中考数学解题技巧专题:特殊平行四边形中的解题方法

合集下载

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。

那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。

一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

中考数学四边形求解题技巧

中考数学四边形求解题技巧

中考数学四边形求解题技巧中考数学中,四边形是一个非常重要的知识点,也是考试中常出现的题型之一。

四边形题目涉及到求解角度、边长、面积等方面的知识,掌握一些解题技巧能够有效提高解题速度和准确性。

下面我将介绍一些中考数学四边形求解题的技巧。

1. 利用图形性质分析题目在解决四边形问题时,首先要观察给出的图形,分析各个角的大小关系以及边长的关系。

根据图形的特点,我们可以推导出一些性质,这些性质可以帮助我们解决问题。

例如,互补角的性质:如果两个角的和等于90度,则它们是互补角。

利用这个性质,我们可以求解出两个互补角中的一个。

2. 利用角的性质在解四边形题时,经常需要求解各个角的大小。

对于平行四边形和矩形来说,对角线之间的夹角都是相等的;对于菱形来说,它的所有内角都是直角;对于等腰梯形来说,它的两个底角是相等的。

利用这些角的特点,我们可以通过已知条件求解出其他角的大小。

同时,还需要掌握计算角度的方法,如180度减去一个角的度数可以求出另一个角的度数。

3. 利用截线性质在解四边形问题时,有时会用到线段的截线性质。

截线性质是指当一条直线截断两条平行线时,所得截线与平行线之间的对应角是相等的。

利用这个性质,我们可以推导出两条平行线之间的一些角的大小关系,然后通过已知条件求解其他角的大小。

4. 利用边长的性质在解决四边形问题时,有时需要求解各个边的长度。

根据已知条件和图形的特点,我们可以列方程,然后求解出未知边长。

例如,如果题目已知一个矩形的长和宽之比为3:2,并且矩形的周长为40,我们可以设矩形的长为3x,宽为2x,列出方程3x + 2x + 3x + 2x = 40,然后解方程求解出x 的值,进而求解出长和宽的值。

5. 利用面积的性质在解决四边形问题时,有时需要求解图形的面积。

对于矩形、正方形、菱形来说,我们可以利用边长或对角线的性质求解出面积。

例如,对于矩形来说,我们可以用长和宽的乘积求解出面积;对于菱形来说,我们可以用对角线的乘积除以2求解出面积。

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题在中考数学中,平行四边形是一个常见的图形,它不仅可以帮助我们解决面积的计算问题,还可以辅助求解角度相关的题目。

本文将介绍如何利用平行四边形解决平面几何中的面积和角度问题。

一、平行四边形的性质平行四边形是指具有两对对边分别平行的四边形。

那么,它具有哪些性质呢?1. 对边性质:平行四边形的对边是相等的,即相对的两条边长度相等。

2. 对角性质:平行四边形的对角线互相平分,并且对角线所分割的两个三角形面积相等。

3. 同位角性质:平行四边形的同位角相等。

二、基于平行四边形解决面积问题1. 面积的计算公式对于平行四边形来说,其面积可以通过底长和高的乘积来计算,即S = 底 ×高。

其中,底可以是任意一条边的长度,高是从这条底边垂直下来的线段的长度。

2. 利用平行四边形的对边性质既然平行四边形的对边是相等的,那么我们可以通过已知边长求解未知边长,从而计算平行四边形的面积。

例如,已知平行四边形ABCD中,AB = 8 cm,DC = 12 cm,通过对边性质可知AD = BC = 8 cm,BD = AC = 12 cm。

通过计算底和高的乘积,即可求解平行四边形的面积。

3. 利用平行四边形的同位角性质在一些复杂的图形题目中,我们可以将图形中的一部分转化为平行四边形,利用同位角性质求解未知角度,从而进一步解决面积问题。

例如,已知平行四边形ABCD中,角BAD = 40°,AC为对角线,交BD于点E,求角AEB的度数。

我们可以发现角AEB和角BAD为同位角,根据平行四边形的同位角性质,它们是相等的。

因此,角AEB = 40°。

进一步,我们可以利用角AEB的大小,确定三角形AEB的形状,从而计算出其面积。

三、基于平行四边形解决角度问题1. 利用平行四边形的对角性质在一些角度相关的问题中,平行四边形中的对角线可以帮助我们求解未知角度。

人教版八年级下册数学作业课件 第十八章 解题技巧专题:特殊平行四边形中的定值最值问题

人教版八年级下册数学作业课件 第十八章 解题技巧专题:特殊平行四边形中的定值最值问题

的长度为
37 2
.
4.如图,点 E 是矩形 ABCD 的对角线 BD 上的一点, 且 BE=BC,AB=3,BC=4,点 P 为直线 EC 上的 一点,且 PQ⊥BC 于点 Q,PR⊥BD 于点 R.如图①, 当点 P 为线段 EC 中点时,易证得 PR+PQ=12.
5
(1)如图②,当点 P 为线段 EC 上的任意一点(不与点
(2)如图,矩形 ABCD 中,AB=8,BC=15,P 是边
AD 上的动点,PE⊥AC 于点 E,PF⊥BD 于点 F,
则 PE+PF 的值为
120 17
.
3.如图,矩形 ABCD 中,BC=6,AB=3,R 在 CD
边上,且 CR=2,P 为 BC 上一动点,E、F 分别是
AP、RP 的中点,当 P 从 B 向 C 移动时,线段 EF
AD2+AE2= 12+12= 2, ∴OD 的最大值为 2+1.故选 A.
7.(2021·眉山中考)如图,在菱形 ABCD 中,AB=
AC=10,对角线 AC、BD 相交于点 O,点 M 在线
段 AC 上,且 AM=3,点 P 为线段 BD 上的一个动
点,则 MP+1PB 的最小值是 7 3 .
2
2
提示:分别过点 P、点 M 作 BC 边的垂线.
8.如图,在正方形 ABCD 中,E 是对角线 AC 上的 动点,以 DE 为边作正方形 DEFG,H 是 CD 的中 点,连接 GH.若 GH 的最小值是 1,则正方形 ABCD 的边长为 2 2 .
9.如图,已知菱形 ABCD 的对角线相交于 O,点 E、 F 分别在边 AB、BC 上,且 BE=BF,射线 EO、FO 分别交边 CD、AD 于 G、H. (1)求证:四边形 EFGH 为矩形; 证明:∵四边形 ABCD 是菱形, ∴OA=OC,OB=OD, AB∥CD,AD∥BC. ∴∠BAO=∠DCO.

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
解:存在.令x=0,代入y=-x2+6x-5,得y=-5, ∴点C的坐标为(0,-5).
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.

中考一轮复习 数学专题11 平行四边形与特殊的平行四边形(学生版) 教案

中考一轮复习 数学专题11 平行四边形与特殊的平行四边形(学生版)  教案

专题11 平行四边形与特殊的平行四边形一.选择题1.(2022·四川内江)如图,在▱ABCD 中,已知AB =12,AD =8,▱ABC 的平分线BM 交CD 边于点M ,则DM 的长为( )A .2B .4C .6D .82.(2022·内蒙古赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD ,其中一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 周长不变B .AD CD =C .四边形ABCD 面积不变 D .AD BC =3.(2022·黑龙江大庆)如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在E 处.若156∠=︒,242∠=︒,则A ∠的度数为( )A .108︒B .109︒C .110︒D .111︒4.(2022·广东)如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .25.(2022·广东)如图,在ABCD 中,一定正确的是( )A .AD CD =B .AC BD = C .AB CD = D .CD BC =6.(2022·江苏无锡)如图,在ABCD 中,AD BD =,105ADC ∠=,点E 在AD 上,60EBA ∠=,则EDCD 的值是( )A .23 B .12 C D 7.(2022·山东烟台)一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( ) A .正方形 B .正六边形 C .正八边形 D .正十边形8.(2022·内蒙古呼和浩特·中考真题)如图,四边形ABCD 是菱形,60DAB ∠=︒,点E 是DA 中点,F 是对角线AC 上一点,且45DEF ∠=︒,则:AF FC 的值是( )A .3B 1C .1D .2+9.(2022·贵州黔东南)如图,在边长为2的等边三角形ABC 的外侧作正方形ABED ,过点D 作DF BC ⊥,垂足为F ,则DF 的长为( )A .2B .5C .3D 110.(2022·海南)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若:1:2,BF CE EF ==ABCD 的边长是( )A .3B .4C .5D 11.(2022·江苏无锡)下列命题中,是真命题的有( )①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形 ④四边相等的四边形是菱形A .①②B .①④C .②③D .③④12.(2022·广西玉林)若顺次连接四边形ABCD 各边的中点所得的四边形是正方形,则四边形ABCD 的两条对角线,AC BD 一定是( )A .互相平分B .互相垂直C .互相平分且相等D .互相垂直且相等13.(2022·内蒙古赤峰)如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上,120ABC ∠=︒,点()30A -,,点E 是CD 的中点,点P 是OC 上的一动点,则PD PE +的最小值是( )A .3B .5C .D 14.(2022·内蒙古包头)如图,在矩形ABCD 中,AD AB >,点E ,F 分别在,AD BC 边上,,EF AB AE AB =∥,AF 与BE 相交于点O ,连接OC ,若2BF CF =,则OC 与EF 之间的数量关系正确的是( )A .2OC =B 2EF =C .2OC =D .OC EF =15.(2022·黑龙江)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤16.(2022·江苏泰州)如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2,d 3,则d 1+d 2+d 3的最小值为( )A B .2 C .D .417.(2022·四川广安)如图,菱形ABCD 的边长为2,点P 是对角线AC 上的一个动点,点E 、F 分别为边AD 、DC 的中点,则PE + PF 的最小值是( )A .2 BC .1.5D 18.(2022·辽宁营口)如图,在矩形ABCD 中,点M 在AB 边上,把BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF EC ⊥,垂足为F ,若1,2CD CF ==,则线段AE 的长为( )A 2B 1C .13D .12 19.(2022·湖北恩施)如图,在四边形ABCD 中,▱A =▱B =90°,AD =10cm ,BC =8cm ,点P 从点D 出发,以1cm/s 的速度向点A 运动,点M 从点B 同时出发,以相同的速度向点C 运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P 的运动时间为t (单位:s ),下列结论正确的是( )A .当4s t =时,四边形ABMP 为矩形B .当5s =t 时,四边形CDPM 为平行四边形C .当CD PM =时,4s t = D .当CD PM =时,4s t =或6s20.(2022·湖北恩施)如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若4=AD ,2AB =.则四边形MBND 的周长为( )A .52B .5C .10D .20二.填空题21.(2022·广西梧州)如图,在ABC 中,90ACB ∠=,点D ,E 分别是,AB AC 边上的中点,连接,CD DE .如果5m AB =,3m BC =,那么CD DE +的长是_______m .22.(2022·贵州毕节)如图,在Rt ABC 中,90,3,5BAC AB BC ∠=︒==,点P 为BC 边上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 长度的最小值为_________.23.(2022·山东烟台)如图1,▱ABC 中,▱ABC =60°,D 是BC 边上的一个动点(不与点B ,C 重合),DE ∥AB ,交AC 于点E ,EF ∥BC ,交AB 于点F .设BD 的长为x ,四边形BDEF 的面积为y ,y 与x 的函数图象是如图2所示的一段抛物线,其顶点P 的坐标为(2,3),则AB 的长为 _____.24.(2022·山东临沂)如图,在正六边形ABCDEF 中,M ,N 是对角线BE 上的两点,添加下列条件中的一个:①BM EN =;②FAN CDM ∠=∠;③AM DN =;④AMB DNE ∠=∠.能使四边形AMDN 是平行四边形的是__________(填上所有符合要求的条件的序号).25.(2022·江苏泰州)正六边形一个外角的度数为____________.26.(2022·黑龙江齐齐哈尔)如图,在四边形ABCD 中,AC ▱BD ,垂足为O ,AB CD ,要使四边形ABCD 为菱形,应添加的条件是______________.(只需写出一个条件即可)27.(2022·海南)如图,正方形ABCD 中,点E 、F 分别在边BC CD 、上,,30AE AF EAF =∠=︒,则AEB ∠=___________︒;若AEF 的面积等于1,则AB 的值是___________.AC BD相交于点O,点E在OB上,连接AE,点F 28.(2022·黑龙江哈尔滨)如图,菱形ABCD的对角线,OA=,则线段OF的长为___________.为CD的中点,连接OF,若AE BE=,3OE=,429.(2022·山东青岛)图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色∠的度数是__________︒.后,再次镶嵌便得到图①,则图④中ABC30.(2022·江苏常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若60∠=︒,则橡皮筋AC_____断裂(填“会”BAD或“不会” 1.732).31.(2022·贵州铜仁)如图,四边形ABCD为菱形,▱ABC=80°,延长BC到E,在▱DCE内作射钱CM,使得▱ECM=30°,过点D作DF▱CM,垂足为F.若DF BD的长为______(结果保留很号).32.(2022·湖北十堰)“美丽乡村”建设使我市农村住宅旧貌变新颜,如图所示为一农村民居侧面截图,屋坡AF ,AG 分别架在墙体的点B ,C 处,且AB AC =,侧面四边形BDEC 为矩形,若测得55FBD ∠=︒,则A ∠=_________︒.33.(2022·湖北随州)如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将▱AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则▱BHD 的度数为______,DH 的长为______.34.(2022·贵州黔东南)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,DE //AC ,CE //BD .若10AC =,则四边形OCED 的周长是_______.35.(2022·辽宁辽宁·中考真题)如图,CD 是▱ABC 的角平分线,过点D 分别作AC ,BC 的平行线,交BC 于点E ,交AC 于点F .若▱ACB =60°,CD =CEDF 的周长是_______.36.(2022·广西贺州)如图,在矩形ABCD 中,86AB BC ==,,E ,F 分别是AD ,AB 的中点,ADC ∠的平分线交AB 于点G ,点P 是线段DG 上的一个动点,则PEF 的周长最小值为__________.37.(2022·江苏无锡)如图,正方形ABCD 的边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =________.38.(2022·黑龙江)在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE 是直角三角形,则BP 的长为________.39.(2022·黑龙江大庆)如图,正方形ABCD 中,点E ,F 分别是边,AB BC 上的两个动点,且正方形ABCD 的周长是BEF 周长的2倍,连接,DE DF 分别与对角线AC 交于点M ,N .给出如下几个结论:①若2,3AE CF ==,则4EF =;②180EFN EMN ∠+∠=︒;③若2,3AM CN ==,则4MN =;④若2,3MN BE AM ==,则4EF =.其中正确结论的序号为____________.40.(2022·四川雅安)如图,把一张矩形纸片沿对角线折叠,若BC =9,CD =3,那么阴影部分的面积为 _____.41.(2022·黑龙江)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,60BAD ∠=︒,3AD =,AH 是BAC ∠的平分线,CE AH ⊥于点E ,点P 是直线AB 上的一个动点,则OP PE +的最小值是________.42.(2022·辽宁锦州)如图,四边形ABCD 为矩形,3AB AD ==,点E 为边BC 上一点,将DCE 沿DE 翻折,点C 的对应点为点F ,过点F 作DE 的平行线交AD 于点G ,交直线BC 于点H .若点G 是边AD 的三等分点,则FG 的长是____________.43.(2022·四川内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF▱BC,则AF+CE的最小值是_____.三.解答题44.(2022·湖南长沙)如图,在ABCD中,对角线AC,BD相交于点O,AB AD=.(1)求证:AC BD⊥;(2)若点E,F分别为AD,AO的中点,连接EF,322EF AO==,,求BD的长及四边形ABCD的周长.45.(2022·江苏无锡)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB、DC于点E、F,连接DE、BF.求证:(1)△DOF▱△BOE;(2)DE=BF.46.(2022·黑龙江大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.47.(2022·广西贺州)如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED BF =,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分8FAE AC ∠=,,3tan 4DAC ∠=,求四边形AFCE 的面积.48.(2022·贵州毕节)如图1,在四边形ABCD 中,AC 和BD 相交于点O ,,AO CO BCA CAD .(1)求证:四边形ABCD 是平行四边形;(2)如图2,E ,F ,G 分别是,,BO CO AD 的中点,连接,,EF GE GF ,若2,15,16BD AB BC AC ,求EFG 的周长.49.(2022·内蒙古包头)如图,在平行四边形ABCD 中,AC 是一条对角线,且5AB AC ==,6BC =,E ,F 是AD 边上两点,点F 在点E 的右侧,AE DF =,连接CE ,CE 的延长线与BA 的延长线相交于点G .(1)如图1,M 是BC 边上一点,连接AM ,MF ,MF 与CE 相交于点N .①若32AE =,求AG 的长;②在满足①的条件下,若EN NC =,求证:AM BC ⊥; (2)如图2,连接GF ,H 是GF 上一点,连接EH .若EHG EFG CEF ∠=∠+∠,且2HF GH =,求EF 的长.50.(2022·北京)如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.51.(2022·黑龙江哈尔滨)已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE =.(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF 除外),使写出的每个三角形的面积都与AEF 的面积相等.52.(2022·湖北鄂州)如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,且▱CDF =▱BDC 、▱DCF =▱ACD .(1)求证:DF=CF;(2)若▱CDF=60°,DF=6,求矩形ABCD的面积.53.(2022·山东威海)如图:(1)将两张长为8,宽为4的矩形纸片如图1叠放.①判断四边形AGCH的形状,并说明理由;②求四边形AGCH的面积.(2)如图2,在矩形ABCD和矩形AFCE中,AB=BC=7,CF AGCH的面积.54.(2022·内蒙古赤峰)同学们还记得吗?图①、图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:(1)【问题一】如图①,正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点,1OA 交AB 于点E ,1OC 交BC 于点F ,则AE 与BF 的数量关系为_________;(2)【问题二】受图①启发,兴趣小组画出了图③:直线m 、n 经过正方形ABCD 的对称中心O ,直线m 分别与AD 、BC 交于点E 、F ,直线n 分别与AB 、CD 交于点G 、H ,且m n ⊥,若正方形ABCD 边长为8,求四边形OEAG 的面积;(3)【问题三】受图②启发,兴趣小组画出了图④:正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,顶点E 在BC 的延长线上,且6BC =,2CE =.在直线BE 上是否存在点P ,使APF 为直角三角形?若存在,求出BP 的长度;若不存在,说明理由.55.(2022·江苏泰州)如图,线段DE 与AF 分别为▱ABC 的中位线与中线.(1)求证:AF 与DE 互相平分;(2)当线段AF 与BC 满足怎样的数量关系时,四边形ADFE 为矩形?请说明理由.56.(2022·四川雅安)如图,E ,F 是正方形ABCD 的对角线BD 上的两点,且BE =DF .(1)求证:▱ABE ▱▱CDF ;(2)若AB =BE =2,求四边形AECF 的面积.57.(2022·广西玉林)如图,在矩形ABCD 中,8,4AB AD ==,点E 是DC 边上的任一点(不包括端点D ,C ),过点A 作AF AE ⊥交CB 的延长线于点F ,设DE a =.(1)求BF 的长(用含a 的代数式表示);(2)连接EF 交AB 于点G ,连接GC ,当//GC AE 时,求证:四边形AGCE 是菱形.58.(2022·江苏无锡)如图,已知四边形ABCD 为矩形AB =4BC =,点E 在BC 上,CE AE =,将▱ABC沿AC 翻折到▱AFC ,连接EF .(1)求EF 的长;(2)求sin▱CEF 的值.59.(2022·山东聊城)如图,ABC 中,点D 是AB 上一点,点E 是AC 的中点,过点C 作CF AB ∥,交DE 的延长线于点F .(1)求证:AD CF =;(2)连接AF ,CD .如果点D 是AB 的中点,那么当AC 与BC 满足什么条件时,四边形ADCF 是菱形,证明你的结论.60.(2022·内蒙古通辽)已知点E 在正方形ABCD 的对角线AC 上,正方形AFEG 与正方形ABCD 有公共点A .(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.61.(2022·湖南)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 是CD 的中点,连接OE ,过点C作CF BD ∥交OE 的延长线于点F ,连接DF .(1)求证:ΔΔODE FCE ≅;(2)试判断四边形ODFC 的形状,并写出证明过程.62.(2022·贵州贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.63.(2022·山东青岛)如图,在四边形ABCD 中,AB ▱CD ,点E ,F 在对角线BD 上,BE =EF =FD ,▱BAF =▱DCE =90°.(1)求证:△ABF ▱△CDE ;(2)连接AE ,CF ,已知__________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF 的形状,并证明你的结论.条件①:▱ABD =30°; 条件2:AB =BC .(注:如果选择条件①条件②分别进行解答,按第一个解答计分)64.(2022·湖南永州)为提高耕地灌溉效率,小明的爸妈准备在耕地A 、B 、C 、D 四个位置安装四个自动喷酒装置(如图1所示),A 、B 、C 、D 四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管). 方案一:如图2所示,沿正方形ABCD 的三边铺设水管;方案二:如图3所示,沿正方形ABCD 的两条对角线铺设水管.(1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;(2)小明看了爸妈的方案后,根据“蜂集原理”重新设计了一个方案(如图4所示),满足120AEB CFD =∠∠=°,AE BE CF DF ===,EF AD ∥、请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由. 1.4≈ 1.7≈)65.(2022·贵州遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长.。

2020年中考数学考点提分专题二十二 以特殊的平行四边形为背景的证明与计算(解析版)

2020年中考数学考点提分专题二十二 以特殊的平行四边形为背景的证明与计算(解析版)

2020年中考数学考点提分专题二十二以特殊的平行四边形为背景的证明与计算(解析版)考点分析【例1】(2020·安徽初三)(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【例2】(2019·江苏泰州中学附属初中初三月考)如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,(1)如图1,当F点落在边AD上时,求∠EDC的度数;(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=2时,求EG的长;(3)如图3,设EF与边AD交于点N,当tan∠ECD=13时,求△NED的面积.考点集训1.(2020·陕西初三期中)问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=63PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB 是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=°,所以∠BPC =∠AP′B=°,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=°,∠BPC=∠AP′B=°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1.求∠BPC 的度数和正方形ABCD的边长.2.(2019·云南初三月考)如图,矩形ABCD中,AB=4,AD=3,E是边AB上一点,将△CBE沿直线CE对折,得到△CFE,连接DF.(1)当D、E、F三点共线时,证明:DE=CD;(2)当BE=1时,求△CDF的面积;(3)若射线DF交线段AB于点P,求BP的最大值.3.(2019·江苏初二期末)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.(1)直接写出AM=;(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.①AP=,AQ=;②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)4.(2019·江苏初二期末)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.5.(2020·山东初三期末)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.6.(2020·深圳市龙岗区石芽岭学校初三月考)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.7.(2020·河南初三)如下图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF 与线段EG 的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由: (3)拓展延伸:如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =、BC b ,求EF EG的值. 8.(2020·江苏初二期中)如图,长方形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 上的E 点处,折痕的一端G 点在边BC 上.(1)如图1,当折痕的另一端F 在AB 边上且AE =4时,求AF 的长;(2)如图2,当折痕的另一端F 在AD 边上且BG =10时,①求证:△EFG 是等腰三角形;②求AF 的长;(3)如图3,当折痕的另一端F 在AD 边上,B 点的对应点E 到AD 的距离是4,且BG =5时,求AF 的长.9.(2019·河南初三期中)正方形ABCD 与正方形DEFG 按如图1放置,点A ,D ,G 在同一条直线上,点E 在CD 边上,AD =3,DE 2,连接AE ,CG .(1)线段AE 与CC 的关系为______;(2)将正方形DEFG 绕点D 顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG 绕点D 顺时针旋转一周的过程中,当∠AEC =90°时,请直接写出AE 的长.10.(2019·云南初三)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,(1)求证:△CBE ≌△CPE ;(2)求证:四边形AECF 为平行四边形;(3)若矩形ABCD 的边AB =6,BC =4,求△CPF 的面积.11.(2019·江西初三期中)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、•D•作BE ⊥PA 、DF ⊥PA ,垂足为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系,若点P 在DC 的延长线上(如图②),那么这三条线段的长度之间又有怎样的数量关系?若点P 在CD 的延长线上呢(如图③)?请分别直接写出结论.(2)请在(1)中的三个结论中选择一个加以证明.12.(2020·河北初三期末)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 的延长线上,且满足90MAN ∠=︒,连接MN 、AC ,MN 与边AD 交于点E .(1)求证:AM AN =;(2)如果2CAD NAD ∠=∠,求证:2AN AE AC =⋅.2020年中考数学考点提分专题二十二以特殊的平行四边形为背景的证明与计算(解析版)考点分析【例1】(2020·安徽初三)(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)24cm;(3)存在,过E作EP⊥AD交AC于P,则P就是所求的点,证明见解析.【解析】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,由折叠的性质可得:OA=OC,AC⊥EF,在△AOE和△COF中,∵EAO FCO OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形,∴AF=AE=10cm,∵四边形ABCD是矩形,∴∠B=90°,∴S△ABF=12AB•BF=24cm2,∴AB•BF=48(cm2),∴AB2+BF2=(AB+BF)2-2AB•BF=(AB+BF)2-2×48=AF2=100(cm2),∴AB+BF=14(cm)∴△ABF的周长为:AB+BF+AF=14+10=24(cm).(3)证明:过E作EP⊥AD交AC于P,则P就是所求的点.当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°,∵在平行四边形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF,∴OE=OF∴四边形AFCE是菱形.∴∠AOE=90°,又∠EAO=∠EAP,由作法得∠AEP=90°,∴△AOE∽△AEP,∴AE AOAP AE,则AE2=AO•AP,∵四边形AFCE是菱形,∴AO=12 AC,∴AE2=12 AC•AP,∴2AE2=AC•AP.【点睛】本题考查翻折变换(折叠问题);菱形的判定;矩形的性质,相似三角形的判定和性质,综合性较强,掌握相关性质定理,正确推理论证是解题关键.【例2】(2019·江苏泰州中学附属初中初三月考)如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,(1)如图1,当F点落在边AD上时,求∠EDC的度数;(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=2时,求EG的长;(3)如图3,设EF与边AD交于点N,当tan∠ECD=13时,求△NED的面积.【答案】(1)15°;(2)3;(3)18 5【解析】解:(1)如图1中,作EH⊥BC于H,EM⊥CD于M.则四边形EMCH是矩形.∵四边形ABCD是正方形,∴BA=BC=CD,∠ABC=∠BCD=90°,∵BC=BE,∴AB=BE=CD,在Rt△BFA和Rt△BFE中,BF BF AB BE=⎧⎨=⎩,∴Rt△BFA≌△Rt△BFE(HL),∴∠ABF=∠EBF=30°,∵∠ABC=90°,∴∠EBC=30°,∴EH=MC=12BE=12CD,∴DM=CM,∵EM⊥CD,∴ED=EC,∵∠BCE=12(180°﹣30°)=75°,∴∠EDC=∠ECD=15°.(2)如图2中,连接BM、BG.∵AM=2,∴DM=AD﹣AM=4,由(1)可知△BMA≌△BME,△BGE≌△BGC,∴AM=EM=2,EG=CG,设EG=CG=x,则DG=6﹣x.在Rt△DMG中,MG2=DG2+DM2,∴(2+x)2=(6﹣x)2+42,∴x=3,∴EG=3.(3)如图3中,连接BN,延长FE交CD于G,连接BG.AN=NE,EG=CG,∵BE=BC,∴BG垂直平分CE,∴∠ECG+∠BCG=90°,∵∠GBC+∠ECB=90°,∴∠ECD=∠GCB,∴tan∠GBC=tan∠ECD=13,∴CGBC=13,∴CG=13BC=2,∵CD=6,∴DG=CD﹣CG=4,设AN=EN=y,则DN=6﹣y,在Rt△DNG中,(6﹣y)2+42=(2+y)2,解得:y=3,∴AN=NE=3,DN=3,NG=5,∴S△NED=35•S△DNG=35×12×3×4=185.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.考点集训1.(2020·陕西初三期中)问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B=°,所以∠BPC =∠AP′B=°,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为,问题得到解决.(1)根据李明同学的思路填空:∠AP′B=°,∠BPC=∠AP′B=°,等边三角形ABC的边长为.(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA PB,PC=1.求∠BPC 的度数和正方形ABCD的边长.【答案】(1)∠AP′B =150°,∠BPC =∠AP′B =150°,等边三角形ABC 7;(2)∠BPC =135°,正方形ABCD 5【解析】(1)∵等边△ABC ,∴∠ABC=60°,将△BPC 绕点B 逆时针旋转60°得出△ABP′,∴AP′=CP=1,3,∠PBC=∠P′BA ,∠AP′B=∠BPC ,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴3BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP 2,∴∠AP′P=90°,∴∠BPC=∠AP′B=90°+60°=150°,过点B 作BM ⊥AP′,交AP′的延长线于点M ,∴∠MP′B=30°,BM=32由勾股定理得:P′M=32, ∴AM=1+32=52, 由勾股定理得:22=7AM BM故答案为:150°7(2)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,2,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=12(180°-90°)=45°,由勾股定理得:EP=2,∵AE=1,5EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°,过点B作BF⊥AE,交AE的延长线于点F;∴∠FEB=45°,∴FE=BF=1,∴AF=2;∴在Rt△ABF中,由勾股定理,得5∴∠BPC=135°5答:∠BPC的度数是135°,正方形ABCD5【点睛】本题主要考查对勾股定理及逆定理,等边三角形的性质和判定,等腰三角形的性质,含30度角的直角三角形的性质,正方形的性质,旋转的性质等知识点的理解和掌握,正确作辅助线并能根据性质进行证明是解此题的关键.2.(2019·云南初三月考)如图,矩形ABCD中,AB=4,AD=3,E是边AB上一点,将△CBE沿直线CE对折,得到△CFE,连接DF.(1)当D、E、F三点共线时,证明:DE=CD;(2)当BE=1时,求△CDF的面积;(3)若射线DF交线段AB于点P,求BP的最大值.【答案】(1)见解析;(2)245;(3)47【解析】证明:(1)∵四边形ABCD是矩形∴AB=CD=4,AD=BC=3,AB∥CD,∴∠DCE=∠CEB∵△CBE翻折得到△CFE∴∠FEC=∠CEB∴∠DCE=∠FEC∴DE=CD(2)如图1,延长EF交CD的延长线于点G,∵四边形ABCD是矩形∴AB=CD=4,AD=BC=3,AB∥CD,∴∠DCE=∠CEB∵△CBE翻折得到△CFE∴∠FEC=CEB,CF=BC=3,EF=BE=1,∠CFE=90°∴∠DCE=∠FEC,∠CFG=90°∴CG=EG,∴GF=GE﹣EF=CG﹣1∵在Rt△CGF中,CG2=CF2+GF2,∴CG2=9+(CG﹣1)2,解得:CG=5∵△CDF与△CGF分别以CD、CG为底时,高相等∴45CDFCGFS CDS CG==VV∴S△CDF=45S△CGF=413452⨯⨯⨯=245(3)如图2,过点C作CH⊥DP于点H,连接CP,∵CD∥AB∴∠CDP=∠APD,且∠A=∠CHD=90°∴△ADP∽△HCD∴CD CHDP AD==DHAP,∵CH≤CF,CF=BC=AD=3∴CH≤3∴当点H与点F重合时,CH最大,DH最小,AP最小,BP最大,此时,在△ADP与△HCDAPD CDPA CHD90AD CH︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△ADP≌△HCD(AAS)∴CD=DP=4,AP=DF∵AP=22DP AD-=7∴BP的最大值为4﹣7.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、勾股定理及相似三角形的判定与性质.3.(2019·江苏初二期末)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.(1)直接写出AM=;(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.①AP=,AQ=;②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)【答案】(1)2(2)①2x,x;②S222x x=-+(0<x≤2.【解析】解:(1)∵正方形ABCD的边长为4,∴对角线AC22AB==2,又∴AM12AC==2.故答案为:2.(2)①Q是AP的中点,设PQ=x,∴AP=2PQ=2x,AQ=x.故答案为:2x;x.②如图:∵以PQ为对角线作正方形,∴∠GQM=∠FQM=45°∵正方形ABCD对角线AC、BD交于点M,∴∠FMQ=∠GMQ=90°,∴△FMQ和△GMQ均为等腰直角三角形,∴FM=QM=MG.∵QM=AM﹣2x,∴S12=FG•QM()12222x x=⋅,∴S222x x=-+,∵依题意得:20xx⎧⎪⎨⎪⎩>>,∴0<2,综上所述:S222x x=-+(0<2),【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.4.(2019·江苏初二期末)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP于点E,试判断四边形BPEP′的形状,并说明理由.【答案】(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解析】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.【点睛】此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.5.(2020·山东初三期末)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH ∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.【答案】(1)见解析;(2)EM=5 4【解析】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG,∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD,∵CD=HG,∠ECG=∠CGF=90°,FG=CG,∴△DCG≌△HGF(SAS),∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°,∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG,∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5.∵AD∥EF,∴53EM EFDM AD==,且DE=2.∴EM=54.【点睛】本题考查了正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质,平行线分线段成比例等知识点,综合性较强难度大灵活运用这些知识进行推理是本题的关键.6.(2020·深圳市龙岗区石芽岭学校初三月考)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.【答案】(1)证明见解析;(2)23【解析】解:(1)证明:由折叠的性质可得:∠ANM=∠CNM,∵四边形ABCD是矩形,∴AD∥BC.∴∠ANM=∠CMN.∴∠CMN=∠CNM.∴CM=CN.(2)过点N作NH⊥BC于点H,则四边形NHCD是矩形.∴HC=DN,NH=DC.∵△CMN的面积与△CDN的面积比为3:1,∴12312CMNCDNMC NHS MCS NDDN NH===VVgg.∴MC=3ND=3HC.∴MH=2HC.设DN=x,则HC=x,MH=2x,∴CM=3x=CN.在Rt △CDN 中,2222DC CN DN x =-=,∴HN=22x .在Rt △MNH 中,2223MN MH HN x =+=,∴2323MN x DF x==. 7.(2020·河南初三)如下图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F .另一边交CB 的延长线于点G .(1)观察猜想:线段EF 与线段EG 的数量关系是 ;(2)探究证明:如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB a =、BC b =,求EF EG的值. 【答案】(1)EF EG =;(2)成立,证明过程见解析;(3)EF b EG a =. 【解析】(1)EF EG =,理由如下:由直角三角板和正方形的性质得90ED EB D EBC BED GEF =⎧⎨∠=∠=∠=∠=︒⎩9090FED BEF GEB BEF D EBG ∠+∠=∠+∠=︒⎧∴⎨∠=∠=︒⎩ FED GEB ∴∠=∠在FED ∆和GEB ∆中,90FED GEB ED EBD EBG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FED GEB ASA ∴∆≅∆EF EG ∴=;(2)成立,证明如下:如图,过点E 分别作,EH BC EI CD ⊥⊥,垂足分别为,H I ,则四边形EHCI 是矩形90HEI ∴∠=︒90,90FEI HEF GEH HEF ∴∠+∠=︒∠+∠=︒FEI GEH ∴∠=∠由正方形对角线的性质得,AC 为BCD ∠的角平分线则EI EH =在FEI ∆和GEH ∆中,90FEI GEH EI EHFIE GHE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()FEI GEH ASA ∴∆≅∆EF EG ∴=;(3)如图,过点E 分别作,EM BC EN CD ⊥⊥,垂足分别为,M N同(2)可知,FEN GEM ∠=∠由长方形性质得:90,90,D ENC ABC EMC AD BC b ∠=∠=︒∠=∠=︒==//,//EN AD EM AB ∴,CEN CAD CEM CAB ∴∆~∆∆~∆,EN CE EM CE AD CA AB CA∴== EN EM AD AB ∴=,即EN AD b EM AB a== 在FEN ∆和GEM ∆中,90FEN GEM FNE GME ∠=∠⎧⎨∠=∠=︒⎩∴∆~∆FEN GEMEF EN b∴==.EG EM a【点睛】本题考查了正方形的性质、矩形的性质、三角形全等的判定定理与性质、相似三角形的判定定理与性质,较难的是题(3),通过作辅助线,构造两个相似三角形是解题关键.8.(2020·江苏初二期中)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长;(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:△EFG是等腰三角形;②求AF的长;(3)如图3,当折痕的另一端F在AD边上,B点的对应点E到AD的距离是4,且BG=5时,求AF的长.【答案】(1)AF=3;(2)①见解析;②AF=6;(3)AF=1【解析】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG,∴△EFG是等腰三角形;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH=2222108EF HE-=-=6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为4,∴EM=4,EN=8﹣4=4,在Rt△ENG中,EG=BG=5,∴GN222254EG EN-=-3,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EK KM EM EG EN GN==,即4 543 EK KM==,解得EK=203,KM=163,∴KH=EH﹣EK=8﹣203=43,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FH KHEM KM=,即431643FH=,解得FH=1,∴AF=FH=1.【点睛】此题考查折叠的性质,勾股定理,相似三角形的判定及性质定理,每个小问的问题都是求AF的长度,故解题中注意思路和方法的总结,(3)中的解题思路与(2)相类似,求出FH问题得解,故将问题转化是解题的一种特别重要的思路.9.(2019·河南初三期中)正方形ABCD与正方形DEFG按如图1放置,点A,D,G在同一条直线上,点E 在CD边上,AD=3,DE=2,连接AE,CG.(1)线段AE与CC的关系为______;(2)将正方形DEFG绕点D顺时针旋转一个锐角后,如图2,请问(1)中的结论是否仍然成立?请说明理由(3)在正方形DEFG绕点D顺时针旋转一周的过程中,当∠AEC=90°时,请直接写出AE的长.【答案】(1)AE=CG,AE⊥CG;(2)仍然成立;理由见解析;(3)AE的长为2+1或2﹣1.【解析】(1)线段AE与CG的关系为:AE=CG,AE⊥CG,理由如下:如图1,延长AE交CG于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADE=∠CDG=90°,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠AED=90°,∠AED=∠CEH,∴∠GCD+∠CEH=90°,∴∠CHE=90°,即AE⊥CG,故答案为:AE=CG,AE⊥CG;(2)结论仍然成立,理由如下:如图2,设AE与CG交于点H,∵四边形ABCD和四边形DGFE是正方形,∴AD=CD,ED=GD,∠ADC=∠EDG=90°,∴∠ADC+∠CDE=∠EDG+∠CDE,即∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∠EAD=∠GCD,∵∠EAD+∠APD=90°,∠APD=∠CPH,∴∠GCD+∠CPH=90°,∴∠CHP=90°,即AE⊥CG,∴AE=CG,AE⊥CG,∴①中的结论仍然成立;(3)如图3﹣1,当点E旋转到线段CG上时,过点D作DM⊥AE于点M,∵∠AEC=90°,∠DEG=45°,∴∠AED=45°,∴Rt△DME是等腰直角三角形,DE=1,∴ME=MD=2在Rt⊈△AMD中,ME=1,AD=3,∴AM,∴AE =AM+ME =22+1; 如图3﹣2,当点E 旋转到线段CG 的延长线上时,过点D 作DN ⊥CE 于点N ,则∠END =90°,∵∠DEN =45°,∴∠EDN =45°,∴Rt △DNE 是等腰直角三角形,∴NE =ND =22DE =1, 在Rt △CND 中,ND =1,CD =3,∴CN =22CD ND -=2231-=22,∴CE =NE+CN =22+1,∵AC =2AD =32,∴在Rt △AEC 中,AE =22AC CE -=22(32)(221)-+=22﹣1,综上所述,AE 的长为22+1或22﹣1.【点睛】本题考查全等三角形的判定(SAS )与性质,正方形的性质,旋转的性质以及勾股定理,解题关键是在第(3)问中能够根据题意分情况讨论并画出图形,才能保证解答的完整性.10.(2019·云南初三)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,(1)求证:△CBE ≌△CPE ;(2)求证:四边形AECF 为平行四边形;(3)若矩形ABCD 的边AB =6,BC =4,求△CPF 的面积.【答案】(1)见解析;(2)见解析;(3)4225【解析】 (1)解:由折叠可知,EP =EB ,CP =CB ,∵EC =EC ,∴△ECP ≌△ECB (SSS ).(2)证明:由折叠得到BE =PE ,EC ⊥PB ,∵E 为AB 的中点,∴AE =EB =PE ,∴AP ⊥BP ,∴AF ∥EC ,∵AE ∥FC ,∴四边形AECF 为平行四边形;(3)过P 作PM ⊥DC ,交DC 于点M ,在Rt △EBC 中,EB =3,BC =4, 根据勾股定理得:2222345EC EB BC =+=+=1122EBC S EB BQ EC BQ =⋅=⋅V Q ,341255EB BC BQ EC ⋅⨯∴===, 由折叠得:BP =2BQ =245, 在Rt △ABP 中,AB =6,BP =245, 根据勾股定理得: 22222418655AP AB BP ⎛⎫=-=-= ⎪⎝⎭, ∵四边形AECF 为平行四边形,∴AF =EC =5,FC =AE =3,∴PF =5﹣185=75, ∵PM ∥AD ,∴△FPM ∽△FADPF PM AF AD ∴=,即7554PM = 解得:PM =2825, 则S △PFC =12FC•PM =12×3×2825=4225.【点睛】本题考查的是利用折叠性质来证明三角形全等和平行四边形四边形,还考查了利用勾股定理、面积公式来求三角形的边长,利用相似三角形的性质对应边成比例来求出三角形的高,进而求出三角形的面积.本题第(3)中求也可利用△APB ∽△EBC ,对应边成比例AP BA BE EC=,求AP ,这样比较简便. 11.(2019·江西初三期中)在正方形ABCD 中,点P 是CD 上一动点,连结PA ,分别过点B 、•D•作BE ⊥PA 、DF ⊥PA ,垂足为E 、F ,如图①.(1)请探索BE 、DF 、EF 这三条线段长度具有怎样的数量关系,若点P 在DC 的延长线上(如图②),那么这三条线段的长度之间又有怎样的数量关系?若点P 在CD 的延长线上呢(如图③)?请分别直接写出结论.(2)请在(1)中的三个结论中选择一个加以证明.【答案】(1)图①中,BE=DF+EF ;图②中,BE=DF-EF ;图③中,BE=EF-DF ;(2)见解析【解析】解:(1)在正方形ABCD 中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵BE ⊥PA ,DF ⊥PA ,∴∠AEB=∠DFA=90°,∠ABE+∠BAE=90°,∴∠ABE=∠DAF ,在△ABE 和△DAF 中,90ABE DAF AEB DFA AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△DAF(AAS),∴AE=DF ,AF=BE ,如图①,∵AF=AE+EF ,∴BE=DF+EF ,如图②,∵AE=AF+EF ,∴BE = DF -EF ,如图③,∵EF=AE+AF ,∴BE = EF -DF(2)证明:如图题①,∵ABCD 是正方形,∴AB=AD ,∵BE ⊥PA ,DF ⊥PA ,∴∠AEB=∠AFD=90°,∠ABE+∠BAE=90°.∵∠DAF+∠BAE=90°,∴∠ABE=∠DAF ,∴Rt △ABE ≌Rt △DAF ,∴BE=AF ,AE=DF ,而AF=AE+EF ,∴BE=DF+EF ;【点睛】本题主要考查了正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题的关键.12.(2020·河北初三期末)如图,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 的延长线上,且满足90MAN ∠=︒,连接MN 、AC ,MN 与边AD 交于点E .(1)求证:AM AN =;(2)如果2CAD NAD ∠=∠,求证:2AN AE AC =⋅.【答案】(1)见解析;(2)见解析【解析】解:证明(1)∵四边形ABCD 是正方形,∴AB =AD ,∠CAD =∠ACB =45°,∠BAD =∠CDA =∠B =90°,∴∠BAM +∠MAD =90°,∠ADN =90°∵∠MAN =90°,∴∠MAD +∠DAN =90°,∴∠BAM =∠DAN ,且AD=AB,∠ABC=∠ADN=90°∴△ABM≌△ADN(ASA)∴AM=AN,(2)∵AM=AN,∠MAN=90°,∴∠MNA=45°,∵∠CAD=2∠NAD=45°,∴∠NAD=22.5°∴∠CAM=∠MAN﹣∠CAD﹣∠NAD=22.5°∴∠CAM=∠NAD,∠ACB=∠MNA=45°,∴△AMC∽△AEN∴ANAC=AEAM,且AN=AM,∴AN2=AE•AC【点睛】本题主要考查正方形的性质,全等三角形和相似三角形的判定及性质,掌握正方形的性质,全等三角形和相似三角形的判定及性质是解题的关键.。

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳

关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。

解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。

1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。

解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。

解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。

要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。

2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。

化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。

3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。

4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。

①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。

二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。

解答时必须计算准备,才不至于影响下一步的解答。

专题23 平行四边形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)

专题23 平行四边形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)

专题23 平行四边形【考查题型】【知识要点】知识点一平行四边形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”。

平行四边形的性质:1)对边平行且相等;2)对角相等、邻角互补;3)对角线互相平分;4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。

平行四边形的判定定理:1)边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形.2)角:④两组对角分别相等的四边形是平行四边形;⑤任意两组邻角分别互补的四边形是平行四边形.3)边与角:⑥一组对边平行,一组对角相等的四边形是平行四边形;4)对角线:⑦对角线互相平分的四边形是平行四边形.平行四边形的面积公式:面积=底×高平行线的性质:1)平行线间的距离都相等;2)两条平行线间的任何平行线段都相等;3)等底等高的平行四边形面积相等。

考查题型一添加一个条件成为平行四边形典例1.(2022·四川达州·统考中考真题)如图,在中,点D,E分别是,边的中点,点F在的延长线上.添加一个条件,使得四边形为平行四边形,则这个条件可以是()A.B.C.D.变式1-1.(2021·黑龙江牡丹江·统考中考真题)如图,在四边形ABCD中,,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为___________ (写一个即可).变式1-2.(2020·黑龙江牡丹江·中考真题)如图,在四边形中,连接,.请你添加一个条件______________,使.(填一种情况即可)变式1-3.(2021·湖南岳阳·统考中考真题)如图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.考查题型二平行四边形的证明典例2.(2022·辽宁鞍山·统考中考真题)如图,在四边形中,与交于点,,,垂足分别为点,,且,.求证:四边形是平行四边形.变式2-1.(2022·广西河池·统考中考真题)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.变式2-2.(2022·北京·统考中考真题)如图,在中,交于点,点在上,.(1)求证:四边形是平行四边形;(2)若求证:四边形是菱形.变式2-3.(2022·广西贺州·统考中考真题)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分,,求四边形AFCE的面积.变式2-4.(2022·江西·统考中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A,D,H,G四点在同一直线上,测得.(结果保留小数点后一位)(1)求证:四边形为平行四边形;(2)求雕塑的高(即点G到的距离).(参考数据:)变式2-5.(2021·湖北鄂州·统考中考真题)如图,在中,点、分别在边、上,且.(1)探究四边形的形状,并说明理由;(2)连接,分别交、于点、,连接交于点.若,,求的长.变式2-6.(2021·山东聊城·统考中考真题)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.考查题型三利用平行线的性质求解典例3.(2022·广东·统考中考真题)如图,在中,一定正确的是()A.B.C.D.变式3-1.(2022·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是()A.96B.C.192D.变式3-2.(2022·四川乐山·统考中考真题)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为()A.4B.3C.D.2变式3-3.(2022·湖南湘潭·统考中考真题)在中(如图),连接,已知,,则()A.B.C.D.变式3-4.(2022·内蒙古通辽·统考中考真题)如图,点是内一点,与轴平行,与轴平行,,,,若反比例函数的图像经过,两点,则的值是()A.B.C.D.变式3-5.(2022·黑龙江·统考中考真题)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD 的顶点B在反比例函数的图象上,顶点A在反比例函数的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.D.变式3-6.(2022·四川宜宾·统考中考真题)如图,在中,,是上的点,∥交于点,∥交于点,那么四边形的周长是()A.5B.10C.15D.20变式3-7.(2021·天津·统考中考真题)如图,的顶点A,B,C的坐标分别是,则顶点D的坐标是()A.B.C.D.变式3-8.(2021·贵州黔东南·统考中考真题)如图,抛物线与轴只有一个公共点A(1,0),与轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线,则图中两个阴影部分的面积和为()A.1B.2C.3D.4变式3-9.(2021·湖北荆门·统考中考真题)如图,将一副三角板在平行四边形ABCD中作如下摆放,设,那么()A.B.C.D.变式3-10.(2022·安徽·统考中考真题)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.变式3-11.(2022·江苏连云港·统考中考真题)如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.变式3-12.(2022·贵州毕节·统考中考真题)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.变式3-13.(2022·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是______.变式3-14.(2022·辽宁·统考中考真题)如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB 的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为_______.考查题型四利用平行线的性质证明典例4.(2022·广西桂林·统考中考真题)如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:ABE≌CDF.变式4-1.(2022·广西梧州·统考中考真题)如图,在中,E,G,H,F分别是上的点,且.求证:.变式4-2.(2022·湖南永州·统考中考真题)如图,是平行四边形的对角线,平分,交于点.(1)请用尺规作的角平分线,交于点(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形为平行四边形,请将下面的证明过程补充完整.证明:∵四边形是平行四边形,∴∵______(两直线平行,内错角相等)又∵平分,平分,∴,∴∴______(______)(填推理的依据)又∵四边形是平行四边形∴∴四边形为平行四边形(______)(填推理的依据).变式4-3.(2022·内蒙古·中考真题)如图,在平行四边形中,点O是的中点,连接并延长交的延长线于点E,连接,.(1)求证:四边形是平行四边形;(2)若,判断四边形的形状,并说明理由.变式4-4.(2021·四川广元·统考中考真题)如图,在平行四边形中,E为边的中点,连接,若的延长线和的延长线相交于点F.(1)求证:;(2)连接和相交于点为G,若的面积为2,求平行四边形的面积.考查题型五利用平行线的性质与判定求解典例5.(2022·内蒙古赤峰·统考中考真题)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形周长不变B.C.四边形面积不变D.变式5-1.(2022·内蒙古包头·中考真题)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,与相交于点E,连接,则与的周长比为()A.1:4B.4:1C.1:2D.2:1变式5-2.(2021·黑龙江·统考中考真题)如图,平行四边形的对角线、相交于点E,点O为的中点,连接并延长,交的延长线于点D,交于点G,连接、,若平行四边形的面积为48,则的面积为()A.5.5B.5C.4D.3变式5-3.(2021·江西·中考真题)如图,将沿对角线翻折,点落在点处,交于点,若,,,,则的周长为______.变式5-4.(2022·四川内江·统考中考真题)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC 上的动点,EF∥BC,则AF+CE的最小值是_____.变式5-5.(2021·山西·统考中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A 的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.知识点二 三角形中位线三角形中位线概念:连接三角形两边中点的线段叫做三角形中位线。

2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)

2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)

专题04特殊平行四边形中全等相似与最值问题通用的解题思路:一、四边形与全等相似1.三角形与全等之六大全等模型:(1)一线三等角模型锐角一线三等角(2)手拉手模型(3)半角模型(4)倍长中线模型模型(6)雨伞等模型(5)平行线中等模型2.三角形与相似之四大相似模型:(1)A字模型(3)手拉手模型(2)8字模型(4)一线三等角模型B 二、四边形线段最值问题囹 1 C B D 02B (1)将军饮马模型两定一动模型一定两动模型两线段相减的最大值模型(三点共线)• B(2)费马点模型:将边以A 为顶点逆时针旋转60。

,得到AQE,连接P0则^APQ 为等边三角形,PA=PQ O1. (2023-r 东深圳•中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE,①若= 过C 作CFLBE 交BE 于点、F ,求证:AABE^AFCB ;②若S 矩形倔8 = 2。

时,则BECF=(2)如图,在菱形ABCD 中,cosA = |,过。

作CE1AB 交A8的延长线于点E,过E 作EF _LAD 交AD 于点、F ,若S 菱形*d =24时,求EF BC 的值.(3)如图,在平行四边形ABCD 中,匕4 = 60。

,AB = 6, AD=5,点E 在CD 上,且CE = 2,点F 为BC 上一点,连接时,过E 作EGLEF 交平行四边形ABCD 的边于点G,若EF ・EG = 70时,请直接写出AG 的长.D,E E a C C A B AB备用图2.(2022广东广州•中考真题)如图,在菱形ABCQ中,0BAD=120°,AB=6,连接8Q.⑴求BQ的长;⑵点E为线段BQ上一动点(不与点B,。

重合),点E在边AQ上,且BE二也DF,①当CE±AB时,求四边形的面积;②当四边形的面积取得最小值时,CE+右CT的值是否也最小?如果是,求CE+也CF的最小值;如果不是,请说明理由.题型一特殊平行四边形中全等相似计算1.(2024-P东汕头•一模)(1)如图1,在矩形ABCD中,E为AD边上一点,连接8E,①若BE=BC,过。

2020年中考数学压轴题专题之抛物线上的特殊平行四边形问题探究

2020年中考数学压轴题专题之抛物线上的特殊平行四边形问题探究

抛物线上的特殊平行四边形问题探究专题导入导图:给出两点确定平行四边形关系如下图:导例如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图2思路点拨1.求抛物线的解析式,设交点式比较简便.2.把△MAB分割为共底MD的两个三角形,高的和为定值O A.3.当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q 的上下位置关系,分两种情况列方程.答案:(1) 因为抛物线与x轴交于A(-4,0)、C(2,0)两点,设y=a(x+4)(x-2).代入点B(0,-4),求得12a =.所以抛物线的解析式为211(4)(2)422y x x x x =+-=+-. (2)如图2,直线AB 的解析式为y =-x -4.过点M 作x 轴的垂线交AB 于D ,那么2211(4)(4)222MD m m m m m =---+-=--.所以2142MDA MDB S S S MD OA m m ∆∆=+=⋅=--2(2)4m =-++.因此当2m =-时,S 取得最大值,最大值为4.(3) 如果以点P 、Q 、B 、O 为顶点的四边形是平行四边形,那么PQ //OB ,PQ =OB =4. 设点Q 的坐标为(,)x x -,点P 的坐标为21(,4)2x x x +-. ①当点P 在点Q 上方时,21(4)()42x x x +---=.解得225x =-±.此时点Q 的坐标为(225,225)-+-(如图3),或(225,225)--+(如图4). ②当点Q 在点P 上方时,21()(4)42x x x --+-=.解得4x =-或0x =(与点O 重合,舍去).此时点Q 的坐标为(-4,4) (如图5).图3 图4 图5典例类型一:已知“两点”判断平行四边形存在性问题例1、如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A (3,0)、B (0,﹣3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t . (1)分别求出直线AB 和这条抛物线的解析式.(2)若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.(3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【分析】:(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM 的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=32时,PM最长为=94,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.类型二:菱形的存在性问题例2 如图2所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c 经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,点M是线段OA上的一个动点,过点M作垂直于x轴的直线与直线AC和抛物线分别交于点P,N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)把已知点坐标代入解析式;(2)取点C关于抛物线的对称轴直线l的对称点C′,由两点之间线段最短,最小值可得;(3)①由已知,注意相似三角形的分类讨论.②设出M坐标,求点P坐标.注意菱形是由等腰三角形以底边所在直线为对称轴对称得到的.本题即为研究△CPN为等腰三角形的情况.类型三:正方形的存在性问题例3如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P 是抛物线上一动点(不与点A 、B 重合),①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D ,求的最大值;②如图3,若点P 在x 轴的上方,连接PC ,以PC 为边作正方形CPEF ,随着点P 的运动,正方形的大小、位置也随之改变.当顶点E 或F 恰好落在y 轴上,直接写出对应的点P 的坐标.【分析】(1)利用直线解析式求出点A 、B 的坐标,再利用待定系数法求二次函数解析式解答; (2)作PF ∥BO 交AB 于点F ,证△PFD ∽△OBD ,得比例线段,则PF 取最大值时,求得的最大值;(3)(i )点F 在y 轴上时,P 在第一象限或第二象限,如图2,3,过点P 作PH ⊥x 轴于H ,根据正方形的性质可证明△CPH ≌△FCO ,根据全等三角形对应边相等可得PH =CO =2,然后利用二次函数解析式求解即可;(ii )点E 在y 轴上时,过点PK ⊥x 轴于K ,作PS ⊥y 轴于S ,同理可证得△EPS ≌△CPK ,可得PS =PK ,则P 点的横纵坐标互为相反数,可求出P 点坐标;点E 在y 轴上时,过点PM ⊥x 轴于M ,作PN ⊥y 轴于N ,同理可证得△PEN ≌△PCM ,可得PN =PM ,则P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题. 专题突破1、如图,抛物线2y x bx c =-++与直线122y x =+交于,C D 两点,其中点C 在y 轴上,点D 的坐标为7(3,)2。

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023年中考数学 几何专题:特殊的平行四边形(含答案)

2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。

中考数学解题技巧如何利用平行四边形解决平面几何中的角度和对称问题

中考数学解题技巧如何利用平行四边形解决平面几何中的角度和对称问题

中考数学解题技巧如何利用平行四边形解决平面几何中的角度和对称问题解决平面几何中的角度和对称问题,平行四边形作为一种重要的几何图形,具有许多独特的性质和特点,能够帮助我们简化解题过程并得到准确的答案。

在中考数学考试中,掌握利用平行四边形解题的技巧和方法,对于提高解题效率和正确率具有关键作用。

本文将介绍一些常见的数学解题技巧和应用,以帮助同学们更好地应对中考数学考试中的相关问题。

第一部分:平行四边形的性质概述在解决角度和对称问题时,首先需要了解平行四边形的性质。

平行四边形是指具有两对平行边的四边形,它的特点包括:1. 对边相等:平行四边形的对边两两相等,即每对相对的边长相等。

2. 对角相等:平行四边形的对角两两相等,即相对的两个角度大小相等。

3. 同位角和内错角互补:平行四边形的同位角和内错角互补,即同位角之和为180度,内错角之和也为180度。

第二部分:利用平行四边形解决角度问题的技巧接下来,我将介绍利用平行四边形解决角度问题的一些常见技巧。

1. 定理运用:利用平行四边形的性质,可以运用各类定理解决相关问题。

例如,当两条直线互相平行时,通过找到平行四边形来辅助解题。

可以利用平行四边形的同位角性质,将角度问题转化为已知角度之和问题或等式求解问题。

2. 角度追踪:通过观察图形中的角度关系,并追踪其变化,可以发现角度之间的规律,从而解决问题。

在平行四边形中,可以利用对角相等的性质,通过追踪角度变化来确定其他角度的大小。

3. 利用角度差:当我们需要求解平行四边形内某个角度的度数时,可以利用角度差的性质。

通过已知的角度之差和平行四边形的特殊性质,可以得出目标角度的度数。

第三部分:利用平行四边形解决对称问题的技巧除了解决角度问题,平行四边形还可以帮助我们解决对称问题。

下面是一些常用的技巧:1. 对称分析:通过观察图形的对称性质,可以快速找到对称点或对称轴,从而简化解题过程。

在平行四边形中,可以利用对角相等和对边相等的性质,通过对称分析来推断其他的性质或解答相关问题。

中考数学专题复习辅导讲义 特殊平行四边形

中考数学专题复习辅导讲义 特殊平行四边形

中考数学专题复习辅导讲义特殊平行四边形年级:辅导科目:数学课时数:3课题特殊平行四边形教学目的教学内容一、【中考要求】掌握矩形、菱形、正方形的概念和性质,了解平行四边形、矩形、菱形、正方形、梯形之间的关系,掌握矩形、菱形、正方形的性质,探索并掌握四边形是矩形、菱形、正方形的条件。

二、【三年中考】1.(台州)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a解析:在菱形ABCD中,AC⊥BD,又OE平分AB,∴AB=2OE=2a,∴菱形ABCD的周长为8a.答案:C2.(杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°解析:过F作FN∥AB,交PE于点N,则FN⊥EP且FN平分EP,∴FE=FP,∴∠FEP=∠FPE,∴∠FPC=∠FEB=55°.答案:D3.(舟山)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6解析:设另一边长为a,由面积法可得:(m+3)2=m2+3·a,∴a=2m+3.答案:A4.(温州)如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于________.解析:菱形ABCD中,AB=AD,又∠A=60°,∴△ABD是等边三角形,∴AB=BD=8,∴菱形ABCD的周长是32.答案:325.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是________;(只需填写序号)(2)证明.解:(解法一)(1)选__①__;(2)证明:∵ABCD是正方形,∴AB=CD,∠A=∠C=Rt∠.又∵AE=CF,∴△AEB≌△CFD.∴BE=DF.(解法二)(1)选__②__;(2)证明:∵ABCD是正方形,∴AD∥BC.又∵BE∥DF,∴四边形EBFD是平行四边形.∴BE=DF.(解法三)(1)选__③__;(2)证明:∵ABCD是平行四边形,∴AB=CD,∠A=∠C=Rt∠.又∵∠1=∠2,∴△AEB≌△CFD.∴BE=DF.6.(湖州)如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF.(2)请连结BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.证明:(1)∵CF∥BE,∴∠EBD=∠FCD.又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDF.(2)四边形BECF是平行四边形.由△BDE≌△CDF,得ED=FD.∵BD=CD,∴四边形BECF是平行四边形.三、【考点知识梳理】(一)矩形的定义、性质和判定1.定义:有一个角是直角的平行四边形是矩形.2.性质:(1)矩形的四个角都是直角;(2)矩形的对角线互相平分且相等;(3)矩形既是轴对称图形,又是中心对称图形,它有两个对称轴;它的对称中心是对角线的交点.3.判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.(二)菱形的定义、性质和判定1.定义:有一组邻边相等的平行四边形是菱形.2.性质:(1)菱形的四条边都相等,对角线互相互相垂直,并且每条对角线平分一组对角;(2)菱形既是轴对称图形又是中心对称图形.3.判定:(1)有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.(三)正方形的定义、性质和判定1.定义:有一个角是直角的菱形是正方形或有一组邻边相等的矩形是正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.3.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.温馨提示:1.矩形、菱形和正方形具有平行四边形的所有性质;2.平行四边形及特殊平行四边形的有关知识点较多,要想做到准确而不混淆就要从“边、角、对角线、对称性”这四个方面来研究它们的性质和判定,多用数形结合法,掌握它们的区别及联系,把握它们的特征是关键。

中考数学:特殊四边形的计算与证明问题真题+模拟(原卷版北京专用)

中考数学:特殊四边形的计算与证明问题真题+模拟(原卷版北京专用)

中考数学特殊四边形的计算与证明问题【方法归纳】握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2021·北京·中考真题)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC 上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.【例2】(2022·北京·中考真题)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【真题再现】1.(2014·北京·中考真题)如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF 平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.2.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.3.(2017·北京·中考真题)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.4.(2017·北京·中考真题)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(____________+____________).易知,S△ADC=S△ABC,_____________=______________,______________=_____________.可得S矩形NFGD= S矩形EBMF.BC,5.(2013·北京·中考真题)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=12连结DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.6.(2015·北京·中考真题)在▱ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.7.(2020·北京·中考真题)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.8.(2016·北京·中考真题)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.【模拟精练】一、解答题1.(2022·北京房山·二模)已知:如图,在四边形ABCD中,AB∥DC,AC⊥BD,垂足为M,过点A作AE⊥AC,交CD的延长线于点E.(1)求证:四边形ABDE是平行四边形;(2)若AC=8,sin∠ABD=4,求BD的长.52.(2022·北京西城·二模)如图,菱形ABCD的对角线AC,BD交于点O,点E,F分别在DA,BC的延长线上,且BE⊥ED,CF=AE.(1)求证:四边形EBFD是矩形;(2)若AB=5,cos∠OBC=4,求BF的长.53.(2022·北京朝阳·二模)如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60∘,求AP的长.4.(2022·北京东城·二模)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=√10,tan∠DCB=3,求菱形AEBD的边长.5.(2022·北京平谷·二模)如图,在□ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF,交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=3,AC=10,BC=12,连接GF,求GF的长.56.(2022·北京北京·二模)如图,在等边△ABC中,D是BC的中点,过点A作AE∥BC,且AE=DC,连接CE.(1)求证:四边形ADCE是矩形;(2)连接BE交AD于点F,连接CF.若AB=4,求CF的长.7.(2022·北京丰台·二模)如图,在△ABC中,∠BAC=90∘,AD⊥BC,垂足为D,AE∥BC,CE∥DA.(1)求证:四边形AECD是矩形;(2)若AB=5,cosB=3,求AE的长.58.(2022·北京密云·二模)如图,在平行四边形ABCD中,AC平分∠BAD,点E为AD边中点,过点E作AC的垂线交AB于点M,交CB延长线于点F.(1)求证:平行四边形ABCD是菱形;(2)若FB=2,sinF=3,求AC的长.59.(2022·北京市十一学校模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,tan∠CED=3,求EF和AD的长.410.(2022·北京昌平·二模)如图,在矩形ABCD中,对角线AC,BD交于点O,分别过点C,D作BD,AC的平行线交于点E,连接OE交AD于点F.(1)求证:四边形OCED是菱形;(2)若AC=8,∠DOC=60°,求菱形OCED的面积.11.(2022·北京海淀·二模)如图,在Rt△ABC中,∠A =90°,点D,E,F分别为AB,AC,BC的中点,连接DF,EF.(1)求证:四边形AEFD是矩形;(2)连接BE,若AB = 2,tan C =1,求BE的长.212.(2022·北京东城·一模)如图,在正方形ABCD中,E为对角线AC上一点(AE>CE),连接BE,DE.(1)求证:BE=DE;(2)过点E作EF⊥AC交BC于点F,延长BC至点G,使得CG=BF,连接DG.①依题意补全图形;②用等式表示BE与DG的数量关系,并证明.13.(2022·北京东城·一模)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,tan∠ABD=2,求BE的长.314.(2022·北京市十一学校二模)如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得AF=DE,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=6,CF=8,DF=10,求EF的长.15.(2022·北京石景山·一模)如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE并延长到点F,使得EF=DE,连接CD,CF,BF.(1)求证:四边形BFCD是菱形;(2)若cos A=5,DE=5,求菱形BFCD的面积.1316.(2022·北京大兴·一模)如图,在平面四边形ABCD中,点E,F分别是AB,CD上的点,CF=BE.(1)求证:四边形AEFD是平行四边形;(2)若∠A=60°,AD=2,AB=4,求BD的长.17.(2022·北京丰台·一模)如图,在四边形ABCD中,∠DCB=90°,AD∥BC,点E在BC 上,AB∥DE,AE平分∠BAD.(1)求证:四边形ABED为菱形;(2)连接BD,交AE于点O.若AE=6,sin∠DBE=3,求CD的长.518.(2022·北京市师达中学模拟预测)如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE =2,求EG的长.19.(2022·北京四中模拟预测)如图,在四边形ABCD中,AD=CD,BD⊥AC于点O,点E是DB延长线上一点,OE=OD,BF⊥AE于点F.(1)求证:四边形AECD是菱形;(2)若AB平分∠EAC,OB=3,BE=5,求EF和AD的长.20.(2021·北京丰台·一模)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.21.(2022·北京市燕山教研中心一模)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求sin∠CDE的值.22.(2022·北京平谷·一模)如图,△ABC中,∠ACB=90°,点D为AB边中点,过D点作AB的垂线交BC于点E,在直线DE上截取DF,使DF=ED,连接AE、AF、BF.(1)求证:四边形AEBF是菱形;(2)若cos∠EBF=3,BF=5,连接CD,求CD的长.523.(2022·北京市第一六一中学分校一模)在矩形ABCD中,AC,BD相交于点O,过点C 作CE∥BD交AD的延长线于点E.(1)求证:∠ACD=∠ECD;(2)连接OE,若AB=2,tan∠ACD=2,求OE的长.24.(2022·北京房山·一模)如图,在平行四边形ABCD中,过点B作BE⊥CD交CD的延长线于点E,过点C作CF∥EB交AB的延长线于点F.(1)求证:四边形BFCE是矩形;(2)连接AC,若AB=BE=2,tan∠FBC=1,求AC的长225.(2022·北京朝阳·一模)如图,在矩形ABCD中,AC,BD相交于点O,AE//BD,BE//AC.(1)求证:四边形AEBO是菱形;(2)若AB=OB=2,求四边形AEBO的面积.26.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).27.(2022·北京市三帆中学模拟预测)已知:△ABC中,AB=AC,AD⊥BC于点D,过点BC,连结DE.A作AE,且AE=12(1)求证:四边形ABDE是平行四边形;(2)作FG⊥AB于点G,AG=4,cos∠GAF=4,求FG和FD的长.528.(2022·北京西城·一模)如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4√5,求BD和AE的长.29.(2022·北京顺义·一模)如图,在四边形ABCD中,AD∥BC,AC⊥BD,垂足为O,过点D作BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=4,AD=2,cos∠ACB=4,求BC的长.530.(2022·北京通州·一模)如图.在△ABC中,AB=BC,BD平分∠ABC交AC于点D.点E为AB的中点,连接DE,过点E作EF∥BD交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.。

中考数学《特殊平行四边形》专题复习课件(共32张PPT)

中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边

对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等

人教版八年级数学下册-解题技巧专题:特殊平行四边形中的解题方法

人教版八年级数学下册-解题技巧专题:特殊平行四边形中的解题方法

解题技巧专题:特殊平行四边形中的解题方法◆类型一特殊四边形中求最值、定值问题一、利用对称性求最值【方法10】1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________.第1题图第2题图2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.二、利用面积法求定值3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________.【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和(1)(2017·眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________.变式题(1)图变式题(2)图(2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE 上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________.◆类型二正方形中利用旋转性解题4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.6.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP.求证:BP+CP=2OP.参考答案与解析1. 245解析:如图,过点Q 作QE ⊥AC 交AB 于点E ,则PQ =PE .∴DP +PQ =DP +PE .当点D ,P ,E 三点共线的时候DP +PQ =DP +PE =DE 最小,且DE 即为所求.当DE ⊥AB 时,DE 最小.∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4,OB =12BD =3,∴AB =5.∵S菱形ABCD =12AC ·BD =AB ·DE ,∴12×8×6=5·DE ,∴DE =245.∴DP +PQ 的最小值为245.2.6 解析:如图,设BE 与AC 交于点P ,连接BD .∵点B 与D 关于AC 对称,∴PD =PB ,∴PD +PE =PB +PE =BE ,即P 为AC 与BE 的交点时,PD +PE 最小,为BE 的长度.∵正方形ABCD 的边长为6,∴AB =6.又∵△ABE 是等边三角形,∴BE =AB =6.故所求最小值为6.故答案为6.3. 245解析:∵四边形ABCD 为矩形,∴∠ABC =90°.∵AB =6,BC =8,∴AC =10,∴OB =OC =12AC =5.如图,连接OP ,∵S △OBP +S △OCP =S △OBC ,∴OB ·PF 2+OC ·PE 2=S △OBC ,∴5·PF 2+5·PE 2=S △OBC .∵S △OBC =14S 矩形ABCD =14AB ·BC =14×6×8=12,∴5·PF 2+5·PE 2=12,∴PE +PF =245.【变式题】(1)52解析:∵菱形ABCD 的周长为40,面积为25,∴AB =AD =10,S △ABD =252.连接AP ,则S △ABD =S △ABP +S △ADP ,∴12×10(PE +PF )=252,∴PE +PF =52.(2)22解析:连接BP,过点E作EH⊥BC于H.∵S△BPE+S△BPC=S△BEC,∴BE·PM2+BC·PN2=BC·EH2.又∵BE=BC,∴PM2+PN2=EH2,即PM+PN=EH.∵△BEH为等腰直角三角形,且BE=BC=1,∴EH=22,∴PM+PN=EH=22.4.325.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH =∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合,∴AH=AF,∠BAH =∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF=S△AEH =S△ABE+S△ABH=S△ABE+S△ADF.6.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。

中考数学复习指导:平行四边形存在性问题的解题模型

中考数学复习指导:平行四边形存在性问题的解题模型

平行四边形存在性问题的解题模型平行四边形存在性问题是近年来各地中考的热点,其图形复杂,不确定因素较多,解题有一定的难度.因此对此类问题建立解题模型,则可以大大降低学生思维难度. 模型原理 对角线互相平分的四边形是平行四边形.模型工具 中点坐标公式:若点A (x 1,y 1)、B (x 2,y 2),则线段AB 的中点为C (122x x +,122y y +) 一、模型探究点A 、B 、C 是坐标平面内不在同一直线上的三点.(1)画出以A 、B 、C 三点为顶点的平行四边形;(2)若A 、B 、C 三点的坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3),写出平行四边形第四个顶点D 的坐标.解 (1)过点A 、B 、C 分别作BC 、AC 、AB 的平行线,则以A 、B 、C 三点为顶点的平行四边形有三个,如图1.(2)在以BC 为对角线的□CABD 1中,设BC 与AD 1的交点为E ,则有BE =CE ,AE =AD 1.因为B (x 2,y 2),C(x 3,y 3),由中点坐标公式,可得E (232x x +,232y y +) 设D1(x D ,y D ),则由中点坐标公式,可得AD 1中点E 为模型结论1.以不在同一直线上的三点为顶点的平行四边形有三个.由已知的三点坐标,按对角线分类,利用中点坐标公式,可直接写出第四个顶点的坐标,姑且称此法为“中点坐标法”.2.已知点A、B、C是坐标平面内不在同一直线上的三点,求点D,使得以A,B,C,D为顶点的四边形为平行四边形.结论①若AB为平行四边形对角线,则D=A+B-C;②若AC为平行四边形对角线,则D=A+C-B;③若BC为平行四边形对角线,则D=B+C-A.说明“D=A+B-C”是指D点的横坐标=A点的横坐标+B点的横坐标-C点的横坐标;D点的纵坐标=A点的纵坐标+B点的纵坐标-C点的纵坐标.二、模型运用1.三个定点,一个动点,探究平行四边形的存在性例1 如图2,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P、A、C、N为顶点的四边形为平行四边形?若存在,求出点P的坐标.解(1)抛物线的函数表达式为y=x2-2x-3;(2)易得A(-1,0)、C(0,-3)、N(-3,0).下面探讨以A、C、N三点为顶点的平行四边形的第四个顶点坐标.如图3,由平移的性质直接写出第四个顶点的坐标:以CN为对角线,第四个顶点坐标为P1(-2,-3);以AC为对角线,第四个顶点坐标为P2(2,-3);以AN为对角线,第四个顶点坐标为P3(-4,3).将其分别代入抛物线y=x2-2x-3中检验,其中只有P2(2,-3)在抛物线上.点评本题已知三个定点坐标的具体数值,可以根据坐标平移的性质,直接写出第四个顶点的坐标.值得注意的是,若没有约定由三点构成的三条线段中哪条为边或对角线,则三种情况都必须考虑.例2 已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为舱直线y=12x-a与y轴相交于C点,与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(_______),N(_______);(2)如图4,在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?解(1)M(1,a-1),N(43a,-13a);(2)易得A(0,a)、C(0,-a)、N(43a,-13a).下面探讨以A、C、N三点为顶点的平行四边形的第四个顶点的坐标,如图5.若以CN为对角线,第四个顶点为P1(43a,-73a).代入解析式得a=-38,即P1(-12,78);若以AC为对角线,第四个顶点为P2(-43a,13a).代入解析式得a=-158,即P2(52,-58);若以AN为对角线,第四个顶点为P3(43a,53a).代入解析式得a=158>0.不合题意,无解,∴所以在抛物线上存在点P1(-12,78)和P2(52,-58),使得以P,A,C,N为顶点的四边形是平行四边形.点评本题已知三个定点坐标,虽不是具体数值(含字母a),但依然可以根据模型直接写出第四个顶点的坐标.看上去此法冗长,三种情况必须逐一探究,但思路简单,解题严谨.2.两个定点、两个动点,探究平行四边形的存在性例3 如图6,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y 轴的正半轴上,OA =4,OC =3.若抛物线的顶点在边BC 上,且抛物线经过O 、A 两点,直线AC 交抛物线于点D ,(1)求抛物线的解析式;(2)求点D 的坐标;(3)若点M 在抛物线上,点N 在x 轴上,是否存在以A 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.解 (1)抛物线的解析式为 2334y x x =-+. (2)点D 的坐标为(1,-94). (3)存在.假设N 点坐标为(n ,0),又因为A(4,0),D(1,94). ①若AN 为对角线,则点彤的坐标为(n +3,-94), 代入抛物线解析式,得n =-17所以N 点坐标为(-17,0),或(-17,0);②若AD 为对角线,则点M 的坐标为(5-n ,94) 代入抛物线解析式,得n 1=2,n 2=4(舍去),所以N 点坐标为(2,0);③若DN为对角线,则点M的坐标为(n-3,94)代入抛物线解析式,得n1=6,n2=4(舍去),所以N点坐标为(6,0),综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3-1,0),N4(-1,0).点评对于两个定点、两个动点的问题,我们的思路是,先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,根据中点坐标模型,用该未知数表示另一个动点的坐标;最后再根据动点应满足的条件,求出榴应点的坐标.三、中点坐标模型的思考中点坐标模型是巧妙利用平行四边形对角线互相平分这一原理,结合中点坐标公式,归纳总结出的一种确定平行四边形顶点坐标的方法,该方法的最大优点是避免了复杂的画图,使得分类讨论变得简单,不会有遗漏.中点坐标模型实际就是要用代数的方法研究几何问题,加强数形之间的联系,突出数形结合的思想.这就启发我们在日常的教学活动中,要加强对新课程的研究,渗透新课程的理念,按照新课程的要求及时渗透数形结合的思想、方程思想,引导学生从不同的角度思考问题,这样才‘能从教材的例、习题中获得解决问题的新方法、新思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题技巧专题:特殊平行四边形中的解题方法
◆类型一特殊四边形中求最值、定值问题
一、利用对称性求最值【方法10】
1.(2017·青山区期中)如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为________.
第1题图第2题图
2.(2017·安顺中考)如图,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P
,使PD+PE的和最小,则这个最小值为________.
二、利用面积法求定值
3.如图,在矩形ABCD中,点P是线段BC上一动点,且PE⊥AC,PF⊥BD,AB=6,BC=8,则PE+PF的值为________.
【变式题】矩形两条垂线段之和→菱形两条垂线段之和→正方形两条垂线段之和
(1)(2017·眉山期末)如图,菱形ABCD的周长为40,面积为25,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于________.
变式题(1)图变式题(2)图
(2)如图,正方形ABCD的边长为1,E为对角线BD上一点且BE=BC,点P为线段CE 上一动点,且PM⊥BE于M,PN⊥BC于N,则PM+PN的值为________.
◆类型二正方形中利用旋转性解题
4.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是__________.
5.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.
6.如图,在正方形ABCD中,对角线AC,BD交于点O,P为正方形ABCD外一点,且BP⊥CP,连接OP.
求证:BP+CP=2OP.
参考答案与解析
1.
24
5解析:如图,过点Q作QE⊥AC交AB于点E,则PQ=PE.∴DP+PQ=DP +PE.当点D,P,E三点共线的时候DP+PQ=DP+PE=DE最小,且DE即为所求.当DE⊥AB时,DE最小.∵四边形ABCD是菱形,∴AC⊥BD,OA=
1
2AC=4,OB=
1
2BD=3,∴AB=5.∵S菱形ABCD=
1
2AC·BD=AB·DE,∴
1
2×8×6=5·DE,∴DE=
24
5.∴DP+PQ的最小值为
24
5.
2.6解析:如图,设BE与AC交于点P,连接BD.∵点B与D关于AC对称,∴PD =PB,∴PD+PE=PB+PE=BE,即P为AC与BE的交点时,PD+PE最小,为BE的长度.∵正方形ABCD的边长为6,∴AB=6.又∵△ABE是等边三角形,∴BE=AB=6.故所求最小值为6.故答案为6.
3.
24
5解析:∵四边形ABCD为矩形,∴∠ABC=90°.∵AB=6,BC=8,∴AC=10,∴OB=OC=
1
2AC=5.如图,连接OP,∵S△OBP+S△OCP=S△OBC,∴
OB·PF
2+
OC·PE
2=S△OBC,∴
5·PF
2+
5·PE
2=S△OBC.∵S△OBC=
1
4S矩形ABCD=
1
4AB·BC=
1
4×6×8=12,∴
5·PF
2+
5·PE
2=12,∴PE+PF=
24
5.
【变式题】(1)
5
2解析:∵菱形ABCD的周长为40,面积为25,∴AB=AD=10,S△ABD
=252.连接AP ,则S △ABD =S △ABP +S △ADP ,∴12×10(PE +PF )=252,∴PE +PF =52
. (2)22 解析:连接BP ,过点E 作EH ⊥BC 于H .∵S △BPE +S △BPC =S △BEC ,∴BE ·PM 2
+BC ·PN 2=BC ·EH 2.又∵BE =BC ,∴PM 2+PN 2=EH 2
,即PM +PN =EH .∵△BEH 为等腰直角三角形,且BE =BC =1,∴EH =22,∴PM +PN =EH =22
. 4.3 2
5.证明:延长CB 到点H ,使得HB =DF ,连接AH .∵四边形ABCD 是正方形,∴∠ABH =∠D =90°,AB =AD .∴△ADF 绕点A 顺时针旋转90°后能和△ABH 重合,∴AH =AF ,∠BAH =∠DAF .∵∠HAE =∠HAB +∠BAE =∠DAF +∠BAE =90°-∠EAF =90°-45°=45°,∴∠HAE =∠EAF =45°.又∵AE =AE ,∴△AEF 与△AEH 关于直线AE 对称,∴S △AEF =S △AEH =S △ABE +S △ABH =S △ABE +S △ADF .
6.证明:∵四边形ABCD 是正方形,∴OB =OC ,∠BOC =90°.将△OCP 顺时针旋转90°至△OBE (如图所示),∴OE =OP ,BE =CP ,∠OBE =∠OCP ,∠BOE =∠COP .∵BP ⊥CP ,∴∠BPC =90°.∵∠BOC +∠OBP +∠BPC +∠OCP =360°,∴∠OBP +∠OCP =180°,∴∠OBP +∠OBE =180°,∴E ,B ,P 在同一直线上.∵∠POC +∠POB =∠BOC =90°,∠BOE =∠COP ,∴∠BOE +∠POB =90°,即∠EOP =90°.在Rt △EOP 中,由勾股定理得PE =OE 2+OP 2=OP 2+OP 2=2OP .∵PE =BE +BP ,BE =CP ,∴BP +CP =2OP .。

相关文档
最新文档