不等式的证明(6)--构造法
不等式证明中的常用构造法
构造法是一种富有创造件的解题方法,它很好地体现了数学中发现、类比、化归的思想,也渗透着猜想、试验、探索、归纳、概括、特殊化等重要的数学方法,在数学解题中,对题设条件、结论进行分析,联想有关知识和方法,通过恰当地构造辅助元素,可以使问题化难为易。
在构造法中所构造的辅助元素可以是函数、方程(组),也可以是图形、数列等等。
下面结合高中数学不等式教学实践谈谈解题中的构造法。
一、构造函数例1、求证:解:此题若运用绝对值不等式的性质去证明,学生一时无从下手。
这时,引导学生整体思维,即在思考问题时,把注意力和着眼点放在问题的整体上,全面的收集和获取信息,对问题作出整体判断,从高层次上寻找捷径,化难为易,从而诱发灵感,获得问题的简捷解法。
二、构造主元方程例2、a、b、c都是小于k的正数,求证:a(k-b)+b(k-c)+c(k-a)<k2。
分析与证明:(构造一次函数图象):令A=k2-[a(k-b)+b(k-c)+c(k-a)]因变量较多,可用主元法,把a当作主元,重新整理得:A=(b+c-k)a+bc-(b+c)k+k2,将A看作关于a的一次函数,注意到0<a<k,当a=0时,A=k2-(b+c)k+bc=(k-b)(k-c)>0当a=k时,A=(b+c-k)k+bc-(b+c)k+k2=bc>0如图所示,函数图象的两个点P、Q(横坐标分别为0,k)都在x轴的上方,由直线的性质可知0<a<k时,A=f(a)>0三、构造图形例3、正数a、b、c、A、B、C满足条件求证:证明一:这是一道代数不等式的证明题,可用代数法求解。
下面我们可用构造法,将数形结合,得出此不等式的巧妙证法。
证明二:由求证的不等式联想到面积关系,由所设条件联想到构造以边长为k的正三角形,如下图所示:四、构造向量证明例1设为不相等的正数,求证分析:利用向量的数量积不等式证明:设利用向量的数量积不等式有由于也即向量m与n不是平行向量,故五、构造数列与自然有关的问题,有时通过构造一个数列,利用数列的单调性解题或证题显得很简捷。
证明不等式的几种方法
昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。
本文主要归纳了几种不等式证明的常用方法。
关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。
证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。
主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。
2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。
具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。
差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。
2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。
其中变形是求差法的关键,配方和因式分解是经常使用的方法。
3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。
应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。
商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。
2.变形:化简商式到最简形式。
3.判断:商与1的大小关系,就是判定商大于1还是小于1。
应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。
证明不等式的八种方法
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
高中数学解题方法-----构造函数法证明导数不等式的八种方法
高中数学解题方法构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:1.移项法构造函数 2、作差法构造函数证明3、换元法构造函数证明4、从条件特征入手构造函数证明5、主元法构造函数6、构造二阶导数函数证明导数的单调性7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数1.移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。
【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
不等式证明六(构造法及其它方法)
教材:不等式证明六(构造法及其它方法)目的:要求学生逐步熟悉利用构造法等方法证明不等式。
过程:一、构造法:1.构造函数法例一、已知x > 0,求证:511≥++x ∴310313)3(910322=+=≥++=f x x y2.构造方程法:例三、已知实数a , b , c ,满足a + b + c = 0和abc = 2,求证:a , b , c 中至少有一个不小于2。
证:由题设:显然a , b , c 中必有一个正数,不妨设a > 0,则 ⎝⎛=-=+a bc a c b 2即b , c 是二次方程022=++aax x 的两个实根。
∴082≥-=∆aa 即:a ≥2例四、求证:),2(3tan sec tan sec 3122Z k k ∈π+π≠θ≤θ+θθ-θ≤ 证:设θ-θ=tan sec 22y 则:(y - 1)tan 2θ + (y + 1)tan θ + (y - 1) = 0 322)1(||-+=b a DO 又:2||||==BD AC ∴22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a二、 作业:证明下列不等式:1. 3113122≤+++-≤x x x x BC令1122+++-=x x x x y ,则 (y - 1)x 2 + (y + 1)x + (y - 1) = 0用△法,分情况讨论2.已知关于x 的不等式(a 2 - 1)x 2 - (a - 1)x - 1 < 0 (a ∈R ),对任意实数x 恒成立,求证:135≤<-a 。
分a 2- 1 = 0和⎩⎨⎧<∆<-012a 讨论 3.若x左边412= t f )(4.若0令f ∴b 5.记f 使|则|6.若x 作∠AOB = ∠BOC = ∠COA = 120︒, 设|OA | = x , |OB | = y , |OC | = zC。
不等式的几种证明方法及其应用
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
证明不等式的基本方法
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题典例1】已知函数$f(x)=1-\ln(x)e^x,g(x)=\frac{x}{1-bx}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。
求$a,b$的值,并证明:当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。
典例2】已知函数$f(x)=(x+b)(e^x-a)$,在$(-1,f(-1))$处的切线方程为$(e-1)x+ey+e-1=0$。
求$a,b$的值,并证明:若$m\leq\frac{f(x)}{x^2+x}$,则$f(x)\geq mx^2+x$。
典例3】已知函数$f(x)=x\ln x+ax+1$,$a\in\mathbb{R}$。
1)当$x>0$时,若关于$x$的不等式$f(x)\geq k$恒成立,求$a$的取值范围;2)当$n\in\mathbb{N^*}$时,证明:$\frac{n^3}{n+1}<\ln2^2+\ln2+\frac{1}{n+1}<\frac{n}{n+1}$。
典例4】已知函数$f(x)=\frac{2\ln x+2}{e^x}$。
1)求函数$f(x)$的单调区间;2)证明:当$x>0$时,$f'(x)\ln(x+1)<\frac{2}{x+2}$。
典例5】已知函数$f(x)=e^x-x^2$。
1)求曲线$f(x)$在$x=1$处的切线方程;2)证明:当$x>0$时,$e^x+(2-e)x-1\geq\ln x+1$。
典例7】已知函数$f(x)=x^2+ax+b\ln x$,曲线$y=f(x)$在点$(1,f(1))$处的切线方程为$y=2x$。
1)求实数$a,b$的值;2)设$F(x)=f(x)-x^2+mx(m\in\mathbb{R})$,$x_1,x_2$$(x_1<x_2)$分别是函数$F(x)$的两个零点,求证:$F'(x)$在$(x_1,x_2)$内至少有一个零点。
利用导数证明不等式的四种方法
利用导数证明不等式的四种方法在初等数学中证明不等式的常用方法有比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法.但是当不等式比较复杂时,用初等的方法证明会比较困难,有时还证不出来.如果用函数的观点去认识不等式,利用导数为工具,那么不等式的证明就会化难为易.本文通过举例阐述利用泰勒公式, 中值定理,函数的性质, Jensen 不等式等四种方法证明不等式,说明了导数在证明不等式中的重要作用.一、利用泰勒公式证明不等式若函数)(x f 在含有0x 的某区间有定义,并且有直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0)(x fn ,则有公式)()(!)()(!2)()(!1)()()()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥或)(00)(200000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤例1 证明: ).11(,32)1ln(32<<-+-≤+x x x x x 证明 设)11)1ln()(<<-+=x x x f ( 则)(x f 在0=x 处有带有拉格朗日余项三阶泰勒公式)11()1(432)1ln(4432<<-+-+-=+ξξ x x x x x0)1(444≤+-ξx 32)1ln(32x x x x +-≤+∴ 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x 在0x 处展开,然后判断余项)(x R n 的正负,从而证明不等式.二、利用中值定理证明不等式微分)(Lagrange中值定理: 若)(x f 满足以下条件:(1) )(x f 在闭区间],[b a 内连续 (2) )(x f 在开区间),(b a 上可导则 ab a f b f f b a --='∍∈∃)()()(),(ξξ 例2 若)()(1,011y x py y x y x py p x y p p p p -<-<-><<--则 分析 因为,0x y <<则原不等式等价于11--<--<p p p p px yx y x py)1(>p .令p t x f =)(,则我们容易联想到Lagrange 中值定理yx y f x f y x f --=-)()())(('ξ.证明 设p t t f =)(,显然],[)(x y t f 在满足Lagrange 中值定理的条件则 ,)()()(),(y x y f x f f x y --='∍∈∃ξξ 即yx y x p ppp ---=1ξ111,),(---<<∴<<∴∈p p p px p py x y x y ξξξ )()(11y x py y x y x py p p p p -<-<-∴-- 例3 设)(x f 在],[b a 上连续可导,且,0)()(==b f a f 则dx x f a b x f babx a ⎰-≥≤≤)()(4)(max 2'证明 设)(max 'x f M bx a ≤≤=则由中值公式,当),(b a x ∈时,有))(())(()()(11a x f a x f a f x f -'=-'+=ξξ ))(())(()()(22b x f b x f b f x f -'=-'+=ξξ其中).,(),,(21b x x a ∈∈ξξ由此可得)()()()(x b M x f a x M x f -≤-≤及所以4)()()()()()(22222a b M dx x b M dx a x M dxx f dx x f dx x f b a abb a bab a a bb a -=-+-≤+=⎰⎰⎰⎰⎰++++ 即⎰-≥badx x f a b M )()(42所以 dx x f a b x f babx a ⎰-≥'≤≤)()(4)(max 2积分第二中值定理]1[ 若在区间f ],[b a 上f 为非负的单调递减函数,而g 是可积函数,则存在],[b a ∈ξ,使得⎰⎰=ξabag a f fg )(例4 设⎰+=12sin )(x xdt t x f ,则0>x 时xx f 1)(<特别地:当2003=x 时机为2003年浙江省高等数学竞赛试题(工科、经管类)证明 令u t =,则由积分第二中值定理xudu x udu ux f xx x 1sin 212sin )(2221≤=⎰⎰+ξ =又因为⎰⎰⎰+++-++-⎥⎥⎦⎤⎢⎢⎣⎡++-=222222)1(2322)1(2322)1(cos 41)1cos()1(21cos 21cos 21)1(cos 1212sin )(x x x x x xu udu x x x x u udu x x u u udu ux f = =于是,0>x 时xx x x x duu x x x f x x 1)111(21)1(212141)1(2121)(22)1(23=-+-+++++<⎰+- =由上可见利用中值定理证明不等式,通常是首先构造辅助函数和考虑区间,辅助函数和定义区间的选择要与题设和结论相联系,然后由中值定理写出不等式,从而进行证明.三、利用函数的单调性证明不等式定理1 如果函数)(),(x g x f 满足以下条件:(1) )(),(x g x f 在闭区间],[b a 内连续(2) )(),(x g x f 在开区间),(b a 可导,且有)()(x g x f '>'(或)()(x g x f '<') (3) )()(a g a f =则 在),(b a 内有)()(x g x f >(或)()(x g x f <令)()()(x g x f x F -=由于0)(0)()()()(≤⇔≤-⇔≤x F x g x f x g x f 所以证明)()(x g x f ≤⇔证明0)(≤x F 则相应地有推论1 若)(x f 在],[b a 上连续,在),(b a 内可导,c a f =)(且0)('>x f (或0)('<x f )则在),(b a 内有c x f >)((或c x f <)().例5 证明:当1>x 时,有).2ln(ln )1(ln 2+⋅>+x x x分析 只要把要证的不等式变形为)1ln()2ln(ln )1ln(++>+x x x x ,然后把x 相对固定看作常数,并选取辅助函数xx x f ln )1ln()(+=.则只要证明)(x f 在),0(+∞是单调减函数即可. 证明 作辅助函数xx x f ln )1ln()(+= )1(>x于是有xx x x x x x x x x x x x f 22ln )1()1ln()1(ln ln )1ln(1ln )(+++-=+-+=' 因为 ,11+<<x x 故)1ln(ln 0+<<x x 所以 )1ln()1(ln ++<x x x x因而在),(∞+1内恒有0)('<x f ,所以)(x f 在区间),1(+∞内严格递减.又因为x x +<<11,可知)1()(+>x f x f即)1ln()2ln(ln )1ln(++-+x x x x 所以 ).2ln(ln )1(ln 2+⋅>+x x x例6 证明不等式x x x x <+<-)1ln(22,其中0>x .分析 因为例6中不等式的不等号两边形式不一样,对它作差)2()1ln(2x x x --+,则发现作差以后不容易化简.如果对)1ln(x +求导得x+11,这样就能对它进行比较.证明 先证 )1ln(22x x x +<-设 )2()1l n ()(2x x x x f --+= )0(>x则 00)01l n ()0(=-+=f xx x x x f +=+-+=1111)(2'0>x 即 0012>>+x x 01)(2>+='∴x x x f ,即在),0(+∞上)(x f 单调递增0)0()(=>∴f x f 2)1ln(2x x x ->+∴ 再证 x x <+)1ln(令 x x x g -+=)1l n ()( 则 0)0(=g 111)(-+='xx g10<+∴>xx 11x x x g <+∴<'∴)1ln(0)( x x x x <+<-∴)1ln(22定理1将可导函数的不等式)()(x g x f <的证明转化为)()(x g x f '<'的证明,但当)(x f '与)(x g '的大小不容易判定时,则有推论2 设)(x f ,)(x g 在[b a ,]上n 阶可导, (1))()()()(a g a f k k = 1,2,1,0-=n k (2))()()()(x g x f n n > (或)()()()(x g x f n n <)则在(b a ,)内有)()(x g x f > (或)()(x g x f <)例7 证明:331x x tgx +>,)2,0(π∈x .分析 两边函数类型不同,右边多项式次数较高,不易比较,对它求一阶导数得.1)31(,sec )(232x x x x tgx +='+='仍然不易比较,则我们自然就能想到推论2.证明 设tgx x f =)(331)(x x x g +=则 (1)0)0()0(==g f(2)1)0()0(),1()(),(sec )(22='='+='='g f x x g x x f (3)1)0()0(,2)(,cos sec 2)(2=''=''=''=''g f x x g xxx f(4)2)(),31)(1(2)(22='''++='''x g x tg x tg x f 显然有 )()(x g x f '''>'''由推论2得,231x x tgx+> (20π<<x ).利用函数的单调性证明不等式我们都是先构造函数.然后通过对函数求导,来判定函数的增减性,从而达到证明不等式的目的.四、利用Jensen(琴森)不等式证明不等式定义]1[ 如果),()(b a x f 在内存在二阶导数)("x f 则(1) 若对,.0)(),(>''∈∀x f b a x 有则函数)(x f 在),(b a 内为凸函数.(2) 若对,.0)(),(<''∈∀x f b a x 有则函数)(x f 在),(b a 内为凹函数.若函数),()(b a x f 在内是凸(或凹)函数时,对),(,,,21b a x x x n ∈∀ 及∑==ni i 11λ,有Jensen(琴森)不等式∑∑∑∑====⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛n i ni i i n i i i i i n i i i x f x f x f x f 1111)()( 或 λλλλ 等号当且仅当n x x x === 21时成立.例8 证明下列不等式),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ .分析 上式只要能证明),2,1,0(2121n i a na a a a a a i nnn =>+++≤⋅ ,如果此题用前面所述的几种方法来证明显然不合适,因为对它求导后不等式会更复杂.而这里的i a 可以看作是同一函数的多个不同函数值,设x x f ln )(=那么就可以用Jensen 不等式来证明它.然后只要令xx f 1ln)(=,同理可得n n na a a a a a n 2121111⋅≤+++.证明 令)0(ln )(>=x x x f 因为 01)(2<-=''x x f ,所以),0()(+∞在x f 是凹函数 则对),0(,,,21+∞∈∀na a a 有[])()()(1)(12121n n a f a f a f na a a n f +++≥⎥⎦⎤⎢⎣⎡+++即 []n n a a a na a a n ln ln ln 1)(1ln 2121+++≥⎥⎦⎤⎢⎣⎡+++ 又因为[]n n n a a a a a a n2121ln ln ln ln 1⋅=+++ 所以 na a a a a a nnn +++≤⋅ 2121 令 xx f 1ln)(=, 则同理可得n n na a a a a a n 2121111⋅≤+++所以),2,1,0(111212121n i a na a a a a a a a a ni nn n n=>+++≤⋅≤+++ 例9 设)(x f 二次可微,且对一切x ,有0)(≥''x f ,而)(t u 在],0[a 上连续,则⎰⎰≥a adt t u af dt t u f a 00])(1[)]([1 分析 上述不等式在形式上很像Jensen 不等式,且当t 取不同的值时,)]([t u f 就是同一函数的不同函数值,则可以用琴森不等式进行证明.证明 由)(x f 及)(t u 的连续性,保证了可积性.并且∑⎰-=∞→=100)]([1lim )]([1n K n a n Ka u f n dt t u f a ⎰∑-=∞→=a n K n n Ka u n dt t u a 010)(1lim )(1因0)(≥''x f ,故)(x f 为凸函数,在Jensen 不等式)()()(112211n n n n x f q x f q x q x q x q f ++≤+++ )1,,,(2121=+++n n q q q q q q 均为正,且中,取) ( n i nq a n i u x i i ,3,2,11),1(==-= 即得∑∑-=-=≤1010)]([1])(1[n K n K nKa u f n n Ka u n f 由)(x f 的连续性,在上式取∞→n 即得所要证的结论.由以上证明可知应用Jensen 不等式证明不等式,首先是构造适当的函数并判断它的凹凸性,然后用Jensen 不等式证明之.本文所述四种用导数证明不等式的四种方法充分说明了导数在不等式证明中的独到之处.在证明不等式时,应用导数等知识往往能使复杂问题简单化,从而达到事半功倍的效果.需要指出的是利用导数证明不等式,除上述四种方法外还有不少方法.如用极值、最值等来证明不等式.由于受篇幅之限,这里不再详述.参考文献[1] 华东师范大学数学系,数学分析[M]第三版,北京:高等教育出版社,2001. [2] 裘单明等,研究生入学考试指导,数学分析[M],济南:山东科学技术出版社,1985.[3] 胡雁军,李育生,邓聚成,数学分析中的证题方法与难题选解[M],开封:河南大学出版社,1987.Four Usual Methods to Prove Tthe Inequality by UsingDerivativeYang Yuxin(Department of Mathematics Shaoxing College of Arts and Sciences, Shaoxing Zhejiang,312000) Abstract:Examplisies four methods to prove the Inequality by using Derivative to show the imporpance of using derivative to crove the inequalityKey words:Derivative; Monotonicity; Theorem of mean; Taylor formula; Jensen Inequality。
不等式性质及证明
在制定经济政策的过程中,我们也需要利用不等式性质来描述经济 变量之间的关系,比如货币政策、财政政策等。
05
不等式的扩展知识
不等式的几何意义
几何解释
不等式可以看作是数轴上的点的集合 ,满足不等式的点位于数轴上的某一 侧,而不满足不等式的点位于另一侧 。
几何意义的应用
通过几何图形可以直观地理解不等式 的性质和证明,有助于解决一些复杂 的不等式问题。
定义
反证法是通过假设结论不成立,然后推导出矛盾,从而证 明结论成立的证明方法。
描述
反证法是一种间接证明方法,它首先假设结论不成立,然后通 过一系列推理和数学定理,推导出矛盾或与已知条件相矛盾的
结论,从而证明原命题成立。
例子
例如,要证明 a > b,可以假设 a ≤ b,然后推导出 a - b ≤ 0 与已知条件 a - b > 0 相矛盾,从而证明原命题成立。
不等式性质及证明
目录
• 不等式的定义与分类 • 不等式的性质 • 不等式的证明方法 • 不等式的应用 • 不等式的扩展知识
01
不等式的定义与分类
定义
总结词
不等式是数学中表示两个数或表达式 大小关系的式子。
详细描述
不等式是用大于、小于、不等于等符 号连接两个数或表达式的数学式子。 它表示一个数或表达式比另一个数或 表达式大或者小。
传递性
总结词
如果a>b且b>c,则a>c。
详细描述
这是不等式的基本性质之一,称为传递性。如果两个数a和b满足a>b,并且b和 c满足b>c,那么我们可以推断出a&果a>b,则a+c>b+c。
详细描述
构造函数法证明不等式的八种方法
构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
不等式证明的方法与技巧
不等式证明的方法与技巧陈怡不等式证明是不等式中的基本内容之一,也是其重难点所在。
许多学生遇到不等式证明题不知所措,无从下手。
因此,有必要从解题思路入手,总结一些不等式证明的方法、技巧以及在某些方法技巧中所体现的数学思想,使学生们在解题时有的放矢。
除常见的综合法、分析法、反证法、放缩法及利用公式证明不等式外,本文另总结、归纳常见不等式证明方法技巧如下:一、利用数列的单调性证不等式法:我们常常用数学归纳证明含自然数n的不等式(这里不举例说明),然而,换一种角度,用数列的单调证性证此类不等式,更是简单明晰。
例1.求证明:1+++…+>(n>1)证明:令:a n=1+++…+-=11+++…+-则a n-1∴a n-a n=+--1=>0∴a n>a n-1即数列{a n}递增∴1+++…+>(n>1)例2.求证:1+++…+<2-(n≥2)证明:令a n=1+++…+-2+=1+++…++-2+(n≥)则a n-1∴a n-a n=+--1=-<0+<…<a2=-<0∴a n<a n-1∴1+++…+<2-仔细分析上面两个例题,我们发现这里运用了转化的思想,其实是把难解的关于自然数n的不等式证明问题,转化成了熟悉易解的求某数列的单调性问题。
将未知归为已知,从而最终求得原问题的解决。
下再举一例说明不等式证明中的转化思想。
例3.a、b、c∈R+,求证:++≥(a+b+c)(分析:由左边的形式联想到复数的模,引入复数,不等式证明问题转化为复数问题。
)证明:令Z1=a+bi,Z2=b+ci,Z3=c+ai则Z1+Z2+Z3=(a+b+c)+(a+b+c)I|Z1|+|Z2|+|Z3|≥|Z1+Z2+Z3=|∴++≥(a+b+c)二、不等量代换法此法虽是“代换”,但不同于换元法。
一般用于证明条件不等式,如能先求出一个适当的不等式进行代换,往往能简化证明过程。
但在代换时,必须注意保持非严格不等式等号成立的条件的一致性。
高中数学证明不等式的九种常用方法
ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1
①
∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
构造函数法证明不等式的八种方法
导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。
不等式的证明方法的分类
不等式的证明方法的分类不等式在数学学科中,与函数、几何在数学中一样重要,不等式的占有着重要的地位,及其的应用也 ,不等式不管在国内竞赛或在国际数学奥林匹克中都占有一部分的分量。
不等式的证明方法更重要,只要掌握其各种的证明方法,就可以解决许多有关不等式的题目。
不等式的证明方法分类:一、 比较法证明不等式 (1)作差法在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。
步骤一般为:作差——变形——判断(正号、负号、零)。
变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。
例1:求证:234221x x x +≥+ 证明:)2()21(234x x x +-+23422223332210]21)21(2[)1()122()1()122)(1()12)(1()1)(1()1(2x x x x x x x x x x x x x x x x x x x +≥+∴≥++-=++-=-+--=---=-+--=(2)作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<ba来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。
例2、设0>>b a ,求证:a b b a b a b a >。
证明:因为0>>b a ,所以1>b a ,0>-b a 。
而1>⎪⎭⎫⎝⎛=-ba ab b a b a b a b a ,故a b b a b a b a >。
二、反证法证明不等式反证法是数学证明的一种重要方法。
因为命题“P ”与它的否定“非P ”的真假相反,所以要证一个命题为真,只要证它的否定为假即可。
这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法。
例2 对实数a ,b ,c ,A ,B ,C ,有20aC bB cA -+=.且20ac b ->. 求证: 20AC B -≤. 分析: 假设1a ,2a ,,n a 中有正数且20aAC B ->, 则20AC B >≥,由题设,有 20ac b >≥, 相乘得 22aAcC b B >,因为2aC cA bB +=.所以 222()44aC cA b B aAcC +=<, 整理得 2()0aC cA -< ,这与“任何实数的平方非负”矛盾. 三、放缩法证明不等式例3 已知,0b a >>求证:.b a b a -<-证明:因为⇒>>0b a.b a b a b a )b a (b a ),(b a b a ,0b a ,b a 2-<-⇒-<-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-+<->->两边同乘放大四、综合法证明不等式利用某些证明过的不等式作为基础,再运用不等式的性质,推导出所求证的不等式,这种证明方法叫做综合法,综合法的思考路线是“由因导果”。
初中不等式的证明
初等数学中不等式的证明方法(一)、比较法比较法是证明不等式中最常用的方法,包括求差比较法和求商比较法。
求差比较法就是把要比较的两个式子相减,判断差的符号;求商比较法一般就是对两个大于零的式子相除后,判断商是大于1,还是小于1。
例1 已知 0,,,>∈b a R y x 且1=+b a 求证 ()222byax by ax +≥+证明 ()222ax by ax by +-+2222222ax by a x abxy b y =+---)()(222222abxy y b by abxy x a ax --+--= ])1[(])1[(ax y b by by x a ax --+--= 因为,1=+b a 所以a b b a =-=-1,1则()222ax by ax by +-+()()ax bx by by ay ax =-+- )()(y x aby y x abx ---= ))((y x y x ab --= 2)(y x ab -= 因为 ,0,>b a 所以0>ab又因为 ,0)(2≥-y x 所以0)(2≥-y x ab ,故原不等式成立。
例2 已知 +∈R b a , 求证 a b b a b a b a ≥证明 因为b a a b b a b aba b a -=)( ,+∈R b a ,所以当b a >时,1)(,0,1>>->-b a ba b a b a 当b a ≤时,1)(,0,1≥≤-≤-b a ba b a ba于是,1≥a b ba ba b a 即a b b a b a b a ≥(二)、分析法分析法是从证不等式出发,不断用充分条件替换前面不等式,直到找到成立的不等式,也就是“执因索果”。
利用分析法证明例1证明 为了证明 ()222by ax by ax +≥+ 只需证明 abxy y b by x a ax 2222222≥-+- 也即证明 abxy y b b x a a 2)1()1(22≥-+- 因为 1=+b a ,所以a b b a =-=-1,1 也即证明 abxy aby abx 222≥+ 因为 0,>b a ,所以0ab > 即需要证明 xy y x 222≥+因为 ,x y R ∈,所以 222x y xy +≥恒成立,故原不等式成立。
数学中不等式的证明方法
浅析数学中不等式的证明方法【摘要】不等式的应用广泛,又是学习高等数学的基础。
所以,在数学中占重要地位。
本文列谈证明不等式的最常用的基本方法和其他方法。
希望今后的数学教学、生产实践和相关学科的应用当中能起到指导作用。
【关键词】不等式;证明方法;比较法;综合法;分析法一、引言不等式是高中数学的重要组成部分及数学中的一个重要工具。
不等式是指在一个式子中的数的关系,不全是等号,含不等符号的式子。
不等式分为严格不等式(用纯粹的大于号、小于号“>”“<”连接的不等式)与非严格不等式(用大于或等于号、小于或等于号“≥”“≤”连a接的不等式)。
不等式的证明方法是数学中的难点和重点,证明不等式的途径是通过利用不等式的性质进行代数变形。
经常用到的证明不等式的基本方法有:比较法、综合法、分析法。
其他方法:如反证法、放缩法、数学归纳法、换元法、构造法和判别式法等。
二、证明不等式的基本方法(一)比较法比较法是证明不等式的方法之一,用比较法证明不等式分类比差法和比商法两类,它们优点是明了容易想到,但是用起来不是那么容易。
它们的解题依据及步骤如下:(1)比差法。
主要依据是实数的运算性质与大小顺序关系。
应用比差法时我们规定这里的a,b可推广为一般的代数式,这是比差法的理论依据。
基本解题步骤是:做差--变形--判断符号。
(2)作商比较法。
当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。
当欲证只需证,欲证只需证。
基本解题步骤是:作商--变形--判断。
(与1的大小)例1.求证:证:时等号成立。
所以成立。
例2.已知,求证。
证:又(1)当时,,所以(2)当时所以(3)当时不等式取等号。
所以(1),(2),(3)知,不等式成立。
(二)综合法综合法就是从已知式已证明过的不等式出发,根据不等式的性质推出,欲证的不等式,通过一系列已确定的命题(包含不等式的性质,已掌握的重要不等式)逐步推演,从而得到所要求证的不等式成立,这种方法叫做综合法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、练习 6.若x, y, z > 0,则
x 2 y 2 xy y 2 z 2 yz z 2 x 2 zx
证明:(构造图形法)作AOB = BOC = COA = 120, 设|OA| = x, |OB| = y, |OC| = z C
2 2 则由余弦定理 | AB | x y xy ,
| BO | (a 1) 2 b 2
| CO | (a 1) 2 (b 1) 2 | DO |
a (b 1)
2
2
a 2 b 2 (a 1) 2 b 2 a 2 (b 1)2 (a 1) 2 (b 1)2 2 2
四、练习 1.当x∈R+ 时,下列函数中最小值是2的为 (D ) 16 2-2x+4 (A)y=x (B) y x x
当 y=1 时, x=0 当 y≠1时,∵x∈R 4y2-8y+3≤0
由①②得
① ∴△=1-4(1-y) 2 ≥0 ②
1 3 y 2 2
1 x2 x 1 3 2 2 2 x 1
点评:⑴求证分式不等式,若分子分母的变量指数 最高 为二次时,宜用二次函数“△”法。 ⑵当 x2项系数不定时 必须讨论系数是0与不是0两种情况。
B B1 B2 Bn A
一、复习引入 ②分析法的思维特点是:执果索因 ③分析法的书写格式: 要证明命题B为真, 只需要证明命题B1为真,从而有…… 这只需要证明命题B2为真,从而又有…… …… 这只需要证明命题A为真 而已知A为真,故命题B必为真.
一、复习引入 4.换元法:引进一个或几个新变量代替原式中某些 变量,使得原式化为简单明了的式子进行论证或求 值的方法叫做换元法. ⑴三角代换法,如: ①若x2+y2=1,可令x=cosα,y=sinα
本节课到此结束,请同学们 课后再做好复习。谢谢!
二、新授内容 8.对勾函数: 1 ① 函数 y x x a ②函数 y x x 时的单调性. y
在 0<x≤1, x>1时的单调性. ,(a>0)在 y 0 x a , x a
2
2 a
o
1
x
o
a
x
三、例题讲解 x2 5 例1 求函数 y 2
y x2 5 x 4
放缩常用的技巧: (1)拿掉(或加进去)一些项,以期达到目的 (2)在分式中放大或缩小分子或分母 (3)可利用基本不等式进行放缩 放缩时一定要适度,放缩过大或不足都将达 不到预期的目的.因此要控制放缩的尺度.
一、复习引入
6.反证法的一般步骤: 反设结论
找出矛盾
肯定结论
在直接证明不等式有困难时,可以试用反证 法,在用反证法证明不等式时要严格按照步骤进 行,尤其反设要正确,推理要严密,防止由于推 理错误导致假证.
;; 构造图形法 二、新授内容 7.构造法: ①构造函数法 根据所给不等式的特征,利用函数 的性质及函数图象来证明不等式成立的方法,称 之为函数法. ②构造方程法:对于形如a≤f(x)≤b的不等式,令 y=f(x),把它整理成关于x的二次方程,利用方程 有实数解的条件△≥0,建立关于y的不等式,求 解出y的范围,达到证明不等式的目的. ③几何构造法(构造图形法):将不等式中的项赋予 一定的几何意义,然后根据几何关系达到证明不 等式的目的.
z A x y O B
| BC |
y z yz ,
2 2
| CA | z 2 x 2 zx
因为|AC+||BC|>|CA|,所以
x 2 y 2 xy y 2 z 2 yz z 2 x 2 zx
五、小结 ①构造函数法:根据所给不等式的特征,利用函数 的性质及函数图象来证明不等式成立的方法,称 之为函数法. a 用函数 y x a 0 可求两个正数的最小值.但 x 必须判断 自变量所在的区间的增减性.通过函数图 象,可直接求证含绝对值及难以推理的不等式.
《高中数学同步辅导课程》
不等式的证明(6)--构造法
教学目的:
1 重点掌握函数 y x x 0 的单调性,三角 x
函数的有界性等. 通过数形结合,培养学生思维能力,提高逻辑推理 能力.逐步熟悉利用构造法等方法证明不等式 .
王新敞
奎屯 新疆
教学重点: 函数构造法. 教学难点: 几何构造法.
一、复习引入
1.比较法
①作差比较法的步骤: 作差——变形(化简)——定号(差值 的符号) ②作商比较法的步骤: 作商——变形(化简)——判断 (商值与实数1的大小关系)——得出结论
一、复习引入 2.综合法: 依据题设的条件与常见的基本不等式,以及不 等式的性质,运用不等式的变换,从已知条件推出 所要证明的不等式,这种证明方法叫做综合法. 综合法的思维特点是: 由因导果,即由已知条件出发,利用已知 的数学定理、性质和公式,推出结论的一种证 明方法 .
(C) y 2.设
x 2
2
1
x 2
2
(D)
x 0
2 解:设 t=sinx 则 y t t 2
yt
∴当t=1 时, ymin=3.
2 求 y sin x 的最小值. sin x
(0<t≤1)
1 y x x
t
在0<t≤
2
是减区间
四、练习
1 3.若 a>b>1, 则 a a
x 1 x 1
· -1 · ·1 o 2 -1 ·1 · 12Biblioteka 利用函数图象可得 y≥-1
x 2 1 x 1
x
思考: 如何求证:
·
x 3 x 2 1
三、例题讲解 例3 已知实数a, b, c,满足a + b + c = 0和abc = 2, 求证:a, b, c中至少有一个不小于2 . 证明:(构造方程法) 由题设显然a, b, c中必有一个正数,不妨设a > 0, 则 b + c = -a 且bc = 2/a,
A B1 B2 „„ Bn B
一、复习引入 3.分析法: 证明不等式时,有时可以从求证的不等式 出发,分析使这个不等式成立的条件,把证明不 等式转化为判定这些条件是否具备的问题,如果 能够肯定这些条件都已具备,那么就可以断定原 不等式成立,这种方法通常叫做分析法 . ①用分析法证明不等式的逻辑关系是:
三、例题讲解 例2 求证: x 2 1 x 1
(构造函数法)
2 2 1 5 x 1 x x 解:设 2 4 2 y x 1 x 2 1 5 2 1 x x x 2 4 y
五、小结 ②构造方程法:对于形如a≤f(x)≤b的不等式,令 y=f(x),把它整理成关于x的二次方程,利用方程有 实数解的条件△≥0,建立关于y的不等式,求解出 y的范围,达到证明不等式的目的. ③几何构造法(构造图形法):将不等式中的项赋予 一定的几何意义,然后根据几何关系达到证明不 等式的目的.
三、例题讲解 x2 5 例1 求函数 y 2
x 4 1 2 解:令 x 4 t 则有 y t t (t≥2) 1 根据函数 y t 当t≥2是增区间 t
y
的最小值.
y
5 2
x2 5
5 2 x 4 2
.
o 1 2
5 ∴ ymin= 2
x
(构造函数法)
2
2 即b, c是二次方程 x ax 0 的两个实根 a 8 a 2 0 a ≥2 (此法也称判别式法) a ∴a, b, c中至少有一个不小于2 .
三、例题讲解 例4 已知0 < a < 1,0 < b < 1,求证:
a 2 b 2 (a 1) 2 b 2 a 2 (b 1) 2 (a 1) 2 (b 1) 2 2 2
证明:(构造图形法)构造单位正方形,O是正方 1-a D a E C 形内一点O到AD, AB的距离为a, b, 1-b 1-b 则|AO| + |BO| + |CO| + |DO|≥|AC| + |BD| 其中 | AC || BD | 2
F O b A aG 1-a H b B
| AO | a 2 b 2
②若x2+y2≤R2,可令x=rcosα,y=rsinα(r≤R) ③当-1≤x≤1时,可令x=cosα,α∈[0,π] ④若y= 1 x2 可令x=cosα,此时y=sinα,α∈[0,π] ⑵代数换元:整体换元、均值换元、设差换元等方法
一、复习引入 5.放缩法:在证明不等式中常将一边(或其中一 项)A放大为B(或缩小为B),得到不等式A≤B (或A≥B),连续使用不等式链A ≤ B ≤ …≤M,以 达到证明A≤M的方法,称为放缩法.其中放缩适度是 解决问题的关键.
>
1 b b
4. 求证: x 1 2 x 1 证明:设 y x 1 2 x
=
-2x+3 1 2x-3
(x≤1) (1<x≤2) (x>2) 1
y
由图像知,ymin=1
x 1 2 x 1
o
1 2
x
四、练习
1 x2 x 1 3 5. 求证: 2 2 2 x 1 x2 x 1 证明:设 y 则(1-y)x2+x+1-y=0 2 x 1
2
x 4
的最小值.
分析:请思考下面解法对否?
x2 4 1 x 4
2
x2 4
1 x 4
2
2
x 4
2
1 x 4