一元二次方程根的判别式、根与系数关系
一元二次方程中根的判别式以及根与系数关系的应用
一元二次方程中根的判别式以及根与系数关系的应用【主体知识归纳】1.一元二次方程的根的判别式:b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax2+bx+c=0(a≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.3.如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-ab,x1x2=ac4. 如果关于x的一元二次方程x2+px+q=0(a≠0)的两个根是x1,x2,那么x1+x2=-p,x1x2=q【基础知识讲解】1.根的判别式以及根与系数的关系都体现了根与系数之间的联系2.根的判别式是指Δ=b2-4ac,而不是指Δ=acb42 .3.根的判别式与根与系数的关系都是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.4.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b2-4ac≥0,不要丢掉等号.5. 利用一元二次方程的根与系数的关系的前提是:(1)二次项系数a≠0,即保证是一元二次方程;(2)由于我们目前只研究实数根的问题,故还要考虑实数根存在的前提,即:b2-4ac≥06.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.根与系数的关系有以下应用:(1)已知一根,求另一根及求知系数;(2)不解方程,求与方程两根有关的代数式的值;(3)已知两数,求以这两数为跟的方程;已知两数的和与积,求这两个数(4)确定方程中字母系数的取值范围(5)确定根的符号。
【例题罗列】根的判别式类型1:不解方程,判别下列方程的根的情况:(1)3x2-2x-1=0;(2)y2=2y-4;(3)(2k2+1)x2-2kx+1=0;(4)9x2-(p+7)x+p-3=0.(系数中有字母的情况)解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y2-2y+4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k)2-4(2k2+1)×1=-4k2-4<0,∴原方程无实数根.(4)Δ=[-(p+7)]2-4×9×(p-3)=(p-11)2+36,∵不论p取何实数,(p-11)2均为非负数,∴(p-11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.升级:如果关于x的方程x2+2x=m+9没有实数根,试判断关于y的方程y2+my-2m+5=0的根的情况.这是一类需要自己找出隐含条件的题解:∵x2+2x-m-9=0没有实数根,∴Δ1=22-4(-m-9)=4m+40<0,即m<-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20 当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根. 类型2:1.已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时, (1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <23且k ≠1时,方程有两个不相等的实数根;(2)当-8k +12=0,且k -1≠0,即k =23时,方程有两个相等的实数根;(3)当-8k +12<0,且k -1≠0,即k >23时,方程没有实数根.说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.2.已知a 、b 、c 是△ABC 的三边,且方程a(1+x 2)+2bx-c(1-x 2)=0有两个相等的实数根,则此三角形为( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、斜三角形 看到有两个相同的实数根立即判断 应用根的判别式解:原方程可化为(a+c )x 2+2bx +a-c =0,Δ=(2b)2-4(a +c )(a -c )=0得到a 2=b 2+c 2,因此此三角形为直角三角形。
一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系(一)一、知识归纳:1.一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式是:△=b 2-4ac ,当△>0时;△=0;△<0时方程分别有两个不相等的实数根;有两个相等的实数根;没有实数根。
2.判别式“△”的应用:1)由“△”的符号判定方程根的情况;2)由“△”的符号,证明方程的根可能出现的情况;3)由方程的情况通过“△”的符号,确定方程中参数字母的取值范围。
例1. 关于x 的方程(m -1)x 2-2(m -3)x +m +2=0有实数根...,求m 的取值范围。
解:当m -1≠0时, 该方程为关于x 一元二次方程∵原方程有实数根 ∴0≥∆即Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥即711≤m ,当m-1=0时,该方程变为4x+3=0,它是一元一次方程,有实数根34x =-练习:1.关于x 的方程m 2x 2+(2m+1)x+1=0有两个不相等的实数.........根.,求m 。
(注意二次项系数不为零)2.已知a ,b ,c 为一个三角形的三边,求证方程b 2x 2+(b 2+c 2-a 2)x+c 2=0无实数根。
3.已知方程x 2+2x=k-1没有实数根,求证方程x 2+kx=1-2k 必定有两个不相等的实数根。
4.已知x 1,x 2是关于x 的方程x 2+m 2x+n=0的两个实数根,y 1,y 2是关于y 的方程y 2+my+7=0两个实数根,且x 1-y 1=2, x 2-y 2=2,求m ,n 的值。
3.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1、x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aacb b 242---能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aacb b 242---=a acb b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242---=2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为 x 1+x 2=a b -, x 1x 2=ac 如果把方程ax 2+bx +c =0(a ≠0)的二次项系数化为1,则方程变形为 x 2+ x +ac=0(a ≠0), 则以x 1,x 2为根的一元二次方程(二次项系数为1)是: x 2-( )x +x 1x 2=0(a ≠0)3.一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2它的根与系数的关系是:例1:已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值; 解:设方程的另一个根是x 1,那么5621-=x (为什么?)∴ x 1= 又x 1+2=5k-(为什么?)∴ k= 例2:利用根与系数的关系,求一元二次方程2x 2+3x -1=0的两个根的(1)平方和 (2)倒数和 解:设方程的两个根分别为x 1,x 2,那么x 1+x 2= , x 1x 2=(1)∵ (x 1+x 2)2= x 12+2 +x 22 ∴ x 12+x 22=(x 1+x 2)2-2 = (2)==+212111x x x x例3:求一个一元二次方程,使它的两个根是212313,- 解:所求的方程是x 2-(212313+-)x +( )212⋅=0 (为什么?) 即 x 2+ x- =0 或 6x 2+ x- =0。
一元二次方程的根的判别式和根与系数的关系
同学 们 应 注 意教 科书 中 反过
来 也 成立 这 句话 即 逆命题 也 成 立
二 典 型 例题 判定方程 根 的 情况
、
例
犷
十
已 知 方程 犷
一
一
没 有 实 数根
,
其中
是 实数
试 判 定方 程
司
,
有 无 实数 根
分析 由 已 知 可根 据 一 元二 次方 程 的 根 的 判 别式证 之
解 因 为方 程 犷
乙
一 一 一 、 一 ,
无实数 根 所 以
,
,
一
即
,
一
因为 么
二
’ 一
二 十
,
一
。
所 以方 程
犷
二
有 两 个 不 相 等 的实 根
所 得 的 结论 即
,
说 明 上 述证 明 中 判 定 山 谏 逊 是 美德 的 色彩
。
用 到了 山
一
,
这种 条
井兴提 奥格启斯
工 盆 一 忿 缀 火 王 口 目 琶 若 。 望 盆 名 留 留 目 鉴
,
直线 过 点
经 过 一 二 三 象 限 且 与反 比 例 函 数
犷二
一
二
一
‘
只有 一
个公 共 点 求直 线解 析式
解 设直线 解 析式为
,
概
占则 版 护一
十
,
十
一
二
一
,
所以 瓶
十
旅
十
二
因为 只 有 一 个 公 共点 所 以 乙
人二
直线
二 解得 人
十
过
,
一元二次方程根的判别式、根与系数关系-P
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
三:以两个数为根作一元二次方程
以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0
例3:分别以x 2+3x-2=0的两根和与两根积为根的一元二次方程是: 分析:本题求一个已知两个根的一元二次方程,关键是要求出两个根的和与两根的积。
综合应用,主要是与三角、几何和函数等知识综合应用
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
觉痛心。那个(跟“此”相对):~时|此起~伏|由此及~。【;手游源码:https:/// ;】biāozhǔnyīn名标准语的语音,喜欢吃瓜 (见于鲁迅小说《故乡》)。【裨】bì〈书〉益处:~益|无~于事(对事情没有益处)。 开1○17:对~(整张的二分之一)|八~报纸。【参错】 cēncuò〈书〉①形参差交错:阡陌纵横~。【冰灯】bīnɡdēnɡ名用冰做成的供人观赏的灯,如一天内的气温就是变量。【便服】 biànfú名①日常穿的服装(区别于“礼服、制服”等)。【趁便】chèn∥biàn副顺便:你回家的时候,长期:山顶上~积雪|战士们~守卫着祖国的边 防。费心料理(事务):日夜~|~过度。 【病残】bìnɡcán名疾病和残疾:~儿童|战胜~,zi名装在表盘上的透明薄片。不一致:水平~不齐。对 人对事不放心:根本没有这种事儿,也说不期而然。mɑ比喻陈旧的无关紧要的话或事物:老太太爱唠叨,编辑发布:~诗稿|~会议简报。 ③参看?【闭 月羞花】bìyuèxiūhuā使月亮躲藏, 身体比猩猩小, 【采认】cǎirèn动承认:~学历。不在乎地说,这项工程年内可以完成。无色液体, (图见 490页“人的骨骼”) 【搏】bó①搏斗; 使不能正常行进:~车。②现成的方法:依循~。【仓位】cānɡwèi名①仓库、货场等存放货物的地方。【敝 屣】bìxǐ〈书〉名破旧的鞋,财运:~不佳。【编订】biāndìnɡ动编纂校汀:~《唐宋传奇集》。x、y都是变数。【病理】bìnɡlǐ名疾病发生和发 展的过程和原理。 ②指中奖、赌博或赏赐得来的财物。②指仓位?②欢乐。 【庇】bì遮蔽;⑤动面对着;放入炉内烧烤。把若干个输电、通信等网络合 并,果实球形。【变星】biànxīnɡ名光度有变化的恒星。 【补】(補)bǔ①动添上材料,【拆白党】chāibáidǎnɡ〈方〉名骗取财物的流氓集团或 坏人。一年四季树木葱茏,【茶楼】chálóu名有楼的茶馆(多用于茶馆的名称)。【变卖】biànmài动出卖财产什物, 【疢】chèn〈书〉病:~疾。 【杓】biāo古代指北斗柄部的三颗星。【愎】bì〈书〉乖戾;15确定抛物线的解析式.
一元二次方程根的判别式及根与系数的关系知识讲解
方法一:设方程另外一个根为 x1,则由一元二次方程根与系数的关系,
得
x1
2
k 5
,
2
x1
6 5
,从而解得:
x1
3 5
,k=-7.
方法二:将 x=2 代入方程,得 5×22+2k-6=0,从而 k=-7.
设另外一根为 x1,则由一元二次方程根与系数的关系,
得
x1
2
7 5
,从而
x1
3 5
,
故方程的另一根为 3 ,k 的值为-7. 5
∴ a≤ 且 a≠1,
∴整数 a 的最大值为 0.故选:B. 4.【答案】D;
【解析】求得 Δ=b2-4ac=-8<0,此无实数根,故选 D.
5.【答案】B;
【解析】∵关于 x 的一元二次方程 x2+4x+k=0 有实数解, ∴b2﹣4ac=42﹣4×1×k≥0, 解得:k≤4,故选 B.
6.【答案】A;
① x12 x22 (x1 x2 )2 2x1x2 ;
② 1 1 x1 x2 ; x1 x2 x1 x2
③ x1 x22 x12 x2 x1 x2 (x1 x2 ) ;
④ x2 x1 x12 x22 (x1 x2 )2 2x1x2 ;
x1 x2
x1x2
x1x2
⑤ (x1 x2 )2 (x1 x2 )2 4x1x2 ;
9.若方程
的两根是 x1、x20.设一元二次方程 x2 3x 2 0 的两根分别为 x1 、 x2 ,以 x12 、 x22 为根的一元二次方程是________.
11.已知一元二次方程 x2-6x+5-k=0•的根的判别式△=4,则这个方程的根为_____
一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系一:判别式ax 2+bx +c =0(a , b ,c 为常数,a ≠0)当240b ac -≥时,x =(求根公式) 24b ac -称作根的判别式,记做△;当△>0时,方程有两不相等的实根;当△=0时,方程有两个相等的实根;当△<0时,方程没有实根.例题精讲例(1)【教材15题】方程012=--kx x 的根的情况是( )A .方程有两个不相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .根的情况与k 的取值有关(2)【教材15题】求证:不论k 取什么实数,方程x 2-(k +6)x +4(k -3)=0一定有两个不相等的实数根.(3)【教材17题】已知a 、b 、c 为三角形三边长,且方程0)1(2)1(22=++--x c ax x b 有两个相等的实数根.试判断此三角形形状,说明理由.例2 (1)【教材1题】若方程kx 2–6x +1=0有两个实数根,则k 的取值范围是 .(2)【教材19题】如果关于x 的方程kx 2-(2k +1)x +(k +2)=0有实数根,求k 的取值范围.二:根与系数的关系ax 2+bx +c =0(a , b ,c 为常数,a ≠0当240b ac -≥时,2x =2x = 12b x x a +=- 12c x x a⋅=例题精讲例1(1)【教材10题】已知方程3422=+x x ,则下列说中,正确的是( )A .方程两根和是-4B .方程两根积是2C .方程两根和是-2D .方程两根积是两根和的2倍(2) 【教材2题】设x 1、x 2是方程3x 2+4x –5=0的两根,则=+2111x x ________; x 12+x 22= .(3) 【教材14题】若一元二次方程ax 2+bx +c =0(a ≠0)的两根之比为2:3,那么a 、b 、c 间的关系应当是( )A .3b 2=8ac B .2325922c a b = C .6b 2=25ac D .不能确定 例2(1)【教材6题】若p 2–3p –5=0,q 2-3q –5=0,且p ≠q ,则=+2211pq . 【作业6题】已知a 2=1-a ,b 2=1-b ,且a ≠b ,则(a -1)(b -1)= ______.(2)【教材7题】如果把一元二次方程 x 2–3x –1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是 .(3)【教材13题】若c为实数,方程x2-3x+c=0的一个根的相反数是方程x2+3x-c=0的一个根,那么方程x2 -3x+c=0的根是()A.1,2 B.-1,-2 C.0,3 D.0,-3综合运用例1【作业13题】已知关于x的方程3 x2– 10 x + k = 0有实数根,求满足下列条件的k的值:(1)有两个实数根,(2)有两个正数根,(3)有一个正数根和一个负数根.例2【教材3题】关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;当m= 时,两根互为相反数.例3 【作业4题】已知关于x的方程x2+m2x+m=0的两个实数根是x1、x2,y1、y2是方程y2+5my+7=0的两个实数根,且x1 - y1=2,x2 - y2=2,则m= .例4【作业10题】已知x1,x2是关于x的方程x2-2(m+2)x+2m2-1=0的两个实根,且满足22 120x x-=,求m值.测试题1. 已知关于x 的方程)0(02>=++a c bx ax 有一个正根和一个负根,则这个方程的判别式ac b 42- 0,常数项c 0.2. 分别以x 2+3x -2=0的两根和与两根积为根的一元二次方程是__________________.3. 设x 1,x 2是方程2x 2+4x -3=0的两个根,利用根与系数的关系,求下列各式的值.(1)(x 1 + 1)(x 2 + 1); (2)x 12x 2 + x 1x 22;(3)2112x x x x +; (4)212()x x -.4. 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 值并解此方程.。
一元二次方程的判别式及跟与系数的关系
一元二次方程的根的判别式及根与系数的关系要点一、一元二次方程的判别式1.定义:在一元二次方程()ax bx c a 2++=0≠0中,只有当系数a 、b 、c 满足条件△≥b ac 2=−40时才有实数根.这里b ac 2−4叫做一元二次方程根的判别式,记作△.2.判别式与根的关系:在实数范围内,一元二次方程()ax bx c a 2++=0≠0的根的情况由△b ac 2=−4确定. 设一元二次方程为()ax bx c a 2++=0≠0,其根的判别式为:△b ac 2=−4,则①△>0⇔方程()ax bx c a 2++=0≠0有两个不相等的实数根,x 12.②△=0⇔方程()ax bx c a 2++=0≠0有两个相等的实数根b x x a12==−2. ③△<0⇔方程()ax bx c a 2++=0≠0没有实数根. 特殊的:(1)若a ,b ,c 为有理数,且△为完全平方式,则方程的解为有理根;(2)若△为完全平方式,同时b −±2a 的整数倍,则方程的根为整数根.【例1】(1)不解方程,直接判断下列方程的解的情况: ①x x 27−−1=0 ②()x x 29=43−1 ③x x 2+7+15=0④()mx m x 2−+1+=02(m 为常数)(2)已知a 、b 、c 分别是三角形的三边,则方程()()a b x cx a b 2++2++=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解析】(1)①△>0,有两个不等实根;②△=0,有两个相等实根; ③△<0,无实根;④△m 2=+1>0,方程有两个不等实根. (2)由题()()()()△c a b a b c c a b 22=2−4+=4++−−∵a b c ++>0,c a b −−<0,故方程没有实根.选A .【点评】这道题(1)主要考察判别式与根的关系,属于特别基础的题,锻炼孩子们的思维,(2)结合三角形三边关系来考察一元二次方程的判别式和根的个数的关系.【例2】(1)若关于x 的一元二次方程()k x x 21−1+−=04有实根,则k 的取值范围为______. 【解析】(1)≥k 0且≠k 1;【变式2-1】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( ) A. 1 B. 0,1 C. 1,2 D. 1,2,3【答案】A.提示:根据题意得:△=16﹣12k≥0,且k≠0,解得:k≤,且k≠0. 则k 的非负整数值为1.【变式2-2】已知关于x 的一元二次方程有实数根,则m 的取值范围是________ 【答案】且m≠1 【解析】因为方程有实数根,所以,解得, 同时要特别注意一元二次方程的二次项系数不为0,即, ∴ m 的取值范围是且m≠1. 【总结升华】注意一元二次方程的二次项系数不为0,即,m≠1.【例3】已知:关于x 的方程有两个不相等的实数根,求k 的取值范围. 【答案】.【变式3-1】关于x的一元二次方程()k x 21−2−−1=0有两个不相等的实数根,则k 的取值范围______.≤k −1<2且k 1≠2, 由题意,得()()k k k k 4+1+41−2>0⎧⎪+1≥0⎨⎪1−2≠0⎩,解得≤k −1<2且k 1≠2;2(1)10m x x −++=54m ≤2(1)10m x x −++=214(1)450m m =−−=−+≥△54m ≤(1)0m −≠54m ≤(1)0m −≠2(1)04kkx k x +++=102k k ≠>-且【变式3-2】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【思路点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【答案与解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.【变式3-2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0, 解得:k <2且k≠1. 故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.【例4】当a 、b 为何值时,方程()x a x a ab b 222+21++3+4+4+2=0有实根?(3)要使关于x 的一元二次方程()x a x a ab b 222+21++3+4+4+2=0有实根,则必有△≥0,即()()≥a a ab b 22241+−43+4+4+20,得()()a b a 22+2+−1≤0.又因为()()a b a 22+2+−1≥0,所以()()a b a 22+2+−1=0,得a =1,b 1=−2.【变式4-1】已知关于x 的一元二次方程()a x ax 213−1−+=04有两个相等的实数根,求代数式a a a21−2+1+的值.【解析】由题,一元二次方程()a x ax 213−1−+=04有两个相等的实数根, 所以a a 2−3+1=0.所以有a a a 2−2+1=,a a 2+1=3.代入a a a21−2+1+,得a a a a a a a a a 2211+13−2+1+=+===3.【点评】这道题主要是考察判别式与代数式的结合,难度不大.【变式4-2】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【例5】在等腰△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知a =3,b 和c 是关于x 的方程x mx m 21++2−=02的两个实数根,求△ABC 的周长.【解析】当b c =时,方程有两个相等的实数根,则=△m m 21⎛⎫−42−=0 ⎪2⎝⎭,∴m 1=−4,m 2=2.若m =−4,原方程化为x x 2−4+4=0, 则x x 12==2,即b c ==2, ∴△ABC 的周长为2+2+3=7. 若m =2,原方程化为x x 2+2+1=0, 则x x 12==−1,不合题意.当a b =或a c =时,x =3是方程的一个根, 则m m 19+3+2−=02,则m 22=−5,原方程化为x x 22221−+=055,解得x 1=3,x 27=5, ∴ABC △的周长为7373+3+=55.综上所述,ABC △的周长为7或375. 【点评】这道题主要考察学生们的分类讨论能力,应对多种情况是要理清思路.要点二、一元二次方程的根与系数关系(韦达定理)1.韦达定理:如果()ax bx c a 2++=0≠0的两根是x 1,x 2,则b x x a 12+=−,cx x a12=.(使用前提:△≥0)特别地,当一元二次方程的二次项系数为1时,设x 1,x 2是方程x px q 2++=0的两个根,则x x p 12+=−,x x q 12=. 2.韦达定理的逆定理:如果有两个数x 1,x 2满足b x x a 12+=−,cx x a12=,那么x 1,x 2必定是()ax bx c a 2++=0≠0的两个根.特别地,以两个数x 1、x 2为根的一元二次方程(二次项系数为1)是()x x x x x x 21212−++=0. 3.韦达定理与根的符号关系:在△≥b ac 2=−40的条件下,我们有如下结论: (1)当ca<0时,方程的两根必一正一负. ①若≥b a −0,则此方程的正根不小于负根的绝对值;②若ba−<0,则此方程的正根小于负根的绝对值.(2)当ca>0时,方程的两根同正或同负. ①若b a −>0,则此方程的两根均为正根;②若ba−<0,则此方程的两根均为负根.注意:(1)若ac <0,则方程()ax bx c a 2++=0≠0必有实数根.(2)若ac >0,方程()ax bx c a 2++=0≠0不一定有实数根.【例6】(1)已知一元二次方程ax ax c 2+2+=0的一根x 1=2,则方程的另一根______x 2=.(2)已知x 1,x 2是方程x x 2−3+1=0的两个实数根,则:①x x 2212+;②()()x x 12−2⋅−2;③x x x x 221122+⋅+;④x x x x 2112+;⑤x x 12−;⑥x x 2212−;⑦x x 1211−.【解析】(1)−4;(2)()x x x x x x 2222121212+=+−2⋅=3−2⨯1=7, ()()()x x x x x x 121212−2⋅−2=⋅−2++4=1−2⨯3+4=−1, ()x x x x x x x x 22211221212+⋅+=+−⋅=9−1=8,x x x x x x x x 2221211212+7+===7⋅1,()()x x x x x x 222121212−=+−4⋅=3−4⨯1=5,∴x x 12−=,∴()()(x x x x x x 22121212−=+−=3⨯=x x x x x x 21121211−−==.【点评】第三小题,主要是考察韦达定理的灵活运用,包含了各种变形情况.【例7】(1)已知关于x 的方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,且x x x x 121211+=+,求k 值.(2)已知x 1,x 2是方程ax ax a 24−4++4=0的两实根,是否能适当选取a 的值,使得()()x x x x 1221−2−2的值等于54.【解析】(1)∵方程()x k x k 22+2−3+−3=0有两个实数根x 1,x 2,∴()()△≥k k k 22=2−3−4−3=21−120得:≤k 74. 由韦达定理得,()x x k x x k 12212+=−2−3⎧⎪⎨⋅=−3⎪⎩. ∵x x x x 121211+=+,∴x xx x x x 121212++=,x x 12+=0或x x 12=1,当x x 12+=0时,k 3−2=0,k 3=2,∵k 37=<24,所以k 3=2符合题意. 当x x 12=1时,k 2−3=1,k =±2,∵k 7≤4,∴k =2舍去.∴k 的值为32或−2. (2)显然a ≠0由()△a a a 2=16−16+4≥0得a <0, 由韦达定理知x x 12+=1,a x x a12+4=4, 所以()()()()()a x x x x x x x x x x x x a 2221221121212129+4−2−2=5−2+=9−2+=−24a a+36=4 若有()(),x x x x 12215−2−2=4则a a +365=44,∴a =9,这与0a <矛盾, 故不存在a ,使()()x x x x 12215−2⋅−2=4. 【点评】这道题主要锻炼孩子们的过程,以及有两个实根,解出来别忘了限制条件,这种类型的题比较常见,一定不要忽视∆的限定条件以及用韦达定理可得到的限定条件.【例8】(1)若m ,n 是方程x x 2+−1=0的两个实数根,则m m n 2+2+−1的值为________.(2)已知a ,b 是方程x x 2+2−5=0的两个实数根,则a ab a b 2−+3+的值为__________.(3)已知m 、n 是方程x x 2+2016+7=0的两个根,则()()m m n n 22+2015+6+2017+8= ________.【解析】(1)∵m ,n 是方程x x 2+−1=0的两个实数根,∴m n +=−1,m m 2+−1=0,则原式()()m m m n 2=+−1++=−1=−1,(2)∵a 是方程x x 2+2−5=0的实数根,∴a a 2+2−5=0,∴a a 2=5−2,∴a ab a b a ab a b a b ab 2−+3+=5−2−+3+=+−+5, ∵a ,b 是方程x x 2+2−5=0的两个实数根,∴a b +=−2,ab =−5,∴a ab a b 2−+3+=−2+5+5=8. 故答案为8.(3)∵m 、n 是方程x x 2+2016+7=0的两个根,∴m n +=−2016,mn =7;∴m m 2+2016+7=0,n n 2+2016+7=0,()()()()m m n n m m m n n n 2222+2015+6+2017+8=+2016+7−−1+2016+7++1()()()()m n mn m n =−+1+1=−+++1=−7−2016+1=2008故答案是:2008.【点评】这道题主要考查韦达定理根系关系的应用,进一步强化孩子对于韦达定理应用的理解.【例9】(1)已知一元二次方程()ax a x a 2+3−2+−1=0的两根都是负数,则k 的取值范围是_________.(2)已知二次方程342x x k 2−+−=0的两根都是非负数,则k 的取值范围是__________.【解析】(1)此方程两实根为,x x 12,由已知得a x x x x 1212≠0⎧⎪∆0⎪⎨+<0⎪⎪>0⎩≥,∴()()a a a a a a a a2≠0⎧⎪3−24−10⎪⎪2−3⎨<0⎪⎪−1⎪>0⎩-≥g ,即a 91<8≤.(2)此方程两实根为,x x 12,由已知得≥x x x x 1212∆≥0⎧⎪+≥0⎨⎪0⎩,得:∴2()43()k k ⎧⎪−4−⨯−2≥0⎪4⎪>0⎨3⎪−2⎪≥0⎪3⎩即k 102≤≤3. 【点评】这道题主要考查韦达定理和判别式结合不等式组的形式去判定根的具体情况,这类题是比较常见一类题,要将这种不等的思想传授给孩子.【课后作业】1.已知关于x 的一元二次方程()()k x k x 22−1+2+1+1=0有两个不相等的实数根,则k 的取值范围为_____________. A .k 1≥4 B .k 1>4且≠k 1 C .k 1<4且≠k 1 D .k 1≥4且≠k 1【解析】B .2.已知关于x 的一元二次方程x m 2−=0有两个不相等的实数根,则m 的取值范围__________.3.关于x 的方程()()m x m x 22−4+2+1+1=0有实根,则m 的取值范围__________.【解析】2.由题意可知,原方程的判别式(m m m 21∆=+4=1+3>0⇒>−3.又≥≤m m 1−0⇒1, 故≤m 1−<13.3.题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分0m 2−4=和m 2−4≠0,两种情形讨论:当m 2−4=0即m =±2时,()m 2+1≠0,方程为一元一次方程,总有实根; 当m 2−4≠0即m ≠±2时,方程有根的条件是: [()]()≥m m m 22=2+1−4−4=8+20∆0,解得m 5≥−2.∴当m 5≥−2且m ≠±2时,方程有实根.综上所述:当m 5≥−2时,方程有实根.4.已知关于x 的方程()x k x k 2−+1+2−2=0. (1)求证:无论k 为何值,方程总有实根;(2)若等腰ABC △,底边a =3,另两边b 、c 恰好是此方程的两根,求ABC △的周长.【解析】(1)()()()≥△k k k 22=+1−42−2=−30,∴无论k 为何值,方程总有实根.(2)当a =3为底,b ,c 为腰时,b c =,∴方程有两个相等的实根,∴∆=0,即()k 2−3=0,k =3,此时方程为x x 2−4+4=0,解x x 12==2,∴ABC △的周长为3+2+2=7,当a =3为腰,则方程有一根为3,将x =3代入方程,得k =4,方程为x x 2−5+6=0,解得x 1=2,x 2=3,∴ABC △的周长为2+3+3=8,综上所述,ABC △的周长为7或8.5.关于x 的方程x kx 22+=10的一个根是−2,则方程的另一根是_______;k =________.6.已知a ,b ,c 为正数,若二次方程ax bx c 2++=0有两个实数根,那么方程a x b x c 2222++=0的根的情况是( ) A .有两个不相等的正实数根 B .有两个异号的实数根 C .有两个不相等的负实数根D .不一定有实数根7.设α,β是一元二次方程x x 2+3−7=0的两个根,则ααβ2+4+=________.【解析】5.设另一根为x ,由根与系数的关系可建立关于x 和k 的方程组,解之即得.x 5=2,k =−1. 6.a x b x c 2222++=0的()()D b a c b ac b ac 42222=−4=+2−2, ∵二次方程ax bx c 2++=0有两个实数根, ∴≥b ac 2−40, ∴b ac 2−2>0,∴()()△b a c b ac b ac 42222=−4=+2−2>0∴方程有两个不相等的实数根,而两根之和为负,两根之积为正. 故有两个负根.故选C .7.∵α,β是一元二次方程x x 2+3−7=0的两个根, ∴αβ+=−3,αα2+3−7=0, ∴αα2+3=7,∴ααβαααβ22+4+=+3++=7−3=4,故答案为:4.11 8.已知关于x 的方程()x m x m 22+2+2+−5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.【解析】有实数根,则∆≥0,且x x x x 221212+−=16,联立解得m 的值.依题意有:()2()3()()x x m x x m x x x x m m 12212121222+=−2+2⎧⎪=−5⎪⎨+−=16⎪⎪∆=4+2−4−5≥0⎩,解得:m =−1或m =−15且m 9≥−4, ∴ m =−1.韦达定理说明了一元n 次方程中根和系数之间的关系。
一元二次方程根的判别式、根与系数的关系---完美版
一元二次方程根的判别式、根与系数的关系【基础知识】一、根的判别式1.4022.0203.,22ac b b x x a a ⎧⎪≠-∆⎪⎪∆>⎧⎪⎪⎪∆=⎨⎨⎪⎪∆<⎩⎪⎪--±∆⎪==⎪⎩22概念:对于一个一元二次方程ax +bx+c=0(a 0)来说,b 称为根的判别式,记为时,方程有个不相等的根根的判别式意义:时,方程有个相等的根时,方程没有实数根公式法:解为即为二、根与系数的关系(也叫韦达定理)对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x , 那么1212,b cx x x x a a+=-= 则x 1和x 2为根的一元二次方程为: x 2-( x 1+x 2)x + x 1x 2=0特殊情况:当一元二次方程为x2+px+q=0时,x 1+x 2=-p,x 1x 2=q (二次项系数为1.) 说明:(1)定理成立的条件0∆≥ (2)注意公式重12bx x a+=-的负号与b 的符号的区别..【课堂演练】三、选择题1. 若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是:( )A. 12k <B. 12k ≤C. 12k >D. k ≥122.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac =-和完全平方式2(2)M at b =+的关系是:( )(A)M = (B)M > (C)M < (D)大小关系不能确定3.已知关于x 的一元二次方程220x x a -+=有实数根,则实数a 的取值范围是:( ) A.a ≤1 B. a<1 C. a ≤-1 D. a ≥1 4.下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( ) (A )012=+x(B )0122=++x x(C )0322=++x x(D )0322=-+x x5.若1x 、2x 是一元二次方程0572=+-x x的两根,则2111x x +的值是( ) (A )57 (B )57- (C )75 (D )75- 6.已知x 1、x 2是方程x 2-3x +1=0的两个实数根,则1x 1+1x 2的值是()A 、3B 、-3C 、13 D 、17. 不解方程,判别方程5x 2-7x+5=0的根的情况是( ).(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根 (D )没有实数根8.已知方程x 2+(2k+1)x+k 2-2=0的两实根的平方和等于11,k 的取值是( )A .-3或1B .-3C .1D .39.满足“两实数根之和等于3”的一个方程是(A )0232=--x x (B )02322=--x x (C )0232=-+x x (D )02322=-+x x 10.一元二次方程0322=--x x 的根为( )A 、3,121==x xB 、3,121=-=x xC 、3,121-=-=x xD 、3,121-==x x11.下列方程中,没有实数根的是A .012=++x xB .0122=++x xC .0122=--x xD .022=--x x12.两个不相等的实数m ,n 满足m 2-6m=4,n 2-6n=4,则mn 的值为( ) (A)6 (B)-6 (C)4 (D)-413.关于x 的一元二次方程2x 2x 40--=的两根为12x x 、,那么代数式1211x x +的值为( ) A12 B 12- C 2 D -2 14.方程x 2-5x -1=0A 、有两个相等实根B 、有两个不等实根C 、没有实根D 、无法确定 15. 两个不相等的实数m ,n 满足462=-m m ,462=-n n ,则mn 的值为(A) 6 (B) -6 (C) 4 (D) -4 16. 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是A. 6B. 2 m -8C. 2 mD. -2 m17.方程组18ax y x by -=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,那么方程x 2+a x+b=0( )A.有两个不相等实数根B.有两个相等实数根C.没有实数根D.有两个根为2和3 18.一元二次方程0132=-+x x 的根的情况为( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、只有一个实数根D 、没有实数根四、填空题1.等腰△ABC 中,BC =8,AB 、AC 的长是关于x 的方程0102=+-m x x 的两根,则m 的 值是 。
第五讲一元二次方程根的判别式、根与系数的关系
第5讲 一元二次方程根的判别式、根与系数的关系一、根的判别式1.一元二次方程根的判别式的定义:运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±. 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.2.判别式与根的关系:在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程有两个不相等的实数根21,24b b acx -±-=.②0∆=⇔方程有两个相等的实数根122bx x a==-.③0∆<⇔方程没有实数根.④⇔≥∆0方程有(两个)实数根典例分析知识点1:求根的判别式的值例1:(1)一元二次方程2x 2﹣4x+1=0的根的判别式的值是 (2)已知关于x 的一元二次方程x 2+(m ﹣2)x+m ﹣2=0. (1)求根的判别式△的值(用含m 的代数式表示). (2)当m=4时,求此一元二次方程根.知识点2:利用根的判别式不解方程判断根的情况 例2:不解方程,判别下列方程的根的情况:(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=知识点:利用根的判别式求待定字母系数的取值范围(1)关于x的一元二次方程(a﹣1)x2+2ax﹣3+a=0有实数根,则a .(2)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;(3)已知分式,当x=2时,分式无意义,则a= ;当a<6时,使分式无意义的x的值共有个.知识点4:利用根的情况判断三角形形状例4:已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.知识点5:利用判别式求最值例5:阅读下列材料:求函数的最大值.解:将原函数转化成x的一元二次方程,得.∵x为实数,∴△==﹣y+4≥0,∴y≤4.因此,y的最大值为4.根据材料给你的启示,求函数的最小值.知识点:6:一元二次方程的简单应用例6:(1)李明准备进行如下操作实验,把一根长40cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,李明应该怎么剪这根铁丝? (2)李明认为这两个正方形的面积之和不可能等于48cm 2,你认为他的说法正确吗?请说明理由.(2)如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.(1)怎样围才能使矩形场地的面积为750m 2? (2)能否使所围矩形场地的面积为810m 2,为什么?(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.二、根与系数的关系 1、根与系数的关系如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(此公式的大前提:0∆≥)2、以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=3、根与系数的关系主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.典例分析知识点7:利用方程中各项系数求两根的和与积 例7:不解方程,求下列方程的两根和与积.(1)x 2﹣2x ﹣3=0; (2)3x 2+x ﹣1=0; (3)x 2+4x ﹣1=0.知识点8:已知方程的一个根,求另一个根例8:⑴若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .(2)已知关于x 的方程220x kx +-=的一个解与方程131x x +=-解相同. ⑴求k 的值;⑵求方程220x kx +-=的另一个解.知识点9:已知方程,求关于方程的两根的代数式的值 例9:(1)已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .(2)已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . (3)已知α、β是方程2520x x ++=βααβ的值.(4)如果a ,b 都是质数,且2130a a m -+=,2130b b m -+=,求b aa b+的值.知识点10:根据根与系数的关系确定方程参数的值 例10:(1)设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是____.(2)已知关于x 的方程22(23)30x k x k +-+-=有两个实数根1x ,2x ,且121211x x x x +=+,求k 值.(3)已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值。
一元二次方程的判别式和根与系数的关系
第二节 一元二次方程的判别式和根与系数的关系例一:若x 0是一元二次方程ax 2+bx+c=0(a ≠0)的根,则判别式△=b 2-4ac 与平方式M =(2ax 0+b )2的关系是什么?解:方法一:由x 0是方程的根,知ax 02+bx 0+c=0乘以4a 后配方,得4a 2x 02+4abx 0+b 2-b 2+4ac=0,(2ax 0+b )2=b 2-4ac,即 △=M方法二:由求根公式,有x 0=aac b b 24²-±-, 即 2ax 0+b=∆±平方,得 M =△方法三:∵(2ax 0+b )2=4a 2x 02+4abx 0+b 2=4a(ax 02+bx 0)+b 2又ax 02+bx 0+c=0,∴ax 02+bx 0=-c∴(2ax 0+b )2=b 2-4ac,即 △= M例二(2003·全国初中联赛):已知a,b,c 满足a+b+c=2,abc=4求:(1)a,b,c 中最大者的最小值;(2)c b a ++的最小值解:(1)不妨设a 是a,b,c 中的最大者,即a ≥b,a ≥c.由题设,知a >0,且b+c=2-a,bc=a4. 于是,b,c 是一元二次方程x 2-(2-a )x+a4=0的两实数根,则 △ =(2-a )2-4×a4≥0, a 3-4a 2+4a-16≥0,(a 2+4)(a-4) ≥0,∴ a ≥4.当a=4,b=c=-1时,满足题意,故a,b,c 中最大者的最小值为4.(2)因为abc >0,所以a,b,c 为全大于0或一正二负.①若a,b,c 均大于0,则由(1),知a,b,c 中最大者的最小值不小于4.这与a+b+c=2矛盾.②若a,b,c 为一正二负,设a >0,b <0,c <0,则c b a ++=a-b-c=a-(2-a)=2a-2.由(1),知a ≥4,故2a-2≥6.当a=4,b=c=-1时,满足题设条件且使得不等式等号成立,故c b a ++的最小值为6.例三:若二次方程(b-c)x 2+(a-b)x+(c+a)=0有两相等实根,且b ≠c ,则a,b,c 间的关系是什么?解:方法一:由判别式△=0,知△ =(a-b)2-4(b-c)(c-a)=(a+b)2-4(a+b)c+4c 2=(a+b-2c)2=0∴ a+b-2c=0方法二:∵ (b-c )x 2+(a-b)x+(c+a)=0,∴方程有一个根是x 1=1,另一个根是x 2=cb ac --. 又∵ x 1=x 2, ∴c b a c --=1. ∴c-a=b-c.∴a+b-2c=0.例四:a 为实数,M =(a -+32)2,N =4(a-1-32-)。
考点04 一元二次方程根的判别式以及根与系数的关系(解析版)
考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。
中考专题一元二次方程根的判别式及根与系数的关系
一元二次方程根的判别式及根与系数的关系【重点、难点、考点】重点:①判定一元二次方程根的情况,会利用判别式求待定系数的值、及取值范围。
②掌握根与系数的关系及应用难点:由判别式,根与系数的关系求字母的取值范围,或与根有关的代数式的值。
考点:中考命题的重点和热点,既可单独成题,又可与二次函数综合运用,是初中代数的重要内容之一。
【经典范例引路】例1 若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有两个不相等的实数根,则m 的取值范围是( )A.m<43B.m ≤43C.m>43且m ≠2D.m ≥43且m ≠2(20XX 年山西省中考试题)【解题技巧点拨】 解 C①解答此题时,学生虽然能运用判别式定理,但往往忽略“方程ax 2+bx +c =0 作为一元二次方程时 a ≠0”的情形解题原理:对方程ax 2+bx +c =0 (a ≠0)方程有两实根Δ方程有两相等实根Δ方程有两不等实根Δ⇔≥⎭⎬⎫⇔=⇔>000Δ<0⇔方程没有实根注意:学生在运用时,可能会由“方程有两实根”得出“Δ>0” 题型:①判定方程根的情况或判断简单的二元二次方程组是否有解,②证明一元二次方程有无实根,③求待定系数的值或取值范围,④根与系数的关系综合运用。
例2 先阅读下列第(1)题的解答过程(1)已知αβ是方程x2+2x-7=0的两个实数根。
求α2+3β2+4β的值。
解法1 ∵α、β是方程x2+2x-7=0的两实数根∴α2+2α-7=0 β2+2β-7=0 且α+β=-2∴α2=7-2αβ2=7-2β∴α2+3β2+4β=7-2α+3(7-2β)+4β=28-2(α+β)=28-2×(-2)=32解法2 由求根公式得α=-1+22β=-1-22∴α2+3β2+4β=(-1+22)2+3(-1-22)2+4(-1-22)=9-42+3(9+42-4-82)=32解法3 由已知得:α+β=-2 αβ=-7∴α2+β2=(α+β)2-2αβ=18 令α2+3β2+4β=A β2+3α2+4α=B∴A+B=4(α2+β2)+4(α+β)=4×18+4×(-2)=64 ①A-B=2(β2-α2)+4(β-α)=2(β+α) (β-α)+4(β-α)=0 ②①+②得:2A=64 ∴A=32请仿照上面解法中的一种或自己另外寻找一种方法解答下列各题(2)已知x1、x2是方程x2-x-9=0的两个实数根,求代数式。
一元二次方程的根的判别式和根与系数关系复习
一元二次方程的根的判别式和根与系数关系一、知识要点:1、一元二次方程20(0)ax bx c a ++=≠的根的判别式:24b ac ∆=-;2、一元二次方程20(0)ax bx c a ++=≠的根与系数关系:(1)设12,x x 是方程20(0)ax bx c a ++=≠的两根,则有1212,b c x x x x a a+=-=;(2)以12,x x 为两根的一元二次方程是:21212()0x x x x x x -++=。
3、公式变形:2221212122212121212121212121212(1)()2(2)()()4(3)(1)(1)()111(4)(5)x x x x x x x x x x x x x x x x x x x x x x x x x x +=+--=+- ++=++++ += -==121212121210000010x x x x x x x x x x x ⇔∆>⇔∆⇔∆<⇔∆≥∆≥⎧⎪⇔+=⎨⎪≤⎩∆≥⎧⇔⎨⎩∆≥⎧⎪⇔+>⎨⎪>⎩∆≥⇔+4、(1)方程有两个不等实根;(2)方程有两个相等实根=0;(3)方程没有实根0;(4)方程有两个实根0(5)方程有两个互为相反数的实根 (6)方程有两个互为倒数的实根=0 (7)方程有两个正根0 (8)方程有两个负根2121212121200000x x x x x x x x x x x ⎧⎪<⎨⎪>⎩∆>⎧⎪⇔+>⎨⎪<⎩∆>⎧⎪⇔+<⎨⎪<⎩0 (9)方程有两个异号根,且正根的绝对值比较大0 (10)方程有两个异号根,且负根的绝对值比较大例1、解关于x的方程:2--+=m x mx m(1)20例2、已知关于x的一元二次方程2m x mx m+++-=有两个不等实根,且这两根又不互为相反数,(1)230求m的取值范围。
例3、已知关于x的方程22--+=x m x m4(2)40(1)若方程有两个相等实根,求m的值,并求出方程的根;(2)是否存在正数m,使方程的两个实根的平方和等于224?若存在,请求出满足条件的m值;若不存在,请说明理由。
一元二次方程根的判别式与根与系数的关系
一元二次方程根的判别式与根与系数的关系〖知识点〗:一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理〖教学要求〗:1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。
对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和根与系数的关系分析解决一些简单的综合性问题。
内容分析1.一元二次方程的根的判别式一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系(1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么ab x x -=+21,ac x x =21(2)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=qx 1x2 =q(3)以x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0.x2-(x1+x2)x+x1x2=0.3.二次三项式的因式分解(公式法)在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是x1,x2,那么ax2+bx+c=a(x-x1)(x-x2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x的方程ax2-2x+1=0中,如果a<0,那么根的情况是()(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15 (B)12 (C)6 (D)33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
一元二次方程根的判别式、根与系数关系
பைடு நூலகம்
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根
②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
•
;/ 嗨热线网
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
第2讲 一元二次方程的根的判别式及根与系数的关系
第2讲 一元二次方程的根的判别式及根与系数的关系【学习目标】1.会用判别式判断一元二次方程的根的情况或根据方程的根的情况确定方程中待定系数的值或取值范围; 2.会利用根与系数的关系,由方程的一个根求方程的另一个根及确定方程中待定系数的值,以及求关于方程的两根的代数式的值.3.会建立一元二次方程解应用题;【教学重难点】根与系数的关系的运用考点1:判断一元二次方程的根的情况知识点与方法技巧梳理:一元二次方程根的判别式:一元二次方程ax2+bx +c =0(a ≠0)的根的情况可由24b ac -来判定,24b ac-叫做一元二次方程ax2+bx +c =0(a ≠0)的根的判别式,用希腊字母“∆”表示,24b ac ∆=-.①当24b ac ->0时,方程有两个不相等的实数根(若a ,c 异号,则必有∆>0); ②当24b ac -=0时,方程有两个相等的实数根;③当24b ac -<0时,方程没有实数根.注意:在使用根的判别式之前,应将一元二次方程化成一般形式. 【例】不解方程,判断下列方程的根的情况:(1)(1)(3)5x x x -+=- (2)01)2(2=++--x k x (k 为常数)【变式】不解方程,判断下列方程的根的情况: (1)(1)(3)5x x x -+=-(2)0)21(4)12(2=-++-k x k x (k 为常数)考点2:根据方程的根的情况确定方程中待定系数的值或取值范围知识点与方法技巧梳理:①如果方程有两个不相等的实数根,则∆=24b ac ->0;②如果方程有两个相等的实数根,则∆=24b ac -=0;③如果方程没有实数根,则∆=24b ac -<0.【例】1、已知关于x 的方程22(21)10k x k x +-+=有两个不相等的实数根,求k 的取值范围.【变式1】已知关于x 的一元二次方程2(12)10k x ---=有两个不相等的实根,求k 的取值范围.【变式2】若关于x 的方程()2421x m x m -+=-有两个相等的实数根,求m 的值和这个方程的根.【例】2、设a ,b ,c 是△ABC 三边的长,且关于x 的方程)0(02)()(22>=--++n ax n n x b n x c 有两个相等的实数根,求证:△ABC 是直角三角形.【变式】已知a ,b ,c 是一个三角形的三边长,且关于x 的方程0)()(2)(2=-+-+-b a x a b x b c 有两个相等的实数根,试判断这个三角形的形状.【例】3、已知关于x 的一元二次方程098)6(2=+--x x a 有实数根. (1)求a 的最大整数值; (2)当a 取最大整数值时,①求出该方程的根;②求118732222+---x x x x 的值.【变式】已知关于x 的一元二次方程22(1)2(2)10m x m x -+-+=有实数根. (1)求m 的最大整数值;(2)当m 取最大整数值时,①求出该方程的根;②求22365342x x x x -+++的值.【例】4、若等腰△ABC 的一边长a =6,另两边长b 、c 是关于x 的方程2(32)60x k x k +--=的两个根,求△ABC 的周长.【变式】已知等腰△ABC 的一边长c =3,另两边长a 、b 恰是关于x 的方程2(21)420x k x k -++-=的两个根,求△ABC 的周长.考点3:已知方程的一个根,求方程的另一个根及确定方程中待定系数的值知识点与方法技巧梳理:一元二次方程的根与系数的关系:如果一元二次方程ax2+bx +c =0(a ≠0)有两个实数根x 1,x 2,那么,x 1+x 2=-ba,x 1x 2=ca,这就是一元二次方程ax2+bx +c =0(a ≠0)的根与系数的关系.注意:在使用根与系数的关系之前,应将一元二次方程化成一般形式.【例】已知2-240x x c -+=的一个根,求方程的另一个根及c 的值.【变式1】已知1是方程250x bx ++=的一个根,求方程的另一个根及b 的值.【变式2】已知1是方程22(1)330m x x m m +-+--=的一个根,求m 的值及方程的另一个根.考点4:已知方程,求关于方程的两根的代数式的值知识点与方法技巧梳理:把待求的代数式整理成含有x 1+x 2及x 1x 2的式子【例】1、已知1x ,2x 是方程051022=--x x 的两个根,不解方程,求下列各式的值:(1)1211x x + (2)2212x x + (3)1221x x x x +【变式】已知1x ,2x 是方程2520x x ++=的两个根,不解方程,求下列各式的值:(1)12(2)(2)x x -- (2)21x x - (3考点5:给出两个方程的未知数不同,但结构相同,求代数式的值知识点与方法技巧梳理:两个方程的未知数不同,但结构相同,那么这两个未知数是同一个方程的两个根,由根与系数的关系可求代数式的值【例】1、如果实数a b ≠,且满足222a a +=,222b b +=,求11a b+的值.【变式】如果实数a b ≠,且满足21314a a -=,21314b b -=,求b aa b+的值.【过关检测】1.关于x 的一元二次方程02322=-+-m x x 的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 2.如果一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于( ) A .-6 B .1 C .-6或1 D .2 3.已知方程01222=+-+k kx x 的两实根的平方和为429,则k 的值为( ) A .3 B .-11 C .3或-11 D .11 4.若关于x 的方程2(2)(3)10a x a x ---+=只有一解(相同的解算一解),则a 的值为( ) A .a =0 B .a =1 C .a =2 D .a =1或a =25.某地区2015年投入教育经费2500万元,预计2017年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( )A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=6.若一元二次方程012)1(2=---x x k 有两个相等的实根数,则k 的值是__________. 7.若方程2610kx x -+=有两个实数根,则k 的取值范围是______________. 8.当k =__________时,方程0)1(2=+++k x k x 的两根互为相反数. 9.关于x 的一元二次方程20x m -=的一个根为9,则另一个根为__________.10.已知2+240x x m -+=的一个根,则另一个根为__________,m 的值为__________.11.一元二次方程ax2+bx +c =0若有两根1和-1,那么a +b +c =_________,a -b +c =_________.11.以x 1,x 2为两根的一元二次方程(二次项系数为1)是:2x -__________x +__________0=13.将一块长比宽多10cm 的矩形铁皮的四角各剪去一个边长为4cm 的小正方形,做成一个容积为800cm 3的无盖的盒子,则原铁皮的长为__________cm ,宽为__________cm .14.长为13米的梯子斜靠在墙上,梯子顶端与地面的垂直距离是12米,如果梯子顶端沿墙面下滑,且下滑的距离与底端滑动的距离相等,则梯子顶端下滑了__________米.15.已知m ,n 是方程x 2+2x -5=0的两个实数根,则m 2-mn +3m +n 的值为__________. 16.不解方程,判断下列方程根的情况:(1)01)2(2=++--x k x (2)224(1)0y my m -+-=(m 为常数)17.已知1x ,2x 是方程2260x x +-=的两个根,不解方程,求下列各式的值: (1)1211x x + (2)2212x x + (3)1221x x x x +18.如果实数a b ≠,且满足2231a a +=,2231b b +=,求b a a b +【家庭作业】1.关于x 的一元二次方程2232x x m -+-=0的根的情况是( )A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定 2.如果一元二次方程2(2)426m x mx m --+-=0有两个相等的实数根,则m 等于( ) A .-6 B .1 C .-6或1 D .23.已知方程2221x kx k +-+=0的两实根的平方和为294,则k 的值为( )A .3B .-11C .3或-11D .11 4.若关于x 的方程2(2)(3)1a x a x ---+=0只有一解(相同的解算一解),则a 的值为( ) A .a =0 B .a =1 C .a =2 D .a =1或a =2 5.已知224x x m -+=0的一个根,则另一个根为__________,m 的值为__________. 6.不解方程,判断下列方程根的情况: (1)01)2(2=++--x k x(2)224(1)0y my m -+-=(m 为常数)7.解下列方程:(1)2(21)60x x --=(2)2(21)10kx k x k -+++=。
一元二次方程的根的判别式和根与系数的关系
一元二次方程中根与系数的关系:
ax²+bx+c=(a≠0),当判别式=b²-4ac>=0时。
设两根为x₁,x₂,则根与系数的关系(韦达定理):
1、x₁+x₂=-b/a;
2、x₁x₂=c/a。
一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式决定。
一元二次方程解法
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、接开平方法
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)²=n (n≥0)的方程,其解为x=±根号下n+m。
2、公式法
把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=/(2a) , (b²-4ac≥0)就可得到方程的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4:求证关于x的方程x²-(m+2)x+2m-1=0有两个不相等的实根。
证明:△=[-(m+2)] 2-4(2m+1)=m2 -4m+8=(m-2)2 + 4 ∵不论m为何实数(m-2)2≥0 ∴(m-2)2+4一定是正数 既△>0 ∴方程x²-(m+2)x+2m-1=0有两个不相等的实根
例5:已知a是实数且方程x²+2ax+1=0 ①有两个不相等的实根。试判别方程 (2a 2-1)x²+2ax+2a 2-1=0 ②没有实根
三小格の交情极为深厚 单是从时间上来讲 那两各人交往の历史要比他那各王爷长久许多 他们别过才是区区八年の主仆情分 外加壹各似有似无の二舅子关系 可是年羹尧既是他 雍亲王の二舅子 同样也是抚远大将军の二舅子!年羮尧与二十三小格除去多年の八党渊源 现在更是同在西北征战 是同壹战壕の生死之交 那种将脑袋别在裤腰带上换来の生死之 交 岂是他仅凭雍亲王门主身份能够比得上の?还有壹各至关重要の因素!二十三小格目前储君呼声壹浪高过壹浪 识实务者为俊杰 年二公子能够舍弃二十三小格那各金主靠山而 坚守他雍亲王那各没落主子?那么多年来都没什么表过任何忠心の年羹尧 在现如今那各风声壹边倒の时刻 能够忠贞别二地为他效力卖命?所以在那天高皇帝远の西北荒漠之地 年羮尧临时反水倒戈 坚定地站在二十三小格壹边 别是没什么可能 而是极有可能 所以想要凭借年羮尧の壹已之力助王爷夺取皇位 完全就是别切实际の幻想 他既是理想主义者、 完美主义者 更是现实主义者、实干主义者 他别会裹足别前 更别会临阵逃脱 但是他又必须正视现实 把握机遇 所以现在 是到咯需要做两手准备の时候咯 第壹卷 第802章 气节 所谓の两手准备 壹方面在夺储の道路上积极争取 另壹方面也要为事败想好退路 以卵击石是盲动 只进攻别防守是傻干 退路别是退缩 是积蓄能量、保存实力の明智之举 政治上 の退路自有他の幕僚们出谋划策 而爱情上の退路呢?水清 虽然曾经将他气得咬牙切齿 曾经将他陷入被动难堪の境地 更是在半年前将他羞辱得颜面尽失、威风扫地 但是平心而 论 她却又是最对他脾气の诸人 他们也有甜蜜温馨の过往 值得他永远铭记在心中 永生别忘 就好比是刚才 片刻の温柔、须臾の迷恋 竟然会令他有些把持别住 令他开始后悔那各 决定 但是那也只是偶尔の把持别住 他仍然依靠顽强の意志力 坚持咯下来 坚持咯那各决定 但是他仍会将刚刚の那壹幕温馨の场景 深深印刻在脑海 他要记得她所有の好 忘掉她 の所有の错 他是怜香惜玉之人 更是英雄惺惺相惜之人 既然她有那么好の退路 既然他们无法相亲相爱 他 愿意放她壹条生路 而别是跟他拴在壹条线上 壹荣俱荣 壹损俱损 他想 通咯 他要对她放手 他の其它の诸人们 与他同甘同苦几十年 相处时间最少の惜月、韵音她们两人 也有十五各年头 他们同舟共济 肝胆相照、荣辱与共 当他还是壹各光头小格 无官无爵の时候 春枝、淑清、排字琦、云芳就相继走进咯他の生活 惜月和韵音虽然晚壹些 但也是在他灰头土脸、窝窝囊囊の贝勒爷时期 陪他走过人生の那段低迷时期 而水清 是在他晋封为王爷之后 才风风光光地成为他の侧福晋 却壹直游离在整各王府之外 游离在他の感情世界之外 假设别是那壹次の宿醉 他们现在仍是毫无瓜葛の两各人 别过是空有 夫妻の名分而已 既然她别爱他 而他又给别咯她应有の荣耀和尊荣 何苦将她死死地拴在他の身边?她の性情太过倔强 他们现在已经是两败俱伤 强扭の瓜别甜 既然他们也没什么 开始啥啊 既然她有那么好の退路 他 愿意成全她 就像他对婉然の真心祝福那样 对于他曾经真心真意、刻骨铭心爱过の诸人 他都希望她们能够有壹各更好の未来 他真心实意地 想要成全她 可是在水清看来 却是遭受咯平生以来最大の奇耻大辱!假设上壹次他因为宿醉而冒犯咯她 那是名节问题 现在 他用啥啊退路来成全她 那简直是比上壹次更令水清怒 别可遏 因为那是气节问题!她是有气节の人 有骨气の人 是视尊严为生命之人 别是贪生怕死、苟且偷生之流!可是她刚才已经用那么义正言辞の语言表达咯她の强烈别满 表达 咯她最真实の心意 为啥啊 他竟壹点儿反应也没什么?难道他别相信她?难道他那是在试探她 在考验她?第壹卷 第803章 明志以前别论他如何羞辱她 冤枉她 她虽然也是用各 式各样の方式表达咯她の严正抗议与强烈别满 但是那各时候 他只是她名义上の夫君而已 他们既没什么任何瓜葛 她也没什么将他放在心上 所以生过气 生过病 愤怒过 反抗过 事后水清也就全都忘记咯 那两、三年来 她壹点点地走进咯他の生命里 而他何尝别是壹样 也壹点点地驻足在她の心间?被毫别相干の人误解 她满别在乎 可是现在别壹样!他早 已是她极为在意の壹各人 视若知己 此情已付 可是在他失意落魄の时候 在她更加坚定地要与他风雨同舟、共度此生の时候 却被他如此别信任 如此曲解误会 甚至说出咯啥啊同 意她回娘家寻靠山那种陷她于别仁别义境地の话来!先别说她爱别爱他那壹回事 单单是她守别守妇道那壹回事 而且还是关乎她名节、气节の大是大非原则问题 她岂能任由他那 般侮辱她の人格和尊严?出乎水清意料の是 以往都是他被气得火冒三丈 而她则是横眉冷对 任由他气得跳脚也拿她无奈何 现在 经过与她多年の斗智斗勇 他居然也学会咯她の招 数--冷暴力:冷冷地面对她の愤怒 冷冷地面对她の反抗 别发壹言 沉默以待 无动于衷地冷眼看她の笑话 换作她愤怒得象壹头发狂の狮子 愤怒到极点の水清没什么任何办法 面对那各冷漠地面对の他 水清只剩壹条路来证明自己の清白 那就是以死言志!在她の眼中 气节是比生命更为宝贵和重要の东西 她就是死 也要坚定地捍卫它!眼前就是山之巅 峰 跳下去 她要用自己の生命 换来她の气节 她要告诉他 她没什么任何“退路” 她即使死 也别会选择啥啊“靠山”!既然他别相信她 那是她唯壹の选择!他哪里晓得她竟然会 采取如此极端の方式向他表达最强烈の抗议 当他反应过来の时候 虽然勉强拉住咯她の胳膊 但是由于事发突然 又是雪地打滑 他の脚根本吃别上力 只坚持咯壹小会儿 就被拖向 咯悬崖边上 而此刻の水清抱着必死の信念 即使被他の手拉住咯胳膊 仍是用足咯全身の力气朝悬崖冲去 眼看着她已经滑到咯悬崖の边缘 他壹下子急咯 在他就要因为雪地打滑而 摔倒前の那壹刻 仍是奋力抬脚朝她の腿上踹咯过去 手上の力度也增加到咯极限 瘦弱の水清哪里受得住他那狠命の壹脚 当即壹头就栽倒在地上 可是巨大の惯性仍使她朝悬崖边 上滑去 在最后の关头 他迅速地从雪上撑起身子 壹招“恶虎扑食” 将水清死死地按在咯身下 而此时の她 已经真真正正地抵达咯悬崖之边 幸亏被他及时按倒在地 因为她の两只 脚都已经开始悬空 将她死死地按压在身下 没什么咯性命之忧 他才算是长长地出咯壹口气 如劫后余生般地庆幸别已 第壹卷 第804章 武力劫后余生の“庆幸别已”只是王爷壹 各人の壹厢情愿 水清却是抱着必死の决心 根本就别是虚情假意の走过场 更别是跟他故作姿态 所以现在被他死死按下身下别得动弹 使她求死别得 求生又别是她の本愿 可是她 又根本别是她の对手 任何反抗企图全是徒劳无益の白白浪费体力 那各结果令她更加恼怒别已 此刻の水清根本就别想报答他の所谓救命之恩 她只想快快地咯断此生 咯断与他の 此世情缘 成就她の气节 保全她の名节 于是她拼命地扭动着身子 企图摆脱他の压制束缚 摆脱与他纠缠别清の恩恩怨怨 他怎么可能扔下她别管?别要说他曾经热烈地爱恋过她 就算是他们彼此水火别容の从前和伤心透顶の现在 作为他の诸人 他也断然别会将她丢弃在那万丈悬崖之下 只要是他の诸人 他就有责任保护她 他断然别会将她丢弃别顾 而她 呢?却是壹门心思想要离开他 摆脱他 就此咯断壹生 此时の她别仅别配合他回到安全地带 反而竭力挣脱 别但身体在全力挣脱他の压制 连悬空の两只脚也开始胡乱地蹬踹 结果 原本就别很结实の崖边碎石竟随着她那双别安分の双脚乱踹乱蹬之下而哗啦啦地滚落咯好几块!碎石滚落の声音在那寂静の山谷引起咯巨大の回声 别晓得发生咯啥啊事情の两各 人顿时被惊得全
之差的绝对值.因而应用此类关系式可以确定抛物线的解析式.
思考题:1、已知x 1,x 2是一元二次方程2x 2-2x+m+1=0的两个实数根, (1)、求m的取值范围 (2)、如果x 1,x 2满足7+4 x 1﹒x 2>x 1 2+x 2 2 且m为整数,求m的
值。
2、已知x 1,x 2是关于x的一元二次方程x 2+2mx+m-1=0的两个负实数根, 且 X 1 2+x 2 2 =8。求m的值
一元二次方程根的判别式、 根与系数的关系
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题:
一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么
解:∵方程x²+2ax+1=0有两个不相等的实根 ∴Δ 1=4a²-4>0 既a²>1 方程②中a>1 ∴ 2a²-1>1≠0 既方程②为一元二次方程 Δ 2=4a²-4(2a-1)2=-4(4a-1)(a-1) ∵a²>1 ∴a²-1>0 ∴(4a²-1)>0 2=-4(4a²-1)(a²-1)<0 ∴方程②无实根
点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
五、利用给出条件,确定一个一元二次方程中某个字母系数的值
例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值.
3、已知⊙O的面积为π,△ABC内接于⊙O,a、b、c分别是三角形三个内 角A、B、C的对边,且a 2+b 2=c 2,sinA、sinB是方程