四边形类题型解题技巧 (1)
人教版2023中考数学专题复习:多边形、平行四边形重难点题型讲练1多边形的内角和与外角和
多边形、平行四边形重难点题型讲练(一)多边形的内角和与外角和题型1:多边形的内角和与外角和类型1-多边形的内角和1.如果一个四边形四个内角度数之比是1:2:3:4,那么这四个内角中( )A .只有一个直角B .有两个直角C .有两个钝角D .只有一个钝角类型2-正多边形的内角和2.如图,O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角BOD ∠的大小为( )A .150︒B .144︒C .135︒D .120︒类型3-多边形的缺(多)角问题1.小明同学在用计算器计算某n 边形的内角和时,不小心少输入一个内角,得到和为2016°,则n 等于( )A .11B .12C .13D .14类型4-正多边形的外角问题2.如图,小明从A 点出发,沿直线前进9米后向左转45︒,再沿直线前进9米,又向左转45︒……照这样走下去,他第一次回到出发点A 时,共走路程为( )A .54米B .72米C .90米D .108米类型5-多边形的外角和问题3.如图,五边形ABCDE 的4个外角和1234290∠+∠+∠+∠=︒,则A ∠等于( )A .130︒B .110︒C .100︒D .70︒类型6-多边形的内角与外角和的综合问题4.一个正多边形每个内角与它相邻外角的度数比为3:2,则这个正多边形是( )A .正五边形B .正六边形C .正八边形D .正十边形综合训练1.如图,已知在Rt ABC △中,90C ∠=︒,若沿图中虚线剪去C ∠,则12∠+∠的度数是().A .270︒B .240︒C .180︒D .90︒2.一个正多边形的内角和为540°,则这个正多边形的边数是( )A .4B .5C .6D .73.湖南革命烈士纪念塔的塔底平面为八边形,这个八边形的内角和( )A .720︒B .900︒C .1080︒D .1440︒4.已知一个多边形的内角和为540︒,则这个多边形的对角线有:( )A .2条B .3条C .5条D .10条5.一个多边形的内角和为720︒,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形6.如图,点A 、B 、C 、D 、E 、F 在同一平面内,连接AB 、BC 、CD 、DE 、EF 、FA ,若110BCD ∠=︒,则A B D E F ∠+∠+∠+∠+∠等于( )A .470︒B .450︒C .430︒D .410︒7.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是( )A .7个B .8个C .9个D .10个8.将正六边形与正方形按如图所示摆放,公共顶点为O ,且正六边形的边AB 与正方形的边CD 在同一条直线上,则BOC ∠的度数是( )A .30︒B .32︒C .35︒D .40︒9.用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中AFE ∠=()A .108︒B .63︒C .72︒D .81︒10.将边长为2的正五边形ABCDE 沿对角线BE 折叠,使点A 落在正五边形内部的点M 处,则下列说法正确的个数为( )①AB ME ∥;②36DEM ∠=︒;③若连CM ,则180CMB BME ∠+∠=︒A .3个B .2个C .1个D .0个11.如图,正六边形123456A A A A A A 内部有一个正五边形12345B B B B B ,且3434A A B B ∥,直线l 经过23B B ,,则直线l 与12A A 的夹角α为( )A .48°B .45°C .72°D .30°12.如图,已知AB 是正六边形ABCDEF 与正五边形ABGHI 的公共边,连接FI ,则AFI ∠的度数为( )A .24︒B .26︒C .28︒D .30︒13.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°14.一个正多边形的一个内角是一个外角的4倍,则正多边形的边数为( )A .8B .9C .10D .1115.一个多边形除去一个内角外,剩下的内角和是1000°,则这个多边形是( ).A .五边形B .六边形C .七边形D .八边形16.晨曦因少算了一个内角得出一多边形的内角和为980°,则该多边形的边数为( )A .6B .8C .10D .917.已知一个多边形多算了一个内角得到内角和是1960°,则这个多边形是( )A .十一边形B .十二边形C .十三边形D .十五边形18.在计算一个多边形内角和时,多加了一个角,得到的内角和为1500°,那么原多边形的边数为( )A .9B .10C .11D .10或1119.计算多边形内角和时不小心多输入一个内角,得到和为1290︒,则这个多边形的边数是( ).A .8B .9C .10D .1120.当多边形的边数增加1时,它的内角和会( )A .增加160B .增加180C .增加270D .增加36021.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( )A .5B .5或6C .6或7或8D .7或8或922.一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A .120°B .130°C .135°D .150°23.正五边形的外角和为( )A .540︒B .360︒C .108︒D .72︒24.已知一个多边形的每一个外角都为40︒,则这个多边形的边数是( )A .6B .7C .8D .925.如图,正十边形与正方形共边AB ,延长正方形的一边AC 与正十边形的一边ED ,两线交于点F ,设AFD x ∠=︒,则x 的值为( ).A .15B .18C .21D .2426.正多边形的每个内角都是150︒,则这个正多边形的边数为( )A .8B .9C .10D .1227.已知一个正多边形的每一个外角都是45︒,则这个正多边形的边数是( )A .8B .9C .10D .1228.如图所示,分别以n 边形的顶点为圆心,以1cm 为半径画圆,当2021n =时,则图中阴影部分的面积之和为( )A .22cm πB .2cm πC .22020cm πD .22021cm π29.一个正多边形,它的每一个内角都等于140︒,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形30.若n 边形的内角和是它外角和的3倍,则n 等于( )A .8B .9C .10D .1131.如果一个多边形的每个内角都相等,且内角和为1440︒,那么该多边形的一个外角是( )A .30°B .36°C .60°D .72°32.若一个正n 边形的内角和为1080︒,则它的每个外角度数是( )A .36︒B .45︒C .72︒D .60︒33.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数是() A .4 B .5 C .6 D .834.如图,正五边形ABCDE ,BG 平分ABC ∠,DG 平分正五边形的外角EDF ∠,则G ∠=()A .45︒B .54︒C .60︒D .64︒。
四边形题型归纳
A B CD B ()E A BC DE F 2()1()F ED ABC AB CD EF四边形题型归纳题型一:翻折问题(特殊四边形的折叠问题)1、沿特殊四边形的对角线折叠【例1】如图,矩形纸片ABCD ,AB=2, ∠ADB=30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为____________.2、沿特殊四边形的对称轴折叠【例2】如图,已知矩形ABCD 的边AB=2,AB≠BC ,矩形ABCD 的面积为S ,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________.3.使特殊四边形的对角顶点重合折叠【例3】如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2,BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.4.使特殊四边形一顶点落在其一边上而折叠【例4】如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.KE FGBDACPQABCDN MEE 'A 'ABC DD 'C 'A BCD E F 5.使特殊四边形两顶点落在其一边上而折叠【例5】如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别落在AB 上的D ′、C ′处,折痕为EF ,若CD=3cm ,EF=4cm ,则AD ′+BC ′=________cm.6.使特殊四边形一顶点落在其对称轴上而折叠(1)【例6】如图,已知EF 为正方形ABCD 的对称轴,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点处,则∠DKG=_____.7.使特殊四边形一顶点落在其对称轴上而折叠(2)【例7】如图,有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边的中点,将C 点折至MN 上,落在点P 的位置,折痕为BQ ,连结PQ.(1)求MP 的长度; ⑵求证:以PQ 为边长的正方形的面积等于13.8.两次不同方式的折叠【例8】如图,将一矩形形纸片按如图方式折叠,BC 、BD 为折痕,折叠后AB 与EB 在同一条直线上,则∠CBD 的度数为( )A.大于90°B.等于90°C.小于90°D.不能确定【变式1】在矩形ABCD中AB=4,BC=3,按下列要求折叠,试求出所要求结果(1)如图,把矩形ABCD沿着对角线BD折叠得△EBD,BE交CD于点F,求S△BFD;(2)如图,折叠矩形ABCD,使AD与对角线BD重合,求折痕DE的长;(3)如图,折叠矩形ABCD,使点D与点B重合,求折痕EF的长;(4)如图,E是AD上一点,把矩形ABCD沿着BE折叠,若点A恰好落在CD上的点F处,求AE的长。
中考数学四边形求解题技巧
中考数学四边形求解题技巧中考数学中,四边形是一个非常重要的知识点,也是考试中常出现的题型之一。
四边形题目涉及到求解角度、边长、面积等方面的知识,掌握一些解题技巧能够有效提高解题速度和准确性。
下面我将介绍一些中考数学四边形求解题的技巧。
1. 利用图形性质分析题目在解决四边形问题时,首先要观察给出的图形,分析各个角的大小关系以及边长的关系。
根据图形的特点,我们可以推导出一些性质,这些性质可以帮助我们解决问题。
例如,互补角的性质:如果两个角的和等于90度,则它们是互补角。
利用这个性质,我们可以求解出两个互补角中的一个。
2. 利用角的性质在解四边形题时,经常需要求解各个角的大小。
对于平行四边形和矩形来说,对角线之间的夹角都是相等的;对于菱形来说,它的所有内角都是直角;对于等腰梯形来说,它的两个底角是相等的。
利用这些角的特点,我们可以通过已知条件求解出其他角的大小。
同时,还需要掌握计算角度的方法,如180度减去一个角的度数可以求出另一个角的度数。
3. 利用截线性质在解四边形问题时,有时会用到线段的截线性质。
截线性质是指当一条直线截断两条平行线时,所得截线与平行线之间的对应角是相等的。
利用这个性质,我们可以推导出两条平行线之间的一些角的大小关系,然后通过已知条件求解其他角的大小。
4. 利用边长的性质在解决四边形问题时,有时需要求解各个边的长度。
根据已知条件和图形的特点,我们可以列方程,然后求解出未知边长。
例如,如果题目已知一个矩形的长和宽之比为3:2,并且矩形的周长为40,我们可以设矩形的长为3x,宽为2x,列出方程3x + 2x + 3x + 2x = 40,然后解方程求解出x 的值,进而求解出长和宽的值。
5. 利用面积的性质在解决四边形问题时,有时需要求解图形的面积。
对于矩形、正方形、菱形来说,我们可以利用边长或对角线的性质求解出面积。
例如,对于矩形来说,我们可以用长和宽的乘积求解出面积;对于菱形来说,我们可以用对角线的乘积除以2求解出面积。
平行四边形几何辅助线专题详解
平行四边形几何辅助线专题详解1 平行四边形知识框架{分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4个点的坐标平行四边形的面积{利用面积解决问题方程思想构造中位线{连接法{连接两中点知一中点,取另一中点知两中点,构双中位线倍长法{倍长垂直于角平分线的线段倍长线段 方法1 分类讨论思想分类讨论思想{动态讨论{1个点的移动2个点的移动高的位置的讨论{过点作下(上)侧边的高过点作右(左)侧边的高求平行四边形第4点坐标一、动态讨论解题技巧:点在线段的不同位置,也会造成不同的结果 (1)1个点的移动如下图,1个点C 在直线AB 上移动,会出现3种情况:①在线段AB 左侧;②在线段AB 当中;③在线段AB 右侧,具体见例1.(2)2个点的移动如下图,2个点C、D在线段AB上移动(C、D两点在AB中),会出现2种情况:①点C在点D的左侧;②点C在点D的右侧,具体见例2.例1.▱ABCD的内角∠BCD的平分线CE交射线DA于点E,若AE=3,DE=4,求▱ABCD的周长。
例2.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,求AB的长。
二、高的位置的讨论解题技巧:在平行四边形中作高,会出现2种情况:①在图形内;②在图形外。
(1)过点作下(上)侧边的高如下图,过点A作▱ABCD下侧的边CD上的高AE。
因▱ABCD倾斜方向的变化,高会存在两种情况,具体见例1(2)过点右(左)侧边的高如下图,过点B作▱ABCD的右侧边AD上的高AE。
因▱ABCD倾斜大小的变化,高会存在两种情况,具体见例2上述两种情况实质是同一种情况经过翻折后得到的,为同一种情况。
例1.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,若AB=5,BC=6,求CE的值。
例2.在▱ABCD中,AD=BD=4,BE是AD边上的高,∠EBD=30°,求△ABD的面积。
特殊平行四边形知识点总结及题型
特殊平行四边形知识点总结及题型特殊平行四边形知识点总结及题型特殊平行四边形是几何学中的重要概念,它包括矩形、菱形和正方形。
这些特殊平行四边形具有一些独特的性质和特征,它们在几何学、晶体学和工程学等领域都有广泛的应用。
本文将总结特殊平行四边形的定义、性质、判定方法和典型题型,以帮助读者更好地理解和掌握这些知识。
一、定义1、矩形:一个内角为直角的平行四边形叫做矩形。
2、菱形:一个内角为锐角的平行四边形叫做菱形。
3、正方形:内角均为直角的平行四边形叫做正方形。
二、性质1、对边平行且相等。
2、对角线互相平分且相等。
3、四个内角均为90度。
4、邻角互补。
5、对角线与邻边组成的三角形为等腰直角三角形。
三、判定方法1、矩形 (1) 内角为直角。
(2) 对边平行且相等。
2、菱形 (1) 内角为锐角。
(2) 对边平行且相等。
3、正方形 (1) 内角均为直角。
(2) 对边平行且相等。
四、典型题型1、求特殊平行四边形的角度和周长。
2、证明特殊平行四边形的性质和判定方法。
3、解决与特殊平行四边形相关的实际问题。
五、扩展知识1、空间几何中的特殊平行四边形,如空间双面平行四边形等。
2、立体几何中的特殊平行四边形,如平行六面体等。
3、相关知识点,如三角函数、向量等在特殊平行四边形中的应用。
总之,特殊平行四边形是一个具有丰富内容和广泛应用的知识点。
理解和掌握这些特殊形状的特点和性质,对于解决相关问题以及进一步学习几何学、物理学等学科都具有重要意义。
希望读者通过阅读本文,能够对这些特殊平行四边形的定义、性质、判定方法和典型题型有更深入的理解和掌握,为进一步学习打下坚实的基础。
平行四边形知识点总结平行四边形知识点总结一、定义平行四边形是一种几何图形,具有两条相互平行的对边和两条对角线。
它是人类生活中常见的形状,具有广泛的应用价值。
二、性质1、平行四边形的对边平行且相等。
2、平行四边形的对角相等。
3、平行四边形的内角和为360度。
专题5:初中数学“小组合作学习”师徒应战宝典之四边形宝典--原题版
专题五四边形宝典“合作”是指个人与个人、群体与群体之间为达到共同目的,彼此相互配合的一种联合行动。
“小组合作学习”是目前世界上许多国家普遍采用的一种富有创意的教学理论与方略。
由于其实效显著,被人们誉为近十几年最重要和最成功的教学改革。
“小组合作学习”是指在课堂教学中,根据学生的实际情况,从智力因素、学习态度、学习水平以及学习情感等几方面分析学生的个体差异,把学生分层次,在尊重学生自愿原则的基础上,搭配成若干组内异质、组间同质的学习小组。
小组合作学习是一种集体教学形式下的个别化教学的策略,它容因材施教的思想于班级教学之中,在个别教学与集体教学间构建一座桥梁,实现两者的优势互补,以集体授课为基础,以合作学习小组活动为主体形式,针对不同层次的学生进行教学,力求体现集体性教学与个体性教学的统一,从而为不同知识层次的学生提供一个适应其发展的教学活动环境,使每个学生在各自的“最近发展区”内学有所获,达到培优与补差并举的结果。
小组合作学习很重要的一种学习模式是“师徒结对”学习模式,师徒结对学习的一般模式一般是优等生带中等生,中等生带学困生的形式进行学习。
金字塔理论告诉我们:不同的学习方法达到的学习效果不同,用耳朵听讲授,知识保留 5%;用眼去阅读,知识保留 10%;分组讨论法,知识保留50%;向别人讲授相互教,快速使用,知识保留 90% 。
由此可见,师徒结对的学习模式对学生学好数学是非常关键的。
本系列书籍精选,全覆盖初中数学各种类型题目和中考真题,通过师傅题和徒弟题的形式展现,可以让学生在师徒结对训练时,有针对性的互学互助,巩固提高。
每个专题都全面覆盖了选择题题型,填空题题型,解答题题型。
选择题解题主要方法有排除法、特殊值法、猜想归纳法、验证法、数形结合法、直接法、估算法、观察法、枚举法、待定系数法等。
填空题解题主要方法有直接法、特殊化法、数行结合法、等价转化法等。
解答题解题主要方法有几何变换法、面积法、反证法、构造法、待定系数法、配方法、因式分解法、换元法、判别式法、待定系数法等。
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解
中考数学专题复习《以平行四边形为背景的计算与证明》经典题型讲解类型之一 以平行四边形为背景的计算与证明【经典母题】已知:如图Z11-1,在▱ABCD 中,AC 是对角线,BE⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:BE =DF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAE =∠DCF .又∵BE ⊥AC ,DF ⊥AC ,∴∠AEB =∠CFD ,∵AB =CD ,∴Rt △AEB ≌Rt △CFD ,∴BE =DF .【思想方法】 (1)平行四边形是一种特殊的四边形,它具有对边平行且相等,对角线互相平分的性质,根据平行四边形的性质可以解决一些有关的计算或证明问题;(2)平行四边形的判定有四种方法:两组对边平行;两组对边分别相等;一组对边平行且相等;对角线互相平分.【中考变形】1.[2016·益阳]如图Z11-2,在▱ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF ,CE .求证:AF =CE .证明:∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD .又∵AE ⊥BD ,CF ⊥BD , 图Z11-1图Z11-2∴∠AED =∠CFB ,AE ∥CF .∴△AED ≌△CFB (AAS ).∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE .2.[2016·黄冈]如图Z11-3,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H .求证:AG =CH .证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∵AD =BC ,∴AE =CF =DE =BF .∵DE ∥BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎪⎨⎪⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH (ASA ),∴AG =CH .【中考预测】[2016·义乌模拟]如图Z11-4,已知E ,F 分别是▱ABCD的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形;(2)若四边形AECF 是菱形,且BC =10,∠BAC =90°,图Z11-3图Z11-4求BE的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)如答图,∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,中考预测答图∴∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE =12BC=5.类型之二以矩形、菱形或正方形为背景的计算与证明【经典母题】如图Z11-5,在菱形ABCD中,E,F分别是BC,CD的中点,且AE⊥BC,AF⊥CD.求菱形各个内角的度数.图Z11-5 经典母题答图解:如答图,连结AC.∵四边形ABCD是菱形,AE⊥BC,AF⊥CD且E,F分别为BC,CD的中点,∴AC=AB=AD=BC=CD,∴△ABC,△ACD均为等边三角形,∴菱形ABCD 的四个内角度数分别为∠B =∠D =60°,∠BAD =∠BCD =120°.【思想方法】 要掌握矩形、菱形、正方形的性质和判定方法,采用类比法,比较它们的区别和联系.对于矩形的性质,重点从“四对”入手,即从对边、对角、对角线及对称轴入手;判定菱形可以从一般四边形入手,也可以从平行四边形入手;正方形既具有矩形的性质又具有菱形的性质.【中考变形】1.[2017·日照]如图Z11-6,已知BA =AE =DC ,AD =EC ,CE ⊥AE ,垂足为E .(1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即__AD =BC __,可使四边形ABCD为矩形.请加以证明.解:(1)证明:在△DCA 和△EAC 中,⎩⎪⎨⎪⎧DC =EA ,AD =CE ,AC =CA ,∴△DCA ≌△EAC (SSS );(2)添加AD =BC ,可使四边形ABCD 为矩形.理由如下:∵AB =DC ,AD =BC ,∴四边形ABCD 是平行四边形,∵CE ⊥AE ,∴∠E =90°,由(1)得△DCA ≌△EAC ,∴∠D =∠E =90°,∴四边形ABCD 为矩形.故答案为AD =BC (答案不唯一).2.[2017·白银]如图Z11-7,矩形ABCD 中,AB =6,BC=4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; 图Z11-6图Z11-7(2)当四边形BEDF 是菱形时,求EF 的长.解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO =FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则 DE =x ,AE =6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,∵BD =AD 2+AB 2=213,∴OB =12BD =13,∵BD ⊥EF ,∴OE =BE 2-OB 2=2133,∴EF =2EO =4133.3.[2017·盐城]如图Z11-8,矩形ABCD 中,∠ABD ,∠CDB 的平分线BE ,DF 分别交边AD ,BC 于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当∠ABE 为多少度时,四边形BEDF 是菱形?请说明理由.解:(1)证明:∵四边形ABCD 是矩形,∴AB ∥DC ,AD ∥BC ,∴∠ABD =∠CDB ,∵BE 平分∠ABD ,DF 平分∠BDC ,∴∠EBD =12∠ABD ,∠FDB =12∠BDC ,图Z11-8∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,理由:∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°-∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.4.[2016·株洲]如图Z11-9,在正方形ABCD中,BC=3,E,F分别是CB,CD延长线上的点,DF=BE,连结AE,AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.解:(1)证明:正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE(SAS);(2)在Rt△ABE中,∵AB=BC=3,BE=1,∴AE=10,ED=CD2+CE2=5,∵S△AED=12ED·AH=12AD·BA=92,图Z11-9∴AH =95, 在Rt △AHD 中,DH =AD 2-AH 2=125,∴EH =ED -DH =135,∴tan ∠AED =AH EH =913.5.[2017·上海]已知:如图Z11-10,四边形ABCD 中,AD∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD,DE =DE ,EA =EC ,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形;(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.图Z11-106.如图Z11-11,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.图Z11-11中考变形6答图解:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH=BF,∴BE=AH,∴△AEH≌△BFE(SAS),∴EH=FE,∠AHE=∠BEF,同理,FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴四边形EFGH是正方形;(2)直线EG经过正方形ABCD的中心.理由:如答图,连结BD交EG于点O.∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD(AAS),∴BO=DO,即O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∵S四边形EFGH=EH·EF=EH2,∴四边形EFGH面积的最小值为32 cm2.【中考预测】如图Z11-12,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连结DF.图Z11-12(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.解:(1)证明:∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.∵AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF≌△ADF(SAS),∴∠AFB=∠AFD.又∵∠CFE=∠AFB,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠CBF+∠BCD=∠CDF+∠EFD,∴∠EFD=∠BCD.。
以四边形为载体的几何压轴问题(北京真题+模拟35道)-中考数学重难题型押题培优导练案【原卷版】
专题03以四边形为载体的几何压轴问题(北京真题+模拟35道)【方法归纳】题型概述,方法小结,有的放矢北京市中考数学倒数第二道压轴题会以四边形为载体的几何压轴题出现,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2018·北京·中考真题)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE 交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【真题再现】必刷真题,关注素养,把握核心1.(2014·北京·中考真题)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=20°,求∠ADF的度数.(3)如图2,若45°<∠PAB<∠90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.2.(2015·北京·中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)3.(2013·北京·中考真题)请阅读下列材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为_________;(2)求正方形MNPQ的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√3,求AD的长.34.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京昌平·模拟预测)两张宽度均为4的矩形纸片按如图所示方式放置(1)如图①,求证:四边形ABCD是菱形.(2)如图②,点P在BC上,PF⊥AD于F,若S四边形ABCD=16√2,PB=2,①求∠BAD的度数;②求DF的长.2.(2021·北京四中模拟预测)如图所示,四边形ABCD为菱形,AB=2,∠ABC=60°,点E为边BC上动点(不含端点),点B关于直线AE的对称点为点F,点G为DF中点,连接AG.(1)依题意,补全图形;(2)点E运动过程中,是否可能EF∥AG?若可能,求BE长;若不可能,请说明理由;(3)连接CG,点E运动过程中,直接写出CG的最小值.3.(2021·北京门头沟·一模)在正方形ABCD中,将边AD绕点A逆时针旋转a(0°<a<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG//AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<a<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.4.(2020·北京亦庄实验中学二模)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,过点D作DF AP于F.(1)求∠FDP的度数;(2)连接BP,请用等式表示线段BP与线段AF之间的数量关系,并证明.(3)连接PC,若正方形的边长为√2,直接写出△BCP面积的最大值.5.(2020·北京四中模拟预测)在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;t,0).(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(32①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.6.(2020·北京延庆·一模)四边形ABCD 中,∠A=∠B= 90°,点E 在边AB 上,点F 在AD 的延长线上,且点E 与点 F 关于直线CD 对称,过点E 作EG∥AF 交CD 于点G,连接FG,DE.(1)求证:四边形DEGF 是菱形;(2)若AB=10,AF=BC=8,求四边形DEGF 的面积.7.(2019·北京·一模)如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x.(当点E与点B重合时,x的值为0),DF=y1,CF= y2.小明根据学习函数的经验,对函数y1、y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;x012345y1 5.00 4.12 3.61 4.12 5.00y20 1.41 2.83 4.24 5.657.07(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x , y1) , (x , y2),并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.8.(2017·北京顺义·一模)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)9.(2018·北京顺义·一模)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、cm(P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Q两点同时改变速度,分别变为每秒2cm、54Q两点速度改变后一直保持此速度,直到停止),如图2是ΔAPD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1,y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?10.(2021·北京四中模拟预测)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是;(2)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.11.(2021·北京四中九年级开学考试)定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知△ABC,请用尺规作出△ABC的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy中,矩形OABC的边OA在x轴的正半轴上、OC在y轴的正半轴上,OA=6,OC=4.①请判断直线y=43x−83是否为矩形OABC的面积等分线,并说明理由;②若矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在△ABC中,点A的坐标为(−2,0),点B的坐标为(4,3),点C的坐标为(2,0),点D的坐标(0,−2),求过点D的一条△ABC的面积等分线的解析式.(4)在△ABC中点A的坐标为(−1,0),点B的坐标为(1,0),点C的坐标为(0,1),直线y=ax+b(a>0)是△ABC的一条面积等分线,请直接写出b的取值范围.12.(2021·北京·九年级专题练习)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=4,求BF和AD的长.513.(2021·北京·九年级专题练习)如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.14.(2021·北京石景山·九年级期末)已知矩形MBCD的顶点M是线段AB上一动点,AB=BC,矩形MBCD的对角线交于点O,连接MO,BO.点P为射线OB上一动点(与点B不重合),连接PM,作PN⊥PM交射线CB于点N.(1)如图1,当点M与点A重合时,且点P在线段OB上.①依题意补全图1;②写出线段PM与PN的数量关系并证明.(2)如图2,若∠OMB=α,当点P在OB的延长线上时,请补全图形并直接写出PM与PN的数量关系.15.(2020·北京·北师大实验中学九年级开学考试)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD的数量关系________.16.(2017·全国·九年级专题练习)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②17.(2020·北京通州·一模)已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件______(填入序号)满足时,一定有EM=EA,并证明这个结论.18.(2020·北京一七一中九年级阶段练习)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,直接写出线段AD、AB、AC的数量关系.(2)如图2,若将(1)中的条件“∠B=90°”去掉,求边AD、AB与对角线AC的数量关系.请证明.(3)如图3,若∠DAB=2α,直接写出边AD、AB与对角线AC的数量关系(用α来表示)19.(2020·北京四中九年级阶段练习)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE.若AB=4,求线段EC的长.(2)如图2,M为线段AC上一点(不与A,C重合),以AM为边向上构造等边三角形△AMN,线段AN与AD交于点G,连接NC,DM,Q为线段NC的中点.连接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论.(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.20.(2020·北京顺义·九年级期末)已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB 边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.21.(2022·北京·九年级单元测试)图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l 于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.22.(2022·北京·九年级单元测试)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AE的值是;BE(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(2019·北京·101中学九年级阶段练习)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG之间的数量关系(用含α的式子表示);24.(2022·北京朝阳·二模)在正方形ABCD中,E为BC上一点,点M在AB上,点N在DC上,且MN⊥DE,垂足为点F.(1)如图1,当点N与点C重合时,求证:MN=DE;(2)将图1中的MN向上平移,使得F为DE的中点,此时MN与AC相交于点H,①依题意补全图2;②用等式表示线段MH、HF,FN之间的数量关系,并证明.25.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA=90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC=m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF 成立,补全图形并证明.。
初二数学四边形的折叠问题技巧
初二数学四边形的折叠问题技巧
摘要:
一、折叠问题的概念及分类
二、折叠问题的解题技巧
1.观察特殊图形法
2.相对面不相邻法
三、折叠问题在中考中的重要性
四、总结
正文:
一、折叠问题的概念及分类
折叠问题是指将一个平面图形通过折叠的方式,转变成另一个平面图形的问题。
它主要考察学生的空间想象能力和逻辑思维能力。
折叠问题可以分为两类:一类是给出一个平面图形,要求在四个备选的图形中选出可以由左侧图形折叠而成的一个;另一类是给出一个立体图形,要求通过折叠将其变成一个平面图形。
二、折叠问题的解题技巧
1.观察特殊图形法
在解决折叠问题时,可以先观察题目所给出的目标图形中的特殊面,或者特殊图形连接的位置。
然后对比选项,与之不符的直接排除。
这样可以缩小答案范围,提高解题效率。
2.相对面不相邻法
空间折叠类题目要结合排除法解题,最常用的排除技巧是相对面不相邻原则。
即一定要抓住某两个相邻面或对立面的图形特征,从而可以利用排除法选择正确答案。
违背这些特征的,便是错误选项。
三、折叠问题在中考中的重要性
折叠问题是我国中考数学判断推理的一个必考题型。
它对学生的空间想象能力和逻辑思维能力有较高的要求,同时也是检验学生综合运用数学知识解决实际问题的能力的重要途径。
因此,掌握折叠问题的解题技巧,对于提高中考数学成绩具有重要意义。
四、总结
总之,折叠问题作为中考数学中的一个重要题型,需要我们熟练掌握其解题技巧。
通过观察特殊图形法和相对面不相邻法,可以帮助我们在解决折叠问题时更好地把握答案,提高解题正确率。
特殊的平行四边形专题(题型详细分类)要点
特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。
·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。
对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。
(完整版)四边形题型归纳
四边形题型归纳题型一:翻折问题(特殊四边形的折叠问题)1沿特殊四边形的对角线折叠【例1】如图,矩形纸片ABCD,AB=2, / ADB=30,沿对角线BD折叠(使△ ABD和2、沿特殊四边形的对称轴折叠【例2】如图,已知矩形ABCD的边AB=2 , AB^ BC ,矩形ABCD的面积为S,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为3•使特殊四边形的对角顶点重合折叠【例3】如图,梯形纸片ABCD , / B=60 , AD // BC, AB=AD=2 , BC=6,将纸片折叠,使点B与点D重合,折痕为AE,贝U CE= ___________ .4•使特殊四边形一顶点落在其一边上而折叠【例4】如图,折叠矩形的一边CD,使点C落在AB上的点F处,已知AB=10cm , BC=8cm ,贝U EC 的长为______ •D] ] CE、百fA F B△ EBD落在同一平面内),则A、E两点间的距离为_______________D F C D CA B2B E C5•使特殊四边形两顶点落在其一边上而折叠【例5】如图,在梯形ABCD中,DC // AB,将梯形对折,使点D、C分别落在AB上的D、C处,折痕为EF,若CD=3cm , EF=4cm,则AD +BC = ________ cm.6•使特殊四边形一顶点落在其对称轴上而折叠(1)EF上的G点处,则/ DKG= _____7.使特殊四边形一顶点落在其对称轴上而折叠(2)点折至MN上,落在点P的位置,折痕为BQ,连结PQ.(1)求MP的长度;⑵求证:以PQ为边长的正方形的面积等于I .8.两次不同方式的折叠【例8】如图,将一矩形形纸片按如图方式折叠,BC、BD为折痕,折叠后AB与EB在同一条直线上,则/ CBD的度数为()A.大于90 °B.等于90 °C.小于90 °D.不能确定【例6】如图,已知EF为正方形ABCD的对称轴,将/ A沿DK折叠,使它的顶点A落在【例7】如图,有一块面积为1的正方形ABCD , M、N分别为AD、BC边的中点,将CDIAC E<\JA BD【变式1】在矩形ABCD中AB=4, BC=3按下列要求折叠,试求出所要求结果(1)如图,把矩形ABCD沿着对角线BD折叠得△ EBD BE交CD于点F,求出BFD;(2)如图,折叠矩形ABCD使AD与对角线BD重合,求折痕DE的长;(3)如图,折叠矩形ABCD使点D与点B重合,求折痕EF的长;(4)如图,E是AD上一点,把矩形ABCD沿着BE折叠,若点A恰好落在CD上的点F处, 求AE的长。
平行四边形判定经典题型
平行四边形判定经典题型(实用版)目录1.平行四边形的定义和性质2.平行四边形的判定方法3.经典题型及解题技巧4.练习题及答案正文一、平行四边形的定义和性质平行四边形是指四边形中的两组对边分别平行的四边形。
根据平行四边形的定义,我们可以得知其具有以下性质:1.对边平行且相等。
2.对角线互相平分且相等。
3.相邻角互补。
4.对边角相等。
二、平行四边形的判定方法要判断一个四边形是否为平行四边形,我们可以使用以下几种判定方法:1.两组对边分别平行的四边形是平行四边形。
2.两组对角分别相等的四边形是平行四边形。
3.一组对边平行且相等的四边形是平行四边形。
4.对角线互相平分的四边形是平行四边形。
5.对边角相等的四边形是平行四边形。
三、经典题型及解题技巧在解决平行四边形的相关题目时,我们需要熟练掌握平行四边形的判定方法,以便快速判断四边形是否为平行四边形。
以下是一些经典题型及解题技巧:1.给定一组对边平行且相等的四边形,判断它是否为平行四边形。
技巧:根据平行四边形的定义,一组对边平行且相等的四边形是平行四边形。
2.给定两组对角分别相等的四边形,判断它是否为平行四边形。
技巧:根据平行四边形的性质,两组对角分别相等的四边形是平行四边形。
3.给定一组对边平行,另一组对角相等的四边形,判断它是否为平行四边形。
技巧:可以先证明一组对角相等,然后根据对角线互相平分的性质,得到另一组对角也相等,从而判断该四边形为平行四边形。
四、练习题及答案1.练习题:给定四边形 ABCD,AB//CD,AB=CD,AD//BC,AD=BC,判断四边形 ABCD 是否为平行四边形。
答案:根据一组对边平行且相等的四边形是平行四边形,可知四边形ABCD 是平行四边形。
2.练习题:给定四边形 ABCD,AB//CD,AB=CD,AC=BD,判断四边形 ABCD 是否为平行四边形。
答案:根据两组对角分别相等的四边形是平行四边形,可知四边形ABCD 是平行四边形。
二次函数之平行四边形存在性问题攻略
二次函数之平行四边形存在性问题攻略二次函数综合题是全国各省市每年必考的中考题型,与二次函数有关的存在性问题更是必考题型。
本文就以平行四边形的存在性为例,谈谈研究这类题型的基本思路和解题技巧。
在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题:(1)已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(下文出现时简称“三定一动”);(2)已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(下文出现时简称“两定两动”);平行四边形的这四个点有可能是定序的,也有可能没有定序;由于定序较为简单,所以笔者就不再举例说明。
学生在拿到这类题型时常常无从下笔,比较典型的两种错误:一是确定动点位置时出现遗漏,而是在具体计算动点坐标时出现方法不当或错解。
实际上,这类题型的解法是有章可循的,就是要掌握好解决这类题型的基本思路和解题技巧。
一、基本思路:(1)分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所不同);(2)分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置);(3)利用几何特征计算(不同的几何存在性要用不同的解题技巧)。
可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。
二、平行四边形题型攻略:(1)如果为“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点;这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点;(2)如果为“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。
三、平行四边形解题技巧:(1)若平行四边形的四个顶点都能用坐标来表示,则直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解;(2)若平行四边形的四个顶点中某些点不能用坐标表示,则利用列方程组解图形交点的方法解决;(3)灵活运用平行四边形的中心对称的性质,也可使问题变得简单.例1:如1:已知抛物线223y x x=--+与X轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标.图1 图2 解题思路:“三步曲”①“分清题型”:根据题目要求,确定为平行四边形存在性问题中“三定一动”题型;②“分类讨论且作图”:分析定点、动点,挖掘不变特征;A 、C 、P 为定点,M 为坐标平面内一动点动点,确定位置的方法是:将以三个定点为顶点画APC ∆,每个顶点画对边的平行线,三条直线两两相交,产生的交点位置就是M 点;③“利用几何特征计算”分析几何特征建等式求解点M 坐标。
专题训练(一)平行四边形的证明思路
专题训练(一) 平行四边形的证明思路班别姓名【题型1】若已知条件出现在四边形的边上,则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形1.如图,在ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.2.如图,在ABCD中,点E,F分别在边AB,CD上,BE=DF.求证:四边形AECF是平行四边形.3.如图,在ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.【题型2】若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明5.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.【题型3】若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.求证:四边形ABFC为平行四边形.7.如图,ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.8.如图,ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.求证:四边形AECF是平行四边形.专题训练(四) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则应考虑:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形1.如图,在ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,即BE ∥CD.又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,在ABCD 中,点E ,F 分别在边AB ,CD 上,BE =DF.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB -BE =CD -DF ,即AE =CF.又∵AE ∥CF ,∴四边形AECF 是平行四边形.3.如图,在ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴CD =AB ,AD =CB ,∠DAB =∠BCD.又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE.在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ).∴DF =BE.∴四边形BEDF 是平行四边形.4.(钦州中考)如图,DE 是△ABC 的中位线,延长DE到F ,使EF =DE ,连接BF.(1)求证:BF =DC ;(2)求证:四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线,∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB.∴BF =DC.(SAS ) (2)∵DE 是△ABC 的中位线,∴DE ∥AB ,且DE =12AB.又∵EF =DE ,∴DE =12DF.∴DF =AB.∴四边形ABFD 是平行四边形.类型2 若已知条件出现在四边形的角上,则应考虑利用“两组对角分别相等的四边形是平行四边形”来证明5.如图,在四边形ABCD 中,AD ∥BC ,∠A =∠C.求证:四边形ABCD 是平行四边形.证明:∵AD ∥BC ,∴∠A +∠B =180°,∠C +∠D =180°.∵∠A =∠C ,∴∠B =∠D.∴四边形ABCD 是平行四边形.类型3 若已知条件出现在对角线上,则应考虑利用“对角线互相平分的四边形是平行四边形”来证明6.已知:如图,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F.求证:四边形ABFC 为平行四边形.证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS ).∴AE =E F.又∵BE =CE ,∴四边形ABFC 是平行四边形.7.如图,ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴OD =OB ,OA =OC ,AB ∥CD.∴∠DFO =∠BEO ,∠FDO =∠EBO.∴△FDO ≌△EBO.(AAS )∴OF =OE.∴四边形AECF 是平行四边形.8.如图,ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点,∴OE =12OB ,OF =12OD.∴OE =OF. ∴四边形AECF 是平行四边形.。
北师大版数学[中考总复习:四边形综合复习--知识点整理及重点题型梳理](基础)
北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形 =21ab=ch (a 、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高). S 平行四边形 =ah(a 为平行四边形的边,h 为a 上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.【思路点拨】一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.【答案】135;九.【解析】设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=,∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.【总结升华】多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式】(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5 B.6 C.7 D.8【答案】C.【解析】∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.2.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形 B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【答案】B.【解析】A、正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,故能铺满,不合题意;B、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满,符合题意;C、正三角形和正六边形内角分别为60°、120°,2×60°+2×120°=360°,故能铺满,不合题意;D、正五边形和正十边形内角分别为108°、144°,2×108°+1×144°=360°,故能铺满,不合题意.故选:B.【总结升华】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.类型二、特殊的四边形3.如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)判断四边形EHFG的形状;(2)在什么情况下,四边形EHFG为菱形?【思路点拨】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;【答案与解析】(1)∵四边形ABCD是平行四边形,∴AE∥CF,AB=CD,∵E是AB中点,F是CD中点,∴AE=CF,∴四边形AECF是平行四边形,∴AF∥CE.同理可得DE∥BF,∴四边形FGEH是平行四边形;(2)当平行四边形ABCD是矩形时,平行四边形EHFG是菱形.∵四边形ABCD是矩形∴∠ABC=∠DCB=90°,∵E是AB中点,F是CD中点,∴BE=CF,在△EBC与△FCB中,∵BE CFABC DCB BC BC=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCB,∴CE=BF,∠ECB=∠FBC,BH=CH,EH=FH,平行四边形EHFG是菱形.【总结升华】本题属于综合题,考查了平行四边形的判定与性质,菱形的判定和正方形的判定,注意找准条件,有一定的难度.举一反三:【变式】已知:如图所示,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE ⊥BC,PF⊥CD,垂足分别为E、F,求证:PA=EF.【答案】连结PC.因为PE⊥BC,PF⊥DC,AB CDEFP所以∠PEC=∠PFC=∠ECF=90°,所以四边形PECF是矩形,所以PC=EF.在△ABP和△CBP中,AB=CB,∠ABP=∠CBP,BP=BP,所以△ABP≌△CBP,所以AP=CP.所以AP=EF.4.(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC 于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.【思路点拨】(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,继而可证得△A 1IE ≌△CGF ,即可证得EI=FG .【答案与解析】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA=OC ,∴∠1=∠2,在△AOE 和△COF 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴AE=CF ;(2)∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,由(1)得AE=CF ,由折叠的性质可得:AE=A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E=CF ,∠A 1=∠A=∠C ,∠B 1=∠B=∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A 1IE ≌△CGF (AAS ),∴EI=FG .【总结升华】考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.如图,在△AOB 中,OA=OB=8,∠AOB=90︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上.(1)若C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积;(2)若tan ∠CDO=34,求矩形CDEF 面积的最大值.BOC【思路点拨】(1)因为当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB,所以可求出CD的值,进而求出CF的值,矩形CDEF的面积可求出;(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,用含x和y的代数式分别表示出CO、AH的长,进而表示出矩形CDEF的面积,再配方可求出面积的最大值.【答案与解析】(1)如图,当C、D是边AO,OB的中点时,点E、F都在边AB上,且CF⊥AB.∵OA=OB=8,∴OC=AC=OD=4.在 Rt△ACF中,(2)设CD=x,CF=y.过F作FH⊥AO于H.在 Rt△COD中,6 .ABC △是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B C 、重合),ADE △ 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交射线AB AC 、于点F G 、,连接BE .(1)如图(a )所示,当点D 在线段BC 上时.①求证:AEB ADC △≌△;②探究四边形BCGE 是怎样特殊的四边形?并说明理由;(2)如图(b )所示,当点D 在BC 的延长线上时,直接写出(1)中的两个结论是否成立?(3)在(2)的情况下,当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.【思路点拨】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.【答案与解析】(1)①∵△ABC 和△ADE 都是等边三角形,∴AE=AD ,AB=AC ,∠EAD=∠BAC=60°.又∵∠EAB=∠EAD-∠BAD ,∠DAC=∠BAC-∠BAD ,∴∠EAB=∠DAC ,∴△AEB ≌△ADC .②方法一:由①得△AEB ≌△ADC ,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC ,∴EB ∥GC .又∵EG ∥BC ,∴四边形BCGE 是平行四边形.方法二:证出△AEG ≌△ADB ,得EG=AB=BC .∵EG ∥BC ,∴四边形BCGE 是平行四边形.(2)①②都成立.(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE 是菱形.理由:方法一:由①得△AEB ≌△ADC ,∴BE=CD又∵CD=CB ,∴BE=CB .由②得四边形BCGE 是平行四边形,∴四边形BCGE 是菱形.方法二:由①得△AEB ≌△ADC ,∴BE=CD .又∵四边形BCGE 是菱形,∴BE=CB (11分)∴CD=CB .方法三:∵四边形BCGE 是平行四边形,∴BE ∥CG ,EG ∥BC ,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°∴∠F=∠FBE=60°,∴△BEF 是等边三角形.又∵AB=BC ,四边形BCGE 是菱形,∴AB=BE=BF ,∴AE ⊥FG ∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.【总结升华】本题考查三角形的全等以及菱形的判定.举一反三:【变式】如图,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【答案】(1)如图1∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形,∴∠B=∠C=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△ABE ∽△ECF ,∴AB :CE=BE :CF ,∴EC :CF=AB :BE=5:2(2)如图(二),在AB 上取BM=BE ,连接EM ,∵ABCD 为正方形,∴AB=BC ,∵BE=BM ,∴AM=EC ,∵∠1=∠2,∠AME=∠ECP=135°,A DCB E BC ED A F PF∴△AME ≌△ECP ,∴AE=EP ;(3)存在.顺次连接DMEP .如图2 在AB 取点M ,使AM=BE , ∵AE ⊥EF ,∴∠2+∠3=90°,∵四边形ABCD 为正方形, ∴∠B=∠BCD=90°, ∴∠1+∠3=90°,∴∠1=∠2,∵∠DAM=∠ABE=90°,DA=AB , AD ABDAM ABE AM BE=⎧⎪∠=∠⎨⎪=⎩∴△DAM ≌△ABE (SAS ), ∴DM=AE ,∵AE=EP ,∴DM=PE ,∵∠1=∠5,∠1+∠4=90°, ∴∠4+∠5=90°,∴DM ⊥AE ,∴DM ∥PE∴四边形DMEP 是平行四边形.。
[数学]-专题34 利用相似解决四边形问题——几何综合(原版)
专题34 利用相似解决四边形问题——几何综合(原卷版)专题诠释:几何综合题是中考必考题型。
试题一般以全等或相似为中心 , 以四边形为重点 , 常常是三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.解题策略:解答几何综合题应注意 :(1) 注意观察、分析图形 , 把复杂的图形分解成几个基本图形 , 通过添加辅助线补全或构造基本图形 .(2) 掌握常规的证题方法和思路 ;(3) 运用转化的思想解决几何证明问题 , 运用方程的思想解决计算问题。
另外还用结合数学思想和方法。
第一部分 专题典例剖析类型一 利用相似解决平行四边形问题1.(2022•贺州)如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED =BF ,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分∠F AE ,AC =8,tan ∠DAC =34,求四边形AFCE 的面积.2.(2022•杭州)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14. (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.3.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=13AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.类型二利用相似解决矩形问题4.(2022•玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.5.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.6.(2022秋•苏州期末)如图,矩形ABCD 中,AD =3,CD =4,点P 从点A 出发,以每秒1个单位长度的速度在射线AB 上向右运动,运动时间为t 秒,连接DP 交AC 于点Q .(1)求证:△DCQ ∽△P AQ ;(2)若△ADQ 是以AD 为腰的等腰三角形,求运动时间t 的值.类型三 利用相似解决菱形问题7.(2022•长春)如图,在Rt △ABC 中,∠ABC =90°,AB <BC .点D 是AC 的中点,过点D 作DE ⊥AC 交BC 于点E .延长ED 至点F ,使得DF =DE ,连结AE 、AF 、CF .(1)求证:四边形AECF 是菱形;(2)若BE EC =14,则tan ∠BCF 的值为 .8.(2022秋•海淀区校级期末)如图,在菱形ABCD 中,∠A =60°,经过点C 的直线分别与AB ,AD 的延长线相交于点P ,Q ,QB ,PD 相交于点O .(Ⅰ)求证:BD 2=PB •DQ ;(Ⅱ)求证:BD 2=OD •PD .9.(2022秋•汝州市期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=4√3时,直接写出EA的长.10.(2022秋•白塔区月考)如图,在菱形ABCD中,DE⊥BC交BC的延长线于点E,连结AE交BD于点F,交CD于点G,连结CF.(1)求证:AF2=EF•GF;(2)若菱形ABCD的边长为2,∠BAD=120°,求FG的长.类型一利用相似解决正方形问题11.(2022秋•青浦区校级期末)如图,在三角形ABC中,∠C=90°,四边形DEFC是边长为4的正方形,且D、E、F分别在边AC、AB、BC上.把三角形ADE绕点E逆时针旋转一定的角度.(1)当点D与点F重合时,点A的对应点G落在边BC上,此时四边形ACGE的面积为;(2)当点D的对应点D1落在线段BE上时,点A的对应点为点A1,在旋转过程中点A经过的路程为l1,点D经过的路程为l2,且l1:l2=3:2,求线段AD1的长.12.(2022秋•成华区期末)如图,点E是正方形ABCD的对角线CA延长线上一点,连接BE,将BE绕点B顺时针旋转90°至BF,连接EF,EF交AD于点G.(1)求证:△ABE∽△AEG;(2)若正方形ABCD的边长为4,点G为AD的中点,求AE的长.13.(2022秋•洛阳期末)如图,把边长为3的正方形OABC绕点O逆时针旋转n°(0°<n<90°)得到正方形ODEF,DE与BC交于点P,ED的延长线交AB于点Q,交OA的延长线于点M,若BQ:AQ =4:1,求AM的值.14.(2022秋•邹平市校级期末)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AE=3,求AF的长.第二部分 专题提优训练1.(2023•偃师市一模)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =12,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.2.(2022秋•济南期末)如图,点F 是平行四边形ABCD 的边AD 上的一点,直线CF 交线段BA 的延长线于点E .(1)求证:△AEF ∽△DCF ;(2)若AF :DF =1:2,AE =√2,S △AEF =23.①求AB 的长;②求△EBC 的面积.4.(2022秋•惠济区校级期末)如图1,在矩形ABCD 中,AC ,BD 相交于点O ,点E 为BD 上的一个动点,连接CE 并延长到点F ,使EF =CE ,连接AF .(1)若点E 与点B 重合(如图2),判断AF 与BD 的数量关系和位置关系,并说明理由;(2)若以A ,F ,B ,E 为顶点的四边形是平行四边形,BD =3,请直接写出线段BE 的长度.5.(2022秋•路南区校级期末)如图,矩形ABCD中,AB=16,BC=8,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒2个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?8.(2022秋•运城期末)如图,矩形ABCD的对角线AC、BD相交于点F,延长BC到点E,使CE=BC,连接DE,连接AE交BD于点G,交CD于点H.(1)求证:四边形ACED是平行四边形;(2)求证:DG2=FG•BG;(3)若AB=14,BC=24,求线段GH的长度.9.(2021秋•三原县期末)如图,在菱形ABCD中,∠C=60°,AB=4,点E是边BC的中点,连接DE、AE、BD.(1)求DE的长;(结果保留根号)(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,AF⊥EF.①求证:△AGE∽△DGF;②求DF的长.(提示:过点E作EH⊥CD于点H.)10.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.11.(2021秋•宝塔区校级期末)如图,在菱形ABOC中,对角线AO,BC相交于点D,BE⊥AC于点E,A0与BE交于点H.(1)求证:△BAD∽△HBD;(2)延长OC交BE的延长线于点F.求证:HB2=HE•HF.12.(2022秋•未央区校级期末)已知有一块三角形材料∠ABC,其中BC=120cm,高AD=80cm,现需要在三角形ABC上裁下一个正方形材料做零件,使得正方形EFGH的顶点E、F分别在边AB,AC上,H、G在BC上,裁下的正方形EFGH的边长是多少?27.(2022秋•东明县校级期末)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当CEEB =13时,求S△CEFS△CDF的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=12BG.。
四边形整章知识题型总结[1]1
对平为一一为一四边形两组边行一个内角R t ∠一个内角为Rt ∠, 一组邻边相等组邻边相等组对边平行且另一组对边不平行一个内角R t ∠组邻边相等FE D CBA FEDCBA 第十九章 四边形知识与题型总结一.本章知识要求和结构1. 掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之间的内在关系. (1)演变关系图:(2)从属关系(依据演变关系图,将四边形,平行四边形,梯形,矩形,菱形,正方形,等腰梯形,直角梯形填入下面的从属关系图中,其中每一个圆代表一种图形)2. 探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判别方法,并能运用这些知识进行有关的证明和计算. 名称 平行四边形 矩形菱形 正方形定 义的四边形是平行四边形 的平行四边形是矩形 的平行四边形是菱形 的平行四边形是正方形性 质边 角 对角线对称性判 定边角 对角线面 积 周 长3. (1)平行四边形的面积等于它的底和该底上的高的积.如图1, ABCD S =BC·AE=CD·BFCFB EDA60︒60︒ADCBFE30︒60︒60︒(2)同底(等底)同高(等高)的平行四边形面积相等.如图2, ABCD S =B C F E S 4.三角形中位线定理定义: 叫做三角形中位线(与中线的区分); 定理: 作用:可以证明两条直线平行;线段的相等或倍分.拓展:三角形共有三条中位线,并且它们将原三角形分割成四个 的小三角形,其面积和周长分别为原三角形面积和周长的 和 ;(4)直角三角形的性质 定理: 直角三角形斜边上的中线 5.正方形:(1)对角线:若正方形的边长为a ,则对角线的长为2a ;正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等 (3)面积:正方形的面积等于边长的平方; 等于两条对角线的乘积的一半. 周长相等的四边形中, 正方形的面积最大. 6. ※梯形的中位线(1)定义:连结梯形两腰中点的线段叫做梯形的中位线(2)梯形的中位线定理:梯形的中位线平行于两底,且等于两底和的一半. (3)梯形的面积S=12×(上底+下底)×高=中位线×高7.几种特殊四边形的对角线① 矩形对角线交角为60︒(120︒)时,可得:等边三角形和含30︒角直角三角形 (①图) ② 菱形有一个角为60︒时, 可得: ③ 正方形中可得: 含30︒角的四个全等直角三角形 四大四小等腰直角三角形 (②图) (③图)④ 对角线互相垂直的梯形, ⑤ 对角线互相垂直的等腰梯形平移腰可得:双垂图 可得:等腰直角三角形(④图) (⑤图)8. 中点四边形: (顶点为各边的中点,需讨论对角线&中位线) (1) 顺次连结任意四边形各边中点构成的四边形是_______________ (2) 顺次连结对角线相等的四边形的各边中点, 构成的四边形是__________ (3) 顺次连结对角线互相垂直的四边形的各边中点构成的四边形是_______ (4) 顺次连结平行四边形各边中点构成的四边形是_________ 顺次连结矩形各边中点构成的四边形是_________ 顺次连结菱形各边中点构成的四边形是_________ 顺次连结直角梯形各边中点构成的四边形是__________ 顺次连结等腰梯形各边中点构成的四边形是__________二.典型题型归纳(一)概念题1.A B C D 中,∠A 的平分线分BC 成4cm 和3cm 两条线段,则A B C D 的周长为 . 2.在A B C D 中,∠C=60º,DE ⊥AB 于E,DF ⊥BC 于F . (1)则∠EDF=;(2)如图,若AE=4,CF=7,则A B C D 周长= ;(3) 若AE=3,CF=7,请作出对应图形,并求A B C D 周长.3.(1)在平行四边形ABCD 中,若∠C=∠B+∠D ,则∠A= .ABCDCBEAFD (2)已知在A B C D ,∠A 比∠B 小20º,则∠C 的度数是 .(3)在A B C D 中,周长为100cm ,AB-BC=20cm ,则AB= , BC= . (4)在A B C D 中,周长为30cm ,且AB :BC=3:2,则AB= cm. (5)(2007河北省)如图,若□ABCD 与 □EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F = °.4.(2007福建福州)下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等 5.(2007浙江义乌)在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形6.(2007甘肃陇南)顺次连结任意四边形各边中点所得四边形一定是 ( )A .平行四边形B .菱形C .矩形D .正方形7.(2007四川眉山)下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形C . 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形 8.(2007四川成都)下列命题中,真命题是( )A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形 9.(2007浙江嘉兴)如图,在菱形ABCD 中,不一定成立的( )A.A B C D B.AC ⊥BD C.等边△ABD D.∠CAB =∠CAD(二)图形的性质和判定方法10.如图,已知四边形ABCD 是正方形,分别过A 、C 两点作1 //2 ,作BM ⊥2 于M ,DN ⊥2 于N ,直线MB 、ND 分别交1 、2 于Q 、P ,试判断四边形PQMN 的形状.11.如图,在正方形ABCD 中,E 、F 、G 、H 分别为正方形边上的点,而且AE=BF=CG=DH ,求证:四边形EFGH 为正方形.12.如图,在矩形ABCD 中,E 是CD 边上一点,AE=AB ,AB=2AD ,求∠EBC 的度数 \l 2l 1QBAMNDCPEHGFDCBAECDAB(三)转化的思想——将梯形问题通过化归、分割、拼接转化成三角形和平行四边形问题. 如图所示:13.填空(1)等腰梯形上底长为3cm,腰长为4cm,其中锐角等于60º,则下底长是.(2)等腰梯形一个底角是60º,它的上、下底分别是8和18,则这梯形的腰长是,高是,面积是.(3)在直角梯形中,垂直于底的腰长5cm,上底长3cm,另一腰与下底的夹角为30º,则另一腰长为,下底长为.(4)等腰梯形两对角线互相垂直,一条对角线长为6,则高为,面积为.(5)已知在梯形ABCD中,AD//BC,若两底AD、BC的长分别为2、8,两条对角线BD=6,AC=8,则梯形的面积为.(四)推理论证的进一步巩固14.(2007恩施自治州)如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形. 15.如图,在平行四边形ABCD中,E、F分别是直线AB、CD的中点,AF、DE相交于点G,CE、BF交于点H.求证:四边形GEHF是平行四边形.16.平行四边形ABCD中,点E、F分别在BC、AD上,且AF=CE,,求证:四边形AECF是平行四边形.17.求证:正方形的两条对角线将之分成四个全等的等腰直角三角形.18.已知点E、F在正方形ABCD的边BC、CD上,(1)若BE=CF,如图13(1).求证:AE=BF并且AE⊥BF;HGFADB CEFADB CEDAGEDH C FB 黄 蓝 紫 橙红 绿 AEFA BCNMED ABC(2)若E 、F 分别是BC 、EF 的中点,如图13(2),求证:GD=AD .19.(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有A B E F D C ∥∥,BC G H AD ∥∥,那么下列说法中错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 20.(06盐城)已知A B C D 的面积为4,对角线交于O , 则S △AOB = .21.若A,B,C 三点不共线,则以其为顶点的平行四边形共有( )A .1个B .2个C .3个D .4个22.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线a 的取值范围是( ) A.4<a <16 B.4<a <26 C. 12<a <20 D.8<a <3223.平行四边形中一边长为10cm ,那么两条对角线的长度可以是( )A .4cm 和6cmB .6cm 和8cmC .8cm 和12cmD .20cm 和30cm24.(07北京市23)如图,已知A B C △.(1)请你在B C 边上分别取两点D E ,(B C 的中点除外),连结A D A E ,,写出使此图中只存..在两对...面积相等的三角形的相应条件,并表示出面积相等的三角形; (2)请你根据使(1)成立的相应条件,证明A B A C A D A E +>+.25.如图已知A B C △,过顶点A 作∠B 、∠C 的平分线的 垂线,AD ⊥BD 于D ,AE ⊥CE 于E .求证:ED//BC .26.如图,已知BD 、CE 是⊿ABC 的两条高, M 、N 分别是BC 、DE 的中点. 求证:(1)EM=DM ;(2)MN ⊥DE .AB CD EFGAB CyxA 1OAB C27.(1)如图27(1),正方形ABCD ,E 、F 分别为BC 、CD 边上一点.①若∠EAF=45º.求证:EF=BE+DF . ②若⊿AEF 绕A 点旋转,保持∠EAF=45º, 问⊿CEF 的周长是否随⊿AEF 位置的变化而变化?(2)如图27(2),已知正方形ABCD 的边长为1, BC 、CD 上各有一点E 、F ,如果⊿CEF 的周长为2. 求∠EAF 的度数.(3)如图27(3),已知正方形ABCD ,F 为BC 中点 E 为CD 边上一点,且满足∠BAF=∠FAE . 求证:AE=BC+CE .(五)知识的联系与综合28.已知A B C D 的顶点A 、B 、C 的坐标为(-2,3),(-5,-4),(1,-4),则D 点坐标为29. 如图,已知A B C D 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为( )A 、(-3,2)B 、(-2,-3)C 、(3,-2)D 、(2,-3)第32题图30.如图,两平面镜αβ、的夹角为θ,入射光线AO 平行于β入射到α,两次反射后的光线O`B 平行于α,则角θ等于 .31.已知矩形的对角线长为13,周长为34,则这个矩形的面积为 .32.(05,潍坊)如图,在直角坐标系中,将长方形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,A B=1,则点A 1的坐标是( )A.(33,22) B.(3,32) C.(33,22) D.(13,22) (六)面积的问题:各种四边形面积的求法和等积变换33.如图,E 为A B C D 边CD 上一点,A B C D 的面积为S ,则△ABE 的面积为( )A 、SB 、12SC 、13S D 、14SODCB Ayx第29题图θBAOO 'βα第30题图EDCFEDCBAF ED C BA图27(1)FEDCBA图27(2)第39题图 2第39题图 1第35题图K NM QP D CBA34.如图,在ABCD 中,AD ⊥BD ,∠A=12∠ABC ,如果AD=2,那么ABCD 的周长是 ,面积是 .35.如图,在矩形ABCD 中,过BD 上一点K 分别作矩形两边的平行线MN 和PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2 (填“>”、“=”或“<”)36.如图,在A B C D 中,点P 在BC 上,PQ ∥BD 交CD 与Q ,则图中和△ABP 面积相等的三角形有 个,它们分别是: .37.如图,E 是平行四边形ABCD 的边AB 延长线上一点,DE 交BC 于F .求证:ABF EFC S S ∆∆=38.如图,点E 、F 分别在A B C D 的边DC 、CB 上, 且AE=AF ,DG ⊥AF ,BH ⊥AE ,G 、H 是垂足. 求证:DG=BH .(七)运动变换的思想在本章中的应用.39.(希望杯第9届初二第二试)已知ABCD 的周长为52,自顶点D 作DE ⊥AB ,DF ⊥BC ,E 、F 为垂足,若DE=5,DF=8,求BE+BF 的值.40.在矩形ABCD 中,AB=3,AD=4,P 是AD 边上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF= .41.(1)如图41(1)(2),已知⊿ABD,⊿BCE,⊿ACF 是等边三角形,求证:四边形ADEF 是平行四边形.CDBA第34题图QPDCBA第36题图EBFCDA第37题图F GHE CBD A第38题图DAFE第40题图OFE PD CBA第40题图OFEP DCBAEFCB AD图42(4)图41(3)DABCFE(2)如图41(3),已知⊿ABC,以AB 、AC 为边分别作等边三角形⊿ABD,⊿ACF ,再以AD 、AF 为邻边作平行四边形ADEF ,求证:三角形BCE 是等边三角形.(3)如图41(4),已知⊿ABD,⊿BCE 是等边三角形,A,F 是CE ,EB 上一点,且CA=EB ,求证:四边形ADFC 是平行四边形.42、(2007浙江台州)把正方形A B C D 绕着点A ,按顺时针方向旋转得到正方形A E F G ,边F G 与B C 交于点H (如图).试问线段H G 与线段H B 相等吗?请先观察猜想,然后再证明你的猜想.43、(2007江苏扬州)如图,正方形A B C D 绕点A 逆时针旋转n后得到正方形A E F G ,边EF与C D 交于点O .(1)以图中已标字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直.......,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm ,重叠部分(四边形DC AB GHFE第42题图DC ABGHF E第42题图图41(2)DABCFEGDOC F ENMA B CDEFA E O D )的面积为243cm 3,求旋转的角度n .44.(2007甘肃陇南)四边形ABCD 、DEFG 都是正方形,连接AE 、CG . (1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.45.(2007淄博)已知:如图,在△ABC 中,AB =AC ,AD ⊥BC , 垂足为点D ,AN 是△ABC 外角∠CAM 的平分线, CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.46.(05,青岛)如图,在等腰梯形ABCD 中,AD ∥BC ,M 、N 分别为AD 、BC 的中点,E 、F分别是BM 、CM 的中点. ⑴求证:△ABM ≌△DCM;⑵四边形MENF 是什么图形?请证明你的结论;⑶若四边形MENF 是正方形,则梯形的高与底边 BC 有何数量关系?并请说明理由.47.(2007四川资阳)如图47(1),已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),A MNE第44题图第47题图2第47题图1OA ''B ''C ''D ''E ''F ''G 'T 'TOOyxxy(1)(2)(3)GA 'B 'C 'D 'E 'F E BA CD PE ⊥BC 于点E ,PF ⊥CD 于点F . (1) 求证:BP =DP ;(2) 如图47(2),若四边形PECF 绕点C 旋转,在旋转过程中是否总有BP =DP ?若是,请证明之;若不是,请举出反例; (3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之.(八)函数的思想在本章中的运用48、(2007南充改编)等腰梯形ABCD 中,AB =15,AD =20,∠C =30º. M 、N 同时以相同速度分别从点A 、点D 开始在AB 、AD (包括端点)上运动.(1)设ND 为x ,用x 表示出点N 到AB 的距离,并写出x 的取值范围. (2)设t=10-x ,用t 表示△AMN 的面积.(3)求△AMN 的面积的最大值,并判断取最大值时△AMN 的形状.49.(2006泰州)将一矩形纸片OABC 放在直角坐标系中,O 为原点, C 在x 轴上,OA=6,OC=10.(1)如图1,在OA 上取一点E ,将△EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图2,在OA ′、OC ′边上选取适当的点E ′、F ,将△E ′OF 沿E ′F 折叠,使O 点落在A ′B ′ 边上的D ′点,过D ′作D 'G//A ′O 交E ′F 于T 点,交OC ′于G 点,求证:TG=A ′E ′.(3)在(2)的条件下,设T (x ,y ),探求:y 与x 之间的函数关系式.并指出变量x 的取值范围.(4)如图3,如果将矩形OABC 变为平行四边形OA "B "C ",使OC "=10, OC "边上的高等于6,其他条件均不变,探求:这时T (x ,y )的坐标y 与 x 之间是否仍然满足(3)中所得的函数关系,若满足,请证明之;若不满足,写出你认为正确的函数关系式.50.(08通州22改编)如图,在A B C D 中,AB=8 cm ,AD=6 cm ,∠DAB=60°,点M 是边AD 上一点,且DM=2 cm ,点E 、F 分别是边AB 、BC 上的点,EM 、ADC BMNDCBMNAP2()1()F ED ABC AB CD EFC DECD E F AD B ()KE FGBDACPQABCDN MGF E C ()DCB ACD 的延长线交于G ,GF 交AD 于O ,设AE=CF=x , ⑴试用含x 的代数式表示△CGF 的面积; ⑵当GF ⊥AD 时,求AE 的值.(九)翻折问题(特殊四边形的折叠问题) 51.沿特殊四边形的对角线折叠(06.浙江嘉兴)如图,矩形纸片ABCD ,AB=2, ∠ADB=30°,沿对角线BD 折叠(使△ABD 和△EBD 落在同一平面内),则A 、E 两点间的距离为____________.第51题图 第52题图52.沿特殊四边形的对称轴折叠如图,已知矩形ABCD 的边AB=2,AB ≠BC ,矩形ABCD 的面积为S ,沿矩形的对称轴折叠一次得到一个新的矩形,则这个新矩形对角线长为__________. 53.使特殊四边形的对角顶点重合折叠(05,山东威海)如图,梯形纸片ABCD , ∠B=60°,AD ∥BC ,AB=AD=2, BC=6,将纸片折叠,使点B 与点D 重合,折痕为AE ,则CE=___________.第53题图 第54题图 第55题图54.使特殊四边形一顶点落在其一边上而折叠如图,折叠矩形的一边CD ,使点C 落在AB 上的点F 处,已知AB=10cm , BC=8cm ,则EC 的长为________.55.使特殊四边形两顶点落在其一边上而折叠(崇文)如图,在梯形ABCD 中,DC ∥AB ,将梯形对折,使点D 、C 分别落在AB 上的D ′、C ′处,折痕为EF ,若CD=3cm ,EF=4cm ,则AD ′+BC ′=________cm.56.使特殊四边形一顶点落在其对称轴上而折叠(1)如图,已知EF 为正方形ABCD 的对称轴,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点处,则∠DKG=_____.第56题图 第57题图57.使特殊四边形一顶点落在其对称轴上而折叠(2)如图,有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边的中点,将C 点折至MN 上,落在点P 的位置,折痕为BQ ,连结PQ.(1)求MP 的长度; ⑵求证:以PQ 为边长的正方形的面积等于13.EE 'A 'A BCDQPCBAD 图2图1ABCD58.两次不同方式的折叠(06.淄博市)如图,将一矩形形纸片按如图方式折叠, BC 、BD 为折痕,折叠后AB 与EB 在同一条直线上, 则∠CBD 的度数为( ) A.大于90° B.等于90° C.小于90° D.不能确定59.三次不同方式的折叠(03,山西)如图,取一张矩形的纸片进行折叠,具体操作过程如下: 第一步:先把矩形ABCD 对折,折痕为MN ,如图①;第二步:再把B 点叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为B ′,得Rt △AB ′E ,如图②;第三步:沿EB ′线折叠得折痕EF ,如图④. 利用展开图③探究: ⑴△AEF 是什么三角形?证明你的结论;⑵ 对于任意的矩形,按照上述方法是否都能折出这种三角形? 并证明之.(十)动手操作实践60.(2007湖南怀化)如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请画出所有可能四边形并写出的它的名称61.(05枣庄,9分)如图1,四边形ABCD 是等腰梯形,AB ∥DC,由四个这样的等腰梯形可以拼出图2所示的平行四边形.(1)求出梯形ABCD 四个内角的度数;(2)试探究梯形ABCD 四条边之间存在的等量关系,并证明之;(3)现有图1 中的等腰梯形若干个,利用它们你能拼出一个菱形吗?62.(06.宁波)如图,剪四刀把等腰直角三角形分成五块,请用这五块拼成一个平行四边形或梯形(请按1:1的比例画出所拼的图形)第62题图 第63题图(十一)动点问题63.如图所示,在矩形ABCD 中,AB=12cm,BC=6cm,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动, 点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t 表示运动的时间(0≤t ≤6),那么:(1)当t 为何值时,△QAP 为等腰三角形?(2)求四边形QAPC 的面积;提出一个与计算结果有关的结论.(4)(3)(2)P B '⑴AB 'C DEB 'E AB C DN M N C C AB ADN EFD ENFyxO (A)B CD(1)(2)(3)F E C BACBA CBA64.如图,矩形ABCD 的边AC 在x 轴上,点A 在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x 轴正方向运动,同时点P 从A 点出发以每秒1个单位长度沿A-B-C-D 的路线运动,当P 点运动到D 点时停止运动,矩形ABCD 也停止运动. (1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (秒);①当t=5时,求出点P 的坐标;②若△OAP 的面积为S ,试求S 与t 之间的函数关系式.(并写出相应的自变量t 的取值范围).(十二)开放探究65.(2005 资阳)如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图1矩形ABEF 即为△ABC 的“友好矩形”.显然,当△ABC 是钝角三角形时,其“友好矩形′只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图2,若△ABC 为直角三角形,且∠C=90°,在图2中画出△ABC 的所有“友好矩形” ,并比较这些矩形面积的大小.(3)若△ABC 是锐角三角形,且BC>AC>AB ,在图3中画出△ABC 的所有“友好矩形”,指出其中周长最小的矩形并证明之.。
平行四边形判定经典题型
平行四边形判定经典题型一、平行四边形的概念及性质平行四边形是指在平面内,有两组对边分别平行的四边形。
它具有以下性质:1.对边平行且相等;2.对角线互相平分;3.邻角互补,对角相等;4.任意两边之和大于第三边。
二、平行四边形判定的经典题型1.两组对边分别平行的四边形:根据平行四边形的定义,若四边形ABCD 中,AB平行于CD,AD平行于BC,则四边形ABCD为平行四边形。
2.两组对边分别相等的四边形:若四边形ABCD中,AB=CD,AD=BC,则四边形ABCD为平行四边形。
3.对角线互相平分的四边形:若四边形ABCD中,对角线AC与BD互相平分,则四边形ABCD为平行四边形。
4.一组对边平行且相等的四边形:若四边形ABCD中,AB平行于CD且AB=CD,则四边形ABCD为平行四边形。
三、解题技巧与方法1.利用平行线性质:若四边形ABCD中,AB平行于CD,则∠B+∠C=180°,同理,∠A+∠D=180°。
由此可得,四边形ABCD的内角和为360°。
2.利用相似三角形:若四边形ABCD中,△ABC∽△ADC,则AB/AD=BC/CD。
根据相似比,可得到对应边的长度关系,进而判断四边形是否为平行四边形。
3.利用向量运算:若四边形ABCD中,向量AB=向量CD,向量AD=向量BC,则四边形ABCD为平行四边形。
四、实战演练与解析1.例题1:判断四边形ABCD是否为平行四边形。
已知:AB平行于CD,AD=BC,求证:四边形ABCD为平行四边形。
解析:根据平行四边形的判定方法2,四边形ABCD为平行四边形。
2.例题2:判断四边形EFGH是否为平行四边形。
已知:EF=GH,∠E=∠H,求证:四边形EFGH为平行四边形。
解析:根据平行四边形的判定方法1,四边形EFGH为平行四边形。
3.例题3:求解平行四边形ACBD的面积。
已知:平行四边形ACBD中,AB=4,BC=6,AC=8,求面积。
四边形基本题型
四边形性质探索概念精析平行四边形概念:两组对边分别平行的四边形。
(AB//CD,AD//BC⇔四边形ABCD是平行四边形。
判断方法:四边形+两对边分别平行)性质:1,平行四边形两组对边,两组对角分别平行且对角线相互平分。
2,平行四边形对角线分得的四个三角形的面积相等。
<平行线间距离:若两直线相互平行,则其中一条直线上任意两点到另一条直线的距离相等>注意:1,该距离指垂线段的长度,是大于0的。
2,平行线确定之后,它们之间是定值,不随垂线段位置的变化而变化。
3,两条平行线间的距离处处相等,故作平行四边形的高线时,可灵活选择位置。
判别方法:1,两组对边分别平行的四边形是平行四边形。
2,两组对边分别相等的四边形是平行四边形。
3,一组对边平行且相等的四边形是平行四边形。
4,两条对角线相互平分的四边形是平行四边形。
注意,1,判别四边形是平行四边形一般要满足两个条件,但不是任意两条件的配合都是平行四边形。
2,判定与性质的条件和结论正好相反。
判别方法的选择:已知条件判别方法一组对边相等法一或法二边一组对边平行法一或法三对角线对角线相互平分法四菱形概念:一组邻边相等的平行四边形。
(1,该定义也可成为一判定方法:平行四边形+一组邻边相等。
2,平行四边形+一组邻边相等⇔菱形)性质:菱形四边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角。
(1,菱形的性质:平行四边形性质+四边相等,两条对角线相互平分且每一条对角线平分一组对角。
2,是轴对称图形,有两条对称轴即两条对角线3,面积:a边×边上的高b两条对角线相乘的一半)判别方法:1,一组邻边相等的平行四边形。
2,对角线相互垂直的平行四边形。
3,四条边都相等的四边形。
矩形概念:有一个内角是直角的平行四边形。
性质:平行四边形所有性质+对角线相等,四个角都是直角推论:1,矩形的两条对角线把矩形分成四个等腰三角形。
2,可推出直角三角形斜边上的中线等于斜边长的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形类题型解题技巧
四边形是几何知识中非常重要一块内容,因其“变化多端”更是成为中高考数学考试一个热门考点。
如其中特殊四边形--平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用,如求角的度数、求线段的长、求周长、求第三边的取值范围、综合计算题、探索题等等问题.
典型例题1:
解题反思:
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键。
辅助线是解决四边形一个重要知识点,如构造三角形中位线。
实现线段或角的转移,从而迅速找到解题突破口,往往会使得某些看似无法解决的几何题化难为易,迎刃而解。
解题反思:
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键,难点在于作辅助线构造出全等三角形和平行四边形.
除了中位线,在一些四边形问题解决过程中,出现这样解法:顺次连结四边形四条边的中点所得的四边形叫中点四边形。
这个中点四边形有许多重要性质,在中考试题中也屡见不鲜,中点四边形的四个结论如下:任意四边形的中点四边形是平行四边形、对角线相等的四边形的中点四边形是菱形、对角线垂直的四边形的中点四边形是矩形、对角线相等且垂直的四边形的中点四边形是正方形。
因为四边形的两条对角线垂直,所以这个四边形的中点四边形是矩形,又因为这个四边形的。
两条对角线相等,所以这个四边形的中点四边形是菱形。
既是矩形又是菱形的图形就是正方形。
近几年随着新课改不断的深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题。
这类问题的实践性强,要利用图形变化过程中利前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解。
解题反思:
考查了几何变换综合题,涉及的知识点有:等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,综合性较强,难度中等.四边形中另一种特殊图形--梯形,也是热门考点。
梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,对梯形进行割补、拼接,从而转化为熟悉的三角形、平行四边形问题,如平移一腰、延长两腰交于一点、平移一条对角线、作高线等等。
解题反思:
此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.
中考中常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力。
数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力。
解决这类综合问题的关键是合理运用所学知识来理解题目,从而做到正确解题。
解题反思:
本题主要考查了运用待定系数法求直线及二次函数的解析式、全等三角形的判定与性质、平行四边形的判定与性质、三角函数的定义、抛物线上点的坐标特征、勾股定理等知识,通过平移CN,将PN、PD、NC归结到△PHD中,是解决本题的关键.在解决问题的过程中,用到了分类讨论、平移变换、割补法、运算推理等重要的数学思想方法,应学会使用。