九年级数学上册专题提高培优一元二次方程:根的判别式、根与系数的关系
中考数学复习《一元二次方程根的判别式、根与系数的关系》
专题 1.3 一元二次方程根的判别式、根与系数的关系(3个考点八大题型)【题型1 由根的判别式判断方程根的情况】【题型2 由方程方程根的情况求字母的取值范围】【题型3 由根的判别式证明方程求根的必然情况】【题型4 由根与系数的关系求代数式(直接)】【题型5 由根与系数的关系求代数式(代换)】【题型6 由根与系数的关系求代数式(降次)】【题型7 构造一元二次方程求代数式的值】【题型8 已知方程根的情况判断另一个根】【题型1 由根的判别式判断方程根的情况】1.(2023春•南岗区校级期中)一元二次方程x2﹣2x﹣3=0根的情况是()A.有两个相等的实数根B.无实数根C.有一个实数根D.有两个不等的实数根2.(2023•平顶山二模)定义运算:a※b=a2b+ab﹣1,例如:2※3=22×3+2×3﹣1=17,则方程x※1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根3.(2023•柘城县二模)一元二次方程x2+2x﹣5=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根4.(2023•桂林二模)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.只有一个实数根C.有两个相等的实数根D.有两个不等的实数根5.(2023•东城区一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情况是()A.无实根B.有实根C.有两个不相等实根D.有两个相等实根6.(2023•新郑市模拟)一元二次方程2x2﹣mx﹣1=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定7.(2023•三门峡一模)一元二次方程(x﹣1)2=x+3的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根8.(2023春•瑞安市期中)关于x的一元二次方程x2+kx+k﹣1=0的根的情况,下列说法中正确的是()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【题型2 由方程方程根的情况求字母的取值范围】9.(2023•洛阳二模)已知关于x的一元二次方程x2+4x+k=0有两个实数根,则k的值为()A.k=4B.k=﹣4C.k≤4D.k<4 10.(2023•济源一模)若关于x的一元二次方程x2+4x+m+5=0有实数根,则m 的取值范围是()A.m≤1 B.m≤﹣1 C.m<﹣1D.m≥﹣1且m≠0 11.(2023•东莞市校级一模)已知方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值()A.k>﹣1B.k>1C.k>1且k≠0D.k>﹣1且k≠0 12.(2023春•洞头区期中)关于x的一元二次方程x2﹣6x+c=0有两个相等的实数根,则c的值是()A.﹣36B.﹣9C.9D.36 13.(2023•阿克苏市一模)若关于x的一元二次方程(k﹣2)x2+2x+3=0有两个实数根,则k的取值范围()A.B.C.k<且k≠2D.且k≠2 14.(2023•贵阳模拟)若关于x的一元二次方程x2﹣4x﹣k=0没有实数根,则k的值可以是()A.﹣5B.﹣4C.﹣3D.2【题型3 由根的判别式证明方程求根的必然情况】15.(2023春•蜀山区校级期中)已知关于x的一元二次方程x2+(2k﹣1)x﹣k ﹣1=0.(1)求证:无论k取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1、x2,且x1+x2﹣4x1x2=2,求k的值.16.(2023春•庐阳区校级期中)已知关于x的一元二次方程x2﹣(m+2)x+m ﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.17.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.18.(2023•金溪县模拟)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若方程的两根分别是等腰△ABC两边AB、AC的长,其中BC=10,求k 值.19.(2023•长安区校级一模)已知关于x的一元二次方程x2﹣2mx+m2﹣4=0.(1)求证:方程有两个不相等的实数根;(2)若该方程的一个根为x=0,且m为正数,求m的值.20.(2022秋•东城区期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m的值,并求出此时方程的解.【题型4 由根与系数的关系求代数式(直接)】21.(2023•红桥区模拟)若一元二次方程x2+4x﹣12=0的两个根分别为x1,x2,则x1+x2的值等于()A.﹣4B.4C.﹣12D.12 22.(2023•五华县校级开学)设一元二次方程x2﹣12x+3=0的两个实根为x1和x2,则x1x2=()A.﹣2B.2C.﹣3D.3 23.(2023•六盘水二模)已知x1、x2是一元二次方程x2+4x+3=0的两根,则x1+x2+2x1x2的值为()A.﹣2B.﹣1C.1D.2 24.(2023•长丰县模拟)若m,n是方程x2﹣2x﹣3=0的两个实数根,则m+n ﹣mn的值是()A.5B.﹣5C.1D.﹣1【题型5 由根与系数的关系求代数式(代换)】25.(2023•南山区三模)若关于x的一元二次方程x2﹣4x+3=0有两个不相等的实数根x1、x2,则的值是()A.B.C.D.26.(2023•潍城区二模)若x1、x2是关于x的一元二次方程x2﹣3x﹣5=0的两根,则的值为()A.19B.9C.1D.﹣1 27.(2023•汉阳区校级模拟)若实数m,n满足条件:m2﹣2m﹣1=0,n2﹣2n ﹣1=0,则的值是()A.2B.﹣4C.﹣6D.2或﹣6 28.(2023•兴庆区校级二模)已知m、n是一元二次方程x2+2x﹣5=0的两个根,则m2+mn+2m的值为()A.﹣10B.10C.3D.0 29.(2022秋•南安市期末)已知一元二次方程x2﹣3x+1=0的两根分别是x1、x2,则x2+x1的值是()A.﹣2B.2C.﹣3D.3 30.(2023•临沭县一模)已知m,n是一元二次方程x2+2x﹣2023=0的两个实数根,则代数式m2+4m+2n的值等于()A.2023B.2022C.2020D.2019【题型6 由根与系数的关系求代数式(降次)】31.(2023•河东区一模)已知x1,x2是方程x2﹣x﹣2023=0的两个实数根,则代数式的值是()A.4047B.4045C.2023D.1 32.(2022秋•嘉陵区校级期末)如果m,n是一元二次方程x2+x=3的两个根,那么多项式m3+4n﹣mn+2022的值等于()A.2018B.2012C.﹣2012D.﹣2018【题型7 构造一元二次方程求代数式的值】33.(2023•安丘市模拟)已知方程x2+2023x﹣5=0的两根分别是α和β,则代数式α2+β+2024α的值为()A.0B.﹣2018C.﹣2023D.﹣2024 34.(2023•肥城市一模)已知m、n是一元二次方程x2﹣x﹣2024=0的两个实数根,则代数式m2﹣2m﹣n的值为()A.2020B.2021C.2022D.2023 35.(2023•鼓楼区校级模拟)已知a、b是关于x的方程x2+3x﹣2010=0的两根,则a2﹣a﹣4b的值是()A.2020B.2021C.2022D.2023 36.(2023•东港区校级一模)已知m、n是一元二次方程x2﹣x﹣2022=0的两个实数根,则代数式m2﹣2m﹣n的值等于()A.2020B.2021C.2022D.2023 37.(2023春•江岸区校级月考)设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣6040 38.(2022秋•莲池区校级期末)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4B.5C.6D.12【题型8 已知方程根的情况判断另一个根】39.(2023•阿克苏市二模)若x=2是方程x2﹣x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2 40.(2020秋•甘井子区期末)关于x的方程x2﹣4x+m=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.﹣5D.5 41.(2020春•宣城期末)关于x的一元二次方程2x2+kx﹣4=0的一个根x1=﹣2,则方程的另一个根x2和k的值为()A.x2=1,k=2B.x2=2,k=2C.x2=1,k=﹣1D.x2=2,k=﹣1 42.(2023•诸暨市模拟)关于x的一元二次方程x2+mx﹣2=0有一个解为x=1,则该方程的另一个解为()A.0B.﹣1C.2D.﹣2 43.(2023•洛阳一模)已知关于x的一元二次方程x2+kx﹣2=0有一个根是﹣2,则另一个根是()A.1B.﹣1C.2D.﹣2。
九年级数学一元二次方程的根的判别式及根与系数的关系人教版知识精讲
初三数学一元二次方程的根的判别式及根与系数的关系人教版【同步教育信息】一. 本周教学内容:一元二次方程的根的判别式及根与系数的关系知识点:1. 一元二次方程≠的根的判别式是ax bx c a b ac 22004++==-()∆2. 1()>方程有两个不相等的实数根∆0⇔ ()方程有两个相等的实数根2∆=0⇔ ()<方程没有实数根3∆0⇔ ()≥方程有两个实数根4∆0⇔3. 如果一元二次方程(≠)的两根是,ax bx c a x x 21200++=那么,·x x b a x x ca1212+=-=推论():如果方程的两个根是,,那么,·102121212x px q x x x x p x x q ++=+=-= 推论()以两数,为根的一元二次方程(二次项系数为)是2112x xx x x x x x 212120-++=()·典型例题:例1. 已知:、为方程的两个根,m n x x 2350--= 求:的值。
m n n 2249+-分析:此题除了用方程的根与系数关系,还要用到方程根的关系。
解:∵、为方程的两个根∴·m n x x m n m n 235035--=+==-⎧⎨⎩∴,m m n n 22350350--=--= ∴,m m n n 223535=+=+∴×m n n m n nm n m n 22493543593325325332534+-=+++-=++=++=+=()() 例2. 已知、是关于的方程的两个实数根,m n x x p x 2210+-+=() 求代数式()的值m mp n np 2211++++()。
解法(1)∵m 、n 是方程的两个实数根 ∴∴m p m m pm m 22210210+-+=+-+=() ∴m mp m 212++=同理n np n 212++=∴·()()m mp n np m n mn2211224++++==∵∴原式mn ==14解法()∵,2mn m n p p =+=--=-122()∴()()m mp n np 2211++++=++++=++++=++=-+=()()()()()()m mp mn n np mn m m p n n n p m mn m n p p p 2222124··例3. 已知方程,不解方程,求作一个新方程,使它的两根比已知方程x x 2620-+=的两根大3。
根的判别式及根与系数的关系大题专练(重难点培优60题)-九年级数学上册尖子生培优必刷题【人教版】
【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题(人教版)专题21.12根的判别式及根与系数的关系大题专练(重难点培优60题)一.解答题(共60小题)1.(2023春•鼓楼区校级期末)关于x的一元二次方程x2﹣kx﹣k﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于0,求k的取值范围.2.(2023春•淮北期末)已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论k取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2023的值.3.(2023春•凤阳县期末)关于x的一元二次方程mx2+(2m+3)x+m+1=0有两个不等的实数根.(1)求m的取值范围;(2)当m取最小整数时,求x的值.4.(2023•西宁二模)已知关于x的一元二次方程x2﹣3x+2a﹣1=0有两个不相等的实数根.(1)求a的取值范围;(2)若a为正整数,求一元二次方程的解.5.(2023春•惠城区校级期末)已知关于x的一元二次方程x2﹣2mx+3=0.(1)当m=1时,判断方程根的情况;(2)当m=2时,求方程的根.6.(2022秋•方城县期末)已知:关于x的方程x2+2mx+m2﹣1=0.(1)请说明:方程总有两个不相等的实数根;(2)若方程有一个根为3,求m的值.7.(2023春•丰城市校级期末)已知关于x的一元二次方程(x﹣1)(x﹣2k)+k(k﹣1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x1,x2是一个矩形的一边长和对角线的长,且矩形的另一边长为5,试求k的值.8.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.9.(2023•梁山县二模)定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=a+c.则称该方程为“和谐方程”.(1)下列属于和谐方程的是;①x2+2x+1=0;②x2﹣2x+1=0;③x2+x=0.(2)求证:和谐方程总有实数根;(3)已知:一元二次方程ax2+bx+c=0(a≠0)为“和谐方程”,若该方程有两个相等的实数根,求a,c的数量关系.10.(2023春•海淀区校级期末)已知关于x的一元二次方程mx2+(2﹣3m)x+(2m﹣4)=0.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的正整数根时,求m的值.11.(2023春•鼓楼区校级期末)已知关于x的一元二次方程x2﹣ax+a﹣1=0.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a的取值范围.12.(2023春•安庆期末)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根.(1)求m的取值范围;(2)设p是方程的一个实数根,且满足(p2﹣2p+3)(m+4)=7,求m的值.13.(2023•保康县模拟)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.14.(2023春•延庆区期末)关于x的方程x2﹣4x+2(m+1)=0有两个实数根.(1)求m的取值范围;(2)当m为正整数时,求此时方程的根.15.(2023•北京二模)已知关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求此时方程的根.16.(2023春•瑶海区期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有实数根x1,x2.(1)求m的取值范围;(2)若满足x12+x22=2,求m的值.17.(2023春•南岗区期末)已知:方程(m﹣2)x|m|﹣x+n=0是关于x的一元二次方程.(1)求m的值;(2)若该方程无实数根,求n的取值范围.18.(2023•延庆区一模)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)如果方程有一个根为正数,求m的取值范围.19.(2023春•肇东市期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0,(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=﹣1,求m的值.20.(2023春•龙口市期中)已知关于x的一元二次方程mx2−(m+2)x+m4=0两个不相等的实数根x1,x2,若1x1+1x2=4m,求m的值.21.(2023•邗江区二模)已知关于x的一元二次方程x2﹣(m﹣1)x+m﹣2=0.(1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为3,求m的值.22.(2023春•如东县期末)已知关于x的一元二次方程x2+(2m+1)x+2m=0.(1)求证无论实数m取何值,此方程一定有两个实数根;(2)设此方程的两个实数根分别为x1x2,若x12+x22=13,求m的值.23.(2023春•环翠区期末)已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.24.(2023春•霍邱县期末)已知关于x的一元二次方程2x2+4x+m=0.(1)若x=1是方程的一个根,求m的值和方程的另一根.(2)若x1x2是方程的两个实数根,且满足x12+x22+5x1x2−x12x22=0,求m的值.25.(2023春•莒县期末)(1)解方程:(2x+1)(x﹣4)=5;(2)已知方程x2+(2k﹣1)x+k2+3=0的两实数根的平方和比两根之积大15,求k的值.26.(2023春•青阳县期末)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.27.(2023春•广饶县期中)关于x的一元二次方程x2+mx+m﹣2=0.(1)若﹣2是该方程的一个根,求该方程的另一个根;(2)求证:无论m取任何实数,此方程总有两个不相等的实数根.28.(2023春•贵池区期末)已知:关于x的方程x2+mx﹣8=0有一个根是﹣4,求另一个根及m的值.29.(2023春•大观区校级期末)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=x1x2+x2x1+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.30.(2023•湟中区校级开学)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x1+x2﹣2x1x2=0,求m的值.31.(2023•襄州区模拟)已知关于x的一元二次方程x2﹣3x+2﹣m2﹣m=0.(1)求证:无论m为何实数,方程总有两个实数根;(2)若方程x2﹣3x+2﹣m2﹣m=0,的两个实数根α、β满足α2+β2=9,求m的值.32.(2023•惠州一模)若关于x的一元二次方程(m﹣1)x2﹣2mx+m﹣2=0有两个实数根x1,x2.(1)试确定实数m的取值范围;(2)若(x1+2)(x2+2)﹣2x1x2=17,求m的值.33.(2023•鼓楼区校级模拟)已知关于m的方程x2﹣(2m+1)x+m2=0(m≠0)有两实数根x1,x2,请用m表示x12+x22的值并求出m的取值范围.34.(2023春•宁波期末)阅读材料,根据上述材料解决以下问题:材料1:若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1x2,则x1+x2=−bax1x2=c a材料2:已知实数m,n满足m2﹣m﹣1=0n2﹣n﹣1=0,且m≠n,则m,n是方程x2﹣x﹣1=0 的两个不相等的实数根.(1)材料理解:一元二次方程3x2﹣6x+1=0 两个根为x1x2,则x1+x2=,x1x2=.(2)应用探究:已知实数m,n满足9m2﹣9m﹣1=09n2﹣9n﹣1=0,且m≠n,求m2n+mn2的值.(3)思维拓展:已知实数s、t分别满足9s2+9s+1=0t2+9t+9=0,其中st≠1且st≠0.求3st+9s+3t的值.35.(2023春•合肥期末)已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x1,x2满足x12+x22−x1x2=18,求a的值.36.(2023春•长沙期末)已知关于x的一元二次方程x2﹣2kx+k2+k+1=0有两个实数根.(1)求k的取值范围;(2)若x1x2﹣x1﹣x2=3,求k的值.37.(2023春•莱芜区期末)已知:关于x的一元二次方程x2﹣mx﹣1=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是√2,求另一个根及m的值.38.(2023春•长沙期末)方程x2+2x+m﹣1=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x12+x22+3x1x2+10=0,求m的值.39.(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.40.(2023•沙市区模拟)已知关于x的一元二次方程x2+(2m+1)x+3m﹣1=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且(x1﹣1)(x2﹣1)=6,求m的值.41.(2023•襄阳模拟)已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+2x1x2=3,求m的值.42.(2023•蓬江区校级一模)关于x的一元二次方程x2﹣3x﹣k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)若x12+x22=3,求k的值.43.(2023春•淮北月考)关于x的一元二次方程mx2+(2m+1)x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若已知此方程的一个根为﹣2,求m的值以及方程的另一根.44.(2023春•岳麓区校级期末)已知关于x的一元二次方程x2﹣3x+m﹣3=0.(1)若此方程有两个不相等的实数根x1,x2,求m的取值范围;(2)若此方程的两根互为倒数,求x12+x22的值.45.(2023•襄阳模拟)已知关于x的一元二次方程x2﹣6x+2m﹣1=0有x1,x2两实数根.(1)求m的取值范围;(2)是否存在实数m,满足(x1﹣1)(x2﹣1)=−6m−7?若存在,求出实数m的值;若不存在,请说明理由.46.(2023春•房山区期末)已知关于x的一元二次方程x2+nx﹣6=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是1,求方程的另一个根.47.(2023春•顺义区期末)已知关于x的一元二次方程x2+bx﹣3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的一个根是1,求b的值及方程的另一个根.48.(2023春•思明区校级期末)已知关于x的一元二次方程x2﹣(m+5)x+5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.49.(2023春•虹口区期末)设x1,x2为关于x的方程x2﹣2px﹣p=0的两根,P为实数.(1)求证:2px1+x22+3p≥0.(2)当|x1﹣x2|≤|2p﹣3|时,求p的最大值.50.(2023春•蒙城县校级期中)关于x的一元二次方程为x2﹣2x﹣m(m+2)=0.(1)求证:无论m为何实数,方程总有实数根;(2)若方程的两根之积等于0,求m的值.51.(2023春•蚌山区月考)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0,若△ABC的两边AB,AC 的长是这个方程的两个实数根,第三边BC的长为5.(1)若k=3时,请判断△ABC的形状并说明理由;(2)若△ABC是等腰三角形,求k的值.52.(2023•海淀区二模)已知关于x的一元二次方程x2﹣2x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为﹣1,求m的值和方程的另一个根.53.(2022秋•自贡期末)已知关于x的方程x2+nx+2m=0.(1)求证:当n=m+3时,方程总有两个不相等实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.54.(2023春•建邺区校级期末)已知关于x 的一元二次方程x 2﹣(k +1)x +2k ﹣2=0.(1)求证:方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.55.(2023春•蓬莱区期中)已知关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0,(1)若方程有实数根,求a 的取值范围;(2)是否存在这样的实数a ,使方程的两根x 1,x 2满足x 1+x 2+x 1x 2=3,若存在,求出实数a 的值;若不存在,请说明理由.56.(2023•海淀区校级三模)已知关于x 的方程mx 2﹣(m +3)x +3=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.57.(2023•石景山区二模)已知关于x 的一元二次方程x 2﹣2mx +m 2﹣1=0(1)求证:该方程总有两个不相等的实数根;(2)若m >1,且该方程的一个根是另一个根的2倍,求m 的值.58.(2023•郓城县一模)已知关于x 的一元二次方程12x 2+(m ﹣3)x ﹣m +2=0. (1)求证:不论m 取何值,该方程都有两个不相等的实数根;(2)设方程的两个根分别为x 1,x 2,且x 1>x 2,若x 1﹣x 2=2√10,求m 的值.59.(2023春•绍兴期中)已知有关于x 的一元二次方程(k +1)x 2﹣(3k +1)x +2k =0.(1)求k 的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为﹣2,求k 的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k 的值.60.(2023春•肇源县月考)已知关于x 的一元二次方程x 2﹣3x +2a +1=0有两个不相等的实数根.(1)求实数a 的取值范围;(2)若a 为符合条件的最大整数,且一元二次方程x 2﹣3x +2a +1=0的两个根为x 1,x 2,求x 12x 2+x 1x 22的值.。
《一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)
2021-2022学年北师大版九年级数学上册《2.5一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)1.已知关于x的方程2mx2﹣(5m﹣1)x+3m﹣1=0.(1)求证:无论m为任意实数,方程总有实数根.(2)如果这个方程的根的判别式的值等于1,求m的值.2.关于x的一元二次方程x2﹣2x+3m﹣2=0有实数根.(1)求m的取值范围;(2)若m为正整数,求出此时方程的根.3.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,求m的取值范围.4.已知关于x的一元二次方程x2﹣3x+a﹣1=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数时,求此时方程的解.5.已知y1=x2﹣2x+3.y2=x+m.(1)若m=1,当x取何值时y1=y2?(2)若y1=2y2,当m为何范围时,存在两个不同的x值?6.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.7.已知关于x的一元二次方程x2+(2k﹣1)x+k2﹣3=0有实数根.(ⅰ)求实数k的取值范围;(ⅱ)当k=2时,方程的根为x1,x2,求代数式(x12+2x1﹣1)(x22+4x2+3)的值.8.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c,恰好是这个方程的两个实数根,求△ABC的周长.(3)若方程的两个实数根之差等于3,求k的值.9.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.10.关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足(x1﹣1)(x2﹣1)=6,求k的值.11.已知关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)设两个实数根是x1和x2,且x1+x2﹣2x1x2=2,则k的值为.12.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.关于x的一元二次方程x2﹣4x+k﹣3=0的两个实数根是x1、x2.(1)已知k=2,求x1+x2+x1x2.(2)若x1=3x2,试求k值.15.已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.16.已知m为实数,关于x的方程为mx2+(m﹣2)x﹣1=0.(1)求证:不论m为何实数,方程总有实数根.(2)若方程有两实根x1,x2,当x1x2﹣2x1﹣2x2=3时,求m的值.17.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0(1)若该方程有两个实数根,求k的最大整数值.(2)若该方程的两个实数根为x1,x2,是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.18.关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1、x2是方程的两根,且+=1,求m的值.19.若x1,x2与是方程x2+x﹣3=0的两个实数根,求x13﹣4x22+22的值.20.已知关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)若方程的两个根为x1,x2,且=0,求k的值.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.参考答案1.解:(1)①当m=0时,该方程是关于x的一元一次方程,符合题意;②关于x的一元二次方程2mx2﹣(5m﹣1)x+3m﹣1=0.∵△=(5m﹣1)2﹣8m(3m﹣1)=(m﹣1)2≥0,∴无论m为任何实数,方程总有实根.(2)由题意得,△=(m﹣1)2=1,解得m1=0,m2=2,而m≠0,∴m=2.2.解:(1)∵方程有实数根,∴(﹣2)2﹣4×1×(3m﹣2)≥0,∴m≤1;(2)∵m为正整数,∴m=1,∴方程为:x2﹣2x+1=0,∴x1=x2=1.3.解:∵关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16≥0,∴m≥2.4.解:(1)∵关于x的一元二次方程x2﹣3x+a﹣1=0有实数根,∴△=(﹣3)2﹣4(a﹣1)=﹣4a+13≥0,解得:a≤,即a的取值范围是a≤;(2)∵a的取值范围是a≤,∴整数a的最大值是3,把a=3代入方程x2﹣3x+a﹣1=0得:x2﹣3x+2=0,解得:x1=1,x2=2.5.解:(1)当m=1时,根据题意,得x2﹣2x+3=x+1,整理,得(x﹣1)(x﹣2)=0.所以x﹣1=0或x﹣2=0.解得x1=1,x2=2;(2)根据题意,得x2﹣2x+3=2x+2m,整理,得x2﹣4x+3﹣2m=0,所以△=(﹣4)2﹣4×1×(3﹣2m)>0.解得m>﹣.所以当m>﹣时,存在两个不同的x值.6.解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.7.解:(i)∵方程有实数根,∴△=(2k﹣1)2﹣4(k2﹣3)≥0,解得:k≤;(ii)当k=2时,方程化为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵x1,x2是方程的解,∴x12+3x1+1=0,x22+3x2+1=0,∴x12+3x1=﹣1,x22+3x2=﹣1,∴原式=(﹣1﹣x1﹣1)(﹣1+x2+3)=﹣(x1+2)(x2+2)=﹣[x1x2+2(x1+x2)+4]=﹣(1﹣6+4)=1.8.解:(1)△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取何值,(2k﹣3)2≥0,故这个方程总有两个实数根;(2)由求根公式得x=,∴x1=2k﹣1,x2=2.∵另两边长b、c,恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a,b为腰时,则a=b=4,即2k﹣1=4,计算得出k=,此时三角形周长为4+4+2=10;当b,c为腰时,b=c=2,此时b+c=a,构不成三角形,故此种情况不存在.综上所述,△ABC周长为10.(3)∵方程的两个实数根之差等于3,∴,解得:k=0或3.9.解:(1)△=(2m+4)2﹣4(m2+4m)=16,16>0,∴此方程总有两个不相等的实数根.(2)①﹣4x1x2=(x1+x2)2﹣6x1x2,∵x1+x2==2m+4,x1x2=m2+4m,∴(x1+x2)2﹣6x1x2=(2m+4)2﹣6(m2+4m)=﹣2m2﹣8m+16=﹣2(m+2)2+24,∴当m=﹣2时﹣4x1x2的最大值为24.②把x=6代入原方程可得m2﹣8m+12=0,解得m=2或m=6,当m=2时,原方程化简为x2﹣8x+12=0,解得x=2或x=6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m=6时,原方程化简为x2﹣16x+60,解得x=6或x=10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.10.解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=[2(k﹣1)]2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.∴k的取值范围为:k≤1.(2)由根与系数关系得:x1+x2=﹣2(k﹣1),x1x2=k2﹣1,所以(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=k2﹣1+2(k﹣1)+1=6.解得k=2(舍去)或k=﹣4.故k的值是﹣4.11.解:(1)∵一元二次方程x2+2x+k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣1)>0,解得k<2,即k的取值范围是k<2;(2)∵一元二次方程x2+2x+k﹣1=0的两个实数根是x1和x2,∴x1+x2=﹣2,x1x2=k﹣1,∵x1+x2﹣2x1x2=2,∴﹣2﹣2(k﹣1)=2,∴k=﹣1,故答案为:﹣1.12.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.13.解:(1)由题意得:△≥0且m﹣2≠0,∴(2m+1)2﹣4m(m﹣2)≥0解得m≥﹣且m≠2(2)由题意得有两种情况:①当x1=x2,则△=0,所以m=﹣,x1=x2=﹣×=.②当x1=﹣x2时,则x1+x2=0.,所以m=﹣,因为m≥﹣且m≠2,所以此时方程无解.综上所述,m=﹣,x1=x2=.14.解:(1)∵方程x2﹣4x+k﹣3=0的两个实数根是x1、x2,k=2,∴x1+x2=4,x1x2=k﹣3=﹣1,∴x1+x2+x1x2=4﹣1=3.(2)∵x1+x2=4,x1=3x2,∴x1=3,x2=1,∴k=x1x2+3=6.15.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.16.(1)证明:当m=0时,已经方程为﹣2x﹣1=0,有实数根;当m≠0时,已经方程是一元二次方程,△=(m﹣2)2﹣4m×(﹣1)=m2+4>0,该方程有两个不等实根;综上,不论m为何实数,方程总有实数根;(2)由根与系数的关系可得,,,∵x1x2﹣2x1﹣2x2=3,∴x1x2﹣2(x1+x2)=3,∴,解得m=﹣5,经检验,m=﹣5是原分式方程的解,即m的值是﹣5.17.解:(1)由题意得:此方程的根的判别式△=[﹣(2k+1)]2﹣4(k2+2k)≥0,整理得:﹣4k+1≥0,解得,则k的最大整数值是0;(2)存在,由根与系数的关系得:x1+x2=2k+1,x1x2=k2+2k,∵=,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得:k2﹣2k﹣15=0,解得k=﹣3或k=5,由(1)可知,,则k=﹣3.18.解:(1)根据题意,知(2m﹣3)2﹣4m2>0,解得m<;(2)由题意知x1+x2=﹣(2m﹣3)=3﹣2m,x1•x2=m2,由+=1,即=1可得=1,解得:m=1(舍去)或m=﹣3,所以m的值是﹣3.19.解:∵x1是方程x2+x﹣3=0的实数根,∴x12+x1﹣3=0,∴x12=﹣x1+3,x1=﹣x12+3,∴x13=﹣x12+3x1,∴x13﹣4x22+22=﹣x12+3x1﹣4x22+22=﹣4x12+9﹣4x22+22=﹣4(x1+x2)2+8x1•x2+31,∵x1、x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,∴原式=﹣4×(﹣1)2+8×(﹣3)+31=3.20.(1)证明:①当k=1时,该方程有一个实数根,符合题意.②当k≠1时,∵△=(2k)2﹣4(k﹣1)×2=4(k﹣1)2+4>0,∴当k≠1时,方程总有实数根.综上所述,无论k取任何值,方程总有实数根.(2)∵x1、x2是方程的两个根,∴x1+x2=,x1•x2=,∴=+x1x2=+=0.解得k=2或k=﹣1.经检验,k=2或k=﹣1都符合题意.所以k=2或k=﹣1.21.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.。
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练【含答案】
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .162、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣33、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数4、已知关于x 的一元二次方程x 2+mx +n=0的两个实数根分别为x 1=﹣2,x 2=4,则m +n 的值是( )A .﹣10B .10C .﹣6D .2 5、若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣36、已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣7x +12=0B .x 2+7x +12=0C .x 2+7x ﹣12=0D .x 2﹣7x ﹣12=07、若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( )A .4B .2C .1D .﹣28、若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( )A .12B .10C .4D .﹣4 9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于( ) A .﹣2 B .﹣3 C .2 D .310、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根; ②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个二、填空题11、若方程x 2﹣3x +2=0的两根是α、β,则α+αβ+β= .12、若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 15、已知x 1,x 2是关于x 的一元二次方程x 2+2x +k ﹣1=0的两个实数根,且x 12+x 22﹣x 1x 2=13,则k 的值为 .16、已知关于x 的一元二次方程x 2﹣4x +m ﹣1=0的实数根x 1,x 2,满足3x 1x 2﹣x 1﹣x 2>2,则m 的取值范围是 .17、已知α,β是关于x 的一元二次方程(m ﹣1)x 2﹣x +1=0两个实根,且满足(α+1)(β+1)=m +1,则m 的值为 .18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .16【分析】根据一元二次方程的根与系数的关系得到两根之和即可.解:∵x 1,x 2一元二次方程x 2+10x +16=0两个根,∴x 1+x 2=﹣10.故选:A .2、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣3【分析】根据根与系数的关系求解.解:x 1•x 2=﹣3. 故选D .3、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数【分析】利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断. x 1+x 2=23,x 1x 2=21,所以A 、B 选项错误,因为△=(﹣3)2﹣4×2×1=1,所以x1,x2都是有理数,则C选项正确,D选项错误.故选:C.4、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.5、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.6、已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0【分析】根据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进行判断即可.解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.7、若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣2A解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.8、若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12 B.10 C.4 D.﹣4A解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A .9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于() A .﹣2 B .﹣3 C .2 D .3B解:α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,∴α+β=2,αβ=m ,∵+===﹣,∴m =﹣3; 故选:B .10、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个【考点】根与系数的关系;根的判别式.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2n+n2﹣2m+2=m2﹣2m+1+n2﹣2n+1≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m﹣2n≤1,故③正确.故选:D.二、填空题11、若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.【分析】利用根与系数的关系可得出α+β=3,αβ=2,将其代入α+αβ+β中即可求出结论.∵方程x2﹣3x+2=0的两根是α、β,∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5.故5.12、若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .2-1c =根据韦达定理,124x x +=,因为12x =+22x =-所以(12221c x x =⋅==13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .1k =由根与系数的关系得()1221x x k +=+,2122x x k ⋅=+.且有()()224142840k k k ∆=+-+=->,即12k >. 所以()()12118x x ++=.从而2230k k +-=,解之得3k =-或1k =.又12k >,所以1k =.14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 3﹣11解:∵关于x的方程x2+(a﹣2)x+a+1=0的两实根为x1、x2,∴△=(a﹣2)2﹣4(a+1)≥0,即a(a﹣8)≥0,∴当a≥0时,a﹣8≥0,即a≥8;当a<0时,a﹣8<0,即a<8,所以a<0.∴a≥8或a<0,∴x1+x2=2﹣a,x1•x2=a+1,∵x12+x22=4,(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,∴(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,解得a=3±11.∵3<11<4,∴6<3+<7(不合题意舍去),3﹣<0;∴a=3﹣.故a=3﹣11.15、已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.—2解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22﹣x1x2=13=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故﹣2.16、已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.3<m≤5解:依题意得:,解得3<m≤5.故答案是:3<m≤5.17、已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为.—1解:根据题意可得α+β=﹣=﹣=,αβ==,∴(α+1)(β+1)=αβ+α+β+1=++1=m+1,即m2﹣m﹣2=0,解得m=﹣1或m=2,∵m﹣1≠0,∴m≠1,当m=2时,△=b2﹣4ac=﹣3<0,无实数根,故m≠2,当m=﹣1时,△=b2﹣4ac=9>0,有实数根,故m=﹣1.故答案是﹣1.18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .【分析】分两种情况讨论:当a =1时,x =1;当a ≠1时,△=4a 2≥0,x 1+x 2=a -12,再由已知,可得1﹣a =±1,1﹣a =±2,求出a 的值即可.当a =1时,2x ﹣2=0,解得x =1;当a ≠1时,(a ﹣1)x 2+2x ﹣a ﹣1=0,△=4a 2≥0,x 1+x 2=a -12,x 1•x 2=a a -+11=-112--a , ∵根都是整数,∴1﹣a =±1,1﹣a =±2,∴a =0或a =2或a =﹣1或a =3,故答案为0或1或﹣1或2或3.19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .1解:∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根,∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2,∴2k 2+1+3k +1+1=8k 2,整理,得:2k 2﹣k ﹣1=0,解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,∴△=(3k +1)2﹣4×1×(2k 2+1)>0,解得:k <﹣3﹣2或k >﹣3+2, ∴k =1.故1.20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 【分析】根据根与系数的关系即可求出答案.由题意可知:a +b =﹣1,ab =﹣1, a 2=1-a ,∴原式=3(1﹣a )﹣b +a -12=3﹣3a ﹣b+a -12=3﹣2a ﹣(a +b )+a-12 =3﹣2a +1+a -12=4﹣2a+a-12=4+a a a -+-12222 =4+aa a -+--122)1(2=4+4=8, 故8.三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.(1)a <2(2)a 的值为﹣1,0,1解:(1)∵关于x 的一元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2,∴△>0,即(﹣6)2﹣4(2a +5)>0,解得a <2;(2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5,∵x 1,x 2满足x 12+x 22﹣x 1x 2≤30,∴(x 1+x 2)2﹣3x 1x 2≤30,∴36﹣3(2a +5)≤30,∴a ≥﹣,∵a 为整数,∴a 的值为﹣1,0,1.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.-1有实数根,则△≥0,且22121216x x x x +=+,联立解得m 的值.依题意有:12212221212222(2)5164(2)4(5)0x x m x x m x x x x m m +=-+⎧⎪=-⎪⎨+=+⎪⎪∆=+--≥⎩由①②③解得:1m =-或15m =-,又由④可知m ≥94- ∴15m =-舍去,故1m =-23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.(1)m ≤2 (2)m=1解:(1)∵关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m +1)≥0, 解得:m ≤2.(2)∵方程x 2﹣6x +(4m +1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m +1,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=42,即32﹣16m =16,解得:m =1.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.52m > 设1x ,2x 是方程的两根,且11x >,21x <,即110x ->,210x -<,因此1212121212(1)(1)()10284164(28)0x x x x x x x x m x x m --=-++<⎧⎪=-+⎪⎨+=⎪⎪∆=+->⎩,解得52m >.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值. (1)k ≤49 ;(2)k=1 解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =,∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,∴x 1+x 2=,x 1x 2=.∵x 1+x 2+x 1x 2=4,∴+=4,解得:k =1, 经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值 当a b ≠时,111a b +=;当a b =时,当13a b ==-+1131a b +, 当13a b ==-1113a b+= 由题意知:,a b 为方程2220x x +-=的两个根,且0,0a b ≠≠,解方程2220x x +-=得:11x =-+21x =--⑴当a b ≠时,有2a b +=-,2ab =-,11212a b a b ab +-∴+===-;⑵当a b =时,方程的根为11x =-+21x =--当1a b ==-+1121a b a ∴+===+;当1a b ==--1121a b a ∴+==-。
《一元二次方程根的判别式、根与系数的关系》培优
一元二次方程根的判别式及根与系数的关系【一元二次方程根的判别式】对于一元二次方程()200ax bx c a ++=≠的求根公式x =242b b ac a -±-,我们称24b ac -叫根的判别式,通常用字母 “△” 表示,即△=ac b 42-。
(1) 当240b ac ->时,方程 根;(2) 当240b ac -=时,方程 根;(3) 当240b ac -<时,方程 根。
特别提醒:若一元二次方程02=++c bx ax 有实数根,则ac b 42- 0。
在使用根的判别式解决问题时,如果二次项系数中含有字母,别忘了要加上二次项系数不为零这个限制条件.练习:1、已知方程230x x k -+=有两个不相等的实数根,则k 。
2、 关于x 的一元二次方程2210kx x +-=两个不相等的实数根,则k 的取值范围是 。
3、在下列方程中,有实数根 的是( )(A )2310x x ++= (B )411x +=- (C )2230x x ++= (D )111x x x =-- 4、当m 满足何条件时,方程()01122=-+--m x m mx 有两个不相等实根?有两个相等实根?有实根?5、关于x 的方程()05222=+++-m x m mx 无实根,试解关于x 的方程()()02252=++--m x m x m 。
6、已知关于x 的一元二次方程()241210x m x m +++-=,求证:不论m 为任何实数,方程总有两个不相等的实数根。
【一元二次方程根与系数的关系】如果一元二次方程()200ax bx c a ++=≠存在实数根,由求根公式得x 1=a ac b b 242-+-,x 2=aac b b 242---,因此有两根之和=+21x x _________,两根之积=⋅21x x __________.这就是一元二次方程的根与系数的关系,又称为韦达定理。
一元二次方程(根与系数的关系)专项训练精选
九年级(上)数学 第二章 《一元二次方程》根系关系第1课时 根的判别式与根系关系【知识要点】1. 一元二次方程根的判别式:关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式为△= .(1)b 2-4ac >0⇔一元二次方程ax 2+bx+c=0(a ≠0)有两个 实数根,即x 1,2= .(2)b 2-4ac=0⇔一元二次方程有 相等的实数根,即x 1=x 2= .(3)b 2-4ac <0⇔一元二次方程ax 2+bx+c=0(a ≠0) 实数根. 2. 一元二次方程根与系数的关系若关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有两根分别为x 1,x 2那么x 1+x 2= ,x 1·x 2= . 3.易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:① 根的判别式b 2-4ac ≥0;② 二次项系数a ≠0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.【例题分析】例一.当k 为何值时,方程2610x x k -+-=,(1)两根相等;(2)有一根为0;(3)两根互为倒数.例二.若关于x 的一元二次方程x 2-2(2-k)x+k 2+12=0有实数根α、β. (1) 求实数k 的取值范围; (2)设t=kβα+,求t 的最小值.例三.关于x 的方程kx 2+(k+2)x+4k=0有两个不相等的实数根. (1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由【实践练习】1.已知α、β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A.3或1- B.3 C.1 D.3-或12.若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( ) A .m<l B .m>-1 C .m>l D .m<-13.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .20094.设x 1、x 2是方程3x 2+4x -5=0的两根,则=+2111x x ,.x 12+x 22= ,(x 1+1)(x 2+1)= ________,(x 1-x 2)2=_______,221212x x x x += 。
初三数学培优——判别式根与系数关系
一元二次方程根的判别式及根与系数的关系1,对于方程ax 2+bx +c =0(a ≠0),代数式b 2-4ac 叫做根的判别式,用“△=b 2-4ac ”表示.写出一个一元二次方程的根的判别式,首先要将一元二次方程化为一般形式,凡不是一般形式的一元二次方程,都理应通过去括号、移项、合并等步骤化为一般形式.任何一个一元二次方程 用配方法将其变形为,所以对于被开方数来说,只需研究为如下几种情况的方程的根。
① 当 时,方程有两个不相等的实数根。
即② 当 时,方程有两个相等的实数根,即 。
③ 当 时,方程没有实数根。
判别式的作用是能够由其值的情况确定一元二次方程根的情况,当判别式的值分别取正数、零和负数时,一元二次方程分别有两个不等的实数根、两个相等的实数根和没有实数根.必须指出的是: 不难得到 x 1+x 2=-a b , x 1·x 2=ac. 这就是一元二次方程的根与系数关系(韦达定理). 在学习和应用上述定理时要注意以下几点:1.一元二次方程根与系数的关系揭示了一元二次方程的实根与系数之间的内在联系,在使用时需先将一元二次方程化为一般形式ax 2+bx +c =0(a ≠0);2.使用韦达定理的前提是方程有实数根;3.韦达定理不但可求出方程两实根的和与积,而且可判断两实数根的符号(如两正根;两负根;一正根一负根等);4.要防止出现x 1+x 2=ab这样的错误. 典型例题例1 m 取什么值时,方程3x 2-2(3m -1)x +3m 2-1=0 (1)有两个不相等的实数根? (2)有两个相等的实数根?(3)没有实数根?例2已知方程x2-(3-a)x-(3a+b2)=0有两个相等的实数根,求实数a与b的值.例3当a、b为何值时,方程x2+(1+a)x+(3a2+4ab+4b2+2)=0有实数根?例4判别下列关于x的二次方程2(m+1)x2+4mx+(2m-1)=0的根的情况.例5当m为何值时,关于x的二次三项式x2+2(m-4)x+m2+6m+2是完全平方式?例6已知a、b、c是△ABC的三边,且方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根,试判断△ABC的形状.分析这是一道代数、几何知识的综合题,解题前理应明确:(1)从条件知,问题与判别式相关,又因原方程不是标准形式,所以必须先将方程 化为标准形式;(2)判断△ABC 的形状常从边,或角的方面去考虑,从题设条件可知,本题应从边的关系去判断.例7 已知一元二次方程ax 2+bx +c =0(a >0)中,b >0,c <0,则( ).(A)方程有两个正根 (B)方程有两个负根(C)方程的两根异号,且正根的绝对值较大 (D)方程的两根异号,且负根的绝对值较大例8 如果2+3是方程x 2-4x +c =0的一个根,不解方程,求方程的另一个根及c 的值.例9 设x 1、x 2是方程2x 2+3x -1=0的两根,不解方程,求112112+++x x x x 的值.这类题是常见题,解题的规律是通过恒等变形把原代数式化为用二次方程两根和与积表示的代数式.如: x 12+x 22=(x 1+x 2)2-2x 1x 2;21212111x x x x x x +=+; 212122121212221122)(x x x x x x x x x x x x x x -+=+=+; (x 1-x 2)2=(x 1+x 2)2-4x 1x 2;(x 1+m )(x 2+m )= x 1x 2+m ·(x 1+x 2)+m 2……等等.但不是任何一个代数式都能用两个根的和与积表示的,如x 13+x 22.例10 k 为何值时,方程x 2-(2k -1)x +k 2-1=0有两个实数根,且两根互为倒数.例11 已知a 、b 是方程8x 2+6mx +2m +1=0的两个实数根,且a 2+b 2=1,求m 的值.例12 已知a 2+a -1=0,b 2+b -1=0(a ≠b ). 求a 2b +ab 2的值.巩固练习一、选择题1.若关于x 的一元二次方程2x (mx -4)-x 2+6=0没有实数根,则m 的最小整数值是( )(A)-1 (B)2 (C)3 (D)4 2.已知方程x 2-p x +m =0(m ≠0)有两个相等的实数根,则方程x 2+p x -m =0的根的情况是 ( ) (A)有两个不相等的实数根 (B)有两个相等的实数根 (C)没有实数根 (D)不能确定有无实数根 3.在下面方程中: ①2x 2-mx -1=0;②21x 2-2mx +2m 2=0;③4x 2+(m -1)x -m =0. 无论m 取任何实数根都永远有两个实数根的方程的个数是 ( ) (A)0个 (B)1个 (C)2个 (D)3个 4.如果方程2x 2+kx -6=0一个根是-3,另一根是x ,则( )(A)x 1=1,k =4 (B)x 1=-1,k =8 (C)x 2=2,k =1 (D)x 2=-2,k =5 5.以53 和-35为根的一元二次方程是( )(A)15x 2+16x -1=0 (B) 15x 2-16x +15=0 (C)15x 2+16x -15=0 (D) 15x 2-16x -15=06.已知一元二次方程的两根之和是25,两根的倒数和是-35,这个一元二次方程是(A )x 2-25x -23=0 (B) x 2-25x -35=0 (C) x 2+25x +23=0 (D) x 2+25x -35=07.不解方程,判断43x 2+3x +1=0根的情况是( ) (A )有一正根一负根 (B )有两个正根 (C )有两个负根 (D )没有实数根 8.一元二次方程x 2-x +1=0的根的情况是( ) (A)两实数根的和等于两实数根的积 (B)两实数根的和与两实数根的积互为相反数 (C)有两个相等的实数根 (D)没有实数根9.若方程x 2-(k 2-7)x =1的两根之和是2,则实数k 的值是( ) (A )±5 (B)±6 (C) ±3 (D) ±2二、填空题1.不解方程,判断4x 2-43+3=0的根的情况是______________________.2.不解方程,判断y 2-(6+2 )y +2+3=0的根的情况是___________________.3.不解方程,判断3x 2-6x -2x +2=0的根的情况是.4.当m ______时,方程3x2-2(3m +1)x +3m 2+1=0没有实数根. 5.当m _____ 时,方程(m -1)x 2+2(m -7)x +2m +2=0有两个相等的实数根.6.若关于x 的一元二次方程2k x 2+(8k +1)x =-8k 有两个实数根,则k 的取值范围是_____7.已知一元二次方程x 2-3x +1=0的两根为x 1、x 2,则11x +21x = , x 12+ x 22= ,(x 1-5)·(x 2-5)= .8.以2+3、2-3为两根的一元二次方程是 . 9.已知关于x 的方程6x 2+2x +a =0的一根比另一根大2,则a = . 10.已知关于x 的方程4x 2-9x +3(k -1)=0,当k 时,方程有一根为零, 当k 时,方程的两实数根互为倒数.三、解答题1.m 为何值时,方程mx 2-3x +2=0没有实数根.2.试判别一元二次方程x 2+2x +m =0的根的情况.3.求证:对于任何实数m ,关于x 的二次方程x 2-(m +1)x +(m -1)=0总有两个不相等的实数根.4.已知a 、b 、c 是△ABC 的三边,且一元二次方程(c -b )x 2+2(b -a )x +(a -b )=0 有两个相等的实数根,试判断△ABC 的形状.5.已知方程2x 2+kx -2k +1=0的两实数根的平方和为429,求k 的值.6.已知直角三角形ABC 中,斜边上的中线长为23,两条直角边的长分别是方程 2x 2-2mx +m +3=0的两根,求m 的值和直角三角形ABC 的面积.。
专题06 一元二次方程根的判别式和根与系数的关系(强化-提高)解析版
专题06 一元二次方程根的判别式和根与系数的关系(强化-提高)一、单选题(共40分)1.(本题4分)(2021·湖南湘西土家族苗族自治州·九年级期末)下列一元二次方程中,有两个不相等实数根的是()A.2690-+=x xx x++=B.2230C.22x x-+=-=D.23420x x【答案】C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题x x意;D.2-+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题x x3420意.故选C.【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.2.(本题4分)(2021·全国九年级专题练习)直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个【答案】D【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】△直线y x a =+不经过第二象限,△0a ≤,△方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,△∆=2444b ac a -=-,△4-4a>0,△方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.3.(本题4分)(2021·全国九年级专题练习)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【分析】先计算判别式,再进行配方得到△=(k -1)2+4,然后根据非负数的性质得到△>0,再利用判别式的意义即可得到方程总有两个不相等的实数根.【详解】△=(k -3)2-4(1-k)=k 2-6k+9-4+4k=k 2-2k+5=(k -1)2+4,△(k -1)2+4>0,即△>0,△方程总有两个不相等的实数根.故选:A .【点睛】本题考查的是根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:△当△>0时,方程有两个不相等的实数根;△当△=0时,方程有两个相等的实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.4.(本题4分)(2021·江苏无锡市·九年级期末)下列方程中,有两个相等实数根的是( )A .212x x +=B .21=0x +C .223x x -=D .220x x -=【答案】A【分析】根据根的判别式逐一判断即可.【详解】 A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键. 5.(本题4分)(2021·福建福州市·九年级期末)若关于x 的方程2210mx x +-=有两个不相等的实数根,则m 的取值范围是( )A .1m <-B .1m >-且0m ≠C .1m >-D .1m ≥-且0m ≠【答案】B【分析】利用判别式大于零和二次项系数不为零求解即可.【详解】△方程2210mx x +-=有两个不相等的实数根,△m≠0,且△>0,△m≠0,且224m +>0,△1m >-且0m ≠,故选B .【点睛】本题考查了一元二次方程根的判别式,熟练运用判别式并保证二次项系数不能为零是解题的关键.6.(本题4分)(2021·湖北恩施土家族苗族自治州·九年级期末)关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x -1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a -5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.(本题4分)(2021·广东江门市·九年级二模)已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>34B.m≥34C.m>34且m≠2D.m≥34且m≠2【答案】C【解析】分析:本题是根的判别式的应用,因为关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,所以△=b2-4ac>0,从而可以列出关于m的不等式,求解即可,还要考虑二次项的系数不能为0.详解:△关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个不相等的实数根,△△=b2-4ac>0,即(2m+1)2-4×(m-2)2×1>0,解这个不等式得,m>34,又△二次项系数是(m-2)2,△m≠2,故M得取值范围是m>34且m≠2.故选C.点睛:1、一元二次方程根的情况与判别式△的关系:(1)△>0△方程有两个不相等的实数根;(2)△=0△方程有两个相等的实数根;(3)△<0△方程没有实数根.2、二次项的系数不为0是学生常常忘记考虑的,是易错点.8.(本题4分)(2021·全国九年级专题练习)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .2019 【答案】A【分析】根据题意可知b=3-b 2,a+b=-1,ab=-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,△23b b =-,1a b +=-,-3ab =,△222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.9.(本题4分)(2021·全国九年级专题练习)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( ) A .0或2B .-2或2C .-2D .2【答案】D【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-, 化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.10.(本题4分)(2021·全国九年级专题练习)若一元二次方程220x x --=的两根为1x ,2x ,则()()12111x x x ++-的值是( )A .4B .2C .1D .﹣2【答案】A【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得121x x =+,122x x =-,所以()()12111x x x ++-=12121x x x x ++-11(2)4=+--=.故选A .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.二、填空题(共20分)11.(本题5分)(2021·广东九年级专题练习)若关于x 的一元二次方程2124102x mx m --+=有两个相等的实数根,则2(2)2(1)m m m ---的值为__. 【答案】72【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=4m 2−2(1−4m )=4m 2+8m−2=0,△m 2+2m =12, △(m−2)2−2m (m−1)=−m 2−2m +4=−12+4=72, 故答案为72. 【点睛】本题考查根的判别式,解题的关键是正确理解根的判别式的作用,本题属于基础题型. 12.(本题5分)(2021·上海九年级专题练习)已知关于x 的方程230x x m +-=有两个相等的实数根,那么m 的值为______. 【答案】94-【分析】根据方程有两个相等的实数根得出△=0,求出m 的值即可.【详解】解:△关于x 的方程x 2+3x -m=0有两个相等的实数根,△△=0,即9+4m=0,解得m=94-.4【点睛】 本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.13.(本题5分)(2021·江西景德镇市·九年级期末)若x 1,x 2是一元二次方程23+1=0x x -的两个根,则2212x x +=_______【答案】7【分析】由根与系数的关系可得12123,1x x x x +=⋅=,然后把2212x x +变形为()212122x x x x +-的形式,再整体代入计算即可.【详解】解:△x 1,x 2是一元二次方程23+1=0x x -的两个根,△12123,1x x x x +=⋅=,△()222212121223217x x x x x x +=+-=-⨯=. 故答案为:7.【点睛】本题考查了一元二次方程的根与系数的关系,属于常考题型,正确变形、熟练掌握根与系数的关系是解题的关键.14.(本题5分)(2021·全国八年级)已知225225a a b b +=-+=-,,且a b ,则化简=_____.【分析】由2252,25a a b b +=-+=-,即22520,520a a b b ++=++=,且a b 可知,a b 可看做方程2520x x ++=的两不相等的实数根,继而知52a b ab +=-=,,且00a b <,<,将其代入到原式()22a b ab ab⎤+-⎣⎦===-可得答案.【详解】解:225225a a b b +=-+=-,,即22520520a a b b ++=++=,,且a b ≠, a b ∴、可看做方程2520x x ++=的两不相等的实数根,则5,2,a b ab +=-=0,0a b ∴<<则原式==()22a b ab ab⎤+-⎣⎦=-()2542-=-=【点睛】主要考查方程的解、韦达定理、二次根式的化简求值等知识点,根据,a b 满足的等式判断出,a b 可看做方程2520x x ++=的两不相等的实数根且5,2,0,0a b ab a b +=-=<<是解题的关键.三、解答题(共90分)15.(本题8分)(2021·全国)已知关于x 的方程()222360x m x m +-+-=. (1)求证:无论m 取什么实数,方程总有实数根;(2)如果方程的两个实数根1x 、2x 满足123x x =,求实数m 的值.【答案】(1)见解析;(2)0或-4.【分析】(1)证明一元二次方程根的判别式恒大于0,即可解答;(2)根据一元二次方程根与系数的关系x 1+x 2=4x 2=-2(2-m )=2m -4,以及x 1•x 2=3x 22=3-6m 即可求得m 的值.【详解】解:(1)证明:△关于x 的方程x 2+2(2-m )x+3-6m=0中,△=4(2-m )2-4(3-6m )=4(m+1)2≥0,△无论m 取什么实数,方程总有实数根.(2)如果方程的两个实数根x 1,x 2满足x 1=3x 2,则x 1+x 2=4x 2=-2(2-m )=2m -4△x 2=2m -1 △ △x 1•x 2=3x 22=3-6m ,△x 22=1-2m△,把△代入△得m (m+4)=0,即m=0,或m=-4.答:实数m的值是0或-4【点睛】解答此题的关键是熟知一元二次方程根的情况与判别式△的关系,及根与系数的关系:(1)△>0△方程有两个不相等的实数根;(2)△=0△方程有两个相等的实数根;(3)△<0△方程没有实数根.(4)若一元二次方程有实数根,则x1+x2=-ba,x1x2=ca.16.(本题8分)(2021·全国八年级)关于x的一元二次方程x2﹣2x﹣m+2=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)若方程两实数根x1,x2满足x12+2x2=m2,求m的值.【答案】(1)m>1;(2)m=2.【分析】(1)若方程有两个不相等的实数根,则根的判别式∆=b2-4ac>0,建立关于m的不等式,求出m的取值范围;(2)根据题意x12-2x1-m+2=0,即可得到x12=2x1+m-2,代入x12+2x2=m2,可得2x1+2x2+m ﹣2=m2,根据根与系数的关系得到x1+x2=2,代入2x1+2x2+m﹣2=m2,得到关于m的方程,解方程即可.【详解】解:(1)△关于x的一元二次方程x2﹣2x﹣m+2=0有两个不相等的实数根x1,x2,△∆=(﹣2)2﹣4(﹣m+2)=4m﹣4>0,△m>1;(2)△x1+x2=2,x12﹣2x1﹣m+2=0,x12=2x1+m﹣2,△x12+2x2=2x1+2x2+m﹣2=m2,即2×2+m﹣2=m2,解得:m=﹣1或m=2,△m>1,△m=2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.也考查了一元二次方程根与系数的关系.17.(本题8分)(2021·重庆九年级期末)关于x的一元二次方程2220x mx m m+++=有两个不相等的实数根.(1)求m的取值范围;(2)设出1x、2x是方程的两根,且221212x x+=,求m的值.【答案】(1)m<0;(2)m的值是−2【分析】(1)由一元二次方程的根的情况与判别式的关系可得Δ>0,由此可解得m的取值范围;(2)根与系数的关系及已知条件可得关于m的一元二次方程,解得m的值并根据(1)中的所得的m的取值范围作出取舍即可得出答案.【详解】解:(1)根据题意得:Δ=(2m)2−4(m2+m)>0,解得:m<0.△m 的取值范围是m <0.(2)根据题意得:x 1+x 2=−2m ,x 1x 2=m 2+m ,△x 12+x 22=12,△(x 1+x 2)2−2x 1x 2=12,△(−2m )2−2(m 2+m )=12,△解得:m 1=−2,m 2=3(不合题意,舍去),△m 的值是−2.【点睛】本题考查了一元二次方程的根的情况与判别式的关系、根与系数的关系及解一元二次方程等知识点,熟练掌握一元二次方程的相关知识是解题的关键.18.(本题8分)(2021·全国九年级)已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3.【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可;(2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可. 【详解】解:△x 1,x 2是一元二次方程x 2-3x -1=0的两根,△12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;(2)12121211331x x x x x x ++===-⋅-. 【点睛】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.19.(本题10分)(2021·广西河池市·九年级期末)已知关于x 的一元二次方程mx 2﹣2mx +(m ﹣1)=0.(1)若方程的一个根是x =2,求m 的值及另一个根;(2)当m >1时方程有实数根吗?请说明理由.【答案】(1)m =1,另一个根为0;(2)有两个不相等的实数根,理由见解析【分析】(1)先把x =2代入方程mx 2﹣2mx +(m ﹣1)=0得m =1,此时方程为x 2﹣2x =0,然后解方程得到方程的另一个根;(2)计算判别式得到△=4m ,则利用m >1得到△>0,然后根据判别式的意义判断方程根的情况.【详解】解:(1)把x =2代入方程mx 2﹣2mx +(m ﹣1)=0得4m ﹣4m +m ﹣1=0,解得m =1,此时方程为x 2﹣2x =0,解得x 1=2,x 2=0,即方程的另一个根为0;(2)方程有两个不相等的实数根,理由如下:△a =m ,b =﹣2m ,c =m ﹣1,△△=4m 2﹣4m (m ﹣1)=4m△m >1,△△>0,△方程有两个不相等的实数根.【点睛】本题考查了一元二次方程的根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a.也考查了根的判别式. 20.(本题10分)(2021·北京东城区·九年级期末)关于x 的一元二次方程20x mx n ++=.(1)若方程有两个相等的实数根用含m 的代数式表示n ;(2)若方程有两个不相等的实数根,且4m =-.①求n 的取值范围;①写出一个满足条件的n 的值,并求此时方程的根.【答案】(1)214n m =(2)△4n <;△ 13x =,21x =. 【分析】(1)根据方程得出240m n ∆=-=,变形即可; (2)△根据方程得到2(4)40n ∆=-->,解得即可;△在n 的取值范围内取3n =,然后解方程即可.【详解】(1)△关于x 的一元二次方程20x mx n ++=有两个相等的实数根,△240m n ∆=-=, △214n m =. (2)△△方程有两个不相等的实数根,且4m =-,△2(4)40n ∆=-->,解得4n <;△△4n <,△n 可以是3此时方程为2430x x -+=,(3)(1)0x x --=,解得13x =,21x =.【点睛】此题主要考查了根的判别式以及解一元二次方程,一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.21.(本题12分)(2021·重庆九年级期末)已知,关于x 的方程22210x mx m -+-=. (1)不解方程,判断此方程根的情况;(2)若2x =是该方程的一个根,求代数式2283m m -+-的值.【答案】(1)有两个不相等的实数根;(2)3【分析】(1)根据方程的系数结合根的判别式即可得出△=4>0,由此得出方程有两个不相等的实数根;(2)将x=2代入原方程可求出m 2-4m=-3,将其代入代数式-2m 2+8m -3中即可得出结论.【详解】解:()1在方程22210x mx m -+-=中,()22(2)41140m m =--⨯⨯-=>,∴方程22210x mx m -+-=有两个不相等的实数根. ()2将2x =代入原方程中,得:24410m m -+-=,即243m m -=-,()222832433m m m m ∴-+-=---=.【点睛】本题考查了根的判别式以及一元二次方程的解,熟练掌握“当根的判别式0>时方程有两个不相等的实数根”是解题的关键.22.(本题12分)(2021·全国八年级)已知关于x 的一元二次方程2(3)430a x x --+=有两个不等的实根.(1)求a 的取值范围;(2)当a 取最大整数值时,ABC ∆的三条边长均满足关于x 的一元二次方程2(3)430a x x --+=,求ABC ∆的周长.【答案】(1)133a <且3a ≠;(2)ABC ∆的周长为3或9或7. 【分析】 (1)根据关于x 的一元二次方程,可判断二次项系数不为0;根据方程有两个不相等的实数根,可判断判别式大于0,列出不等式组求解即可.(2)在此范围内找出最大的整数,解方程,然后分类讨论,求出三角形周长即可.【详解】解:(1)关于x 的一元二次方程2(3)430a x x --+=有两个不相等的实数根, ∴30164(3)30a a -≠⎧⎨--⨯>⎩, 解得133a <且3a ≠. (2)由(1)得a 的最大整数值为4;2430x x ∴-+=解得:1213x x ==.ABC ∆的三条边长均满足关于x 的一元二次方程2(3)430a x x --+=,∴△三边都为1,则ABC ∆的周长为3;△三边都为3,则ABC ∆的周长为9;△三边为1,1,3,因为113+<,不符合题意,舍去;△三边为1,3,3,则ABC ∆的周长为7.△ABC ∆的周长为3或9或7.【点睛】本题考查了一元二次方程根的情况与判别式b 2-4ac 的关系,也考查了构成三角形的条件.解题时注意二次项系数不为0这个隐含条件.23.(本题14分)(2021·全国九年级)已知关于x 的方程2(41)10kx k x k -++-=(k 为实数,且0k ≠)的两根为α,β.(1)若3k =,求αββα+的值 (2)若α,β都是整数,求k 的值【答案】(1)1576(2)1或113 或1- 或111- 【分析】(1)将3k =代入,得231320x x -+=,先根据判别式判断实数根的个数,然后根据韦达定理写出133αβ+=,23αβ=,对原式进行变形即可求解; (2)根据韦达定理写出α,β与k 的关系,联立获得方程()()116αβ++=,根据α,β都是整数分情况讨论即可求解.【详解】(1)若3k =,则方程为231320x x -+=2134320=-⨯⨯>△ ∴由韦达定理可得133αβ+=,23αβ=()22221322215733263αβαβαβαββααβαβ⎛⎫-⨯ ⎪+-+⎝⎭∴+==== (2)设αβ≤ 由韦达定理可得4114k k kαβ++==+ △ 111k k kαβ-==- △ △+△得5αβαβ++=()()116αβ∴++= α,β都是整数1116αβ+=⎧∴⎨+=⎩或 1611αβ+=-⎧⎨+=-⎩ 或1213αβ+=⎧⎨+=⎩ 或1213αβ+=-⎧⎨+=-⎩代入△可得1k =或113 或1- 或111- 经检验,这些k 值均能使方程有实根k ∴的值为1或113 或1- 或111- 故答案为(1)1576(2)1或113 或1- 或111-. 【点睛】本题考查了一元二次方程根的判别式,和韦达定理,即一元二次方程的根与系数的关系,熟练掌握本部分的公式是本题的关键.。
第二讲 培优竞赛一元二次方程根的判别式及根与系数的关系
第二讲 一元二次方程根的判别式及根与系数的关系知识点:1、一元二次方程的根的判别式一元二次方程)0(02≠=++a c bx ax 根的判别式为:△= ,当0>∆时,方程有两个 的实数根;当0=∆时,方程有两个 的实数根; 当0<∆时,方程 实数根。
反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ; 方程有两个实数根,则 ;方程没有实数根,则 。
2、一元二次方程的根与系数的关系若一元二次方程方程20 (0)ax bx c a ++=≠的两个根为 即x 1x 2那么:12x x += ,12x x = ,此结论称为”韦达定理”,其成立的前提是0∆≥. 特别地:① 如果一元二次方程02=++q px x 的两个根是21x x 和,则=+21x x ,=•21x x 。
② 以21x x 和为根的一元二次方程(二次项系数为1)是0)(21212=•++-x x x x x x ③ 在一元二次方程)0(02≠=++a c bx ax 中,有一根为0,则=c ; 有一根为1,则=++c b a ;有一根为1-,则=+-c b a ;若两根互为倒数,则=c ;若两根互为相反数,则=b 。
常用公式:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅;12x x -=(3)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩; ②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则1200x x ∆>⎧⎨⋅<⎩; ④方程一根大于1,另一根小于1,则120(1)(1)0x x ∆>⎧⎨--<⎩典型例题:例A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0 例2:已知方程的两实数根为、,不解方程求下列各式的值。
人教版初三数学:一元二次方程根的判别式及根与系数的关系—知识讲解(提高)
一元二次方程根的判别式及根与系数的关系—知识讲解(提高)【学习目标】1. 会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2. 掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】要点一、一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0;(2)方程有两个相等的实数根⇒ac b 42-=0;(3)方程没有实数根⇒ac b 42-﹤0.要点诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 要点二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k x x k =+++;⑦2212121212||()()4x x x x x x x x -=-=+-;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==; ⑨2212121212()()4x x x x x x x x -=±-=±+-; ⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x>,120x x+>时,两根同为正数;当△≥0且120x x>,120x x+<时,两根同为负数.②当△>0且120x x<时,两根异号.当△>0且120x x<,120x x+>时,两根异号且正根的绝对值较大;当△>0且120x x<,120x x+<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b+,则必有一根a b-(a,b为有理数).【典型例题】类型一、一元二次方程根的判别式的应用1(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【答案与解析】解:(1)∵b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【总结升华】熟练掌握一元二次方程根的判别式与根之间的对应关系.举一反三:【高清ID号:388522 关联的位置名称(播放点名称):判别含字母系数的方程根的情况---例2(2)】【变式】(2015•张家界)若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是()A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k ≥0,且k ≠0,解得:k ≤,且k ≠0. 则k 的非负整数值为1.2.已知关于x 的一元二次方程2(1)10m x x -++=有实数根,则m 的取值范围是________ 【答案】54m ≤且m ≠1 【解析】因为方程2(1)10m x x -++=有实数根,所以214(1)450m m =--=-+≥△,解得54m ≤, 同时要特别注意一元二次方程的二次项系数不为0,即(1)0m -≠, ∴ m 的取值范围是54m ≤且m ≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即(1)0m -≠,m ≠1. 举一反三:【高清ID 号:388522关联的位置名称(播放点名称):利用根的判别式求字母范围---例4(1)】【变式】已知:关于x 的方程2(1)04kkx k x +++=有两个不相等的实数根,求k 的取值范围. 【答案】102k k ≠>-且.类型二、一元二次方程的根与系数的关系的应用3. (2016•绥化)关于x 的一元二次方程x 2+2x +2m=0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m=0的两个根,且x 12+x 22=8,求m 的值.【思路点拨】 (1)根据方程根的个数结合根的判别式,可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x 1+x 2=﹣2,x 1•x 2=2m ,再结合完全平方公式可得出x 12+x 22=﹣2x 1•x 2,代入数据即可得出关于关于m 的一元一次方程,解方程即可求出m 的值,经验值m=﹣1符合题意,此题得解. 【答案与解析】 解:(1)∵一元二次方程x 2+2x +2m=0有两个不相等的实数根, ∴△=22﹣4×1×2m=4﹣8m >0, 解得:m <.∴m 的取值范围为m <.(2)∵x 1,x 2是一元二次方程x 2+2x +2m=0的两个根, ∴x 1+x 2=﹣2,x 1•x 2=2m , ∴x 12+x 22=﹣2x 1•x 2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m 的值为﹣1.【总结升华】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m >0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):根与系数的关系---例3】 【变式】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和. 【答案】(1)134; (2)3.4. 求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【答案与解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-, 从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.449-π B.849-π C.489-π D.889-π图(1)AEB F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
九年级上册数学一元二次方程的根与系数的关系
九年级上册数学一元二次方程的根与系数的关系九年级上册数学一元二次方程的根与系数的关系一、一元二次方程根与系数的定义•一元二次方程是指形如ax2+bx+c=0的方程,其中a、b 和c是已知的实数,且a≠0。
•x是未知数,方程中该变量的二次项系数常被称为a,一次项系数常被称为b,常数项常被称为c。
•方程的根(或解)是满足方程的解x,使得当x代入方程中后等式成立。
二、一元二次方程的根与系数的关系•一元二次方程的根与其系数之间存在一定的关系,可以通过方程的系数推导出方程的根的性质。
判别式•一元二次方程的判别式通过系数a、b和c的值计算,其表达式为D=b2−4ac。
•判别式可以确定方程的根的性质:–当判别式D>0时,方程有两个不相等的实数根;–当判别式D=0时,方程有两个相等的实数根(重根);– 当判别式 D <0 时,方程没有实数根,但可以有两个共轭复数根。
根与系数的关系• 方程的两个根(或解)分别为 x 1 和 x 2,则有以下关系成立:– 根的和等于一次项系数的相反数的比值:x 1+x 2=−b a – 根的乘积等于常数项与二次项系数的比值:x 1⋅x 2=c a 三、示例题目1. 已知一元二次方程 2x 2−5x −3=0 的两个根为 x 1 和 x 2,根据根与系数的关系,求 x 1+x 2 和 x 1⋅x 2。
根据公式可知,该方程的系数分别为 a =2,b =−5 和 c =−3。
将其代入根与系数的关系公式中:$ x_1 + x_2 = - = - = $$ x_1 x_2 = = = -$所以 x 1+x 2=52,x 1⋅x 2=−32。
四、总结• 一元二次方程的根与系数之间存在一定的关系,可以通过方程的系数计算出方程的根的性质。
• 判别式可以确定方程的根的个数和根的类型。
•根与系数的关系可以通过根的和、根的乘积与方程的系数之间的比值来表示。
五、应用及拓展•一元二次方程的根与系数的关系在解决实际问题中有着广泛的应用,如在物理、经济等领域的模型建立和解析中都会遇到。
2021年九年级数学上册第二十一章《一元二次方程》经典题(提高培优)(3)
一、选择题1.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4B 解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.3.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.4.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).5.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.6.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( )日 一 二 三 四 五 六图1 图2A .17B .18C .19D .20C解析:C【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值.【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1,则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-,∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =.故选:C .【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.8.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .0B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.9.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 10.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0A 解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 二、填空题11.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n ,所以关于x 的方程x*(a*x )=14-变为(a+1)x 2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a 的关系式,即可解决问题.【详解】解:由x*(a*x )=14-得(a+1)x 2+(a+1)x+14=0, 依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x 的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.15.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键. 16.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.20.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.三、解答题21.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.22.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.23.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由.解析:(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=,∵()()2221410m m m ⎡⎤∆=----=>⎣⎦, ∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.24.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.解析:(1)1-2)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】 (1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式313-===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.25.解方程:(2)4x x x +=- 解析:1241x x =-=,【分析】方程整理后,利用因式分解法求解即可.【详解】解:(2)4x x x +=-,方程整理得:2340x x +-=,因式分解得:()()410x x +-=,则40x +=或10x -=,∴1241x x =-=,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.26.(12. (2)解一元二次方程:x 2﹣4x ﹣5=0.解析:(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
中考专题一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。
②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。
考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。
【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2D.m ≥43且m ≠2(20XX 年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。
例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。
求α2+3β2+4β的值。
解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。
第二讲培优一元二次方程根的判别式及根与系数的关系
第一讲 一元二次方程根的判别式及根与系数的关系培优辅导 知识点:1、一元二次方程的根的判别式一元二次方程)0(02≠=++a c bx ax 根的判别式为:△=,当0>∆时,方程有两个的实数根;当0=∆时,方程有两个的实数根; 当0<∆时,方程实数根。
反之:方程有两个不相等的实数根,则;方程有两个相等的实数根,则; 方程有两个实数根,则;方程没有实数根,则。
2、一元二次方程的根与系数的关系若一元二次方程方程20 (0)ax bx c a ++=≠的两个根为 即x 1x 2么:12x x +=,12x x =,此结论称为”韦达定理”,其成立的前提是0∆≥. 特别地:① 如果一元二次方程02=++q px x 的两个根是21x x 和,则=+21x x ,=∙21x x 。
② 以21x x 和为根的一元二次方程(二次项系数为1)是0)(21212=∙++-x x x x x x ③ 在一元二次方程)0(02≠=++a c bx ax 中,有一根为0,则=c ;有一根为1,则=++c b a ;有一根为1-,则=+-c b a ; 若两根互为倒数,则=c ;若两根互为相反数,则=b 。
常用公式:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅; 12x x -=典型例题:例A .k <12 B .k <12且k ≠0 C .-12≤k <12D .-12≤k <12且k ≠0 变式1:关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5例2:1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值:(1)2221x x +(2)21x x -★(3)2222133x x x -+例3求证:已知关于x 的方程x 2-(m +2)x +(2m -1)=0. (1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.变式:关于的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值例题4:关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学一元二次方程:根的判别式、根与系数的关系知识精讲
【基础知识精讲】
1.一元二次方程)0(02
≠=++a c bx ax 根的判别式: ac b 42-=∆
⑴ 当0>∆时,方程有两个不相等的实数根; (2) 当0=∆时,方程有两个相等的实数根; ⑶ 当0<∆时,方程没有实数根。
(以上三点反之亦成立)。
2.一元二次方程有实数根0≥∆⇔
注意:(1)在使用根的判别式之前,应将一元二次方程化成一般式;
(2)在确定一元二次方程待定系数的取值范围时,必须检验二次项系数0≠a
(3)证明ac b 42
-=∆恒为正数的常用方法:把△的表达式通过配方化成“完全平方
式+正数”的形式。
3.一元二次方程根与系数的关系(韦达定理):
设21x x 、是一元二次方程)0(02
≠=++a c bx ax 的两根,则a
b
x x -=+21,a c x x =⋅21
4.设21x x 、是一元二次方程)0(02
≠=++a c bx ax 的两根,
则:0,0121>>x x )(时,有⎪⎪⎩
⎪⎪⎨
⎧
>=∙>-=+002121a c x x a b x x
0,0)2(21<<x x 时,有⎪⎪⎩
⎪⎪⎨
⎧
>=∙<-=+002121a c x x a b x x
0,0)3(21<>x x 时,有021<=
∙a
c
x x 5.以两个数21x x 、为根的一元二次方程(二次项系数为1)是:0)(21212
=++-x x x x x x 【例题巧解点拨】1---根的判别式:
例1:1.方程012
=--kx x 的根的情况是( )
A .方程有两个不相等的实数根 B.方程有两个相等的实数根
C.方程没有实数根
D.方程的根的情况与k 的取值有关
2.若一元二次方程06)4(22
=+--x kx x 无实数根,则k 的最小整数值是( ) A.-1 B.2 C.3 D.4
3.若关于x 的方程0)()(22
=-+-+a b x b a ax 有两个相等的实数根,则b a :等于( )
A.-1或2
B.1或
12 C.-1
2
或1 D.-2或1 4.若关于y 的一元二次方程43342
+=--y y ky 有实根,则k 的取值范围是( )
A.4
7
-
>k B.047≠-≥k k 且 C.47-≥k D.047≠>k k 且
例2:已知关于x 的方程0)2
1(4)12(2
=-++-k x k x 。
(1)求证:无论k 取什么实数值,这个方程总有实数根;
(2)当等腰三角形ABC 的边长a =4,另两边的长b 、c 恰好是这个方程的两根时,
求△ABC 的周长。
2---探索韦达定理
例3.一元二次方程)0(02
≠=++a c bx ax 的两根21,x x 为_______________, 求21x x +,21x x ∙的值。
3---已知一个根,求另一个根.
例4.已知2+3是042
=+-k x x 的一根,求另一根和k 的值。
4---求根的代数式的值
例5.设21,x x 是方程0132
=+-x x 的两个根,利用根与系数的关系,求下列各式的值:
(1) 3
24
14
2
31x x x x +;
2
112)2(x x x x +
4---求作新的二次方程
例6.1.以2,-3为根的一元二次方程是_________________________.
2.已知方程03322
=--x x 的两个根分别为b a 、,利用根与系数的关系,求一个一元二
次方程 ,使它的两个根分别是:11++b a 、
5---由已知两根和与积的值或式子,求字母的值。
例7.1、已知方程0132
=-+x x ,要使方程两根的平方和为
9
13
,那么常数项应改为 。
2、βα、是关于x 的方程04442
2=++-m m mx x 的两个实根,并且满足
100
91)1)(1(=
---βα,求m 的值。
【同步达标训练】
A 组
1.一元二次方程0624)2(2
=-+--m mx x m 只有一个实数根,则m 等于 ( )
A. 6-
B. 1
C. 6-或1
D. 2
2.一元二次方程012)1(2
=---x x k 有两个相等的实根数,则k 的值是 .
3.已知21,x x 是方程04322
=-+x x 的两个根,那么:21x x += ;21x x ∙= ;
2
111x x += ;2
221x x += ;)1)(1(21++x x = ;21x x -= 。
4.关于x 的方程01)9(22
2=++-+m x m x ,当m = 时,两根互为倒数;当m = 时,两根互为相反数.
5.方程0322
=+-m x x 的一个根为另一个根的2倍,则m = .
6.已知方程0)1(2
=+++k x k x 的两根平方和是5,则k = .
B 组
1.不解方程,判定下列方程根的情况。
05432=+-x x
2.设21,x x 是关于x 的方程0142
=-+-k x x 的两个实数根,那么是否存在实数k ,使得
2121x x x x +>∙成立?请说明理由。
3.求证:不论m 为何值,方程0)14(22
2=----m m x m x 总有两个不相等的实数根。
4.已知设21,x x 是关于x 的方程022
=+-a x x 的两个实数根,且23221-=+x x ,(1)求1x ,2
x 及a 的值;(2)求212
13123x x x x ++-的值。
5.阅读材料:为解方程04)1(5)1(2
22=+---x x ,我们可以将12-x 看着一个整体,然后设
12-x =y ,① 那么原方程可化为0452=+-y y ,解得4,121==y y 。
当y=1时, 112=-x ,∴22=x ,∴2±=x ;当y=4时,412=-x ,∴52=x ,∴5±=x ;
故原方程的解为5,5,2,24321-==-==
x x x x 。
解答问题:(1)上述解答过程,在由原方程得到方程①的过程中,利用了___________法达到解方程的目的,体现了转化思想;
利用以上知识解方程062
4=--x x
作业
姓名:_________作业等级:______
第一部分:
1.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为( )
A .7-
B .3-
C .7
D .3
2.若12x x ,是一元二次方程2
560x x -+=的两个根,则12x x +的值是( )
A .1
B .5
C .5-
D .6
3.设a b ,是方程2
20090x x +-=的两个实数根,则2
2a a b ++的值为( ) A .2006 B .2007 C .2008 D .2009
4.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则
212()x x -的值是( )
A .1
B .12
C .13
D .25
第二部分:
5.已知x 1、x 2为方程0132
=++x x 的两实根,则20823
1++x x =__________.
6.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下
关系:x 1+x 2=-b a ,x 1·x 2=c a
.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +1
2
x x 的值为 . 第三部分:
7.已知12,x x 是方程220x x a -+=
的两个实数根,且1223x x +=.
(1)求12,x x 及a 的值;
(2)求32111232x x x x -++的值.。