midas计算预应力连续刚构桥梁工程课程设计

合集下载

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计
4-6
钢束 名称 1t1-1
1t1-3
2t1-2
3t1-1
3t1-3 23t1-1
X 0 7.6 23.85 31.45 0 5.9 25.55 31.45 32.55 40.15 55.85 63.45 64.55 72.15 88.4 96 64.55 72.15 88.4 96 56 72
坐标 (m)
为了说明采用梁格法分析一般梁桥结构的分析步骤,本例题采用了一个比较简单的分 析模型——一座由五片预应力T梁组成的3×32m桥梁结构,每片梁宽2.5m。桥梁的基本数 据取自实际结构但和实际结构有所不同。
本例题的基本数据如下:
桥梁形式:三跨连续梁桥 桥梁等级:I级 桥梁全长:3@32=96m 桥梁宽度:12.5m 设计车道:3车道
12t1-2
0
40 0.62 1.825
负弯矩
56
钢束10 23t1-2 72
0.62 1.825 0.62 1.825
钢束 类型 R 0 40 正弯矩 40 钢束8 0 0 40 正弯矩 40 钢束7 0 0 40 正弯矩 40 钢束9 0 0 40 正弯矩 40 钢束8 0 负弯矩 钢束10
负弯矩 钢束10
图4. 单位体系设定 4-10
定义材料和截面特性
同时定义多种材料
特性时,使用 键可以连续输入。
定义结构所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50
名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S) 数据库> Strand1860
图2. T型梁跨中截面图

MIDAS进行预应力混凝土桥梁设计计算步骤

MIDAS进行预应力混凝土桥梁设计计算步骤

a. 定义混凝土和钢束的材料模型>材料和截面特性>材料。

b. 定义截面的几何尺寸模型>材料和截面特性>截面。

c. 建立桥梁模型(节点、单元、边界条件)d. 定义结构组、边界组在模型>组中定义组名称,考虑施工阶段的过程定义结构组合边界组的内容。

e. 定义自重在荷载>自重中定义,可单独定义为一个荷载组,并一定要在第一个施工阶段开始步骤激活。

f. 定义其他施工阶段荷载挂篮、湿重、二期恒载、其他荷载,同时定义所属的荷载组。

g. 定义移动荷载和人群荷载在荷载>移动荷载分析数据中定义车辆(人群)、车道。

h. 定义温度作用在荷载>温度荷载>系统温度中定义整体温升、温降在荷载>温度荷载>梁截面温度中定义温度梯度作用i. 定义支座沉降在荷载>支座沉降分析数据中定义。

j. 定义钢束截面荷载>预应力荷载>预应力钢束特性值。

k. 布置纵向预应力钢筋荷载>预应力荷载>预应力钢束钢束形状。

l. 布置纵向普通钢筋、弯起钢筋、腹板竖筋、抗扭钢筋、箍筋模型>材料和截面特性>PSC截面钢筋。

m. 定义各纵向预应力钢筋的张拉控制应力荷载>预应力荷载>钢束预应力。

n. 定义各纵向预应力钢筋的张拉控制应力在荷载>预应力荷载>钢束预应力定义,同时定义所属荷载组。

注意注浆阶段。

o. 定义施工阶段在荷载>施工阶段分析数据>定义施工阶段中定义p. 定义分析内容在分析>施工阶段分析控制中选择分析方法和输出选项。

在分析>移动荷载分析控制中选择移动荷载分析方法、冲击计算方法、输出选项。

q. 运行分析分析>运行分析。

r. 建立荷载组合在结果>和荷载组合的一般和“混凝土”中定义。

s. 查看分析结果在结果>反力中各施工阶段、使用阶段的反力在结果>位移中各施工阶段、使用阶段的位移在结果>内力中各施工阶段、使用阶段的内力在结果>应力>梁应力(PSC)中查看法向应力、剪切应力、主应力。

Midas预应力混凝土连续箱梁分析算例课件

Midas预应力混凝土连续箱梁分析算例课件

MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER

MIDAS迈达斯_桥梁结构电算课程设计报告书

MIDAS迈达斯_桥梁结构电算课程设计报告书

结构电算课程设计设计题目:桥梁结构计算学院:轨道交通学院专业:交通工程班级:XXXXXXXX学号:XXXXXXXXXX姓名:XXX上海应用技术大学实践课程任务书指导教师(签名):教研室主任(签名):2017年 12 月 15 日 2017年 12 月 15 日目录一、建模过程 (1)1 工程介绍 (1)2 模型建立 (1)3 施加静力荷载 (6)4 施加移动荷载 (7)二、施工过程 (9)三、数据结果 (10)(1) (10)(2) (12)(3) (14)四、数据分析 (16)五、实习总结 (16)一、建模过程1 工程介绍1.1 工程简介已知某桥上部结构为(20+4×25+20)m的混凝土连续板(图1),荷载等级为公路-Ⅱ级。

当连续板成桥后进行桥面现浇防水混凝土和沥青铺展层施工。

现不计外测护墙和内侧护栏基座的作用。

沥青混凝土图1(尺寸单位:cm)1.2 施工方式采用桥下满堂支架施工。

1.3 设计资料(1)沥青自重g1=13.455 kN/m;(2)C30防水混凝土自重g2=18.125 kN/m;(3)C40混凝土自重g3=121.635 kN/m;(4)二期恒载g4=13.455+18.125=31.58kN/m。

2 模型建立2.1 定义材料和截面2.1.1 定义材料此次桥梁设计用到的是C40混凝土,所以只需在材料中选择C40混凝土,相应的数值软件内都有的,不需要额外输入(图2)。

图2 材料数据2.1.2 定义截面设计书中的主梁截面为5个圆形,然而软件中并没有相对应的截面设计,因此需要把5个圆形替换成1个面积相等的矩形,而外部的轮廓尺寸还是按照原来的截面设计,只需要改变部分的内部轮廓尺寸。

S矩形=S圆=5πr²=5*π*40²=8000π cm²BI1=BI3=5d/2=5*80/2=200cm=2mHI3=S矩形/(2*BI1)=8000π/2/200=62.831cm=0.628mHI1=1.2-0.628-0.21=0.362m图3 设计截面2.2 建立节点/单元2.2.1 建立节点一般每个节点之间的间隔是2-3m,这次的桥梁的6个跨度分别是20m,25m,25m,25m,25m和20m。

midas_连续梁计算书

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥1.1结构设计简述本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。

箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。

主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。

主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。

本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。

图11.1.1 箱梁构造图图11.1.2 箱梁断面图纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。

中支点断面钢束布置如图11.1.3所示。

度pk图11.1.3 中支点断面钢束布置图主要断面预应力钢束数量如下表墩横梁预应力采用采用φs15-19,单向张拉,如下图。

1.2主要材料1.2.1主要材料类型(1) 混凝土:主梁采用C50砼;(2) 普通钢筋:R235、HRB335钢筋;(3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、pk夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。

1.2.2主要材料用量指标本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。

表11.2.2-1 上部结构主要材料指标1.3结构计算分析1.3.1计算模型结构计算模型如下图所示。

图11.3.1-1 结构模型图有效分布宽度0.50.60.70.80.912.255.49.0612.916.819.523.22730.834.337.140.94447.551.155.158.662.565.168.972.776.179.4坐标Iyy 系数图11.3.1-2 箱梁抗弯刚度折减系数示意图1.3.2 支座反力计算本桥各桥墩均设三支座。

midas建模计算(预应力混凝土连续箱梁桥教学文案

midas建模计算(预应力混凝土连续箱梁桥教学文案

纵向计算模型的建立1.设置操作环境1.1打开新项目,输入文件名称,保存文件1.2在工具-单位体系中将单位体系设置为“m”,“KN”,“kj”和“摄氏”。

2.材料与截面定义2.1 材料定义右键-材料和截面特性-材料。

C50材料定义如下图所示。

需定义四种材料:主梁采用C50混凝土,立柱、盖梁及桥头搭板采用C30混凝土,基桩采用C25混凝土。

预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。

钢绞线定义时,设计类型:钢材;规范:JTG04(S);数据库:strand 1860,名称:预应力钢筋2.2 截面定义2.2.1 利用SPC(截面特性值计算器)计算截面信息(1)在CAD中x-y平面内,以mm为单位绘制主梁所有的控制截面,以DXF 格式保存文件;绘图时注意每个截面必须是闭合的,不能存在重复的线段,并且对于组成变截面组的线段,其组成线段的个数应保持一致。

(2)在midas工具中打开截面特性计算器(SPC),在Tools-Setting中将单位设置为“KN”和“mm”;(3)从File-Import-Autocad DXF导入DXF截面;(4)从Model-Section-Generate中选择“Type-Plane”;不勾选“Merge Straight Lines”前面的复选框;Name-根据截面所在位置定义不同的截面名称从而生成截面信息;(5)在Property-Calculate Section Property 中设置划分网格的大小和精度,然后计算各截面特性;(6)从File-Export-MIDAS Section File 导出截面特性文件,指定文件目录和名字,以备使用。

2.2.2 建立模型截面(1) 右键-材料和截面特性-截面-添加-设计截面,选择设计用数值截面。

单击“截面数据”选择“从SPC 导入”,选择刚导出的截面特性文件,并输入相应的设计参数。

注意:若要结合规范进行PSC 设计,在定义截面的时候,需要选择“设计截面”中进行定义,同时对于截面中的“剪切验算位置”及“验算用腹板厚度”需要定义,否则会提示“PSC 设计数据失败”。

midas建模连续刚构

midas建模连续刚构
MIDAS建模连续刚构
目 录
• MIDAS建模简介 • 连续刚构桥简介 • MIDAS建模在连续刚构桥中的应用 • 连续刚构桥的稳定性分析 • 连续刚构桥的抗震性能分析 • 连续刚构桥的施工监控与优化设计
01
MIDAS建模简介
MIDAS软件介绍
MIDAS,全称是“Mixed Data Sampling”,是一款用于分析不同频率和不同样本 间隔的数据的软件。
根据连续刚构桥的设计图纸,在MIDAS软件中创建基本结构模型,包 括桥墩、桥跨、基础等部分。
添加边界条件和荷载
根据实际工程情况,为模型添加适当的边界条件,如固定支座、滑动 支座等,并施加设计荷载,如恒载、活载等。
模拟施工过程
在MIDAS模型中模拟连续刚构桥的施工过程,包括浇筑桥墩、拼装预 制梁段等,以考虑施工过程中的各种因素对结构的影响。
动力分析法
通过分析桥梁的动力响应,评估 桥梁的稳定性,特别适用于分析 地震、风等动态载荷作用下的稳
定性。
基于MIDAS建模的稳定性分析过程
建立MIDAS模型
根据桥梁的几何尺寸、材料属 性、边界条件等,建立MIDAS
模型。
求解稳定性
通过MIDAS软件进行计算,获 得桥梁的内力和位移分布,评 估桥梁的稳定性。
建立MIDAS模型
实时监控数据采集
利用MIDAS软件建立连续刚构桥的有限元 模型,模拟施工过程和受力状态。
通过在施工现场安装传感器和监测设备, 实时采集施工过程中的位移、应变等数据 。
数据处理与分析
优化设计调整
对采集到的数据进行处理和分析,评估施 工状态和结构安全性。
根据监控数据和分析结果,对施工方案和 设计参数进行优化调整,提高施工质量和 效率。

midas连续钢构桥毕业设计

midas连续钢构桥毕业设计
设计水位 63.00m
通航水位 61.00m
粉砂土 全风化带 强风化带 弱风化带 微风化带 砂岩 微风化带
土 粉砂 化带 强风
图 2-1
预应力混凝土连续梁桥总体布置图(方案一)
设计水位 63.00m
通航水位 61.00m
广州大学土木工程学院毕业设计
2. 主桥设计
2.1 桥型方案设计与比选 2.1.1 设计构思
根据《永胜一桥桥址位置处地质剖面图》 ,毕业设计任务书的要求,结合桥梁结构的设 计,受力,施工等特点,兼顾考虑结构的实用,安全,经济,美观等要求,参照工程实例和 经验,对主桥提出了两个桥型方案——连续梁桥,连续刚构桥. 主桥构思方案见图 2-1,图 2-2.
广州大学土木工程学院毕业设计
图 2-3 主桥结构计算模型
图 2-4 承载能力组合剪力包络图(单位:kN)
图 2-5
承载能力组合弯矩包络图(单位: kN m )
2.3 预应力钢束的估算
各截面根据正截面抗裂要求,按公式(2-1), (2-2)确定预应力钢筋数量.
广州大学土木工程学院毕业设计 2, 施工比较 预应力混凝土连续梁桥:施工技术成熟,但施工过程相对来讲比较复杂,需要梁墩临时 固结和体系转换,最后必须拆除临时固结措施,使主墩上的永久性支座进入工作,施工工期 长. 预应力混凝土连续刚构桥: 采用悬臂挂篮浇注的施工方法, 无需临时固结措施与大型支 座,避免了施工过程中的支座更换,临时固结等复杂工序,缩短施工工期. 3,实用性比较 预应力混凝土连续梁桥:伸缩缝少,结构刚度大,变形小,主梁变形挠曲线平缓,行车 平顺,通畅,安全,容易满足交通运输要求. 预应力混凝土连续刚构桥:与连续梁桥类似,但施工技术成熟,易保证工程质量,同等 跨度下主桥尺寸比连续梁桥小,桥下净空大,可满容易足通航要求. 4,安全性比较 预应力混凝土连续梁桥:伸缩缝少,行车性能良好,可保证司机正常行车,满足交通运 输安全要求.桥墩尺寸较大,防撞性能好,但是阻水面积大. 预应力混凝土连续刚构桥:型整体性好,行车舒适,养护工作量少,能够避免工人在 支座养护时所可能遇到的危险.桥墩较薄,阻水面积小,对防洪排洪影响甚小,易满足水利 部门的要求.有利于抗震,能够将地震水平分力分摊到各个桥墩上去,使得地震水平力引起 的桥墩下端弯矩减少,也能够减少汽车制动力等水平分力的影响.由于墩梁固结,上下部结 构形成高次超静定体系, 即使局部结构屈服, 仍能够因应力重分布而减少整体破坏的可能性. 5,经济性比较 预应力混凝土连续梁桥:施工技术成熟,需要的机具少,无需大型设备,可充分降低施 工成本,所用材料普通,价格低,但需要造价昂贵的大型永久性支座,运营阶段的支座养护 费用高. 预应力混凝土连续刚构桥:与连续梁桥基本相同.但无须支座,节省大型永久性支座的 费用以及日后养护的费用,降低工程造价. 6,外观比较 预应力混凝土连续梁桥:形势简单,造型单一. 预应力混凝土连续刚构桥:墩梁固结作用可降低梁高,配合双柱薄壁墩,可以使主桥看 起来更纤巧,更美观. 因此,从设计,使用,施工的可行性,以及工程的经济,安全,美观以及施工周期等方 面考虑,最终确定了主桥采用连续刚构桥的方案.

预应力混凝土连续箱梁桥设计计算

预应力混凝土连续箱梁桥设计计算

预应力混凝土连续箱梁桥设计计算本设计采用预应力混凝土连续钢构桥,跨径布置为90m+160m+90m,双向四车道;主梁为变截面单箱单室箱型梁,墩顶处梁高9m,跨中梁高3.5m,梁底曲线选用半径为58818.1cm的圆曲线变化;采用挂篮悬臂浇筑施工。

本文主要阐述了该桥的上部结构的设计和使用midas的建模过程。

首先对主桥进行总体结构设计,拟定上部结构尺寸,然后使用midas软件建模,对连续梁桥进行有限元分析,进行施工过程模拟,最后进行成桥后的活载下分析以及按照规范进行荷载组合计算。

关键词:预应力混凝土变截面连续刚构桥,MIDAS软件,挂篮悬臂浇筑施工,施工过程分析第一章桥梁概况1.1桥梁构造大桥为90m+160m+90m的三跨预应力混凝土变截面连续刚构桥,主桥全长340m,另有两跨35m的引桥,全长410m。

桥墩采用双薄壁墩,墩高55.8m,单薄壁厚3.3m,双壁中距9.7m。

基础均为桩基础。

桥台为重力式桥台。

总体布置如图1-1所示。

图1.1 桥位布置图大桥主梁采用单箱单室截面,其他各项尺寸如下:1.1.1主跨径的拟定主跨径定为160,边跨采用0.562倍的中跨径,即90 。

桥梁全长为90+160+90=340m 。

1.1.2 顺桥向梁的尺寸拟定1) 墩顶处梁高:根据规范,梁高为(1/12~1/21)L,取L/17.6,即9 m。

2) 跨中梁高:根据对比国内已建成的相似桥梁取为3.5m.3) 梁底曲线:选用半径为58818.1cm的圆曲线变化。

1.1.3 横桥向的尺寸拟定行车道为净-10.5m,另外两边各有宽0.5m的护栏。

即净-0.5m+10.5m+2m+10.5m+0.5m主梁截面细部尺寸的拟定,如图1.2所示。

图1.2 主梁截面尺寸图顶板厚取28cm。

根据底板厚度按“中薄边厚”的原则取跨中处底板厚30cm,以便布置预应力束,支点处底板厚为1/8~l/12倍的梁高,取H/8即130cm,中间底板板厚依直线过渡变化;腹板厚度由于要布置预应力钢束锚头,从受力方面来讲,支点附近承受剪力较大,腹板宜加厚;各孔跨中区段承受剪力较小,腹板可适当减薄。

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

midas--预应力混凝土连续梁桥设计1+RC设计验算说明

MIDAS Information Technology(Beijing) Co., Ltd
概要
本例题使用一个简单的预应力混凝土两跨连续梁箱模型(图1)来重点介 绍MIDAS/Civil 2006 软件的新增功能,PSC桥梁建模助手、横向分析、任意 截面显示等的输入方法。
图1. 分析模型
2
MIDAS Information Technology(Beijing) Co., Ltd
模型>单元> 扩展单元
全选
扩展类型>节点 Æ线单元
单元类型>梁单元 ; 材料>1:C50 ; 截面> 1: span
生成形式>复制和移动
复制和移动>等间距>dx,dy,dz>(2, 0, 0)
复制次数>(60) ↵
模型>单元>复制和移动
单选 (节点:31)
等间距>dx,dy,dz>(0,0,-7.13)
3.500 450 1.750
12.700 500
1.350 1.350
3.500 1.750
2.000 600 450 1.750 1.050
CL OF BOX
275 250
325 250
275 250 260 1.840 350 80 2.700 250
250350 802源自05.680850
450 1.250
同时定义多种材料
特性时,使用 键可以连续输入。
下面定义PSC Beam所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50 ↵

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应⼒混凝⼟连续T梁桥的分析与设计北京迈达斯技术有限公司⽬录概要 (3)设置操作环境 (10)定义材料和截⾯特性 (11)建⽴结构模型 (21)PSC截⾯钢筋输⼊ (42)输⼊荷载 (44)定义施⼯阶段 (63)输⼊移动荷载数据 (73)运⾏结构分析 (80)查看分析结果 (81)概要梁格法是⽬前桥梁结构分析中应⽤的⽐较多的在本例题中将介绍采⽤梁格法建⽴⼀般梁桥结构的分析模型的⽅法、施⼯阶段分析的步骤、横向刚度的设定以及查看结果的⽅法和PSC设计的⽅法。

本例题中的桥梁模型如图1所⽰为⼀三跨的连续梁桥,每跨均为32m。

图1. 简⽀变连续分析模型桥梁的基本数据为了说明采⽤梁格法分析⼀般梁桥结构的分析步骤,本例题采⽤了⼀个⽐较简单的分析模型——⼀座由五⽚预应⼒T梁组成的3×32m桥梁结构,每⽚梁宽2.5m。

桥梁的基本数据取⾃实际结构但和实际结构有所不同。

本例题的基本数据如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:3@32=96m桥梁宽度:12.5m设计车道:3车道图2. T型梁跨中截⾯图图3. T梁端部截⾯图使⽤材料以及容许应⼒> 混凝⼟采⽤JTG04(RC)规范的C50混凝⼟>普通钢筋普通钢筋采⽤HRB335(预应⼒混凝⼟结构⽤普通钢筋中箍筋、主筋和辅筋均采⽤带肋钢筋既HRB系列) >预应⼒钢束采⽤JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应⼒钢筋抗拉强度标准值(fpk):1860N/mm^2预应⼒钢筋与管道壁的摩擦系数:0.3管道每⽶局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉⼒:抗拉强度标准值的75%>徐变和收缩条件⽔泥种类系数(Bsc): 5 (5代表普通硅酸盐⽔泥)28天龄期混凝⼟⽴⽅体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作⽤时混凝⼟的材龄:=t5天o混凝⼟与⼤⽓接触时的材龄:=t3天s相对湿度: %RH=70⼤⽓或养护温度: CT=°20构件理论厚度:程序计算适⽤规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝⼟收缩变形率: 程序计算荷载静⼒荷载>⾃重由程序内部⾃动计算>⼆期恒载桥⾯铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥⾯铺装层:厚度80mm的钢筋混凝⼟和60mm的沥青混凝⼟,钢筋混凝⼟的重⼒密度为25kN/m3, 沥青混凝⼟的重⼒密度为23kN/m3。

midas软件桥梁工程课程设计

midas软件桥梁工程课程设计

midas软件桥梁工程课程设计一、教学目标本课程旨在通过Midas软件桥梁工程的学习,让学生掌握桥梁工程的基本知识和设计原理,提高学生运用计算机软件进行桥梁工程设计和分析的能力。

具体的教学目标如下:1.知识目标:学生能够理解桥梁工程的基本概念、设计原理和工程应用;掌握Midas软件的基本操作和功能;了解桥梁工程中的主要技术和方法。

2.技能目标:学生能够运用Midas软件进行桥梁工程的建模、分析和设计;能够独立完成桥梁工程的计算和绘图;具备解决桥梁工程实际问题的能力。

3.情感态度价值观目标:学生能够认识到桥梁工程在国民经济和社会发展中的重要性;培养学生的创新意识和团队合作精神;提高学生对桥梁工程领域的兴趣和热情。

二、教学内容本课程的教学内容主要包括以下几个部分:1.桥梁工程基本概念和设计原理:介绍桥梁工程的定义、分类和组成;讲解桥梁工程的设计原理和方法。

2.Midas软件操作和功能:讲解Midas软件的基本操作和功能,包括建模、分析和设计等。

3.桥梁工程案例分析:分析典型的桥梁工程案例,让学生了解桥梁工程在实际工程中的应用。

4.桥梁工程设计实践:让学生通过实际操作,运用Midas软件完成桥梁工程的建模、分析和设计。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:讲解桥梁工程的基本概念、设计原理和Midas软件操作方法。

2.案例分析法:分析典型的桥梁工程案例,让学生了解桥梁工程在实际工程中的应用。

3.实验法:让学生通过实际操作,运用Midas软件完成桥梁工程的建模、分析和设计。

4.讨论法:学生进行小组讨论,培养学生的团队合作精神和创新意识。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的桥梁工程教材,为学生提供系统、全面的知识学习。

2.参考书:提供相关的桥梁工程参考书籍,丰富学生的知识视野。

3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。

midas软件桥梁工程课程设计

midas软件桥梁工程课程设计

midas软件桥梁工程课程设计一、课程目标知识目标:1. 理解桥梁工程的基本原理和设计流程;2. 掌握Midas软件在桥梁工程设计中的应用;3. 学习桥梁结构分析、计算和优化方法;4. 了解桥梁工程中的力学原理和材料性质。

技能目标:1. 能够运用Midas软件进行桥梁结构建模和数据分析;2. 学会使用Midas软件进行桥梁工程的方案设计和优化;3. 培养解决实际桥梁工程问题的能力;4. 提高团队协作和沟通能力,能够就设计方案进行有效讨论。

情感态度价值观目标:1. 培养对桥梁工程设计和施工的兴趣,激发学习热情;2. 树立正确的工程观念,认识到工程对社会和环境的责任;3. 增强创新意识,敢于尝试新的设计方法和理念;4. 培养严谨、细致、务实的工作态度,为未来从事相关工作打下基础。

本课程针对高年级学生,结合桥梁工程课程特点,以Midas软件为工具,注重理论知识与实际应用的结合。

课程目标旨在使学生掌握桥梁工程设计的基本知识和技能,培养解决实际问题的能力,同时注重培养正确的情感态度和价值观,为我国桥梁工程建设输送高素质人才。

通过本课程的学习,学生将具备独立进行桥梁工程设计的能力,为未来的职业生涯奠定坚实基础。

二、教学内容1. 桥梁工程基本原理:介绍桥梁结构类型、受力特点及设计原则,对应教材第一章内容。

2. Midas软件操作基础:讲解Midas软件界面、基本操作和建模方法,对应教材第二章内容。

3. 桥梁结构建模:学习运用Midas软件进行桥梁结构建模,包括梁单元、板单元和实体单元的应用,对应教材第三章内容。

4. 桥梁结构分析:介绍线性静力分析、非线性分析及动力分析等分析方法,对应教材第四章内容。

5. 桥梁工程设计优化:学习基于Midas软件的桥梁工程设计优化方法,包括尺寸优化、形状优化和拓扑优化,对应教材第五章内容。

6. 工程案例解析:分析典型桥梁工程案例,使学生了解实际工程中Midas软件的应用,对应教材第六章内容。

连续刚构桥内力电算辅导(midas)

连续刚构桥内力电算辅导(midas)

分组
结构组(单元分组) 边界组 荷载组
施工过程模拟
定义施工步骤
施工过程模拟
连续刚构施工中,一个通 用的施工阶段包含几个子 阶段: 1、混凝土浇筑形成初步强度 模拟方法:激活单元, 并删除上一阶段的湿重 2、预应力张拉 模拟方法:激活拟张拉预 应力荷载。 3、推挂篮 模拟方法:激活下一阶段 的挂篮荷载,钝化本阶段 的挂篮荷载 4、浇筑下一阶段混凝土 模拟方法:激活下一阶段 的湿重。
连续(刚构)预应力混凝土桥 毕业设计电算辅导
徐腾飞 西南交通大学·桥梁工程系 TengfeiXU@
连续梁的施工过程
悬臂浇筑T构, 现浇边跨 边跨合拢 中跨合拢
连续梁的内力过程
毕业设计中内力计算要求 1. 手算并绘制0号块施工至最大悬 臂阶段的内力图; 2. 电算施工过程、成桥,使用阶 段内力。
定义截面
1、看图输入参数 2、熟练后,可采用表格输入 3、利用显示截面特性来验证 输入是否正确
定义变截面
1、点击“导入”,导入之前定 义的截面 2、注意导入的单元I,J两端
定义材料
连接单元
连接相应相应节点,形成单元
约束条件
线位移约束
角位移约束
恒载及施工荷载
1、定义荷载工况
恒载
自重
恒 载
二期恒载 支座沉降
施工荷载
1、湿重(简化为节点荷载) 2、挂篮重量(简化为节点荷载) 注意:荷载组的选择
施工荷载
3、预应力荷载 (内力估算时,不计)
预应力的处理
预应力钢束特性 值
主要用于处理预应力损 失计算,参数输入应查 阅规范及预应力资料。
预应力的处理
用于输入预应力筋的形状即平 弯与竖弯特性。
施工过程手算ቤተ መጻሕፍቲ ባይዱ法

Midas课程设计T梁

Midas课程设计T梁

Midas课程设计T梁hk计算书设计:_____________________ 校对:_____________________ 审核:_____________________2016-12-30目录一、基本信息 (5)1.1 工程概况 (5)1.2 技术标准 (5)1.3 主要规范 (5)1.4 结构概述 (5)1.5 主要材料及材料性能 (5)1.6 计算原则、内容及控制标准 (6)二、模型建立与分析 (6)2.1 计算模型 (6)2.2 主要钢筋布置图及材料用表 (7)2.3 截面特性及有效宽度 (7)2.4 荷载工况及荷载组合 (8)三、内力图 (11)3.1 内力图 (11)四、持久状况承载能力极限状态验算结果.. 134.1 截面受压区高度 (13)4.2 正截面抗弯承载能力验算 (14)4.3 斜截面抗剪承载能力验算 (14)4.4 抗扭承载能力验算 (15)4.5 支反力计算 (15)五、持久状况正常使用极限状态验算结果.. 165.1 结构正截面抗裂验算 (16)5.2 结构斜截面抗裂验算 (17)六、持久状况构件应力验算结果 (18)6.1 正截面混凝土法向压应力验算 (18)6.2 正截面受拉区钢筋拉应力验算 (18)6.3 斜截面混凝土的主压应力验算 (19)七、短暂状况构件应力验算结果 (19)7.1 短暂状况构件应力验算 (19)一、基本信息1.1 工程概况1.2 技术标准1.3 主要规范1)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2)《公路桥涵设计通用规范》(JTG D60-2004)3)《公路工程技术标准》(JTG B01-2003)4)《公路桥梁抗震设计细则》(JTG/T B02-01-2008)5)《公路桥涵地基与基础设计规范》(JTG D63-2007)6)《城市桥梁设计规范》(CJJ11-2011)1.4 结构概述1.5 主要材料及材料性能1)混凝土表格 1 混凝土表格2)普通钢筋表格 2 普通钢筋表格3)预应力材料表格 3 预应力材料表格1.6 计算原则、内容及控制标准计算书中将采用midas Civil对桥梁进行分析计算,并以《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)为标准,按A类预应力混凝土结构进行验算。

用MIDAS建连续刚构桥模型

用MIDAS建连续刚构桥模型

用MIDAS建连续刚构桥模型步骤:1.建立一个模型的第一步就是要建立符合你需要的单位体系,一般用KN,M。

2.定义材料参数:混凝土材料参数,预应力钢筋材料参数。

在首先建立模型的时候,可以直接应用MIDAS给定的规范数据库中的材料来定义,但是在实际的工程中,要根据实际的情况来设置一些参数,如泊松比、弹性模量、线膨胀系数等。

这个时候要用自定义材料参数来定义。

3.定义时间依存性材料特性:(我们通常说的混凝土的收缩徐变特性、混凝土强度随时间变化在程序里统称为时间依存材料特性)1)定义时间依存性特性函数(包括收缩徐变函数,强度发展函数,一般国内的规范里面不考虑强度发展函数)2)将定义的时间依存特性函数与相应的材料连接起来3)修改时间依存材料特性值(对于连续刚构桥一般就是指修改构件的理论厚度)4.截面定义:截面定义有许多种方法,可以采用调用数据库中截面(标准型钢)、用户定义、采用直接输入截面特性值的数值形式、导入其他模型中已有截面。

针对连续刚构桥的截面定义,最好是采用用户定义的方式输入截面参数,当然也可以采用在AutoCAD画好截面,采用MIDAS中的截面特性计算器计算出截面的特性值,保存为SEC文件的形式后,再导入MIDAS中这种数值形式来定义截面,但是这种树脂形式定义的截面不能向用户输入那样直观的显示截面的三维效果,但是其不影响整个模型的计算结果。

其中截面特性计算器有其相关的文件说明。

连续刚构桥的截面定义一般是先建立PSC截面后,再建立变截面单元,等到建立好单元长度后,将变截面单元赋给相应的单元。

5.建立节点:首先要明白节点是有限元模型最基本的单位,节点不代表任何的实际桥梁结构只是用来确定构件的位置。

节点的建立可以采用捕捉栅格网、输入坐标、复制已有节点、分割已有节点等方法来建立新的节点,另外在复制单元的同时程序会自动生成构成单元的节点。

节点建立过程中可能会出现节点号不连续的情况,这是可以通过对选择节点进行重新编号或紧凑节点编号来进行编辑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预应力混凝土连续刚构桥结构设计书
1.结构总体布置
本部分结构设计所取计算模型为三跨变截面连续箱梁桥,根据设计要求确定桥梁的分孔,主跨长度为80m,取边跨46m,边主跨之比为0.575。

设计该桥为三跨的预应力混凝土连续梁桥(46m+80m+460m),桥梁全长为172m。

大桥桥面采用双幅分离式桥面,单幅桥面净宽20m (4X3.75行车道+1m左侧路肩+3.0m右侧路肩人行道+2X0.5m防撞护栏),两幅桥面之间的距离为1m,按高速公路设计,行程速度100Km/h。

桥墩采用单墩,断面为长方形,长14米,宽3.5米,高25米。

上部结构桥面和下部结构桥墩均采用C50混凝土,预应力钢束采用Strand1860钢材。

桥梁基本数据如下:
桥梁类型 : 三跨预应力箱型连续梁桥(FCM)
桥梁长度 : L =46 + 80 + 46 = 172 m
桥梁宽度 : B = 20 m (单向4车道)
斜交角度 : 90˚(正桥)
桥梁正视图
桥梁轴测图
2.箱梁设计
主桥箱梁设计为单箱单室断面,箱梁顶板宽20m,底板宽14m,支点处梁高为h支= (1/15 ~ 1/18)L中= 4.44 ~5.33m,取h支=5.0m,高跨比为1/16,跨中梁高为h中= (1/1.5~1/2.5) h 支= 2~ 3.33m,取h中=2.30m,其间梁底下缘按二次抛物线曲线变化。

箱梁顶板厚为27.5cm。

底板厚根部为54cm,跨中为27cm,其间分段按直线变化,边跨支点处为80cm,腹板厚度为80cm 具体尺寸如下图所示:
箱梁断面图
连续梁由两个托架浇筑的墩顶0号梁段、在两个主墩上按“T构”用挂篮分段对称悬臂浇
筑的梁端、吊架上浇筑的跨中合拢梁段及落地支架上浇筑的边跨现浇梁段组成, 0号梁段长2m ,两个“T构”的悬臂各分为9段梁段,累计悬臂总长38m 。

全桥共有一个2m 长的主跨跨中合拢梁段和两个2m 长的边跨合拢梁段。

两个边跨现浇梁段各长4m ,梁高相同。

主墩墩顶箱梁综合考虑受力和变形情况箱梁内各设柔性横隔板2道,边墩顶各设横隔板一道。

为满足施工和管理需要,在每道横隔板出均设置了人洞。

同时为保持箱内干燥,在箱梁根部区段底板上设有排水口。

3.荷载参数
3.1永久荷载
结构重力
在程序中以自重输入 二期恒载 W=32.5KN/m
3.2预应力荷载
跨中与边跨钢束()196.0(192.15-''⨯ϕϕmm ) 截面面积 :2
353.2619387.1cm A p =⨯= 顶板钢束()196.0(312.15-''⨯ϕϕmm ) 截面面积 :297.94231387.1cm A p =⨯= 孔道直径 :mm 103/100
张拉力 : 施加75%抗拉强度的张力 张拉初期的损失(由程序计算) 摩擦损失 :)kL (0)X (e P P +μα-⋅= 顶板束 : 20.0=μ, 001.0k = 底板束 : 30.0=μ, 006.0k = 锚固端滑移量 : mm 6I c =∆
混凝土弹性压缩预应力损失 : 损失量, SP P E A f P ⋅∆=∆ 预应力长期损失(由程序计算) 应力松弛
徐变和干缩引起的损失
3.3徐变和干缩
条件
水泥 : 普通水泥
t=日
施加持续荷载时混凝土的材龄 : 5
o
t=日
混凝土暴露在大气中时的材龄 : 3
s
相对湿度 : %
RH=
70
大气或养生温度 : C
=
T︒
20
适用标准 : 道桥设计标准 (CEB-FIP)
徐变系数 : 由程序计算
混凝土干缩应变 : 由程序计算
3.4挂篮荷载
假设挂篮自重如下
P=
80
0.
tonf
3.5可变荷载
可变作用主要考虑汽车荷载、温度作用、支座沉降等作用。

汽车荷载为高速公路1级,4车道布置,考虑荷载横向分布系数0.67,不考虑人群荷载作用。

温度作用考虑四种工况,体系温升20℃,体系温降-20℃。

每个支座均考虑支座沉降,其中沉降量均为10mm,取最不利组合。

3.6使用状态荷载组合
正常使用极限状态下,标准值组合恒载组合系数1.0,汽车荷载组合系数为0.7。

;承载力极限状态下,结构的重要性系数为1.1,恒载组合系数1.2,汽车荷载组合系数为1.4,温度组合系数0.8;标准值组合恒载组合系数1.0,汽车荷载组合系数为1.0。

4.计算模型
4.1单元与节点
计算模型中全桥共划分为61节点,58个单元。

确定计算模型时主要根据主桥梁段划分情况来确定,每一悬浇段为一个单元。

施工阶段分析考虑挂篮移动,混凝土浇注,预应力钢筋张拉以及施工临时荷载的变化等。

0号梁段长2m,两个“T构”的悬臂各分为9段梁段,累计悬臂总长38m。

全桥共有一个2m长的主跨跨中合拢梁段和两个2m长的边跨合拢梁段。

两个边跨现浇梁段各长4m,梁高相同。

4.2预应力体系
纵向预应力钢束共设置了顶、底板束和腹板束,采用Strand1860钢材,设计张拉应力1395Mpa.
部分预应力筋如图
顶板横向预应力沿轴线每60cm布置一束,钢束均采用φ15.24-3钢绞线,设计张拉吨位586kN,用扁锚体系锚固,采用两端张拉方式,竖向预应力钢筋采用φ32的精轧螺纹粗钢筋,设计张拉吨位为673kN,采用梁顶一端张拉方式锚固。

5.施工阶段模拟
桥箱梁按两个“T”对称悬臂浇筑施工,0号梁段采用搭设托架现场浇筑完成,其余梁段采用挂篮悬臂浇筑,两边跨各4m现浇梁段采用搭设支架现浇,边跨合拢段长为2m,中跨合拢段长为2m。

全桥共分为26个施工阶段。

悬臂法(FCM)的施工顺序一般如下:
具体施工顺序为:
浇注桥墩
浇注0#块,张拉预应力筋,加挂篮
浇注2#块,张拉预应力筋,移动挂篮
挂篮待前一块浇注完毕并张拉预应力筋后,向下块移动。

浇注9#块,张拉预应力筋,并在两侧搭建临时支撑浇注边跨现浇段。

边跨合拢,张拉预应力筋,拆除临时支撑。

中跨合拢
张拉全部边跨预应力筋与中跨预应力筋
6.施工阶段分析
施工过程中桥面顶板各点所受最大拉应力如图:
施工过程中桥面顶板各点所受最大压应力如图:
施工过程中桥面底板各点所受最大拉应力如图:
施工过程中桥面底板各点所受最大压应力如图:
施工过程中桥面顶板各点所受最大拉应力为1.8MPa,最大压应力为3.3MPa
施工过程中桥面底板各点所受最大压应力为1.7MPa,最大压应力为9.5Mpa,都满足规范要求。

7.使用阶段分析
使用阶段荷载组合:正常使用极限状态下,标准值组合恒载组合系数1.0,汽车荷载组合系数为0.7。

;承载力极限状态下,结构的重要性系数为1.1,恒载组合系数1.2,汽车荷载组合系数为1.4
正常使用状态弯矩包络图:
极限状态弯矩包络图:
正常使用状态应力图
极限状态应力图
正常使用状态下桥面顶板所受拉应力与压应力如下:
正常使用状态下桥面底板所受拉应力与压应力如下:
极限状态下桥面顶板所受拉应力与压应力如下:
极限状态下桥面底板所受拉应力与压应力如下:
由上述结果可知,正常使用状态下桥面板顶板与底板的拉应力与压应力均在要求范围内。

极限状态下桥面板顶板与底板的拉应力超出3Ma,但考虑到极限状态并不常出现,因此在此可以认为符合要求。

升温20度时桥面最大应力
降温20度时桥面最大应力
沉降对桥面的最大拉应力与最大压应力
挠度要求:
有图可以看出主梁在汽车荷载(不计冲击力)作用下最大位移为8.4mm,满足规范要求(L/600=133mm)。

相关文档
最新文档