核磁共振氢谱 解析图谱的步骤

合集下载

核磁共振氢谱课件

核磁共振氢谱课件

脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理: 扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
记录仪
ppt精选版
18
ppt精选版
19
ppt精选版
20
ppt精选版
21
三、化学位移
1.化学位移的产生
在外磁场作用下, 核外电子
11
2.核磁共振 如果以射频照射处于外磁场H0 中的核, 且照射频率υ恰好满足下列关系时 hυ= △E 或 υ= ( /2 )B0 处于低能级的核将吸收射频能量而跃迁 至高能级, 这种现象称为核磁共振现象。 由上式可知,一个核的跃迁频率与磁场 强度B0 成正比, 使1H 核发生共振, 由 自旋m = ½取向变成m = -1/2的取向。 应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。
H (3.75) OCH3 C=C
H (3.99)
H
乙烯
H2 C =CH2
(5.28)
ppt精选版
36
若以乙烯为标准, δ=5.28进行比较, 可知乙烯醚上由于存在 P-π共轭, 氧原子上未共用P电子对向双键方向推移, 使 H 的电子云密度增加, H 的化学位移向高场(右移)δ值减小。 δ=3.57 和3.99; 而在α.β- 不饱和酮中, 由于存在π-π 共轭。而电负性强的氧原子把电子拉向氧一方, 使 H 的电子 云密度降低, 化学位移移向低场(左移), δ值增大, δ=5.50 , 5.87
四甲基硅烷 Si(CH3)4 (TMS)
规为什定么: 用TTMMSS作=为0 基准?
(1 ) 12个氢处于完全相同的化学环境, 只产生一个吸收峰; (2)屏蔽强烈, 位移最大(0)。与一般有机化合物中的质子峰 不重叠; (3)化学惰性;易溶于有机溶剂;沸点低, 易回收。

核磁共振波谱法之氢谱解析

核磁共振波谱法之氢谱解析

1 .6 a峰为 3H 0.6 1 .0 b峰为 2H 0 .6 10 .5 c峰为 1H 0 .6
二、核磁共振氢谱前的要求: 1、样品纯度应>98%。 2、选用良溶剂; 3、样品用量:CW仪器一般样品需10mg左右,否则信号弱, 不易获得正常图谱。FT-NMR仪器,样品量由累加次数确 定(一般只需要几个毫克即可); 4、推测未知物是否含有酚羟基、烯醇基、羧基及醛基等, 以确定图谱是否需扫描至δ10以上;
②氢分布:
③ a 2.42 单峰 3H CH 3 CO 而不是与氧相连(CH3-O-的δ 为3.5~3.8)
d 7.35 单峰 5H 单取代苯,与烃基直接 相连
④由分子式中扣除CH3-CO-及C6H5-,余C2H2Br2而c、d皆 为二重峰,而化学位移δb4.91、 δc5.33,说明存在着-CHBrCHBr-基团。 ⑤结构式: 综上所述,未知物结构式为:
2
氢分布:a:b=2.1cm:1.4cm=3:2,因为分子式中氢总 数为10,因此a含6个氢,b为4个氢。
3.38 1.13 60 19.1 10, 一级偶合系统。 J 7.1
a 1.13 三重峰 3H CH 2 CH 3
b 3.38 (化学位移移向低场) 四重峰 2H OCH 2 CH 3
第五节
核磁共振氢谱的解析
要求:
1、掌握核磁共振氢谱中峰面积与氢核数目的 关系; 2、掌握核磁共振氢谱的解析步骤; 3、熟悉并会解析一些简单的核磁共振氢谱。
一、谱图中化合物的结构信息 1、核磁共振氢谱提供的信息:由化学位移、偶合常数 及峰面积积分曲线分别提供含氢官能团、核间关系及氢 分布等三方面的信息。具体如下: (1)峰的数目:标志分子中磁不等价质子的种类,多少种;

核磁共振氢谱解析方法

核磁共振氢谱解析方法
一些原子核有自旋现象,因而具有角动量,原子核是带电的粒子,在自旋的同时将产生磁矩,磁矩和角动量都是矢量,方向是平行的. 哪些原子核有自旋现象? 实践证明自旋量子数I与原子核的质量数A和原子序数Z: A Z I 自旋形状 NMR信号 原子核 偶数 偶数 0 无自旋现象 无 12C,16O, 32S, 28Si, 30Si 奇数 奇数或偶数 1/ 2 自旋球体 有 1H, 13C, 15N, 19F, 31P 奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体 有 11B,17O,33S,35Cl,79Br,127I 偶数 奇数 1, 2, 3, --- 自旋惰球体 有 2H, 10B, 14N
能级分裂
两种取向代表两个能级,m=-1/2能级高于m=1/2能级.
核的回旋和核磁共振 当一个原子核的核磁矩处于磁场BO中,由于核自身的旋转,而外磁场又力求它取向于磁场方向,在这两种力的作用下,核会在自旋的同时绕外磁场的方向进行回旋,这种运动称为Larmor进动.
原子核的进动
原子核的自旋、磁矩
自旋角动量〔PN,自旋量子数〔I I=0,1/2,1,3/2…… 磁矩〔μN*,核磁矩单位〔βN,核磁子;磁旋比〔γN
1. 核磁共振的基本原理
原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫
质量数与电荷数均为双数,如C12,O16,没有自旋现象.I=0 质量数为单数,如H1,C13,N15,F19,P31.I为半整数,1/2,3/2,5/2…… 质量数为双数,但电荷数为单数,如H2,N14,I为整数,1,2…… I为自旋量子数
核的自旋驰豫 驰豫过程可分为两种类型:自旋-晶格驰豫和自旋-自旋驰豫.
驰豫过程:由激发态恢复到平衡态的过程
自旋晶格驰豫:核与环境进行能量交换.体系能量降低而逐渐趋于平衡.又称纵向驰豫.速率1/T1,T1为自旋晶格驰豫时间. 自旋自旋驰豫:自旋体系内部、核与核之间能量平均及消散.又称横向驰豫.体系的做能量不变,速率1/T2,T2为自旋自旋时间. 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫时间成反比. 饱和:高能级的核不能回到低能级,则NMR信号消失的现象.

核磁共振NMR一级氢谱解析方法

核磁共振NMR一级氢谱解析方法
如果分子有对称性或者分子的局部具有对称性,若干基团会在同一 处出峰。例如,叔丁基的3个甲基在同一处出峰。
氢谱—解析方法
五.分析峰组的耦合裂分
磁性核之间的相互作用,核磁共 振氢谱的峰组一般会出现裂分。 前面已经讲述:现在通常使用高 场(高频)核磁共振谱仪,遇见 二级谱的机会相当小。需要解析 的核磁共振氢谱绝大部分均表现 为一级谱,即可以用n+l规律分析 峰组的裂分。
氢谱—解析方法六.组合来自能的结构式根据峰组间的等间距,可以找到相邻的基团。此时参考有关基团的化学 位移数值,也可以作为佐证。用这样的方法,就可以从个别的基团开始, 延伸到与它连接的基团,进而扩大成更大的结构单元。这样就可以一步 步地得到可能的结构式。 当然,如果仅仅依靠核磁共振氢谱,有可能 会遇到困难当杂原子或者季碳原于隔断耦合关系之后,基团的连接方法 就受阻了。在这样的情况下,核磁共振二维谱的应用就十分必要。
碳链的端甲基:峰组一般位于棱磁共 振氢谱的最高场(谱图的最右端), 化学位移数值约0 .87 ppm,峰型为 三重峰。
取代苯环:位置一般在6.8~8.0 ppm,它们的峰组粗看是一对两重峰, 因此也容易被识别。
氢谱—解析方法
确定待测所含的官能团
根据每个峰组的化学位移数值和所对应的氢原子数,可以确定它们 是什么官能团。从化学位移数值也可以估计它们的相邻基团。例如, 甲氧基的化学位移数值在3.5~3.9 ppm,偏低场的(化学位移数 值偏大的)应该是芳香环上面的甲氧基,即它连接的是芳环。
结构不复杂的未知物,有可能不需要 分子式也能确定它的结构。这是因为 即使不知道未知物的分子式,也可以 从核磁共振氢谱直接确定各峰组所对 应的氢原子数。这个问题很简单,因 为如果确定了某些峰组所对应的氢原 子 基 数 : , 化 其 学 他 位 蜂 移 组 数 就 值 可 一 以般 根在 据3 峰. 5组~面3 . 积9 之 p p间m的,积因分为数是值尖之锐比的而单确峰定,相所应以的很氢容 原 易 子被 数识 。别 下。 面 所 列 的 一 些 官 能 团 可 以 作为确定各峰组所对应的氢原子数的 基准:

核磁共振氢谱解析方法

核磁共振氢谱解析方法
• • • • 原子核的磁矩 自旋核在磁场中的取向和能级 核的回旋和核磁共振 核的自旋弛豫
原子核的自旋、磁矩
• 质量数与电荷数均为双数,如C12,O16,没有 自旋现象。I=0 • 质量数为单数,如H1,C13,N15,F19,P31。I 为半整数,1/2,3/2,5/2…… • 质量数为双数,但电荷数为单数,如 H2 , N14 , I为整数,1,2…… • I为自旋量子数
原子核的进动
在磁场中,原子核的自旋取向有2I+1个。各个取向由一个自旋量子 数m表示。
磁旋比:1H=26753, 2H=410 7,13C= 6726弧度/秒 高斯
N
2 H0 H0

自旋角速度ω,外磁场H0,进动频率ν
共振条件
原子核在磁场中发生能级分裂,在磁场的垂直方向上加小交变电场, 如频率为v射,当v射等于进动频率ν ,发生共振。低能态原子核吸收 交变电场的能量,跃迁到高能态,称核磁共振。
按磁场源分:永久磁铁、电磁铁、超导磁 按交变频率分:40兆,60兆,90兆,100兆,220兆,250兆,300兆 赫兹…… 频率越高,分辨率越高
2. 核磁共振仪与实验方 法
交变频率与分辨率的关系
Nuclei
(ppm)
A B C
1.89 2.00 2.08
Interaction J (Hz)
NMR发展
近二十多年发展 高强超导磁场的NMR仪器,大大提高灵敏度和分辨率; 脉冲傅立叶变换NMR谱仪,使灵敏度小的原子核能被测定; 计算机技术的应用和多脉冲激发方法采用,产生二维谱,对判断 化合物的空间结构起重大作用。 • 英国R.R.Ernst教授因对二维谱的贡献而获得1991年的Nobel奖。 • 瑞士科学家库尔特· 维特里希因“发明了利用核磁共振技术测定溶 液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。

核磁共振氢谱解析ppt课件

核磁共振氢谱解析ppt课件
第三章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:

聚合物核磁共振氢谱分析

聚合物核磁共振氢谱分析

聚合物核磁共振氢谱分析一、目的与要求1. 学习核磁共振的基本原理和实验方法;2. 学习液体核磁共振样品的制备方法;3. 掌握核磁共振谱的解析方法。

二、基本原理1H NMR可提供三方面的信息:化学位移值、耦合常数和裂分峰形以及各峰面积的积分线,根据这三方面的信息可以推测有机物的结构。

化学位移值主要用于推测基团类型以及所处化学环境。

化学位移值与核外电子云密度有关,因此凡是影响电子云密度的因素都将影响基团的化学位移。

这些因素包括与1H相邻元素的种类和基团的电负性、非球形对称电子云所产生的磁各向异性、氢键以及溶剂效应等。

化学位移值与这些因素的关系存在一定规律性(图1)。

因此根据化学位移值来推测1H的化学环境或化学结构。

图1 不同化学环境中1H的化学位移范围耦合常数和裂分峰主要用于确定基团与基团之间的连接次序。

对于1H NMR,通过相隔三个化学键的偶合(即邻碳上的氢耦合)最为重要,自旋裂分符合n+1规则。

裂分峰之间的裂距表示磁核之间相互作用的程度,称作耦合常数,用J表示,单位为Hz。

耦合常数是一个重要结构参数,可以从谱图中测量裂分峰的裂距得到。

但应注意从谱图上测得的裂距是以化学位移值表示的数据,将其乘以标准物质的共振频率(通常以仪器的频率代替)才能得到以Hz为单位的耦合常数。

积分曲线的高度代表相应峰的面积,反映了各种共振信号的相对强度。

因此与相应基团中氢原子数目成正比。

通过对积分线的测量和计算可以推测化合物中各种不同基团所含的氢原子数和总的氢原子数。

核磁共振谱图的解析就是综合利用上述三种信息推测有机物的结构。

核磁共振波谱测定时,通常是用适当的溶剂将试样溶解,参考物TMS作为内标加入其中。

为了避免溶剂中的1H干扰,通常使用氘代溶剂或四氯化碳等不含氢的溶剂。

所谓氘代溶剂是指溶剂分子中的氢原子被重氢,即氘(D)所取代,常用的氘代试剂有氘代氯仿(CDCl3)、氘代丙酮(CD3COCD3)、重水(氘代水,D2O)和氘代二甲基亚砜(CD3SOCD3)等。

氢谱谱图解析步骤讲述

氢谱谱图解析步骤讲述

谱图的解析NMR谱法一般经历如下的步骤进行谱图的解析:★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识;通过元素分析获得化合物的化学式,计算不饱和度Ω;★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。

从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等;★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。

先解析一级光谱,然后复杂光谱。

进行复杂光谱解析时,应先进行简化;★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系;★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。

然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。

例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。

解:有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性;IR显示~1750cm-1有一强峰,应有存在,且分子中有4个O,则可能有2个;处有一组三重峰,可能为-CH3,且受裂分,而处有一组四重峰,与是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为所以可能有的结合。

而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。

因此可以推测出整个分子的中间C原子为对称的结构,可能为验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核磁共振氢谱解析图谱的步骤
核磁共振氢谱
核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。

70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。

由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。

解析图谱的步骤
1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。

如果有问题,解析时要引起注意,最好重新测试图谱。

2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks)
(1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。

(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。

(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。

3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。

可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。

4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。

5.解析羧基、醛基、分子内氢键等低磁场的质子信号。

6.解析芳香核上的质子信号。

7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结
构中所连活泼氢官能团。

8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。

9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。

10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。

11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。

12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

四. 核磁共振碳谱(13C—NMR)
解析图谱的步骤
1.鉴别谱图中的非真实信号峰
(1)溶剂峰:虽然碳谱不受溶剂中氢的干扰,但为兼顾氢谱的测定及磁场需要,仍常采用氘代试剂作为溶剂,氘代试剂中的碳原子均有相应的峰。

(2)杂质峰:杂质含量相对于样品少得多,其峰面积极小,与样品化合物中的碳呈现的峰不成比例。

(3)测试条件的影响:测试条件会对所测谱图有较大影响。

如脉冲倾斜角较大而脉冲间隔不够长时,往往导致季碳不出峰;扫描宽度不够大时,扫描宽度以外的谱线会折叠到图谱中来;等等,均造成解析图谱的困难。

2.不饱和度的计算
根据分子式计算的不饱和度,推测图谱烯碳的情况。

3.分子对称性的分析
若谱线数目等于分子式中碳原子数目,说明分子结构无对称性;若谱线数目小于分子式中碳原子数目,说明分子结构有一定的对称性。

此外,化合物中碳原子数目较多时,有些核的化学环境相似,可能δ值产生重叠现象,应予以注意。

4.碳原子δ值的分区
碳原子大致可分为三个区
(1)高δ值区δ>165ppm,属于羰基和叠烯区:①分子结构中,如存在叠峰,除叠烯中有高δ值信号峰外,叠烯两端碳在双键区域还应有信号峰,两种峰同时存在才说明叠烯存在;②δ>200 ppm的信号,只能属于醛、酮类化合物;③160-180ppm的信号峰,则归属于酸、酯、酸酐等类化合物的羰基。

(2)中δ值区δ90-160ppm(一般情况δ为100-150ppm)烯、芳环、除叠烯中央碳原子外的其他SP2杂化碳原子、碳氮三键碳原子都在这个区域出峰。

(3)低δ值区δ<100ppm,主要脂肪链碳原子区:①不与氧、氮、氟等杂原子相连的饱和的δ值小于55ppm;②炔碳原子δ值在70-100ppm,这是不饱和碳原子的特例。

5.碳原子级数的确定
由低核磁共振或APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技术可确定碳原子的级数,由此可计算化合物中与碳原子相连的氢原子数。

若此数目小于分子式中的氢原子数,二者之差值为化合物中活泼氢的原子数。

6.推导可能的结构式
先推导出结构单元,并进一步组合成若干可能的结构式。

7.对碳谱的指认
将核磁共振碳谱中各信号峰在推出的可能结构式上进行指认,找出各碳谱信号相应的归属,从而在被推导的可能结构式中找出最合理的结构式,即正确的结构式。

相关文档
最新文档