⎤∈⎦;【小问2详解】()h x=-2t⎤=+⎦,则22222tt-=+,设()22222t aF t t a t t a-=-=-++,2t⎤∈⎦,1°若a<0,此时二次函数对称轴10ta=<<()()max2F t F=2a=-.2°若0a >,此时对称轴:10t a =>,①当12a >即102a <<时,开口向下,则()()max 2F t F =2a =-;12a ≤≤即122a ≤≤,对称轴1t a =,开口向下,则()max 1F t F a ⎛⎫= ⎪⎝⎭12a a =+,③1a <即2a >时,开口向下,()max F t F==综上:12,0211(),2222a a a m a a a a a ⎧⎛⎫⎪-<≠ ⎪⎪⎝⎭⎪⎛⎫⎪=+≤≤ ⎪⎨ ⎪⎝⎭⎪⎛⎫> ⎪ ⎪⎝⎭⎩且.。

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题Word版含解析

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题Word版含解析

2021届湖南省长沙市第一中学高三第一次月考数学(理)试题一、单选题1.已知集合A ={}{}3(,),(,)x y y xB x y y x ===,则A ∩B 的元素个数是( ) A .4B .3C .2D .1【答案】B 【解析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】 本题考查了交集及其运算,考查了方程组的解法,是基础题.2.已知i 为虚数单位,a ∈R ,若复数z =a +(1-a ) i 的共轭复数在复平面内对应的点位于第一象限,且5z z ⋅=,则z =( )A .2-iB .-1+2iC .-1-2iD .-2+3i【答案】A【解析】通过复数的运算得到方程()2215a a +-=,根据其在复平面的位置得到结果.【详解】 由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =,∴12z i =-+或2z i =-,∵在复平面内对应的点位于第一象限,∴2z i =-,故选A.【点睛】本题主要考查了复数的运算以及其几何意义,属于基础题.3.设x ∈R ,则“x 2<1”是“lg x <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】解出不等式,结合充分条件、必要条件的概念即可得到结果.【详解】∵21x <11x ⇔-<<,lg 0x <⇔01x <<, 01x <<⇒11x -<<,11x -<<不能推出01x <<,∴“21x <”是“lg 0x <”的必要不充分条件,故选B.【点睛】本题主要考查了不等式的解法,充分条件、必要条件的概念,属于基础题.4.已知向量a =(1,0),b =(-3,4)的夹角为θ,则sin2θ等于 ( )A .725-B .725C .2424-D .2425【答案】C【解析】首先根据向量夹角公式求出cos θ的值,然后求出sin θ,最后根据二倍角正弦公式即可得出结果.【详解】 33cos 155a ba b θ⋅==-=-⨯⋅, ∵0θπ≤≤,∴4sin 5θ==,24sin 22sin cos 25θθθ==-,故选C. 【点睛】本题主要考查了向量夹角的计算以及二倍角正弦公式的应用,属于中档题.5.设a =183log ,b =244log ,c =342,则a 、b 、c 的大小关系是 ( ) A .a <b <cB .a <c <bC .b <c <aD .c <b <a 【答案】D【解析】利用指数函数和对数函数的单调性可得2c <,2a >,2b >,将,a b 分别表示为631log a =+,641log b =+,进而可得结果.【详解】314222c =<=,18933log log 2a =>=,241644log log 2b =>>, 所以c 最小,因为18633log 1log a ==+,24644log 1log b ==+,∵6643log log <,∴a b >,故选D【点睛】本题主要考查了指数函数,对数函数的单调性的应用,寻找中间量是解题的关键,属于中档题.6.函数f (x )=(33)ln x xx -+的图象大致为( ) A . B .C .D .【答案】D【解析】由函数为偶函数可排除B ,由()0,1x ∈,()0f x <,可排除,A C ,进而可得结果.【详解】∵()(33)ln x x f x x -=+,函数定义域为{}0x x ≠, ()()(33)ln (33)ln x x x x f x x x f x ---=+-=+=,∴函数()f x 为偶函数,其图象关于y 轴对称,可排除B.当()01x ∈,时,330x x -+>,ln 0x <,()0f x <,其图象应在x 轴下方,可排除,A C ,故选D.【点睛】本题主要考查了由函数的解析式判断函数的图象,主要根据函数的性质利用排除法得到结果,属于中档题.7.运行如图所示的程序框图,若输出的S 的值为101,则判断框中可以填( )A .200?i >B .201?i ≥C .202?i >D .203?i > 【答案】C 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】程序的功能是计算3571sin 3sin 5sin 7sin 2222S ππππ=⨯+⨯+⨯+⨯+=1357-+-+,而101150213579199201=+⨯=-+-++-+,2012203i =+=,故条件为202?i >,故选C.【点睛】 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有( )A .50种B .60种C .70种D .90种【答案】C【解析】根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案.【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有1131030C C ⋅=种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有种1141040C C ⋅=,不同的选法共有304070+=种,故选C.【点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题.9.将函数()2sin(2)16f x x π=--的图象向左平移6π个单位长度得到函数()g x 的图象,则下列说法正确的是 ( )A .函数()g x 的最小正周期是2πB .函数()g x 的图象关于直线12x π=-对称C .函数()g x 在,62ππ⎛⎫ ⎪⎝⎭上单调递减 D .函数()g x 在0,6π⎛⎫ ⎪⎝⎭上的最大值是1 【答案】C 【解析】求出函数的周期判断A 的正误;函数的对称轴判断B 的正误;函数的单调性判断C 的正误;函数的最值判断D 的正误;【详解】 由题意知:()2sin(2)16g x x π=+-,最小正周期T 22ππ==,选项A 错误; 当12x π=-时,112g π⎛⎫-=- ⎪⎝⎭, 即函数()g x 的图象关于点(,1)12π--对称,选项B 错误; 当(,)62x ππ∈时,72(,)626x πππ+∈, ∴函数()g x 在,62ππ⎛⎫ ⎪⎝⎭上单调递减,选项C 正确;∵函数()g x 在0,6π⎛⎫ ⎪⎝⎭上单调递增,()()16g x g π<=, 即函数()g x 在0,6π⎛⎫ ⎪⎝⎭上没有最大值, ∴选项D 错误,故选C.【点睛】本题考查三角函数的简单性质,最值、单调性、周期以及单调性,考查命题的真假的判断,属于中档题.10.若()ln f x x =与()23g x x x a ++=两个函数的图象有一条与直线y x =平行的公共切线,则a = ( )A .-1B .0C .1D .3 【答案】B【解析】求出切线方程,利用公切线结合判别式0=推出结果即可.【详解】在函数()ln f x x =上的切点设为(,)x y , 根据导数的几何意义得到11x=⇒1x =, 故切点为(10),,可求出切线的方程为1y x =-, 因为直线l 和()23g x x x a ++=也相切,从而231x x a x ++=-, 化简得到2210x x a +++=,只需要满足()4410a ∆-+==,所以0a =故选B.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,属于中档题.11.设函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,则关于函数()f x 有以下五个命题: ①x ∈R ,()()1f f x =; ②()(),,()x y R f x y f x f y ∃∈+=+; ③函数()f x 是偶函数; ④函数()f x 是周期函数;⑤函数()f x 的图象是两条平行直线其中真命题的个数是( )A .5B .4C .3D .2【答案】B 【解析】由()0f x =或1,计算可判断①;由0x =0y =断③;由周期函数的定义可判断④;由x 的范围可判断⑤.【详解】由()10x f x x ⎧=⎨⎩,为有理数,为无理数, 可得()0f x =或1,则x R ∀∈,()f x 为有理数,则()()1f f x =,故①正确;当0x =0y =()()()0000f x y f x f y +=+,故②正确;∵x 为有理数,则x -为有理数,x 为无理数,则x -为无理数,∴函数()f x 是偶函数,故③正确;任何一个非零的有理数T ,都有f x Tf x ,则T 是函数的周期, ∴函数()f x 是周期函数,故④正确;由于x 为有理数,()1f x =;x 为无理数时,()0f x =,()f x 的图象不为连续的直线,故⑤错误.∴真命题的个数是4个,故选B .【点睛】本题考查命题的真假判断,主要是分段函数的周期性和函数值的特点,以及图象特点,考查判断能力和推理能力,属于基础题.12.已知三棱锥D —ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D —ABC 的体积取到最大值时,球O 的表面积为( )A .53πB .2πC .5πD .203π 【答案】A【解析】三棱锥D-ABC 的体积取到最大值时,平面ABC ⊥平面DBC ,取BC 的中点G ,连接AG ,DG ,分别取△ABC 与△DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,求出外接球的半径,然后求解球的表面积.【详解】如图,当三棱锥D ABC -的体积取到最大值时,则平面ABC 与平面DBC 垂直,取BC 的中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥分别取ABC △与DBC △的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,由1AB AC BC DB DC =====,得正方形OEGF 的边长为36,则OG =66∴四面体A BCD -的外接球的半径R 2222615()()6212OG BG =+=+=∴球O 的表面积为=2554(123ππ⨯=,故选A. 【点睛】 本题考查直线与平面垂直的判断,几何体的外接球的表面积的求法,几何体的体积的求法,考查空间想象能力以及计算能力.二、填空题13.已知定义在R 上的奇函数()f x 满足()()3f x f x +=,且当3[0,)2x ∈时,()2f x x =-,则112f ⎛⎫= ⎪⎝⎭____ 【答案】14【解析】求出函数的周期,结合函数的奇偶性,转化求解函数值即可.【详解】由()()3f x f x +=知函数()f x 的周期为3,又函数()f x 为奇函数,所以2111111()()()()22224f f f =-=-==, 故答案为14. 【点睛】本题考查函数的奇偶性的性质与应用,函数值的求法,考查转化思想以及计算能力,属于基础题.14.已知ABC △是等腰直角三角形,1,2()AC BC CP CA CB ===+,则AP BP ⋅=____【答案】4【解析】利用已知条件将,AP BP 分别用,CA CB 表示,然后求解向量的数量积即可.【详解】∵2,2AP AC CP CA CB BP BC CP CA CB =+=+=+=+.∴22(2)(2)224AP BP CA CB CA CB CA CB ⋅=+⋅+=+=,故答案为4.【点睛】本题主要考查了向量的线性运算,考查向量的数量积的运算,是基本知识的考查.15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。

2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题+答案解析(附后)

2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题的。

1.已知集合,,则( )A. B.C.D.2.已知,则( )A.B. C.D.3.下列四个函数中,以为最小正周期,且在区间上单调递减的是( )A. B.C.D.4.函数的图象与直线为常数的交点最多有( )A. 1个B. 2个C. 3个D. 4个5.已知向量,不共线,且,,若与共线,则实数x 的值为A. 1B.C. 1或D.或6.下列命题:①若,则②若,,则③的充要条件是且④若,,则⑤若A 、B 、C 、D 是不共线的四点,则是四边形ABCD 为平行四边形的充要条件.其中真命题的个数是( )A. 2B. 3C. 4D. 57.如图所示,已知正方形ABCD 的边长为1,,,,则向量的模为( )A. B. 2 C. D. 48.设函数,则的最小正周期( )A. 与a有关,且与b有关B. 与a有关,但与b无关C. 与a无关,且与b无关D. 与a无关,但与b有关二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,,且,下列结论正确的是( )A. B.C. D. 的最小值为810.要得到函数的图象,可以将函数的图象得到( )A. 先将各点横坐标变为原来的倍,再向左平移个单位B. 先将各点横坐标变为原来的2倍,再向左平移个单位C. 先将各点横坐标变为原来的倍,再向右平移个单位D. 先向左平移个单位,再将各点横坐标变为原来的倍11.已知,下列关系可能成立的有( )A. B. C. D.12.下列论断中,正确的有( )A. 中,若A为钝角,则B. 若奇函数对定义域内任意x都有,则为周期函数C. 若函数与的图象关于直线对称,则函数与的图象也关于直线对称D. 向量,,满足,则或三、填空题:本题共4小题,每小题5分,共20分。

湖南省长沙市百强校2025届高三上学期第一次月考数学试题(含答案)

湖南省长沙市百强校2025届高三上学期第一次月考数学试题(含答案)

湖南省长沙市百强校2025届高三上学期第一次月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知A ={x|x 2+x−6≤0},B ={x|lg (x−1)<0},则A ∩B =( )A. {x|−3≤x ≤2}B. {x|−3≤x <2}C. {x|1<x ≤2}D. {x|1<x <2}2.若复数z 满足z(1+i)=−3+i(i 是虚数单位),则|z|等于( )A.102B. 54C.5D.523.已知平面向量a =(5,0),b =(2,−1),则向量a +b 在向量b 上的投影向量为( )A. (6,−3)B. (4,−2)C. (2,−1)D. (5,0)4.记S n 为等差数列{a n }的前n 项和,若a 3+a 9=14,a 6a 7=63,则S 7=( )A. 21B. 19C. 12D. 425.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1 200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若X ~N(μ,σ2),记p(k)=P(μ−kσ≤X ≤μ+kσ),则p(0.75)≈0.547,p(1)≈0.683.A. 136人B. 272人C. 328人D. 820人6.已知α,β∈(0,π2),cos (α−β)=56,tan α·tan β=4,则α+β=( )A. π6B. π4C. π3D. 2π37.已知F 1,F 2是双曲线x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,以F 2为圆心,a 为半径的圆与双曲线的一条渐近线交于A ,B 两点,若3|AB|>|F 1F 2|,则双曲线的离心率的取值范围是( )A. (1,2 63) B. (1,3 55) C. (1,2)D. (1,3)8.已知函数f(x)={a·2x ,x ≤0,log 2x,x >0,若关于x 的方程f(f(x))=0有且仅有两个实数根,则实数a 的取值范围是( )A. (0,1)B. (−∞,0)∪(0,1)C. [1,+∞)D. (0,1)∪(1,+∞)二、多选题:本题共3小题,共15分。

湖南省长沙市第一中学2022-2023学年高三上学期月考卷(一)物理试卷含答案

湖南省长沙市第一中学2022-2023学年高三上学期月考卷(一)物理试卷含答案

长沙市一中2023届高三月考试卷(一)物理本试题卷分选择题和非选择题两部分,共8页。

时量75分钟,满分100分。

一、选择题(本题共6小题,每小题4分,共24分)1.伽利略的发现以及他所应用的科学方法,是人类思想史上最伟大的成就之一,而且标志着物理学的真正开端。

关于伽利略对自由落体运动的研究,下列说法正确的是()A.伽利略研究自由落体运动的实验称为理想斜面实验B.伽利略用实验直接证明了小球从静止开始沿斜面滚下时速度随位移均匀变化C.伽利略用实验直接证明了小球从静止开始在空中落下时速度随时间均匀变化D.伽利略科学方法的核心是实验和推理相结合2.关于速度和加速度的关系:下列说法正确的是()A.速度越大的物体,加速度一定越大B.速度变化越快的物体,加速度一定越大C.加速度的大小与速度变化的大小成正比,与时间成反比D.加速度为正的物体,一定做加速运动3.如图所示,汽车通过跨过定滑轮的轻绳提升重物。

如果汽车匀速向右运动,在重物到达滑轮之前,重物()A.竖直向上做匀速运动B.竖直向上做匀加速运动C.处于超重状态D.处于失重状态4.用平抛竖落仪可以研究平抛运动的特点。

如图所示,小锤打击弹性金属片,A球水平抛出,同时B球被放开自由下落()A.实验时A、B两球的质量必须相等B.此实验可说明A球在水平方向做匀速直线运动C.此实验可说明A球在竖直方向做自由落体运动D.两球落地点间的距离与释放点的高度成正比5.如图所示,在倾角为37°的固定斜面上放置一个质量为0.2kg的物块。

现用一个与斜面平行的水平力推物块,当推力为0.5N 时物块恰能沿斜面匀速下滑。

取重力加速度为210m/s ,sin37°=0.6,则物块与斜面间的动摩擦因数为( )A .1316 B .1320 C .1720D .34 6.如图所示,轻弹簧1L 的一端固定,另一端连着小球A ,同时水平细绳的一端连着小球A ,另一端固定,小球A 的下面用轻弹簧2L 连着小球B 。

湖南省2025届高三上学期第一次月考数学试题含答案

湖南省2025届高三上学期第一次月考数学试题含答案

2025届高三月考试卷(一)数学(答案在最后)命题人:高三数学备课组审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1.已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ()A.{}32xx -≤≤∣ B.{32}xx -≤<∣C.{12}xx <≤∣ D.{12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2.若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于()A.2B.54C.D.2【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3.已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上的投影向量为()A.()6,3- B.()4,2- C.()2,1- D.()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4.记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =()A.21 B.19C.12D.42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5.某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为()附:若()2,X N μσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A.136人B.272人C.328人D.820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6.已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=()A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7.已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是()A.1,3⎛⎫ ⎪ ⎪⎝⎭B.1,5⎛⎫⎪ ⎪⎝⎭C.(D.(【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以5e <,又1e >,所以双曲线的离心率的取值范围是1,5⎛⎫⎪ ⎪⎝⎭.故选:B8.已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是()A.()0,1 B.()(),00,1-∞⋃ C.[)1,+∞ D.()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0ff x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是()A.E F M P ,,,四点共面B.平面PEF 被正方体截得的截面是等腰梯形C.//EF 平面PMND.平面MEF⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10.已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B.()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 242x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A.()f x 的图象关于点()2,1对称B.()f x 是以8为周期的周期函数C.()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=,所以()f x 的图象关于点2,1对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12.6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2xf x h x =e,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14.已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】231,3⎡⎢⎣⎦【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()13,,1,0,cos ,sin 22A B C θθ⎛⎫ ⎪ ⎪⎝⎭,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()13cos ,sin ,1,022θθλμ⎛⎫=+ ⎪ ⎪⎝⎭,整理得1cos ,sin 22λμθλθ+==,解得cosλμθ==-,则323ππcos cos sin ,0,3333λμθθθθθ⎛⎫⎡⎤+=-=+=+∈ ⎪⎢⎝⎭⎣⎦,ππ2ππ,,sin 33332θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎣⎦⎝⎭⎣⎦所以231,3λμ⎡+∈⎢⎣⎦.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB 的中点时,123332k λμ=+==,所以231,3λμ⎡⎤+∈⎢⎥⎣⎦故答案为:231,3⎡⎢⎣⎦四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB 于点,313,13D AD DB ==CD 的长.【答案】(1)2π3C =(2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16.已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a =(2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在1,+∞上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17.已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,2BC AB BC PA PB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD 所成角的余弦值为14.【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.【小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos 14θ=,得sin 14θ=.所以314sin cos ,14m EF m EF m EF θ⋅====,整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD 所成角的余弦值为7014.18.在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240rx r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111712222PQ PE -≥-=-=≥,所以当232ι=时,线段PQ 长度取最小值12-.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴.设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b -=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=.同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--.代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+(b 为定值),则直线过定点()0,.b 19.龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张1.91.982.22.362.432.592.682.762.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式:()()()1122211ˆˆ,n niii ii i nni i i i x x y y x y nx yay bx x xx nx====---==---∑∑∑∑.【答案】(1)673220710001200y t =+(2)433774nn P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.42.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a=-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故1493(7284n n P --=--,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中[]x 表示取整函数,当347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

湖南省长沙市第一中学2023届高三月考数学试卷 (八)

湖南省长沙市第一中学2023届高三月考数学试卷 (八)

长沙市一中2023届高三月考试卷(八)数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={xx2<2x},集合B={x|log2(x−1)<1},则A∩B=()(A){x|0<x<3}(B){x|1<x<2}(C){x|2⩽x<3}(D){x|0<x<2}2.在复平面内,复数z与21−i对应的点关于虚轴对称,则z等于()(A)1+i(B)−1−i(C)1−i(D)−1+i3.若双曲线C:x29−y2m=1(m>0)的一条渐近线与x轴的夹角是π3,则C的虚轴长是()(A)2√33(B)3√3(C)2(D)6√34.若(1+x)(1−2x)7=a0+a1x+a2x2+···+a8x8,则a1+a3+a5+a7的值是()(A)−1(B)−2(C)2(D)15.在△ABC中,“cos A+sin A=cos B+sin B”是“∠C=90◦”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既不充分也不必要条件6.长沙烈士公园西南小丘上兴建了烈士纪念塔,纪念为人民解放事业牺牲的湖南革命烈士,它是公园的标志.为了测量纪念塔的实际高度,某同学设计了如下测量方案:在烈士纪念塔底座平面的A点位置测得纪念塔顶端仰角的正切值为32,然后直线走了20m,抵达纪念塔底座平面B点位置测得纪念塔顶端的仰角为π3.已知该同学沿直线行进的方向与他第一次望向烈士纪念塔底端的方向所成角为π3,则该烈士纪念塔的高度约为()(A)30m(B)45m(C)60m(D)75m7.已知点P(2,2),直线AB与抛物线C:y2=2x交于A、B两点,且直线P A,P B的倾斜角互补,则直线AB的斜率为()(A)−14(B)−12(C)−1(D)−28.函数g(x)=ln xx+1在区间[t,+∞)(t∈N∗)上存在极值,则t的最大值为()(A)2(B)3(C)4(D)5二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知a,b∈(0,+∞),λ=a+b,µ=√3ab,则()(A)λ−µ<0(B)λ−µ⩾0(C)µλ⩽√32(D)µλ>√3210.数列{a n}首项a1=2,对一切正整数n,都有a n+1=2−1a n,则()(A)数列{1a n−1}是等差数列(B)对一切正整数n都有a n>1(C)存在正整数n,使得a n=2a2n(D)对任意小的正数ε,存在n0∈N,使得|a n+1−a n|<ε(n>n0)11.已知直线l:x−y+2=0与x轴交于点A,点P在直线l上,圆C:(x−2)2+y2=2上有且仅有一个点B满足AB⊥BP,则点P的横坐标的取值可以为()(A)13(B)12(C)3(D)512.将2n(n∈N∗)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限,记2个盒子中最少的球数为X(0⩽X⩽n,X∈N∗),则下列说法中正确的有()(A)当n=1时,方差D(X)=1 4(B)当n=2时,P(X=1)=3 8(C)∀n⩾3,∃k∈[0,n)(k,n∈N∗),使得P(X=k)>P(X=k+1)成立(D)当n确定时,期望E(X)=n(22n−C n2n)22n三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)的图象在区间(1,3)上连续不断,能说明“若f(x)在区间(1,3)上存在零点,则f(1)·f(3)<0”为假命题的一个函数f(x)的解析式可以为f(x)=.14.若随机变量ξ的数学期望和方差分别为E(ξ),D(ξ),则对于任意ε>0,不等式P(|ξ−E(ξ)|⩾ε)⩽D(ξ)ε2成立.在2023年湖南省高三九校联考中,数学科考试满分150分,某校高三共有500名学生参加考试,全体学生的成绩ξ的期望E(ξ)=80,方差D(ξ)=42,则根据上述不等式,可估计分数不低于100分的学生不超过人.15.如图,在平面斜坐标系xOy中,∠xOy=60◦,平面上任意一点P关于斜坐标系的斜坐标这样定义:若# »OP=x e1+y e2(其中e1,e2分别是x轴,y轴正方向的单位向量),则P点的斜坐标为(x,y),向量# »OP的斜坐标为(x,y),# »OM=(3,1),# »ON=(1,3),则△OMN的面积为.x16.正方体ABCD−A1B1C1D1的棱长为2,点E∈平面AA1B1B,点F是线段AA1的中点,若D1E⊥CF,则当△EBC的面积取得最小值时,三棱锥E−BCC1外接球的体积为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=2sin x2cosx2+2√3cos2x2−√3,x∈[−π6,π3].(1)已知f(α)=85,α∈(−π6,π3),求sinα;(2)若不等式|f(x)−m|⩽3恒成立,求整数m的最大值.18.设数列{a n}的前n项和为S n.已知a1=1,2na n−2S n=n2−n,n∈N∗.(1)求证:数列{a n}是等差数列;(2)令b n=2−a n2n,求数列{b n}的前n项和T n.19.如图,在长方体ABCD−A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠AP C是二面角A−P D1−C的平面角.(1)证明:点P在A1C1上;(2)若AB=BC,求直线P A与平面P CD所成角的正弦的最大值.B C DA PB1C1D1A120.(1)对于任意两个事件A,B,若P(A)>0,P(B)>0,证明:P(A)P(A)=P(A|B)P(A|B)·P(B|A)P(B|A);(2)贝叶斯公式是由英国数学家贝叶斯发现的,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,···,A n是一组两两互斥的事件,A1∪A2∪···∪A n=Ω,且P(A i)>0,i=1,2,···,n,则对任意的事件B⊆Ω,P(B)>0,有P(A i|B)=P(A i)P(B|A i)P(B)=P(A i)P(B|A i)n∑k=1P(A k)P(B|A k),i=1,2,···,n.①已知某地区烟民的肺癌发病率为1%,先用低剂量C进行肺癌筛查,医学研究表明,化验结果是存在错误的.已知患有肺癌的人其化验结果99%呈阳性(有病),而没有患肺癌的人其化验结果99%呈阴性(无病),现某烟民的检验结果为阳性,请问他真的患肺癌的概率是多少?②为了确保诊断无误,一般对第一次检查呈阳性的烟民进行复诊.复诊时,此人患肺癌的概率就不再是1%,这是因为第一次检查呈阳性,所以对其患肺癌的概率进行修正,因此将用贝叶斯公式求出来的概率作为修正概率.请问如果该烟民第二次检查还是呈阳性,则他真的患肺癌的概率是多少?21.已知f(x)=e x−tx,x∈R.(1)函数f(x)有且仅有一个零点,求t的取值范围.(2)当t=1时,证明:∃ξ∈(a,b)(其中a>0),使得f(b)−f(a)b−a=eξ−1.22.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年−公元前325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质:如图1,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线l ′表示与椭圆C 的切线垂直且过相应切点的直线,已知椭圆C 的中心在坐标原点,焦点为F 1(−c,0),F 2(c,0)(c >0),若由F 1发出的光线经椭圆两次反射后回到F 1经过的路程为8c .对于椭圆C 除顶点外的任意一点P ,椭圆在点P 处的切线为l ,F 1在l 上的射影为H ,其中|OH |=2√2.H F 1F 2法线l ′图1O P切线l•图2(1)求椭圆C 的方程;(2)如图2,过F 2作斜率为k (k >0)的直线m 与椭圆C 相交于A ,B 两点(点A 在x 轴上方).点M ,N 是椭圆上异于A ,B 的两点,MF 2,NF 2分别平分∠AMB 和∠ANB ,若△MF 2N 外接圆的面积为81π8,求直线m 的方程.。

湖南省长沙市第一中学2024届高三上学期月考(二)数学试题

湖南省长沙市第一中学2024届高三上学期月考(二)数学试题

湖南省长沙市第一中学2024届高三上学期月考(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .26336-C .2366+4.设向量a 与b的夹角为θ,定义则a b ⊕=()A .()34,B .(-5.血药浓度检测可使给药方案个体化,从而达到临床用药的安全、有效、合理研究所研制的某种新药进入了临床试验阶段,浓度达到峰值,此后每经过2浓度的40%,当血药浓度为峰值的A .11小时B .136.对于一些不太容易比较大小的实数,我们常常用构造函数的方法来进行,如,已知ln 56a =,ln 47b =,ln 38c =,要比较()ln ln(11)f x x x =-来进行比较,通过计算,你认为下列关系正确的一项是(A .52C .1968.定义在R 上的不恒为零的偶函数()()5122k f k f k =⎡⎤+-=⎣⎦∑(A .30B .60二、多选题9.气象意义上从春季进入夏季的标志为乙、丙三地连续5天的日平均温度(单位①甲地:5个数据的中位数为②乙地:5个数据的中位数为③丙地:5个数据中有一个数据是则肯定进入夏季的地区有(A .一个都没有C .乙地10.点P 是直线3y =上的一个动点,过点则()A .存在点P ,使得APB ∠A .AC 与平面BPQ 有可能平行B .11B D 与平面BPQ 有可能平行C .三角形BPQ 周长的最小值为D .三棱锥A BPQ -的体积为定值12.设正整数010199n a a =⋅+⋅+⋅⋅⋅{}(0,1,2,3,4,5,6,7,80,1,2,i a i ∈=⋅⋅⋅A .()113ω=C .()()9101n n ωω+=+三、填空题13.()()5211x x ++的展开式中4x 14.写出一个同时具有下列两个性质的函数①()f x 的值域为(),2-∞;②当x 15.双曲线2222:1(0,0)x y C a b a b-=>>足1290F MF ∠=︒,12F MF △的内切圆与16.已知正四面体A BCD -的外接球半径为四、解答题(1)证明:平面POB ⊥平面PBC ;(2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线所成角的正弦值为155,若存在,求三棱锥P AQE -的体积,若不存在,说明理由19.ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,点O 为ABC OAC ,OAB 的面积分别为1S ,2S ,3S ,已知22213132S S S S S +-=(1)在①cos cos 1a C c A +=;②4sin sin cos21B A A +=;③12cos sin A A -+个作为条件,判断ABC 是否存在,若存在,求出ABC 的周长,若不存在,说明理由(注:如果选择多个条件分别解答,按第一个解答计分.)(2)若ABC 为锐角三角形,求ABC 面积的取值范围.20.已知函数ln ()e xxf x a=-.上是减函数,求实数a 的最大值;2ln aa+..新高考数学试卷中有多项选择题,每道多项选择题有A ,B ,个选项中仅有两个或三个为正确选项.题目得分规则为:全部选对的得已知测试过程中随机地从四个选项中作选择,每个选项是某次多项选择题专项训练中,共有(k k ∈N(1)求椭圆C的方程;(2)如图所示,记椭圆的左、右顶点分别为线AM,BM分别交椭圆于两点P(i)证明:点B在以PQ为直径的圆内;(ii)求四边形APBQ面积的最大值。

湖南省长沙2025届高三上学期月考(一)数学试题含答案

湖南省长沙2025届高三上学期月考(一)数学试题含答案

2025届高三月考试卷(一)数学(答案在最后)本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合[),A a =+∞,()1,2B =-,若A B =∅ ,则()A.1>-aB.2a > C.1a ≥- D.2a ≥【答案】D 【解析】【分析】根据题意,结合集合的交集的运算,即可求解.【详解】由集合[),A a =+∞,()1,2B =-,因为A B =∅ ,则满足2a ≥.故选:D.2.已知复数z 满足22z -=,z 的取值范围为()A.[]0,2 B.()0,2 C.[]0,4 D.()0,4【答案】C 【解析】【分析】根据题意,利用复数模的几何意义,得到复数z 在复平面内对应的轨迹,进而结合圆的性质,即可求解.【详解】由题意知复数z 满足22z -=,可得复数z 在复平面内对应的轨迹为以(2,0)A 为圆心,2r =为半径的圆,且z 表示圆上的点到原点(0,0)O 的距离,则max min 224,220z OA r z OA r =+=+==-=-=,所以z 的取值范围为0,4.故选:C.3.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC=A.1B.2C.2D.2【答案】C 【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v .【点睛】本题主要考查平面向量的线性运算.4.若函数()2211x x f x x ++=+的最大值为M ,最小值为N ,则M N +=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】将函数解析式化为()211xf x x =++,令()21xg x x =+,判断()g x 的奇偶性,然后利用函数的奇偶性求解即可.【详解】()2222221111111x x xf x x x x x x x +==+=+++++++,令()21x g x x =+,则其定义域为R ,又()()()2211x x g x g x x x --==-=-+-+,所以()21xg x x =+为奇函数,则()()max min 0g x g x +=,所以()()()()max min max min 112f x f x g x g x +=+++=,则2M N +=.故选:B.5.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面AB,是线段ED 的中点,则A.BM EN =,且直线,BM EN 是相交直线B.BM EN ≠,且直线,BM EN 是相交直线C.BM EN =,且直线,BM EN 是异面直线D.BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF , 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.6.tan10tan503tan50︒+︒+︒︒的值为()A.3B.3C.3D.33【答案】B 【解析】【分析】利用正切的和角公式,逆用即可求出结果.【详解】tan10tan503tan10tan50︒+︒︒︒()()tan 10501tan10tan 503tan 50=︒+︒-︒︒+︒︒)31tan10tan503tan 50=-︒︒+︒︒33tan10tan503tan50=-︒︒︒︒3=故选:B.7.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A.第一次朝上面的数字是偶数B.第一次朝上面的数字是1C.两次朝上面的数字之和是8D.两次朝上面的数字之和是7【答案】D 【解析】【分析】根据题意,由相互独立事件的定义,对选项逐一判断,即可得到结果.【详解】抛掷骰子两次,共有6636⨯=个基本事件数,则()()()()()()()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,3,1,3,2,3,3,3,4,3,5,3,6M =,()()()()()()}5,1,5,2,5,3,5,4,5,5,5,6共18个基本事件,则()181362P M ==,设事件E 为第一次朝上面的数字是偶数,则事件M 与事件E 是对立事件,故A 错误;设事件F 为第一次朝上面的数字是1,则F M ⊆,故B 错误;设事件N 为两次朝上面的数字之和是8,则()()()()(){}2,6,3,5,4,4,5,3,6,2N =共5个基本事件,则()536P N =,且()(){}3,5,5,3MN =,则()213618P MN ==,()()()P MN P M P N ≠⋅,所以C 错误;设事件Q 两次朝上面的数字之和是7,则()()()()()(){}1,6,2,5,3,4,4,3,5,2,6,1Q =,则()61366P Q ==,且()()(){}1,6,3,4,5,2MQ =,则()313612P MQ ==,因为()()()P MQ P M P Q =⋅,所以事件M 与事件Q 相互独立.故选:D8.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房,…,以此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数,则10a =()A.10B.55C.89D.99【答案】C 【解析】【分析】根据给定条件,求出数列{}n a 的递推公式,再依次计算求出10a .【详解】依题意,12n n n a a a --=+(*n ∈N ,3n ≥),11a =,22a =,所以34567893,5,8,13,21,34,55,a a a a a a a =======1089a =.故选:C二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知一组样本数据1x ,2x ,…,()201220x x x x ≤≤≤ ,下列说法正确的是()A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差D.若1x ,2x ,…,10x 的均值为2,方差为1,11x ,12x ,…,20x 的均值为6,方差为2,则1x ,2x ,…,20x 的方差为5【答案】BC 【解析】【分析】由百分位数的定义即可判断A ;由极差的定义即可判断C ,由频率分布直方图中中位数、平均数的求法画出图形即可判断B ;由方差计算公式即可判断D.【详解】对于A ,由2060%12⨯=,所以样本数据的第60百分位数为12132x x +,故A 错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如下图,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,故B 正确;对于C ,剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差,故C 正确;对于D ,由10102642020x =⨯+⨯=,则()()22210101112426420202s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦,所以则1x ,2x ,…,20x 的方差为112,故D 错误.故选:BC.10.在平面直角坐标系中,O 为坐标原点,抛物线()220y px p =>的焦点为F ,点()1,2M ,()11,A x y ,()22,B x y 都在抛物线上,且0FA FB FM ++=ruu r uu r uuu r ,则下列结论正确的是()A.抛物线方程为22y x= B.F 是ABM 的重心C .6FA FM FB ++= D.2223AFO BFO MFO S S S ++=△△△【答案】BCD 【解析】【分析】把点代入可得抛物线的方程,结合向量运算可得F 是ABM 的重心,利用抛物线的定义可得6FA FM FB ++= ,利用三角形面积公式及122x x +=,可得2223AFO BFO MFO S S S ++=△△△.【详解】对于A ,由()1,2M 在抛物线上可得42p =,即抛物线方程为24y x =,错误;对于B ,分别取,AB AM 的中点,D E ,则2FA FB FD +=uu u u r uu r u r ,2FM FD =-uuu r uu u r,即F 在中线MD 上,同理可得F 也在中线BE 上,所以F 是ABM 的重心,正确;对于C ,由抛物线的定义可得121,2,1FA x FM FB x =+==+uu r uuu r uu r,所以124++=++FA FM FB x x uu r uuu r uu r.由()10F ,是ABM 的重心,所以12113x x ++=,即122x x +=,所以1246++=++=FA FM FB x x uu r uuu r uu r,正确;对于D ,112AFO S OF y =△,221114AFO S y x ==△;同理222214BFOSy x ==△,21MFO S =△,所以2221213AFO BFO MFO S S S x x ++=++=△△△,正确.故选:BCD.11.已知函数()()()322,,R ,f x x ax bx c a b c f x =-++'∈是()f x 的导函数,则()A.“0a c ==”是“()f x 为奇函数”的充要条件B.“0a b ==”是“()f x 为增函数”的充要条件C.若不等式()0f x <的解集为{1xx <∣且1}x ¹-,则()f x 的极小值为3227-D.若12,x x 是方程()0f x '=的两个不同的根,且12111x x +=,则0a <或3a >【答案】ACD 【解析】【分析】根据函数的奇偶性和充分、必要条件的判定方法,可判定A 正确;结合导数和函数的单调性间的关系,结合充分、必要条件的判定方法,可判定B 错误;利用导数求得函数()f x 的单调性,进而求得()f x 的极小值,可判定C 正确;结合二次函数的性质,结合0∆>,列出不等式,可判定D 正确.【详解】对于A 中,当0a c ==时,函数()3f x x bx =+,则满足()()3f x x bx f x -=--=-,所以()f x 为奇函数,所以充分性成立;若()f x 为奇函数,则()322f x x ax bx c -=---+=()322f x x ax bx c -=-+--,则24ax -20c =恒成立,所以0a c ==,所以必要性成立,所以A 正确;对于B 中,当0a b ==时,()3f x x c =+,可得()230f x x '=≥,所以()f x 为增函数;由()234f x x ax b =-+',当()f x 为增函数时,216120a b ∆=-≤,所以“0a b ==”是“()f x 为增函数”的充分不必要条件,所以B 错误;对于C 中,由()234f x x ax b =-+',若不等式()0f x <的解集为{|1x x <且1}x ¹-,则()f x 在R 上先增后减再增,则()1f '-=()()0,110f f =-=,解得21a b c ===-,故()()()232111f x x x x x x =+--=+-,可得()()()2321311f x x x x x '=+-=-+,令()0f x '=,解得=1x -或13x =,当(),1x ∈-∞-内,()0f x '>,()f x 单调递增;当11,3x ⎛⎫∈- ⎪⎝⎭内,()0f x '<,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭内,()0f x '>,()f x 单调递增,所以()f x 的极小值为2111321133327f ⎛⎫⎛⎫⎛⎫=+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 正确.对于D 中,由()234f x x ax b =-+',因为12,x x 是方程()0f x '=的两个不同的根,所以216120a b ∆=->,即2430a b ->,且1x +2124,33a bx x x ==,由12111x x +=,可得1x +212x x x =,所以433a b =,即4b a =,联立方程组,可得230a a ->,解得0a <或3a >,所以D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分.)12.点M 在椭圆221259x y +=上,F 是椭圆的一个焦点,N 为MF 的中点,3ON =,则MF =_________.【答案】4【解析】【分析】根据椭圆的对称性,利用三角形中位线定理求得||MF ',再由椭圆定义求解||MF 即可.【详解】如图,根据椭圆的对称性,不妨设F 为左焦点,F '为右焦点,由椭圆221259x y +=,得5a =,210a =,N Q 是MF 的中点,O 是FF '的中点,ON ∴为FMF ' 的中位线,||2||6MF ON ∴'==,∴由椭圆的定义得||2||1064MF a MF =-'=-=.故答案为:4.13.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()=E X ______.【答案】65【解析】【分析】根据题意得出X 的所有可能取值为0,1,2,3,然后分析出涂3面油漆,2面油漆,1面油漆,0面油漆的各有多少个小正方体,从而计算X 取每个值时的概率,从而求X 的均值.【详解】X 的所有可能取值为0,1,2,3,大正方体8个顶点处的8个小正方体涂有3面油漆;每一条棱上除了两个顶点处的小正方体外剩余的都涂有两面油漆,所以涂有两面油漆的有31236⨯=个;每个表面去掉四条棱上的16个小正方体,还剩9个小正方体,这9个都是一面涂漆,所以一共有9654⨯=个小正方体涂有一面油漆;剩余的()1258365427-++=个内部的小正方体6个面都没有涂油漆,所以()270125P X ==,()541125P X ==,()362125P X ==,()83125P X ==,()()()()()00112233E X P X P X P X P X =⨯=+⨯=+⨯=+⨯=2754368150601231251251251251255=⨯+⨯+⨯+⨯==.故答案为:65.14.若函数()()52cos sin 2f x a x x x =-+在R 上单调递增,则a 的取值范围是_________.【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】【分析】求导,根据()0f x '≥在R 上恒成立,即可结合二次函数的性质求解.【详解】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+,()f x 在R 上单调递增,()0f x '∴≥在R 上恒成立,令cos x t =,[]1,1t ∈-,则()f x '可写为()2942g t at t =-+,[]1,1t ∈-,根据题意()g t 在[]1,1-上的最小值非负,∴()()10,10,g g ⎧-≥⎪⎨≥⎪⎩解得1122a -≤≤.故答案为:11,22⎡⎤-⎢⎥⎣⎦四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知向量(),sin m b a C =-- ,(),sin sin n c b A B =++,满足//m n u r r .(1)求A ;(2)若角A 的平分线交边BC 于点D ,AD 长为2,求△ABC 的面积的最小值.【答案】(1)23A π=(2)【解析】【分析】(1)由//m n u r r 得出等式,再由正、余弦定理即可解出;(2)把ABC 的面积用等积法表示可得,b c 关系,再利用基本不等式得出bc 的最小值,即得面积最小值.【小问1详解】因为//m n u r r ,所以()()()()sin sin sin b a A B c b C -+=+-,由正弦定理得()()()()b a a b c b c -+=+-,所以222b c a bc +-=-,所以2221cos 222b c a bc A bc ab +--===-,因为()0,A π∈,故23A π=.【小问2详解】∵AD 平分∠BAC ,∴123BAD CAD BAC π∠=∠=∠=,∵ABD ACD ABC S S S +=△△△,∴1sin 2AB AD BAD ⋅⋅∠11sin sin 22AC AD CAD c A +⋅⋅∠=⋅⋅,即22sin 2sin sin 333c b bc πππ+=,∴22c b bc+=由基本不等式可得:22bc b c =+≥,∴16bc ≥,当且仅当4b c ==时取“=”,∴1sin 2ABC S bc A ==≥ 即ABC V的面积的最小值为.16.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=o ,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A 到平面1A PO 的距离;(2)求二面角1A PB O --的余弦值大小.【答案】(1)32;(2)277.【解析】【分析】(1)根据等体积法,由11A AOP A A OP V V --=即可求出点A 到平面1A PO 的距离;(2)先证明PB AP ⊥,1PB AA ⊥,由线面垂直的判定定理可得PB ⊥面1AA P ,进而可得1A PA ∠即为所求二面角的平面角,在1Rt A PA 中,计算11cos AP A PA A P∠=即可求解.【详解】(1)因为113AA OO ==,122AO AB ==,所以1AO ===在AOP中,由余弦定理可得:AP ===所以1A P ==,2OP =,在1AOP中,由余弦定理可得222111121cos 27A P OP A O A PO A P OP +-∠===⋅,所1sin7A PO∠==,所以11227A OPS=⨯=,设点A到平面1A PO的距离为d,由11A AOP A A OPV V--=,得111133AOP AO PS AA S d⋅⋅=⋅⋅,即1111233223d⨯⨯⨯⨯=,解得:32d=,所以点A到平面1A PO的距离为32;(2)二面角1A PB O--即二面角1A PB A--,因为AB是圆O的直径,点P在圆柱1OO的底面圆O上,所以PB AP⊥,因为1AA⊥面ABP,PB⊂面ABP,可得1PB AA⊥,因为1AP AA A⋂=,所以PB⊥面1AA P,因为1A P⊂面1AA P,AP⊂面1AA P,所以PB⊥AP,PB⊥1A P,所以1A PA∠即为二面角1A PB O--的平面角,在1Rt A PA中,1A P=,AP=所以11cos7APA PAA P∠===,所以二面角1A PB O--的余弦值为7.17.双曲线()2222:10,0x yC a ba b-=>>的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且ABD△是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为1k、2k,若122k k=-,求点A到直线MN的距离d的取值范围.【答案】(1)2213y x -=(2)(⎤⎦【解析】【分析】(1)根据等腰直角三角形的性质,转化为,,a b c 的方程,即可求解;(2)首先设直线MN 的方程为x my n =+,与双曲线方程联立,利用韦达定理表示122k k =-,并根据2m 的取值范围,求点到直线的距离的取值范围.【小问1详解】依题意,90BAD ∠=,焦半径2c =,由AF BF =,得2b ac a+=,得22222a a a +=-,解得:1a =(其中20a =-<舍去),所以222413b c a =-=-=,故双曲线C 的方程为2213y x -=;【小问2详解】显然直线MN 不可能与轴平行,故可设直线MN 的方程为x my n =+,联立2233x my n x y =+⎧⎨-=⎩,消去x 整理得()()222316310m y mny n -++-=,在条件2310Δ0m ⎧-≠⎨>⎩下,设()11,M x y ,()22,N x y ,则122631mn y y m +=--,()21223131n y y m -=-,由122k k =-,得()()12122110y y x x +++=,即()()12122110y y my n my n +++++=,整理得()()()()2212122121210m y y m n y y n ++++++=,代入韦达定理得,()()()()()22222312112121310n m m n n n m -+-+++-=,化简可消去所有的含m 的项,解得:5n =或1n =-(舍去),则直线MN 的方程为50x my --=,得d =又,M N 都在双曲线的右支上,故有2310m -<,2103m ≤<,此时1≤<,(d ⎤=⎦,所以点A 到直线MN 的距离d的取值范围为(⎤⎦.18.已知函数()()e xf x x a =-,a ∈R .(1)当1a =时,求()f x 的极值;(2)若函数()()ln g x f x a x =-有2个不同的零点1x ,2x .(i )求a 的取值范围;(ii )证明:12112e x x a x x +->.【答案】(1)极小值为0,无极大值(2)(i )()e,+∞;(ii )证明见解析【解析】【分析】(1)将1a =代入函数解析式,求导,判断其单调性,进而得出极值;(2)(i )化简函数()g x 的解析式,令e x t x =,问题可转化为()ln h t t a t =-在(0,)t ∈+∞有2个零点1t ,2t ,再利用导数研究函数()h t 的性质即可得出答案;(ii )等价于证明21e a t t >,再利用极值点偏移法即可得证.【小问1详解】1a =时,()()e 1xf x x =-,()()1e 1x f x x =+'- ,令()()()(),2e xm x f x m x x ''=∴=+,(),2x ∞∴∈--,()0m x '<;()2,x ∞∈-+,()0m x '>,()f x ∴'在(),2∞--单调递减,()2,∞-+单调递增,x →-∞ 时,10x +<,e 0x >,则′<0,()21210ef '--=-<,()00f '=,x →+∞时,()f x ∞'→+,(),0x ∞∴∈-时,′<0;∈0,+∞,′>0,∴在(),0∞-单调递减,在0,+∞单调递增,∴的极小值为()00f =,无极大值.【小问2详解】(i )()()()()ln e ln e ln e x x x g x f x a x x a x x x a x =-=-+=-,∈0,+∞,令e x t x =,()0,t ∞∈+,()1e 0x t x =+'> ,e x t x ∴=在0,+∞单调递增,令()ln h t t a t =-,即()h t 在()0,t ∞∈+有2个零点1t ,2t ,且111e x t x =,222e xt x =,()1a t a h t t t-='-= ,0a ∴≤时,()0h t '>,()h t 在()0,t ∞∈+单调递增,不存在2个零点,0a ∴>,()0,t a ∈ 时,()0h t '<;(),t a ∞∈+时,()0h t '>,()h t ∴在()0,a 单调递减,在(),a ∞+单调递增,0t → 时,()h t ∞→+;t →+∞时,()h t ∞→+,()()()min 1ln 0h t h a a a ∴==-<,()e,a ∞∴∈+.(ii )设12t t <,()110h => ,()e e 0h a =-<,∴由(i )知,121e t a t <<<<,即证:12e t t a >,即证:21e a t t >,2t a > ,1e a a t >,()h t 在(),a ∞+单调递增,∴即证:()21e 0a h t h t ⎛⎫=> ⎪⎝⎭,11ln t a t = ,()1111111e e e e e e ln ln ln ln 1ln a a a h a a a t t t t t t t ⎛⎫⎛⎫⎡⎤∴=-=-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令()()111e ln ln 1p t t t =+-,()11,e t ∈,即证:()10p t <,()1112211111eln e 1ln ln t t p t t t t t t -=='-+,令()111eln q t t t =-,()11,e t ∈,()1111e e 10t q t t t -=-='< ,()1q t ∴在()1,e 单调递减,()()1e 0q t q >=,()10p t ∴'>,()1p t ∴在()1,e 单调递增,()()1e 0p t p ∴<=,【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知集合{}()1,2,3,,,3A n n n =∈≥ N ,W A ⊆,若W 中元素的个数为()2m m ≥,且存在u ,()v W u v ∈≠,使得()2k u v k +=∈N ,则称W 是A 的()P m 子集.(1)若4n =,写出A 的所有()3P 子集;(2)若W 为A 的()P m 子集,且对任意的s ,()t W s t ∈≠,存在k ∈N ,使得2k s t +=,求m 的值;(3)若20n =,且A 的任意一个元素个数为m 的子集都是A 的()P m 子集,求m 的最小值.【答案】(1){}{}1,2,3,1,3,4;(2)2;(3)13.【解析】【分析】(1)根据()P m 子集的定义,即可容易求得;(2)取{}1,3W =,求得2m =,再利用反证法假设3m ≥,推得10a <与11a ≥矛盾即可;(3)令{}020,19,18,17,11,10,9,3,16,8,4,2W =,讨论12m ≤时不满足题意,再验证13m ≥时的情况满足题意,即可求得m 的最小值.【小问1详解】当4n =时,{}1,2,3,4A =,A 的所有()3P 子集为{}{}1,2,3,1,3,4.【小问2详解】当3n ≥时,取{}1,3W =,因为2132+=,所以W 是A 的()2P 子集,此时2m =;若3m ≥,设123,,a a a W ∈且1231a a a ≤<<,根据题意,3121213232,2,2kk k a a a a a a +=+=+=,其中123,,N k k k ∈;因为121323a a a a a a +<+<+,所以312222k k k <<,所以123k k k <<;又因为123,,N k k k ∈,所以321k k ≥+;因为()3121232222k k k a a a ++=++,所以()31212312222k k k a a a ++=++,所以()()3331212111222222222k k k k k k k a =++-=+-;因为3122221222222k k k k k k ++<+=≤,所以3122220k k k +-<,所以10a <,与11a ≥矛盾.综上所述,2m =.【小问3详解】设{}{}{}{}{}1234520,12,19,13,18,14,17,15,11,5,A A A A A ====={}{}{}{}{}{}{}678123410,6,9,7,1,3,2,4,8,16A A AB B B B =======,设W 的元素个数为m ,若W 不是A 的()P m 子集,则W 最多能包含1238,,,,A A A A 中的一个元素以及1234,,,B B B B 中的元素;令{}020,19,18,17,11,10,9,3,16,8,4,2W =,易验证0W 不是A 的()12P 子集,当12m ≤时,0W 的任意一个元素个数为m 的子集都不是A 的()P m 子集,所以,若A 的任意一个元素个数为m 的子集都是A 的()P m 子集,则13m ≥;当13m ≥时,存在{}1,2,3,4,5,6,7,8i ∈,使得W 中必有两个元素属于i A ,同时i A 中两个元素之和为2的某个正整数指数幂,P m子集;所以W是A的()所以,m的最小值为13.P m子集的定义,【点睛】关键点点睛:本题考查集合新定义问题,处理问题的关键是充分把握题中对()同时要熟练的使用证明方法,属综合困难题.。

湖南省长沙市第一中学2022-2023学年高三下学期月考卷(六)数学试题及答案

湖南省长沙市第一中学2022-2023学年高三下学期月考卷(六)数学试题及答案

长沙市一中2023届高三月考试卷(六)数学时量:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合,,则( ) {}32,Z M x x n n ==-∈{}2,1,0,1,2N =--M N ⋂=A. B. C.D. {}2,1-{}1,2-{}1,1-{}2,0,2-2. 已知复数满足,为虚数单位,则( )z ()1i 1i z -=+i z =A. B. C. D. i 11i 22+1i +3. 已知,,,一束光线从点出发经AC 反射后,再经BC 上点D 反射,()30A -,()3,0B ()0,3C ()1,0F -落到点上.则点D 的坐标为( )()1,0E A. B. C. D. 15,22⎛⎫ ⎪⎝⎭33,22⎛⎫ ⎪⎝⎭()1,2()2,14. 若,且,则( ) ππ,24α⎛⎫∈-- ⎪⎝⎭23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭tan α=A. B. C. D. 2-3--5. 据一组样本数据,求得经验回归方程为,且.现发现()(()1122,,,,,,n n x y x y x y ⋅⋅⋅ 1.20.4y x =+3x =这组样本数据中有两个样本点和误差较大,去除后重新求得的经验回归直线的斜率为()1.2,0.5()4.8,7.5l 1.1,则( )A. 去除两个误差较大的样本点后,的估计值增加速度变快y B. 去除两个误差较大的样本点后,重新求得的回归方程对应直线一定过点()3,5C. 去除两个误差较大的样本点后,重新求得的回归方程为1.10.7y x =+D. 去除两个误差较大的样本点后,相应于样本点的残差为0.1()2,2.76. 在四面体中,,,,,则该四面体的PABC PA AB ⊥PA AC ⊥120BAC ∠=︒2AB AC AP ===外接球的表面积为( )A. B. C. D.12π16π18π20π7. 已知圆O 的半径为1,A 为圆内一点,,B ,C 为圆O 上任意两点,则的最小值是12OA =AC BC ⋅( )A. B. C. D. 18-116-116188. 设是定义在上的函数,若是奇函数,是偶函数,函数()f x R ()2f x x +()f x x -,若对任意的,恒成立,则实数的最大值为()()[]()(),0,121,1,f x x g x g x x ∞⎧∈⎪=⎨-∈+⎪⎩[]0,x m ∈()3g x ≤m ( ) A. B. C. D. 133********二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知函数在区间上有且仅有3条对称轴,给出下列四个结论,正确()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A. 的取值范围是 ω913,44⎡⎫⎪⎢⎣⎭B. 在区间上有且仅有3个不同的零点()f x ()0,πC. 的最小正周期可能是 ()f x 4π5D. 在区间()f x π0,15⎛⎫ ⎪⎝⎭10. 已知抛物线C :的焦点为F ,准线为,A ,B 是C 上异于点O 的两点,O 为坐标原点,则22x y =l ( )A. 的方程为 l 12x =-B. 若,则 32AF =AOF AC. 若,则0OA OB ⋅= 9OA OB ⋅≥D. 若,过AB 的中点D 作于点E ,则的最小值为 120AFB ∠=︒DE l ⊥AB DE11. 如图,正方体中,顶点在平面内,其余顶点在的同侧,顶点到1111ABCD A B C D -A αα1,,B C A α的距离分别为,则( )1,2,3A. 平面BD A αB. 平面平面1A AC ⊥αC. 直线与所成角比直线与所成角大1AB α1AA αD.12. 已知,为正实数,且,则( )a b 26ab a b ++=A. 的最大值为2B. 的最小值为5 ab 2a b +C. 的最小值为D. 1211a b +++98()0,3a b -∈三、填空题(本题共4小题,每小题5分,共20分.)13. 设直线是曲线的一条切线,则_________.10x y ++=ln y a x =-=a 14. 楼道里有8盏灯,为了节约用电,需关掉3盏互不相邻的灯,则关灯方案有_________种.15. 过双曲线:右焦点作直线,且直线与双曲线的一条渐近线垂直,C ()222210x y a b a b-=>>F l l C 垂足为A ,直线与另一条渐近线交于点B .且点A ,B 位于x 轴的异侧,O 为坐标原点,若的内切l OAB A 圆的半径为,则双曲线C 的离心率为__________. 23b 16. 小说《三体》中,一个“水滴”摧毁了人类整个太空舰队,当全世界第一次看到“水滴”的影像时,所有人都陶醉于它那绝美的外形.这东西真的是太美了,像梦之海中跃出的一只镜面海豚,仿佛每时每刻都在宇宙之夜中没有尽头地滴落着.有科幻爱好者为“水滴”的轴截面设计了二维数学图形,已知集合.由集合中所有的点组成的图形如图中阴影部分()()(){}22,cos sin 4,0P x y x y θθθπ=-++=≤≤P所示,中间白色部分就如美丽的“水滴”.则图中“水滴”外部阴影部分的面积为_________.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 记为正项数列的前项和,已知是4与的等比中项.n S {}n a n 1n a +n S (1)求的通项分式;{}n a (2)证明:. 2222123111154n a a a a +++⋅⋅⋅+<18. 已知a ,b ,c 分别为三个内角A ,B ,C 的对边,且.ABCA cos sin a C C b c +=+(1)求A ;(2)已知M 为BC 的中点,且,的平分线交BC 于N ,求线ABC A AM =BAC ∠段AN 的长度.19. 近日,某芯片研发团队表示已自主研发成功多维先进封装技术XDFOI ,可以实现4nm 手机SOC 芯片的封装,这是中国芯片技术的又一个重大突破,对中国芯片的发展具有极为重要的意义.可以说国产4nm 先进封装技术的突破,激发了中国芯片的潜力,证明了知名院士倪光南所说的先进技术是买不来的、求不来的,自主研发才是最终的出路.研发团队准备在国内某著名大学招募人才,准备了3道测试题,答对两道就可以被录用,甲、乙两人报名参加测试,他们通过每道试题的概率均为,且相互独立,若()01p p <<甲选择了全部3道试题,乙随机选择了其中2道试题,试回答下列问题.(所选的题全部答完后再判断是否被录用)(1)求甲和乙各自被录用的概率;(2)设甲和乙中被录用的人数为,请判断是否存在唯一的值,使得?并说明理由. ξp 0p () 1.5E ξ=20. 如图,四棱锥的底面是边长为2的正方形,. P ABCD -ABCD 2PA PB ==(1)证明:;PAD PBC ∠=∠(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角的大小.P AB C --21. 已知,D 是圆C :上的任意一点,线段DF 的垂直平分线交DC 于点P . ()1,0F -()22116x y -+=(1)求动点P 的轨迹的方程:Γ(2)过点的直线与曲线相交于A ,B 两点,点B 关于轴的对称点为,直线交轴于(),0M t l Γx B 'AB 'x 点,证明:为定值.N OM ON ⋅ 22. 已知函数,. ()1e ln axf x x x-=+a ∈R (1)当时,求函数的最小值;1a =()f x x -(2)若函数的最小值为,求的最大值.()f x xa a长沙市一中2023届高三月考试卷(六)数学时量:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合,,则( ) {}32,Z M x x n n ==-∈{}2,1,0,1,2N =--M N ⋂=A.B. C. D. {}2,1-{}1,2-{}1,1-{}2,0,2-【答案】A【解析】【分析】利用列举法及交集的定义即可求解.【详解】,{}}{32,Z ...,5,2,1,4,7,M x x n n ==-∈=-- 所以.{}2,1M N =- 故选:A.2. 已知复数满足,为虚数单位,则( )z ()1i 1i z -=+i z =A.B. C. D. i 11i 22+1i +【答案】B【解析】【分析】根据向量的除法和向量模的求法,变形的,即可求解. 1i 1i z +==-【详解】, 1i 1i z +===+-故选:B3. 已知,,,一束光线从点出发经AC 反射后,再经BC 上点D 反射,()30A -,()3,0B ()0,3C ()1,0F -落到点上.则点D 的坐标为( )()1,0E A. B. C. D.15,22⎛⎫ ⎪⎝⎭33,22⎛⎫ ⎪⎝⎭()1,2()2,1【答案】C【解析】【分析】根据入射光线与反射光线的性质可知方程,由与的交点可得D ,求坐标即可.GH GH BC【详解】根据入射光线与反射光线关系可知,分别作出关于的对称点,,F E ,AC BC ,G H 连接,交于,则D 点即为所求,如图,GH BCD因为所在直线方程为,,设,AC 3y x =+(1,0)F -()G x y ,则,解得,即, 132211y x y x -⎧=+⎪⎪⎨⎪=-⎪+⎩3,2x y =-=(3,2)G -由所在直线方程为,,同理可得,BC 3y x =-+(1,0)E (3,2)H 所以直线方程为,由解得, GH 2y =32y x y =-+⎧⎨=⎩(1,2)D 故选:C4. 若,且,则( ) ππ,24α⎛⎫∈-- ⎪⎝⎭23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭tan α=A.B. C. D. 2-3--【答案】C【解析】【分析】利用三角函数的诱导公式及二倍角的正弦公式,结合三角函数的齐次式法即可求解.【详解】因为,所以, ππ,24α⎛⎫∈-- ⎪⎝⎭tan 1α<-由,得,即, 23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭21cos sin 22αα+=-222cos 2sin cos 1cos sin 2ααααα+=-+所以,即,解得 212tan 11tan 2αα+=-+2tan 4tan 30αα++=或(舍).tan 3α=-tan 1α=-故选:C.5. 据一组样本数据,求得经验回归方程为,且.现发现()()()1122,,,,,,n n x y x y x y ⋅⋅⋅ 1.20.4y x =+3x =这组样本数据中有两个样本点和误差较大,去除后重新求得的经验回归直线的斜率为()1.2,0.5()4.8,7.5l1.1,则( )A. 去除两个误差较大的样本点后,的估计值增加速度变快y B. 去除两个误差较大的样本点后,重新求得的回归方程对应直线一定过点()3,5C. 去除两个误差较大的样本点后,重新求得的回归方程为1.10.7y x =+D. 去除两个误差较大的样本点后,相应于样本点的残差为0.1()2,2.7【答案】C【解析】【分析】根据直线的斜率大小判断A ;求出判断B ;再求出经验回归方程判断C ;计算残差判断D 作l y 答.【详解】对于A ,因为去除两个误差较大的样本点后,经验回归直线的斜率变小,则的估计值增加速l y 度变慢,A 错误;对于B ,由及得:,因为去除的两个样本点和, 1.20.4y x =+3x =4y =()1.2,0.5()4.8,7.5并且,因此去除两个样本点后,样本的中心点仍为, 1.2 4.80.57.53,422++==(3,4)因此重新求得的回归方程对应直线一定过点,B 错误;(3,4)对于C ,设去除后重新求得的经验回归直线的方程为,由选项B 知,,解得l ˆ1.1y x a=+ˆ4 1.13a =⨯+, ˆ0.7a=所以重新求得的回归方程为,C 正确;1.10.7y x =+对于D ,由选项C 知,,当时,,则, 1.10.7y x =+2x = 1.120.72.9y =⨯+= 2.7 2.90.2-=-因此去除两个误差较大的样本点后,相应于样本点的残差为,D 错误.()2,2.70.2-故选:C6. 在四面体中,,,,,则该四面体的PABC PA AB ⊥PA AC ⊥120BAC ∠=︒2AB AC AP ===外接球的表面积为( )A.B. C. D. 12π16π18π20π【答案】D【解析】【分析】由线面垂直的判定定理可得平面,设底面的外心为,外接球的球心为,PA ⊥ABC ABC A G O 为的中点,可得四边形为平行四边形,所以,在中,由余弦定理及正弦定理D PA ODAG 1OG =ABC 可求,故可求外接球的半径,根据球的表面积公式即可求解.AG 【详解】因为,,平面,PA AB ⊥PA AC ⊥,,AB AC A AB AC =⊂ ABC 所以平面.PA ⊥ABC设底面的外心为,外接球的球心为,则平面,所以. ABC A G O OG ⊥ABC //PA OG 设为的中点,DPA因为,所以.OP OA =DO PA ⊥因为平面,平面,PA ⊥ABC AG ⊂ABC 所以,所以.PA ⊥AG //OD AG 因此四边形为平行四边形,所以. ODAG 112OG AD PA ===因为,,120BAC ∠=︒2AB AC ==所以,BC ===由正弦定理,得. 242AG AG ==⇒=所以该外接球的半径满足,R )()2225R OG AG =+=故该外接球的表面积为.24π20πS R ==故选:D.7. 已知圆O 的半径为1,A 为圆内一点,,B ,C 为圆O 上任意两点,则的最小值是12OA =AC BC ⋅ ( )A.B. C. D. 18-116-11618【答案】A【解析】 【详解】首先设与所成角为,根据题意得到OA BC θ,再根据()1cos cos 2AC BC OC OA BC OC BC OA BC BC BCO BC θ⋅=-⋅=⋅-⋅=∠- 求解即可. 221111cos 2222BC BC BC BC θ-≥-【点睛】如图所示:设与所成角为,OA BCθ因为, ()1cos cos 2AC BC OC OA BC OC BC OA BC BC BCO BC θ⋅=-⋅=⋅-⋅=∠- 因为,112cos 2BC BCO BC OC ∠== 所以 211cos 22AC BC BC BC θ⋅=- 因为,当时,等号成立. 221111cos 2222BC BC BC BC θ-≥- 0θ= 因为,所以当时,取得最小值为, 02BC ≤≤ 12BC = 21122BC BC - 18-所以当时,取得最小值为. 12BC = AC BC ⋅ 18-故选:A8. 设是定义在上的函数,若是奇函数,是偶函数,函数()f x R ()2f x x +()f x x -,若对任意的,恒成立,则实数的最大值为()()[]()(),0,121,1,f x xg x g x x ∞⎧∈⎪=⎨-∈+⎪⎩[]0,x m ∈()3g x ≤m ( )A. B. C. D. 133********【答案】B【解析】【分析】由是奇函数,是偶函数,求出,再根据()2f x x +()f x x -()2f x x x =-,作出函数的图象即可求解. ()()[]()(),0,121,1,f x xg x g x x ∞⎧∈⎪=⎨-∈+⎪⎩()g x【详解】因为是奇函数,是偶函数, ()2f x x +()f x x -所以,解得,()()()()()22f x x f x x f x x f x x⎧-+-=--⎪⎨-+=-⎪⎩()2f x x x =-由, ()()[]()(),0,121,1,f x x g x g x x ∞⎧∈⎪=⎨-∈+⎪⎩当时,则,所以, ()1,2x ∈()10,1x -∈()()()2121gx g x f x =-=-同理:当时,,()2,3x ∈()()()()214242g x g x g x f x =-=-=-以此类推,可以得到的图象如下:()gx由此可得,当时,,()4,5x ∈()()164g x f x =-由,得,解得或, ()3g x ≤()()16453x x --≤174x ≤194x ≥又因为对任意的,恒成立,[]0,x m ∈(3g x ≤所以,所以实数的最大值为. 1704m <≤m 174故选:B.【点睛】本题考查了奇函数与偶函数的性质,抽象函数的周期性,通过递推关系分析出每一个区间的解析式是本题的关键,数形结合是解题中必须熟练掌握一种数学思想,将抽象转化为形象,有助于分析解决抽象函数的相关问题. 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知函数在区间上有且仅有3条对称轴,给出下列四个结论,正确()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A. 的取值范围是 ω913,44⎡⎫⎪⎢⎣⎭B. 在区间上有且仅有3个不同的零点()f x ()0,πC. 的最小正周期可能是 ()f x 4π5D. 在区间上单调递增 ()f x π0,15⎛⎫ ⎪⎝⎭【答案】ACD【解析】【分析】由,得,再根据函数在区间上有且仅有条对称轴,[]0,πx ∈πππ,π444x ωω⎡⎤+∈+⎢⎥⎣⎦()f x []0,π3可得,可求出的取值范围判断A ,再利用三角函数的性质可依次判断BCD . 5ππ7ππ242ω≤+<ω【详解】由,得, []0,πx ∈πππ,π444x ωω⎡⎤+∈+⎢⎥⎣⎦因为函数在区间上有且仅有条对称轴,()f x []0,π3所以,解得,故A 正确; 5ππ7ππ242ω≤+<91344ω≤<对于B ,,, (0,π)x ∈ ∴πππ,π444x ωω⎛⎫+∈+ ⎪⎝⎭, ∴π5π7ππ,422ω⎛⎫+∈ ⎪⎝⎭当时,在区间上有且仅有个不同的零点; π5π,3π42x ω⎛⎤+∈ ⎥⎝⎦()f x (0,π)2当时,在区间上有且仅有个不同的零点,故B 错误; π7π3π,42x ω⎛⎫+∈ ⎪⎝⎭()f x (0,π)3对于C ,周期,由,则, 2πT ω=91344ω≤<414139ω<≤, ∴8π8π139T <≤又,所以的最小正周期可能是,故C 正确; 84ππ58π,139⎛⎤∈ ⎥⎝⎦()f x 4π5对于D ,,, π0,15x ⎛⎫∈ ⎪⎝⎭∴ππππ,44154x ωω⎛⎫+∈+ ⎪⎝⎭又,, 91344ω≤<∴ππ2π7ππ,0,1545152ω⎡⎫⎛⎫+∈⊆⎪ ⎪⎢⎣⎭⎝⎭所以在区间上一定单调递增,故D 正确. ()f x π0,15⎛⎫ ⎪⎝⎭故选:ACD.10. 已知抛物线C :的焦点为F ,准线为,A ,B 是C 上异于点O 的两点,O 为坐标原点,则22x y =l ( )A. 的方程为 l 12x =-B. 若,则 32AF =AOF AC. 若,则0OA OB ⋅= 9OA OB ⋅≥D. 若,过AB 的中点D 作于点E ,则的最小值为 120AFB ∠=︒DE l ⊥AB DE【答案】BD【解析】【分析】A 选项,由抛物线方程得到准线方程,A 错误;由焦半径公式得到,进而求出1A y =A x =从而得到的面积,B 正确;由得到,,表达出AOF A 0OA OB ⋅=4A B x x =-4A B y y =,结合基本不等式求出最值,C 错误;作出辅助线,设()2222232A B A B OA OB x y y x ⋅=++,由焦半径公式得到,结合余弦定理,基本不等式得到的最小值. ,AF a BF b ==2a b DE +=AB DE【详解】的焦点为,准线方程为,故A 错误; 22x y =F ⎛ ⎝12y =-由焦半径公式可知:,解得, 1322A AF y =+=1A y =故,故 222A A x y ==A x =所以的面积为,B 正确; AOF A 111222A OF x ⋅=⨯=若,则,即,解得:, 0OA OB ⋅= 0A B A B x x y y +=22104A B A B x x x x +=4A B x x =-则,4A B y y =故 ()()()2222222223232A A B B AB A B OA OB x y x y x y y x ⋅=++=++≥+,32264A B A B x x y y =+⋅=故,当且仅当时,等号成立,C 错误;8OA OB ⋅≥A B A B x y y x =过点作⊥l 于点,过点B 作⊥l 于点,A 1AA 1A 1BB 1B设,所以, ,AF a BF b ==2a b DE +=因为()2222222cos AB a b ab AFB a b ab a b ab =+-∠=++=+-, ()()22223342a b a b a b DE ++⎛⎫≥+-== ⎪⎝⎭所以. AB ≥故选:BD【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.11. 如图,正方体中,顶点在平面内,其余顶点在的同侧,顶点到1111ABCD A B C D -A αα1,,B C A α的距离分别为,则( )1,2,3A. 平面BD A αB. 平面平面1A AC ⊥αC. 直线与所成角比直线与所成角大1AB α1AA αD.【答案】ABD【解析】【分析】根据点到面的距离的性质,结合线面垂直的判定定理、线面角的定义、面面相交的性质进行求解判断即可.【详解】解:设的交点为,显然是、的中点,,AC BD O O AC BD 因为平面,到平面的距离为,所以到平面的距离为,ABCD A α= C α2O α1又到平面的距离为,B α1所以平面,即平面,即A 正确;//BO α//BD α设平面,ABCD l α= 所以,//BD l 因为是正方形,所以,ABCD AC BD ⊥又因为平面,平面,1AA ⊥ABCD BD ⊂ABCD 所以,因为平面,1AA BD ⊥11,,AA AC A AA AC ⋂=⊂1A AC 所以平面,因此有平面,而,BD ⊥1A AC l ⊥1A AC l ⊂α所以平面平面,因此选项B 正确;1A AC ⊥α设到平面的距离为,1B αd 因为平面,是正方形,点,B 到的距离分别为,1,11AA B B A α= 11AA B B 1A α3所以有, 31422d d +=⇒=设正方体的棱长为,1111ABCD A B CD -a设直线与所成角为,所以, 1AB αβ14sin AB β===设直线与所成角为,所以, 1AA αγ133sin AA aγ==因为,因此选项C 不正确;3>sin sin βγβγ<⇒<因为平面平面,平面平面,1A AC ⊥α1A AC ⋂A α=所以在平面的射影与共线,1,C A α,E F A显然,如图所示:1112,3,,,CE A F AC AA a AA AC ====⊥由,11ECA CAE CAE A AF ECA A AF ∠+∠=∠+∠⇒∠=∠, 111cos ,sin A F CE ECA A AF AC AA ∠=∠=由, 2212249cos sin 112ECA A AF a a a ∠+∠=⇒+=⇒=因此选项D 正确,故选:ABD 12. 已知,为正实数,且,则( )a b 26ab a b ++=A. 的最大值为2B. 的最小值为5 ab 2a b +C. 的最小值为D. 1211a b +++98()0,3a b -∈【答案】AC【解析】【分析】由已知条件结合基本不等式及相关结论分别检验各选项即可求解.【详解】依题意,对于A :因为,26ab a b ++=所以,62ab a b ab =++≥+当且仅当时取等号,2a b =令,则有,0t =>260t +-≤解得,又因为, t -≤≤0t =>所以,即0t <≤0<≤的最大值为2,故A 选项正确;ab 对于B :因为,26ab a b ++=所以, ()221162222224a b ab a b ab a b a b +=++=⨯++≤⨯++当且仅当时取等号,2a b =令,则有,20t a b =+>28480t t +-≥解得或(舍去),4t ≥t 12≤-即,所以的最小值为4,24a b +≥2a b +故B 选项错误;对于C :因为,26ab a b ++=所以, 12111888b b a ++==++所以,81221119888111a b b b +++≥=+++=++当且仅当,即时等式成立, 2118b b +=+3b =所以的最小值为,故C 选项正确; 1211a b +++98对于D :当,时,, 14a =225b =()4.150,3a b -=∉所以D 选项错误;故选:AC.三、填空题(本题共4小题,每小题5分,共20分.)13. 设直线是曲线的一条切线,则_________.10x y ++=ln y a x =-=a 【答案】2-【解析】【分析】设切点为,根据导数的几何意义求出切点的横坐标,再根据切点即在曲线上又在切线上()00,x y 即可得解.【详解】设切点为,()00,x y , 1y x '=-则,所以, 0011x x y x ==-=-'01x =所以切点为,()1,a 又切线为,10x y ++=所以,解得.110a ++=2a =-故答案为:.2-14. 楼道里有8盏灯,为了节约用电,需关掉3盏互不相邻的灯,则关灯方案有_________种.【答案】20【解析】【分析】根据题意,原问题等价于在5盏亮灯的6个空隙中插入3盏不亮的灯,由组合公式计算即可求解.【详解】依题意,原问题等价于在5盏亮灯的6个空隙中插入3盏不亮的灯,则有种方案.36C 20=故答案为:20. 15. 过双曲线:右焦点作直线,且直线与双曲线的一条渐近线垂直,C ()222210,0x y a b a b-=>>F l l C 垂足为A ,直线与另一条渐近线交于点B .且点A ,B 位于x 轴的异侧,O 为坐标原点,若的内切l OAB A 圆的半径为,则双曲线C 的离心率为__________. 23b【解析】 【分析】作出图象,设的内切圆的圆心为,易知在的平分线上,过分别作OAB A M M AOB ∠Ox M 于,于,则有四边形为正方形,则,MN OA ⊥N MT AB ⊥T MTAN 2||||3b NA MN ==2||3b ON a =-,由,可得,由斜率公式即可得答案. tan MNb AOF ON a∠==2a b =【详解】解:如图所示:设A 在第一象限,由题意可知,其中为点到渐近线的距离,, AF d b ===d (c,0)F b y x a =||OF c =所以, ||OA a ===设的内切圆的圆心为,OAB A M 则在的平分线上,M AOB ∠Ox 过分别作于,于,M MN OA ⊥N MT AB ⊥T 又因为于,FA OA ⊥A 所以四边形为正方形,MTAN所以, 2||||3b NA MN ==所以, 2||||||3b ON OA NA a =-=-又因为, 2||3tan 2||3bMN b AOF b ON aa ∠===-所以, 2233a b a =-,2a b =所以,22225c a b b =+=所以, c =所以. c e a ===. 16. 小说《三体》中,一个“水滴”摧毁了人类整个太空舰队,当全世界第一次看到“水滴”的影像时,所有人都陶醉于它那绝美的外形.这东西真的是太美了,像梦之海中跃出的一只镜面海豚,仿佛每时每刻都在宇宙之夜中没有尽头地滴落着.有科幻爱好者为“水滴”的轴截面设计了二维数学图形,已知集合.由集合中所有的点组成的图形如图中阴影部分()()(){}22,cos sin 4,0P x y x y θθθπ=-++=≤≤P 所示,中间白色部分就如美丽的“水滴”.则图中“水滴”外部阴影部分的面积为_________.【答案】 16π3+【解析】【分析】根据图形与,建立直角坐标系,画出图形,()()(){}22,cos sin 4,0πP x y x y θθθ=-+-=≤≤求出相应的坐标,先求第一、二象限的阴影面积,再求第三象限的阴影面积,再求和即可求解.【详解】根据题意,建立直角坐标系,如图所示:在方程,中, ()()22cos sin 4x y θθ-+-=0πθ≤≤令,则有, 0x =222cos 2sin sin 4y y θθθ+-+=所以,其中, 12sin y yθ=-0πθ≤≤所以,所以, []sin 0,1θ∈[]12sin 0,2y y θ=-∈解得,1y ⎡⎤⎤∈-⎣⎦⎦所以,,,, (A ()0,3E ()0,1G -(0,D 令,则有,0θ=()2214x y -+=所以,,()1,0C ()3,0N 令,则有πθ=()2214x y ++=所以,. ()1,0B -()3,0M -由,,易得与线段()3,0M -()3,0N ()0,3E A MEN MN 组成的图形为的上半圆,229x y +=由此可知,在第一、第二象限中的阴影面积是由 的上半圆减去上半圆 229x y +=()2214x y -+=与上半圆相交的部分形成, ()2214x y ++=即与线段组成的面积,设为. A BACBC S 水滴上部由,,三点易得 (A ()1,0B -()1,0C 为边长为2的等边三角形,ABC A所以 212ππ263ABC AnC S S =⨯⨯-=-A 弓形所以,4π23ABC AnC S S S =+=A 弓形水滴上部设第一、二象限的阴影面积为, 1S 则. 19π9π4π19π2236S S =-=-+=+水滴上部由,,易得与线段 ()1,0B -()1,0C ()0,1G -A BGCBC 组成的图形为的下半圆, 221x y +=设在第三象限中的阴影面积为, 2S 则有, 2π4MOD MpD S S S =+-A 弓形由图知11322MOD S MO OD =⨯⨯=⨯=A ,,11222MBD S MB OD =⨯⨯=⨯=A 2π3MBD ∠=所以,214ππ233MBD MpD S S =⨯⨯-=A 弓形所以,2π4ππ13π43412MOD MpD S S S =+-=+-=A 弓形所以图中“水滴”外部阴影部分的面积为:. 1219π13π16π226123S S S ⎛=+=⨯=+ ⎝故答案为:. 16π3+【点睛】本题考查了圆与三角函数综合的知识点,可以根据图形的对称性建立直角坐标系,将图形转化为实际的数据,割补法是求阴影面积常用的方法,需要考生有一定的分析转化能力.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 记为正项数列的前项和,已知是4与的等比中项. n S {}n a n 1n a +n S (1)求的通项分式;{}n a (2)证明:. 2222123111154n a a a a +++⋅⋅⋅+<【答案】(1)21n a n =-(2)证明见解析 【解析】【分析】(1)由等比中项得,进而由递推式计算出,并得到,得数列()214n n a S +=11a =12n n a a --=是等差数列,进而可求解;{}n a (2)由,从第二项开始放缩即可证明. ()22111114121n a n n n ⎛⎫=<- ⎪-⎝⎭-【小问1详解】∵是4与的等比中项,∴①. 1n a +n S ()214n n a S +=当时,,∴. 1n =()2111144a S a +==11a =当时,②,2n ≥()21114n n a S --+=由①-②得,, ()()()22111144n n n n n a a S S a --+-+=-=∴, ()()1120n n n n a a a a ----+=∵,∴,0n a >12n n a a --=∴数列是首项为l ,公差为2的等差数列, {}n a ∴的通项公式. {}n a 21n a n =-【小问2详解】由(1)得,2111a =当时,,2n ≥()222111111444121n a n n n n n ⎛⎫==<=- ⎪--⎝⎭-∴ 22222221232311111111n na a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+1111111115151114122314444n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-+⋅⋅⋅+-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦18. 已知a ,b ,c 分别为三个内角A ,B ,C 的对边,且.ABC A cos sin a C C b c +=+(1)求A ;(2)已知M 为BC 的中点,且,的平分线交BC 于N ,求线ABC A AM =BAC ∠段AN 的长度. 【答案】(1) π3A =(2) AN =【解析】【分析】(1)根据题意,由正弦定理的边角互化将原式化简,再结合三角恒等变换即可求得结果; (2)根据题意,可得,再结合三角形()22222242AMAB ACAB AB AC AC c b bc =+=+⋅+=++的面积公式,代入计算,即可得到结果. 【小问1详解】由题意知中,, ABC A cos sin a C C b c +=+由正弦定理边角关系得:则sin cos sin A C A C,()sin sin sin sin sin cos cos sin sin B C A C C A C A C C =+=++=++, sin cos sin sin A C A C C =+∵,()0,πC ∈∴, sin 0C ≠cos 1A A -=∴,∴, π2sin 16A ⎛⎫-= ⎪⎝⎭π1sin 62A ⎛⎫-= ⎪⎝⎭又,, ()0,πA ∈ππ5π,666A ⎛⎫-∈- ⎪⎝⎭所以,即. ππ=66A -π3A =【小问2详解】如下图所示,在中,为中线,ABC A AM∴, 2AM AB AC =+∴,()22222242AMAB ACAB AB AC AC c b bc =+=+⋅+=++ ∴. 2212b c bc ++=∵, ABC S =△1sin 2bc A ==3bc =∴,b c +==∵, ABC ABN ACN S S S =+△△△,∴. ()1πsin 26b c AN AN =+=AN =19. 近日,某芯片研发团队表示已自主研发成功多维先进封装技术XDFOI ,可以实现4nm 手机SOC 芯片的封装,这是中国芯片技术的又一个重大突破,对中国芯片的发展具有极为重要的意义.可以说国产4nm 先进封装技术的突破,激发了中国芯片的潜力,证明了知名院士倪光南所说的先进技术是买不来的、求不来的,自主研发才是最终的出路.研发团队准备在国内某著名大学招募人才,准备了3道测试题,答对两道就可以被录用,甲、乙两人报名参加测试,他们通过每道试题的概率均为,且相互独立,若()01p p <<甲选择了全部3道试题,乙随机选择了其中2道试题,试回答下列问题.(所选的题全部答完后再判断是否被录用)(1)求甲和乙各自被录用的概率;(2)设甲和乙中被录用的人数为,请判断是否存在唯一的值,使得?并说明理由. ξp 0p () 1.5E ξ=【答案】(1)甲被录用的概率为,乙被录用的概率为2332p p -2333p p -(2)不存在;理由见解析 【解析】【分析】(1)分析已知,甲被录用符合二项分布,乙被录用符合组合排列,分别利用对应求概率公式计算即可.(2)先分析的可能取值,然后分别求解对应概率,再利用离散型数学期望的公式表示出数学期望,然后构ξ造函数,利用求导分析函数单调性,进而判断即可. 【小问1详解】由题意,设甲答对题目的个数为,得, X ()~3,X B p 则甲被录用的概率为,()2232313C 132P pp p p p =-+=-乙被录用的概率为. ()222332C 133P p p p p =-=-【小问2详解】的可能取值为0,1,2,ξ则,()()()12011P P P ξ==--, ()()()1212111P P P P P ξ==-+-,()122P PP ξ==∴ ()()()()()121212*********E P P P P P P PPξ=⨯--+⨯-+-+⨯⎡⎤⎣⎦,23232312323365 1.5P P p p p p p p =+=-+-=-=,32101230p p ∴-+=设,()()321101230f p p p p +=<<-则.()23024f p p p '=-∴当时,单调递减,405p <<()f p 当时,单调递增,415p <<()f p 又,,,()03f =()11f =4110525f ⎛⎫=> ⎪⎝⎭所以不存在的值,使得.p 0p ()00f p =20. 如图,四棱锥的底面是边长为2的正方形,.P ABCD -ABCD 2PA PB ==(1)证明:;PAD PBC ∠=∠(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角的大小. P AB C --【答案】(1)证明见解析(2)6π【解析】【分析】(1) 分别取,的中点,,连接,,,证明出,可得AB CD E F PE EF PF PC PD =,由此可证得结论成立;PAD PBC ≌△△(2)先根据条件推出为二面角的平面角,设,建立空间直角坐标系,利用PEF ∠P AB C --PEF α∠=空间向量法结合基本不等式求出直线与平面所成角的正弦值的最大值,求出对应的角的值,即PA PCD 可求解. 【小问1详解】分别取,的中点,,连接,,, AB CD E F PE EF PF ∵,为的中点,∴.PA PB =E AB PE AB ⊥∵四边形为正方形,则且,∴. ABCD AB CD ∥AB CD =CD PE ⊥∵,分别为,的中点,∴,∴,E F AB CD EF AD ∥EF CD ⊥∵,∴平面.EF PE E ⋂=CD ⊥PEF∵平面,∴. PF ⊂PEF CD PF ⊥在中,PCD A ∵为的中点,,∴. F CD CD PF ⊥PC PD =又∵,,∴, PA PB =AD BC =PAD PBC ≌△△从而可得. PAD PBC ∠=∠【小问2详解】由(1)可知,,PE AB ⊥EF AB ⊥∴为二面角的平面角,且,PEF ∠P AB C --PE ==以点为坐标原点,,所在直线分别为x ,轴建立如下图所示的空间直角坐标系,E EB EFy设,其中,PEF α∠=0απ<<则,,,,,,()1,0,0A -()1,0,0B ()1,2,0C ()1,2,0D -()0,2,0F ()P αα,,.()AP αα= ()2,0,0DC =u u ur()FP αα=- 设平面的法向量为,PCD (),n x y z =由,即,取, 00n DC n FP ⎧⋅=⎪⎨⋅=⎪⎩202)0x y z αα=⎧⎪⎨-⋅=⎪⎩y α=则,,∴,2z α=-0x=(),2n αα=-cos ,n AP n AP n AP⋅<>==⋅==令,(77t α-=∈-+则, cos α=则,cos ,n AP <>==≤=当且仅当时,即当时,等号成立.1t =cos α=6πα=所以当直线与平面所成角的正弦值最大时,二面角为.PA PCD P AB C --6π21. 已知,D 是圆C :上的任意一点,线段DF 的垂直平分线交DC 于点P . ()1,0F -()22116x y -+=(1)求动点P 的轨迹的方程:Γ(2)过点的直线与曲线相交于A ,B 两点,点B 关于轴的对称点为,直线交轴于(),0M t l Γx B 'AB 'x 点,证明:为定值. N OM ON ⋅【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)由中垂线性质,可知,得动点P 的轨迹以,F 42PC PF PC PD DC FC +=+==>=C 为焦点的椭圆;(2)将直线与曲线方程联立,利用韦达定理及题目条件表示出点N 坐标,后可得答案. l Γ【小问1详解】圆:,圆心为,半径为4,C ()22116x y -+=)1,0因为线段DF 的垂直平分线交DC 于P 点,所以, PD PF =所以, 42PC PF PC PD DC FC +=+==>=所以由椭圆定义知,P 的轨迹是以,F 为焦点的椭圆, C 则,,.242a a =⇒=221c c =⇒=2223b a c =-=故轨迹方程为:.22143x y +=【小问2详解】依题意,直线不垂直于坐标轴,设直线的方程为,将其与方程联立:l l ()0x my t m =+≠Γ,消去x 得. 22143x my tx y =+⎧⎪⎨+=⎪⎩()2223463120m y mty t +++-=方程判别式,设,,则,()2248430m t+->()11,A x y ()22,B x y ()22,B x y '-由韦达定理有,,122634mt y y m -+=+212231234t y y m -=+则直线的方程为,AB '()121112y y y y x x x x +-=--令()1212211212N 121212202my y t y y x y x y y yy x m t y y y y y y +++=⇒===⋅++++,则,得.2312426t m t mt t -=⋅+=-40,N t ⎛⎫ ⎪⎝⎭()400,,,OM t ON t ⎛⎫== ⎪⎝⎭∴.即为定值4.44OM ON t t ⋅=⋅= OM ON ⋅ 22. 已知函数,.()1e ln axf x x x-=+a ∈R (1)当时,求函数的最小值; 1a =()f x x -(2)若函数的最小值为,求的最大值. ()f x xa a 【答案】(1)0(2)1【分析】(1)当时,令,求得,根据在不同区间1a =()()F x f x x =-()()()121e x x x x F x --=-'()F x '的符号判断的单调性,由单调性即可求出的最小值;()F x ()()F x f x x =-(2)将等价变换为,借助第(1)问中判断的符号时()≥f x a x ()0f x ax -≥()()()121e x x xx F x --=-'构造的在时取最小值,取,将问题转化为有解问题即可.()1ex g x x -=-1x =()ln g ax x -ln 1ax x -=【小问1详解】当时,令,,1a =()()1e ln x x x F xf x x x-+=--=()0,x ∈∞则,()()()()()11112221e e 11e e 11x x x x x x x x x x x x F xx x ------+-'==-⋅-+-=令,,则,()1ex g x x -=-x ∈R ()1e 1x g x -'=-易知在上单调递增,且,()g x 'R ()10g '=∴当时,,在区间上单调递减,且,()0,1x ∈()0g x '<()g x ()0,1()()110e x g x x g -=->=当时,,在区间上单调递增,且,()1,x ∈+∞()0g x '>()g x ()1,+∞()()110e x g x x g -=->=∴当时,,在区间上单调递减, ()0,1x ∈()()()121e 0x x x F x x --'=-<()F x ()0,1当时,,在区间上单调递增,()1,x ∈+∞()()()121e 0x x x F xx --'=->()F x ()1,+∞当时,取得极小值,也是最小值,,1x =()F x ()()11mine 1ln1101F x F -==+-=∴当时,函数的最小值为. 1a =()f x x -0【小问2详解】由已知,的定义域为, ()f x ()0,∞+若函数的最小值为,则有,∴,, ()f x x a ()≥f x a x()f x ax ≥()0f x ax -≥令,即的最小值为,()()h x f x ax =-()()1e ln ax x ax h x x ax xf -+=--=0由第(1)问知,当且仅当时,取最小值,1x =()1ex g x x -=-()10g =∴当且仅当时,取得最小值, ln 1ax x -=()ln g ax x -0又∵,()()()l 1l 1n 1n n e e ln ln ln ee ax ax ax x x g ax x ax x x ax x ax h x x-----=--=+-=+-=∴只需令有解,即有解, ln 1ax x -=ln 1x a x+=令,,则, ()ln 1x H x x+=()0,x ∈+∞()()221ln 1ln x x x x H x x x ⋅-+'==-当时,,在区间上单调递增, ()0,1x ∈()2ln 0xH x x '=->()H x ()0,1当时,,在区间上单调递减, ()1,x ∈+∞()2ln 0xH x x'=-<()H x ()1,+∞∴, ()()ln 111x a H x H x+==≤=综上所述,若函数的最小值为,则的最大值为. ()f x xa a 1【点睛】在导数压轴题中,常常会使用前问的结论或某一步构造的函数,解决后面的问题.本题第(2)问中直接求导分析的单调性较为困难,这里使用了换元思想,借助第()()1e ln ax x ax h x x ax xf -+=--=(1)问构造的,使,以达到简化运算的目的.()1ex g x x -=-()()ln g ax x h x -=。

湖南省长沙市第一中学2023-2024学年高三上学期月考(一)数学试题(原卷版)

湖南省长沙市第一中学2023-2024学年高三上学期月考(一)数学试题(原卷版)
(1)证明: ;
(2)求 .
18.设各项均不为零的数列 的前 项和为 ,且对于任意 ,满足 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前99项和.
19.如图,在三棱锥 中,侧棱 底面 ,且 ,过棱 的中点 ,作 交 于点 ,连接 .
(1)证明: 平面 ;
(2)若 ,三棱锥 的体积是 ,求直线 与平面 所成角的大小.
11.如图,直线 与半径为1的圆 相切于点 ,射线 从 出发绕点 逆时针方向旋转到 ,在旋转过程中, 交 于点 ,设 为 (其中 ),射线 扫过的圆 内部的区域(阴影部分)的面积为 ,则下列说法正确的有()
A.
B.函数 的单调递增区间为
C.函数 图象 对称中心为
D.函数 在 处的瞬时变化率最大
12.已知数列 满足 ,且对任意的正整数 ,都有 ,则下列说法正确的有()
(1)在一次训练中,使用B型号炮弹,求q满足什么条件时,才能使得至少有一发炮弹命中目标飞行物的概率不低于 ;
(2)若 ,试判断在一次训练中选用A型号炮弹还是B型号炮弹使得目标飞行物坠毁的概率更大?并说明理由.
21.已知椭圆 左焦点为 ,点 到椭圆 上的点的距离最小值是1,离心率为 .
(1)求椭圆 的方程;
A. B.数列 是等差数列
C. D.当 为奇数时,
三、填空题(本大题共4个小题,每小题5分,共20分)
13.已知两圆 ,若圆 与圆 有且仅有两条公切线,则 的取值范围为__________.
14.在等差数列 中,若 ,且数列 的前 项和 有最大值,则使 成立的正整数 的最大值是__________.
(2)设点 是椭圆上关于 轴对称的两点, 交椭圆 于另一点 ,求 的内切圆半径的范围.

湖南省长沙市第一中学2022-2023学年高三上学期月考(二)数学试题(解析版)

湖南省长沙市第一中学2022-2023学年高三上学期月考(二)数学试题(解析版)

故答案为:
15.用符号 表示不超过 的最大整数(称为 的整数部分),如 ,已知函数 有两个不同的零点 ,若 ,则实数 的取值范围是_____.
【答案】
【解析】
【分析】函数 有两个不同的零点即函数 与函数 的图象有两个不同交点,分类讨论数形结合可得结果.
【详解】函数 有两个不同的零点 ,
即函数 与函数 的图象有两个不同交点,
故选:ABD
10.已知函数 ,则()
A.函数 的最小正周期为 B. 为函数 的一条对称轴
C.函数 的最小值为1,最大值为2D.函数 在 上单调递减
【答案】BC
【解析】
【分析】根据给定条件利用周期定义、对称性性质判断选项A,B;换元借助二次函数最值判断选项C;利用复合函数单调性判断选项D作答.
【详解】因为 ,所以 ,A错误;
且 ,
由 知 且 ,故 的充要条件是 为纯虚数,
故选:D.
4.如图,一个装有某种液体的圆柱形容器固定在墙面和地面的角落内,容器与地面所成的角为 ,液面呈椭圆形,椭圆长轴上的顶点 到容器底部的距离分别是10和16,则容器内液体的体积是()
A. B. C. D.
【答案】B
【解析】
【分析】利用补体法可求液体的体积.
同理可得其余各点坐标, , , , , ,
对于A中, ,故A正确;
对于B中, ,故B正确;
对于C中, , , ,
所以 ,故C错误;
对于D中, , ,所以 在 方向上的投影为 ,
又因为 ,所以 在 方向上的投影,向量为 ,故D正确.
故选:C.
6.已知函数 的图象的一条对称轴与其相邻的一个对称中心的距离为 ,将 的图象向右平移 个单位长度得到函数 的图象.若函 的图象在区间 上是增函数,则 的取值范围为()

2021届湖南省长沙市长郡中学高三上学期月考(一)数学试题(解析版)

2021届湖南省长沙市长郡中学高三上学期月考(一)数学试题(解析版)
10.已知数列 前 项和为 .且 , ( 为非零常数)测下列结论中正确的是()
A.数列 为等比数列B. 时,
C.当 时, D.
答案:AC
解:由 和等比数列的定义,判断出A正确;利用等比数列的求和公式判断B错误;利用等比数列的通项公式计算得出C正确,D不正确.
解:
由 ,得 .
时, ,相减可得 ,
又 ,数列 为首项为 ,公比为 的等比数列,故A正确;
因 ,

而 ,

所以数列 前48项之和为 .
故答案为:1176.
点评:
本题主要考查了数列求和的问题.属于中档题.
四、解答题
17.请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题
① ;② 的面积为 ;③ .
在 中,角 , , 所对的边分别为 , , .在已知 , 为钝角, .
(1)求边 的长;
解:
由已知, , ,因此 ,
∴ ,
所以 ,过点 ,
因此 , ,又 ,
所以 ,∴ ,
对A, 图象关于原点对称,故A正确;
对B,当 时, ,故B正确;
对C,由 ,有 , 故C不正确;
对D,当 时, ,所以 与函数 有4个交点令横坐标为 , , , , ,故D正确.
故选:ABD.
点评:
本题考查根据正弦型函数的部分图象求函数的解析式,以及分析正弦型函数的性质,属于基础题.
解:
由 ,有 ,解得 ,
故 ,
故当 时, 取最小值 .
故选:A.
点评:
本题考查分式型三角函数的化简,以及关于二次型三角函数的最值问题,属于基础题.
8.设函数 ,若存在区间 ,使 在 , 上的值域为 , ,则 的取值范围是

2022-2023学年湖南省长沙市第一中学高三上学期月考(一)数学试题(解析版)

2022-2023学年湖南省长沙市第一中学高三上学期月考(一)数学试题(解析版)
【答案】D
【解析】
【详解】当E,F排在前三位时, =24,当E,F排后三位时, =72,当E,F排3,4位时, =24,N=120种,选D.
6.函数 ( 且 )在一个周期内的图象如图所示,将函数 图象上的点的横坐标伸长为原来的2倍,再向右平移 个单位长度,得到函数 的图象,则 ()
A. B.1C.-1D.
(1)若点 与点 重合,求 的值;
(2)求五边形 面积 的最大值.
【答案】(1)
(2)
【解析】
【分析】(1)利用余弦定理求出 ,再利用正弦定理即可得出答案;
(2)根据题意可得 ,则 ,设 ,则 ,根据三角形的面积公式结合三角函数的性质即可得出答案.
【小问1详解】
若点P与点C重合,连接 ,

在 中, ,
7.在三棱锥 中, 平面ABC, , 与 的外接圆圆心分别为 , ,若三棱锥 的外接球的表面积为 ,设 , ,则 的最大值是()
A. B. C. D.
【答案】B
【解析】
【分析】由题可得 ,然后利用球的性质可得 ,进而可得 ,再利用基本不等式即求.
【详解】∵ 平面ABC,
∴ ,
则 为直角三角形,其外心 为PB的中点, 的外心 ,
5.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务 必须排在前三位,且任务 、 必须排在一起,则这六项任务的不同安排方案共有
A.240种B.188种C.156种D.120种
(1)记 ,写出 ,并求出数列 的通项公式;
(2)求数列 的前2022项和 .
【答案】(1) , ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 13 页长沙市一中高三第一次月考试卷理科数学一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.设2{1,},{}A x B x ==,且A B A = ,则实数x 为( ) A .0或1B .1C .0或1-D .02.已知二次函数2()4f x x ax =-+,若(1)f x +是偶函数,则实数a 的值为( ) A. 1-B. 1C. 2-D. 23.命题“设a 、b 、c R ∈,若22ac bc >,则a b >”的逆命题、否命题、逆否命题中真命题共有( ) A .0个B .1个C .2个D .3个4.用0.618法选取试点,试验区间为[2,4],若第一个试点1x 处的结果比2x 处好,12x x >,则第三个试点应选取在( ) A .2.236B .3.764C .3.528D .3.9255.对任意实数x ,若不等式|1||2|x x k +-->恒成立,则k 的取值范围是( ) A .1k <B .3k <-C .1k >D .3k >-6.在极坐标中,由三条曲线0,,cos sin 13πθθρθθ==+=围成图形的面积是( )第 2 页 共 13 页A.8B.4C.2D7.若直线340x y m ++=与曲线1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是( )A .010m <<B .0m <或10m >C .0m <D .10m >8.已知定义域为R 的函数()f x 满足()(4)f x f x -=-+,则2x >时,()f x 单调递增,若124x x +<,且12(2)(2)0x x --<,则12()()f x f x +与0的大小关系是( )A .12()()0f x f x +>B .12()()0f x f x +=C .12()()0f x f x +<D .12()()0f x f x +≤二、填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上) 9.若不等式||1x m -<成立的充分不必要条件是1132x <<,则实数m 的取值范围是 . 60CDB ∠=︒,AB =,则10.如图,在圆的内接四边形ABCD 中,90ABC ∠=︒,45CBD ∠=︒,CD = .2()1f x x ax =-+在[0,1]上的11.已知:l o g (2ay a x =-在[0,1]上是单调递减的,则函数最大值是 .12.若不等式()x a x y +≤+对一切正数,x y 恒成立,则正数a 的最小值为.第 3 页 共 13 页13.已知函数224(0)()4(0)x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若2(2)()f a f a ->,则实数a 的取值范围是 . 14.函数()log (1)(0a f x x a =+>且1)a ≠的定义域和值域都是[0,1],则a = . 15.已知()f x 是定义在R 上的函数,且满足(1)()3f x f x ++=,[0,1]x ∈时,()2f x x =-,则(2005.5)f -等于 .三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤). 16.(本小题满分12分)设2{|150}A x x ax =--≥,2{|20}B x x ax b =-+<,A ∩{|56}B x x =≤<,求A ∪B .17.(本小题满分12分)若对满足211x >-的任意实数x ,使得不等式32236(6)x x x a +≥+恒成立,求实数a 的取值范围.第 4 页 共 13 页18.(本小题满分12分)已知二次函数()f x 满足(2)(2)f x f x +=-,(0)3f =;方程()0f x =有两个实根,且两实根的平方和为10.(1)求函数()f x 的解析式;(2)若关于x 的方程()20f x m -=在区间[0,3]内有根,求实数m 的取值范围.第 5 页 共 13 页19.(本小题满分13分)已知函数()ln f x x =,21()2g x x a =+(a 为常数),若直线l 与()g f x =和()y g x =的图象都相切,且l 与()y f x =的图象相切于定点(1,(1))P f . (1)求直线l 的方程及a 的值;(2)当k R ∈时,讨论关于x 的方程2(1)()f x g x k +-=的实数解的个数.第 6 页 共 13 页20.(本小题满分13分)三个城市长沙、株洲、湘潭分别位于A ,B ,C 三点处(如右图),且AB AC ==,40BC =km.今计划合建一个货运中转站,为同时方便三个城市,准备建在与B 、C 等距离的O 点处,并修建道路,,OA OB OC .记修建的道路的总长度为y km.(Ⅰ)设OA x =(km),或OB x =(km),或点O 到BC 的距离为x (km),或CBO x ∠=(rad).请你选择用其中的某个x ,将y 表示为x 的函数;(Ⅱ)由(Ⅰ)中建立的函数关系,确定货运中转站的位置,使修建的道路的总长度最短.第 7 页 共 13 页21.(本小题满分13分)已知:函数3211()62f x x x x =-++,x R ∈. (Ⅰ)求证:函数()f x 的图象关于点4(1,)3A 中心对称,并求(2007)(2006)(0)(1)(2009)f f f f f -+-+++++ 的值.(Ⅱ)设()()g x f x '=,1()n n a g a +=,n N +∈,且112a <<,求证:(ⅰ)当2n ≥时,312n a <<;(ⅱ)12|||2n a a a +++-< .高三第一次月考参考答案及评分标准一、选择题 1.D2.D3.C4.解:120.618(42) 2.236x =+⨯-= 212424 2.236 3.764x x =+-=+-=3212 3.528x x x =+-= 答案:C 5.B6.A7.B8.C二、填空题 9.14[,]23-10.2 11.1 12.213.21a -<<第 8 页 共 13 页14.2 15.1.5三、解答题16.解:由题意知5x =是2150x ax --=的根,2551502a a ∴--=⇒=(4分) 6x =是220x ax b -+=的根 12b ∴=-(8分){|53}A x x x ∴=≥≤-或,{|26}B x x =-<< {|32}A B x x x ∴=≤->- 或(12分)17.解:由221310(1)(3)0131111x x x x x x x x x -->⇒-=>⇒--<⇒<<---- (4分) 设32()23366f x x x x a =+--,(1,3)x ∈.2()6636,()0,6(2)(3)0f x x x f x x x ''∴=+-=-+=由解得 12x ∴=+,或3x =-(舍去).又当12x <<时,()0f x '<,23x <<时,()0f x '>,()f x ∴在2x =处取得最小值 22(2)44603f a a =--≥⇒≤-. (12分)18.解:(1)设2()(0)f x ax bx c a =++≠,方程20ax bx c ++=的两根为1x ,2x ,则2222121212()2()2bc x x x x x x aa+=+-=--⨯第 9 页 共 13 页22123423()10b a a c b b c c aa ⎧-=⎪=⎧⎪⎪∴=⇒=-⎨⎨⎪⎪=⎩⎪-=⎩ 2()43f x x x ∴=-+(6分)(2)()f x 在(0,2)为减函数,(2,3)为增函数,min ()(2)1f x f ∴==-,max ()(0)3f x f ==. ()[1,3]f x ∴∈-.由()2f x m = 1312322m m ∴-≤≤⇒-≤≤ (12分)19.解:(1)1()f x x'=,(1)1f '∴=.∴切点为(1,0).l ∴的解析式为1y x =-.(2分)又l 与()y g x =相切, 221222012y x x x a y x a =-⎧⎪∴⇒-++=⎨=+⎪⎩ 2(2)4(22)0a ∆=--+=12a ⇒=-(5分)(2)令22211()(1)()ln(1)22h x f x g x x x =+-=+-+32222(1)(1)()111x x x x x x h x x x x x -++-'∴=-==-+++(7分)第 10 页 共 13 页令12,3()00,1h x x x '=⇒==±.1︒ (l n 2,)k ∈+∞时,方程无解. 2︒当ln 2k =时,方程有2解.3︒ 当1ln 22k <<,方程有4解. 4︒ 当12k=时,方程有3解.5︒ 当12k <时,方程有2解.(13分)20.解:(Ⅰ)设OB x =(km),延长AO 交于BC 于点D .由题意可知1202BD DC BC ===,OB OC =, 20OA AD OD OD OD =-==-,在Rt ODB ∆中,OD ==所以220y OA OB OC x =++=+又易知20x ≤≤y 用x 表示的函数为第 11 页 共 13 页220y x x =+-≤≤……………………………………(6分)(若设(km)OA x =,则20)y x x =+≤≤;若设CBO x ∠=(rad), 则2020(2sin )2020tan 220(0)cos cos 4x y x x x x π-=-+⨯=+≤≤ (Ⅱ)由(Ⅰ)中建立的函数关系220y x x =+-≤≤,来确定符合要求的货运中转站的位置.因为220y x =+2y '=,令0y '=得3x =,3x =-(舍去)当x ∈时,0y '<;当x ∈时,0y '>,所以函数y在x =小值就是函数y在[20,上的最小值.……(11分)因此,当货运中转站建在三角形区内且到B 、C 两点的距离均为km 时,修建的道路的总长度最短.…………………………………………………………………………(13分)21.解:(Ⅰ)设11(1,)P x y -是函数()f x 的图象上的任一点,则11(1)y f x =-, 又11(1,)P x y -关于4(1,)3A 的对称点是118(1,)3Q x y +-, (1分)而11(1)(1)f x f x ++-第 12 页 共 13 页32321111111111(1)(1)(1)[(1)(1)(1)]6262x x x x x x =-++++++--+-+-3322111111[(1)(1)][(1)(1)]262x x x x =-++-+++-+2211181233x x =--+++=,即11188(1)(1)33f x f x y +=--=-,(3分) 点118(1,)3Q x y +-也在函数()f x 的图象上,故()f x 的图象关于点4(1,)3中心对称.(4分)由于118(1)(1)3f x f x ++-=, 1x ∈R .(2007)(2009)(2006)(2008)f f f f ∴-+=-+= (8)(0)(2)3f f =+=,又4(1)3f =.(2007)(2006)S f f =-+-+……(0)(1)f f +++……(2009)f +,824017535623S ∴=⨯=⨯,5356S ∴=.故(2007)(2006)(2009)5356f f f -+-++= .(6分)(Ⅱ)21()12g x x x =-++. (ⅰ)下面用数学归纳法证明:1︒ 当2n =时,2221111131(1)222a a a a =-++=--+第 13 页 共 13 页112a << 2312a ∴<<.2︒ 假设(2)n k k =≥时,312k a <<则2113()(1)22k k k a g a a +==--+,又()g x 在[1,)+∞上单调递减,1331(2)()(1)22k g g a g +∴-<<<=,这说明1n k =+时,命题也成立.由1︒ 2︒可知*31(N ,2)2n a n n <<∈≥. (10分)(ⅱ)2111||1||222n n n n n a a a a a +=-++=⋅-+, 由于312n a <<,|21n a ∴-<,11||2n n a a +∴<,于是11||2n n a a -<< (22211111)|(2,N*)2222n n n a n n ---<<⋅=≥∈. (12分)所以,121211|||122n a a a +++<+++ (1)1112()222n n --+=-<. (13分)。

相关文档
最新文档