安徽省蚌埠市2017届高三上学期第一次质量检测数学(理)试题(图片版)

合集下载

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。

安徽省2017年高考理科数学试题及答案(word版)

安徽省2017年高考理科数学试题及答案(word版)

安徽省2017年高考理科数学试题及答案(word版)1.已知集合A={x|x<1},B={x|3x<1},求B的取值范围。

A。

B={x|x<0}B。

B={x|x>1}C。

B=AD。

B=R解析:将3x<1化简得x<1/3,所以B={x|x<1/3},选项A 为正确答案。

2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是多少?A。

1/4B。

π/8C。

1/2D。

π/4解析:由于黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积等于白色部分的面积,即黑色部分的面积为正方形面积的一半。

所以此点取自黑色部分的概率为1/2,选项C为正确答案。

3.设有下面四个命题:p1:若复数z满足Re(z)=0,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R。

其中的真命题为?A。

p1,p3B。

p1,p4C。

p2,p3D。

p2,p4解析:p1显然是真命题,因为实数的虚部为0.对于p2,设z=a+bi,则z2=a2-b2+2abi,z2∈R意味着b=0,即z∈R。

所以p2也是真命题。

对于p3,设z1=a1+b1i,z2=a2+b2i,则z1z2=(a1a2-b1b2)+(a1b2+a2b1)i,z1z2∈R意味着a1b2+a2b1=0,即z1/z2为纯虚数,所以z1=z2.所以p3也是真命题。

对于p4,显然是真命题。

所以选项B为正确答案。

4.记Sn为等差数列{an}的前n项和。

若a4+a5=24,S6=48,则{an}的公差为多少?A。

1B。

2C。

4D。

8解析:设等差数列的公差为d,则a4=a1+3d,a5=a1+4d,S6=3a1+15d=48,a4+a5=2a1+7d=24.解得a1=4,d=4,所以公差为4,选项C为正确答案。

2017届安徽省蚌埠市高三第一次质量检测理科数学试题 及答案

2017届安徽省蚌埠市高三第一次质量检测理科数学试题 及答案

蚌埠市2017届高三年级第一次教学质量检查考试数 学(理工类)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、若复数()()21ai i +-(R a ∈)是纯虚数(i 是虚数单位),则a 的值为( )A .2-B .1-C .1D .22、已知集合{}2x x A =<,{}5xyy B ==,则A B = ( )A .{}2x x <B .{}2x x >C .{}02x x ≤<D .{}02x x <<3、设tan130a =,()cos cos 0b =,0212c x ⎛⎫=+ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a b c >>D .b c a >>4、运行如图所示的程序框图,输出的所有实数对(),x y 所对应的点都在某函数图象上,则该函数的解析式为( )A .2y x =+B .3y x=C .3x y =D .33y x =5、函数()()sin f x x ωϕ=+的最小正周期大于π的充分不必要条件是( )A .1ω=B .2ω=C .1ω<D .2ω>6、数列{}n a 是等差数列,若2a ,43a +,66a +构成公比为q 的等比数列,则q =( )A .1B .2C .3D .47、某几何体的三视图如图所示,则该几何体的体积为( )A .12π+B .6π+C .12π-D .6π-8、函数()y f x =是R 上的奇函数,满足()()33f x f x +=-,当()0,3x ∈时,()2x f x =,则当()6,3x ∈--时,()f x 等于( )A .62x +B .62x --C .62x -D .62x +-9、已知变量x ,y 满足02xy x y >⎧⎪⎨+≤⎪⎩,则z x y=+的取值范围是( )A .[]0,4B .(]0,4C .[]0,2D .(]0,210、已知1x ,2x 是方程20ax bx c ++=的两根,且满足1212x x <<<,a ,b ,c ∈Z ,则当正整数a 取得最小值时,b c +=( )A .5-B .4-C .1-D .3二、填空题(本大题共5小题,每小题5分,共25分.) 11、命题:“R x ∀∈,都有31x ≥”的否定形式为 . 12、函数()()2lg 1f x x =-的定义域是 .13、523x ⎫⎪⎭的展开式中的常数项为 .14、甲、乙、丙三所学校的6名学生参加数学竞赛培训,其中有1名甲学校的学生,2名乙学校的学生,3名丙学校的学生,培训结束后要照相留念,要求同一学校的学生互不相邻,则不同的排法种数为 . 15、若正方体12341234Q Q Q Q P P P P -的棱长为1,集合{}{}{}11Q ,,,Q ,,1,2,3,4i j x x S S i j M ==P ⋅T T∈P ∈,则对于下列命题:①当Qi j i j S T =P时,1x =; ②当Q i j i j S T =P时,1x =-;③当1x =时,(),i j 有8种不同取值; ④当1x =时,(),i j 有16种不同取值; ⑤{}1,0,1M =-.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.) 16、(本小题满分12分)在C ∆AB 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知222b c a bc +=+. ()I 求A 的大小;()II 如果sin B =,2b =,求C ∆AB 的面积.17、(本小题满分12分)已知三次函数()f x 的导函数()233f x x ax '=-,()0f b =,a 、b 为实数.()I 若曲线()y f x =在点()()1,1a f a ++处切线的斜率为12,求a 的值;()II 若()f x 在区间[]1,1-上的最小值、最大值分别为2-和1,且12a <<,求函数()f x 的解析式.18、(本小题满分12分)蚌埠市海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.()I 求这6件样本中来自A ,B ,C 各地区商品的数量;()II 若在这6件样本中随机抽取2件送往甲机构进行进一步检测,求这2件商品中来自C 地区的样品数X 的分布列及数学期望.19、(本小题满分12分)设a ,b ,c 是三角形的三边长,直线:l 0ax by c ++=,()1,1M --,()1,1N -,()1,1P ,()Q 1,1-.()I 判断点M ,N ,P ,Q 是否均在直线l 的同一侧,请说明理由; ()II 设M ,N ,P ,Q 到直线l 的距离和为S ,求证:S <20、(本小题满分13分)如图,直角梯形CD M E 中,//DC EM ,D DCE ⊥,B 是EM 上一点,CD 2=BM =M =,D 1EB =E =,沿C B 把C ∆MB 折起,使平面C MB ⊥平面CD B E ,得出右侧的四棱锥CD A -B E .()I 证明:平面D EA ⊥平面CD A ; ()II 求二面角D E -A -B的大小.21、(本小题满分14分)已知函数()ln 1f x ex =+,数列{}n a 中,111a e <≤,()11n n a f a e-=(2n ≥),(其中 2.71828e =⋅⋅⋅是自然对数的底数).求证:()I ()f x ex ≤;()II 11n a e<≤; ()III ()()()212223311212n n n e a a a a a a a a a e++--+-+⋅⋅⋅+-<.蚌埠市2017届高三年级第一次教学质量检查考试数学(理工类)参考答案及评分标准一、选择题:本题有10小题,每小题5分,共50分。

安徽省蚌埠市高三数学第一次教学质量检查考试试题 理

安徽省蚌埠市高三数学第一次教学质量检查考试试题 理

蚌埠市2017届高三年级第一次教学质量检查考试数学(理工类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的A ,B ,C ,D 的四个选项中,只有一个选项是符合题目要求的,请将正确答案的字母代号涂到答题卷相应位置.1.已知A={x|2x<1},,则A B=A.[-2,0)B.[-2,0]C.(0,+∞)D.[-2,+∞)2.复数z 在映射f 下的象为z(1+i),则-1 +2i 的原象为A .132i +-B .132i -C .一132i -D .132i + 3.若cos(2πα+)=季,则cos2α= A .725- B .725 C .一1625 D .16254.已知非零向量m ,n 满足3|m|=2|n|,<m ,n>=60°,若n ⊥(tm+n)则实数t 的值为A .3B .-3C .2D .-25.M 是抛物线C:y 2= 2px(p>0)上一点,F 是抛物线C 的焦点,D 为坐标原点,若| MF|= p ,K 是抛物线C 准线与x 轴的交点,则∠MKO=A .15°B .30°C .45°D .60°6.若实数x ,y 满足,则的取值范围是A .[43,4]B .[43,4) C. [2,4] D .(2,4] 7.已知函数f(x )定义域为R ,命题:p:f(x)为奇函数,q :,则p 是q 的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知函数f(x)=2sin (ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f (x )的图象向左平移6π个单位长度后,所得图象关于y 轴对称,则函数f(x )的解析式为 A .f(x )=2 sin(x 十6π) B .f(x )=2sin(x+3π) C .f(x )=2sin(2x 十3π) D .f(x )=2sin(2x 十6π) 9.阅读右边的程序框图,运行相应的程序,则输出的值为A .3B .4C .6D .710.我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A .28个B .21个C .35个D .56个11.某几何体的三视图如图所示,则该几何体的外接球的半径为A .B . D12.已知函数f(x )=(x a e a R x--∈且x>0).若存在实数p ,q(p<q),使得f(x )≤0的解集恰好为[p ,q],则a 的取值范围是A .(0,1e ] B .(一∞,1e ] C .(0,1e ) D .(一∞,1e)第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,请将答案填在答题卷相应横线上.13. 双曲线=1(a>0,b>0)的渐近线与圆(x-)2+ y 2=1相切,则此双曲线的离心率为____.14.在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是 15.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈= 10尺,1斛=1.62立方尺,圆周率=3),则该圆柱形容器能放米____斛.16.在△ABC 中,内角A,B,C 的对边分别为a,b,c ,外接圆半径为1,且则△ABC 面积的最大值为____三、解答题:本大题共6小题,共70分.解答须写出说明、证明过程和演算步骤.17.(本小题满分12分)等差数列{a n }的前n 项和为S n ,且S 5 =45,S 6= 60.( I)求{a n }的通项公式an ;(Ⅱ)若数列{a n }满足b n+1-b n =a n (n ∈N*)且b 1 =3,求{}的前n 项和T n .18.(本小题满分12分)某校开展“读好书,好读书”活动,要求本学期每人至少读一本课外书,该校高一共有100名学生,他们本学期读课外书的本数统计如图所示.( I)求高一学生读课外书的人均本数;(Ⅱ)从高一学生中任意选两名学生,求他们读课外书的本数恰好相等的概率;(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,求随机变量ζ的分布列及数学期望E ζ.19.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,CA =CB ,侧面ABB 1A 1是边长为2的正方形,点E,F 分别在线段AA l ,A 1B 1上,且AE=12,A 1F=34,CE ⊥EF , M 为AB 中点( I)证明:EF ⊥平面CME ;(Ⅱ)若CA ⊥CB ,求直线AC 1与平面CEF 所成角的正弦值.20.(本小题满分12分)已知椭圆C: =1(a>b>0)的长轴长为4,离心率为2,右焦点为F . ( I)求椭圆C 的方程;(Ⅱ)直线l 与椭圆C 相切于点P (不为椭圆C 的左、右顶点),直线l 与直线x=2交于点 A ,直线l 与直线x= -2交于点B ,请问∠AFB 是否为定值?若不是,请说明理由;若是,请证明.21.(本小题满分12分)已知函数f(x)= (其中e 是自然对数的底数,a ∈R ).( I)若曲线f(x)在x=l 处的切线与x 轴不平行,求a 的值;(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a 的最大值.请考生在22~23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线Z 的参数方程为(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,圆C 的方程为ρ= 6sin θ.( I)求直角坐标下圆C 的标准方程;(Ⅱ)若点P(l ,2),设圆C 与直线l 交于点A ,B ,求|PA|+|PB|的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|2x-a|+|2x +3|,g (x )=|x-1|+2.( I)解不等式g (x )<5;(Ⅱ)若对任意x 1∈R ,都存在x 2∈R ,使得(x 1)=g (x 2)成立,求实数a 的取值范围.。

安徽省蚌埠市怀远县2017届高三上学期教学质量摸底考试理数试题 Word版含解析

安徽省蚌埠市怀远县2017届高三上学期教学质量摸底考试理数试题 Word版含解析

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知错误!未找到引用源。

,则错误!未找到引用源。

()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】A【解析】考点:集合交集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.2.数列错误!未找到引用源。

是等比数列,错误!未找到引用源。

,且错误!未找到引用源。

,则错误!未找到引用源。

()A.1 B.2 C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】B【解析】试题分析:根据等比数列的性质错误!未找到引用源。

,由于错误!未找到引用源。

同号且大于零,所以错误!未找到引用源。

.考点:等比数列的性质.3.错误!未找到引用源。

()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】C【解析】试题分析:原式错误!未找到引用源。

.考点:三角恒等变换.4.已知两个单位向量错误!未找到引用源。

的夹角为错误!未找到引用源。

,则下列结论不正确的是()A.错误!未找到引用源。

在错误!未找到引用源。

方向上的投影为错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】D【解析】试题分析:错误!未找到引用源。

,故D错误.考点:向量运算.5.“错误!未找到引用源。

”是“错误!未找到引用源。

”的()A.充分且不必要条件 B.必要且不充分条件 C.充要条件 D.既非充分也非必要条件【答案】A【解析】考点:充要条件,不等式.6.设错误!未找到引用源。

2017-2018学年安徽省江淮十校高三(上)第一次联考数学试卷(理科)

2017-2018学年安徽省江淮十校高三(上)第一次联考数学试卷(理科)

2017-2018学年安徽省江淮十校高三(上)第一次联考数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={x|log2(4﹣x)≤1},则A∩B=()A.{1,2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.(5分)若复数z满足(+i)z=4i(i为虚数单位),则复数z的共轭复数为()A.+i B.﹣i C.1+i D.1﹣i3.(5分)如图是某年北京国际数学家大会会标,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,每个直角三角形的两直角边的和是5,在大正方形内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.4.(5分)已知数列{a n}是等差数列,a3+a8=13,且a4=5,则a7=()A.11 B.10 C.9 D.85.(5分)如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.6.(5分)执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的取值()A.是4 B.是5 C.是6 D.不唯一7.(5分)设变量x,y满足约束条件,则的取值范围是()A.[2,4]B. C. D.8.(5分)已知函数f(x)=sin(2x+φ)(﹣π<φ<0),将f(x)的图象向左平移个单位长度后所得的函数图象经过点(0,1),则函数g(x)=cos(2x+φ)()A.在区间上单调递减B.在区间上单调递增C.在区间上有最大值D.在区间上有最小值9.(5分)函数f(x)=的大致图象()A.B.C.D.10.(5分)已知球O1与正三棱柱(底面为正三角形的直棱柱)的所有表面都相切,并且该三棱柱的六个顶点都在球O2上,则球O1与O2的表面积之比为()A.1:2 B.1:3 C.1:4 D.1:511.(5分)已知函数f(x)=(x2﹣4x)sin(x﹣2)+x+1在[﹣1,5]上的最大值为M,最小值为m,则M+m=()A.0 B.2 C.4 D.612.(5分)已知F为抛物线x2=2py的焦点,过点F的直线l与抛物线交于A,B 两点,l1,l2分别是该抛物线在A、B两点处的切线,l1,l2相交于点C,设|AF|=a,|BF|=b,则|CF|=()A.B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若非零向量,满足,则与的夹角余弦值为.14.(5分)在(x﹣2)(2x+1)5的展开式中,x5的系数为.(用数字作答)15.(5分)双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线上一点,且•=0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e=.16.(5分)对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S5对任意的n(n∈N*)恒成立,则实数k的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,已知,外接圆半径R=2.(1)求角C;(2)求△ABC面积的最大值.18.(12分)如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.(1)若AA1=AC,求证:AC1⊥平面A1B1CD;(2)若CD=2,二面角A﹣C1D﹣C的余弦值为,求三棱锥C1﹣A1CD的体积.19.(12分)计划在某水库建一座至多安装2台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足100的年份有40年,不低于100的年份有10年.将年入流量在以上两段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多1年的年入流量不低于100的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X的限制,并有如下关系:某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?20.(12分)已知椭圆C:+=1(a>b>0)的两焦点分别为F1,F2,离心率为.设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点T(4,0),证明:当直线l变化时,直线TS与TR的斜率之和为定值.21.(12分)已知函数,a∈R.(1)讨论f(x)的单调性;(2)当a=﹣2时,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:.在22,23两题中任选一题作答,如果多做则按所作第一题计分[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(t为参数),以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为.(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面的公共点,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<4;(2)若存在实数x0,使得不等式f(x0)<|m+t|+|t﹣m|对任意实数t恒成立,求实数m的取值范围.2017-2018学年安徽省江淮十校高三(上)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={x|log2(4﹣x)≤1},则A∩B=()A.{1,2}B.{2,3}C.{1,2,3}D.{1,2,3,4}【解答】解:集合A={1,2,3,4},B={x|log2(4﹣x)≤1}={x|0<4﹣x≤2}={x|2≤x<4},则A∩B={2,3}.故选:B.2.(5分)若复数z满足(+i)z=4i(i为虚数单位),则复数z的共轭复数为()A.+i B.﹣i C.1+i D.1﹣i【解答】解:由(+i)z=4i,得z=,∴.故选:D.3.(5分)如图是某年北京国际数学家大会会标,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,每个直角三角形的两直角边的和是5,在大正方形内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.【解答】解:设直角三角形的长直角边为a,短直角边为b,由题意,得,解得a=3,b=2.∵大方形的边长为,小方形的边长为a﹣b=3﹣2=1,∴满足题意的概率值为:.故选:A.4.(5分)已知数列{a n}是等差数列,a3+a8=13,且a4=5,则a7=()A.11 B.10 C.9 D.8【解答】解:∵数列{a n}是等差数列,a3+a8=13,且a4=5,∴,解得a1=2,d=1,∴a7=a1+6d=8.故选:D.5.(5分)如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.这个几何体体积V=+×()2×2=2+.故选:A.6.(5分)执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的取值()A.是4 B.是5 C.是6 D.不唯一【解答】解:框图首先赋值n=1,s=2,执行n=1+1=2,s=2+4=6;判断框中的条件不满足,执行n=2+1=3,s=6+8=14;判断框中的条件不满足,执行n=3+1=4,s=14+16=30;判断框中的条件不满足,执行n=4+1=5,s=30+32=62;判断框中的条件不满足,执行n=5+1=6,s=62+64=126;此时判断框中的条件满足,执行“是”路径,退出循环输出结果s为126.若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则条件6≥n0成立,可得正整数n0的取值为6.故选:C.7.(5分)设变量x,y满足约束条件,则的取值范围是()A.[2,4]B. C. D.【解答】解:作出不等式组对应的平面区域,则=,设k=,则k的几何意义为区域内的点到定点D(0,﹣1)的斜率,由图象可知BD的斜率最小,AD的斜率最大,由得B(2,1).此时k==1,由得A(1,2)k==3,即1≤k≤3,则2≤k+1≤4,即2≤z≤4,故选:A.8.(5分)已知函数f(x)=sin(2x+φ)(﹣π<φ<0),将f(x)的图象向左平移个单位长度后所得的函数图象经过点(0,1),则函数g(x)=cos(2x+φ)()A.在区间上单调递减B.在区间上单调递增C.在区间上有最大值D.在区间上有最小值【解答】解:已知函数f(x)=sin(2x+φ)(﹣π<φ<0),将f(x)的图象向左平移个单位长度后得到:k(x)=sin(2x++∅),所得的函数图象经过点(0,1),所以:k(0)=1,则:π+∅=2k(k∈Z),解得:(k∈Z),已知:﹣π<φ<0,则:.所以:g(x)=cos(),函数的单调递增区间为:[2kπ﹣π,2kπ](k∈Z),解得:x∈[kπ﹣,](k∈Z),函数的单调递减区间为:(k∈Z),解得:x(k∈Z),根据k的取值,在k=1时,选项A、B、D错误.故选:C9.(5分)函数f(x)=的大致图象()A.B.C.D.【解答】解:函数f(x)=,则f(﹣x)===﹣=﹣f(x),所以函数是奇函数,排除选项A.当x→0,x>0时,3x cos3x→1,9x﹣1→0,排除选项B,当x=2π时,f(2π)≈=3﹣2π→0,排除选项C.故选:D.10.(5分)已知球O1与正三棱柱(底面为正三角形的直棱柱)的所有表面都相切,并且该三棱柱的六个顶点都在球O2上,则球O1与O2的表面积之比为()A.1:2 B.1:3 C.1:4 D.1:5【解答】解:取BC中点D,B1C1中点D1,连结AD、A1D1,取△ABC重心E、△A1B1C1重心F,连结EF,由EF中点为O1和O2,设AB=a,则球O1的半径r1=EO1=ED==,AE==,∴球O2的半径r2===,∴球O1与O2的表面积之比为:=.故选:D.11.(5分)已知函数f(x)=(x2﹣4x)sin(x﹣2)+x+1在[﹣1,5]上的最大值为M,最小值为m,则M+m=()A.0 B.2 C.4 D.6【解答】解:∵f(x)=(x2﹣4x)sin(x﹣2)+x+1=[(x﹣2)2﹣4]sin(x﹣2)+x﹣2+3,令g(x)=[(x﹣2)2﹣4]sin(x﹣2)+x﹣2,而g(4﹣x)=[(x﹣2)2﹣4]sin(2﹣x)+(2﹣x),∴g(4﹣x)+g(x)=0,则g(x)关于(2,0)中心对称,则f(x)在[﹣1,5]上关于(2,3)中心对称.∴M+m=6.故选:D.12.(5分)已知F为抛物线x2=2py的焦点,过点F的直线l与抛物线交于A,B 两点,l1,l2分别是该抛物线在A、B两点处的切线,l1,l2相交于点C,设|AF|=a,|BF|=b,则|CF|=()A.B. C. D.【解答】解:对抛物线x2=2py (p>0)两边对x求导数,得到2py′=2x,则y′=.设A(m,n),B(s,t),则切线l1的斜率为,切线l2的斜率为,设AB:y=kx+,代入抛物线方程,消去y得,x2﹣2pkx﹣p2=0,则m+s=2pk,ms=﹣p2,则•=﹣1,即有l1⊥l2,又l1:y﹣n=(x﹣m),即有py=mx﹣pn,同理可得l2:py=sx﹣pt,由于m2=2pn,s2=2pt,则由l1,l2解得交点C(,﹣),即(pk,﹣),则CF的斜率为:=﹣k,故直线AB与直线CF垂直,在直角三角形ABC中,CF是斜边AB上的高,则由射影定理可得,CF2=AF•BF,即有CF==,故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若非零向量,满足,则与的夹角余弦值为.【解答】解:设向量、的夹角为θ;因为,∴||2=9||2=()2=2;即42cosθ=0,||=,∴+||•||cosθ=0cosθ=﹣.故答案为:﹣.14.(5分)在(x﹣2)(2x+1)5的展开式中,x5的系数为﹣16.(用数字作答)【解答】解:(2x+1)5展开式的通项公式为:T r+1=C5r•(2x)r,令r=5,所以T6=C55•(2x)5=32x5;令r=4,所以T5=C54•(2x)4=80x4;所以(x﹣2)(2x+1)5展开式中x5的系数为32×(﹣2)+80×1=﹣16.故答案为:﹣16.15.(5分)双曲线﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线上一点,且•=0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e=5.【解答】解:可设P为第一象限的点,由双曲线的定义可得|PF1|﹣|PF2|=2a,①•=0,可得PF1⊥PF2,由勾股定理可得|PF1|2+|PF2|2=|F1F2|2=4c2,②②﹣①2,可得2|PF1|•|PF2|=4c2﹣4a2=4b2,即有|PF1|+|PF2|=,由三角形的面积公式可得r(|PF1|+|PF2|+|F1F2|)=|PF1|•|PF2|,即为2a(+2c)=2b2,即有c+2a=,两边平方可得c2+4a2+4ac=c2+b2=c2+c2﹣a2,即c2﹣4ac﹣5a2=0,解得c=5a(c=﹣a舍去),即有e==5.故答案为:5.16.(5分)对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S5对任意的n(n∈N*)恒成立,则实数k的取值范围为≤k≤.【解答】解:由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n2n+1,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,则2n﹣1a n=n2n+1﹣(n﹣1)2n=(n+1)2n,则a n=2(n+1),对a1也成立,故a n=2(n+1),则a n﹣kn=(2﹣k)n+2,则数列{a n﹣kn}为等差数列,故S n≤S5对任意的n(n∈N*)恒成立可化为a5≥0,a6≤0;即解得,≤k≤,故答案为:≤k≤.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,已知,外接圆半径R=2.(1)求角C;(2)求△ABC面积的最大值.【解答】解:(1)∵在△ABC中,已知2sin2+cos2C=1∴由三角函数公式可得1﹣cos(A+B)+cos2C=1,∵A+B+C=π,∴cos(A+B)=﹣cosC,∴2cos2C+cosC﹣1=0,解得cosC=﹣1(舍),或cosC=,∴C=;(2)由正弦定理可得=2R=4,∴c=4sinC=4×=2,由余弦定理可得12=c2=a2+b2﹣2abcosC≥2ab﹣ab=ab,当且仅当a=b=2时取等号,∴ab≤12,=absinC≤×12×=3,∴S△ABC故△ABC面积的最大值为3.18.(12分)如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.(1)若AA1=AC,求证:AC1⊥平面A1B1CD;(2)若CD=2,二面角A﹣C1D﹣C的余弦值为,求三棱锥C1﹣A1CD的体积.【解答】证明:(1)∵AA1=AC,则四边形ACC1A1为正方形,则AC1⊥A1C,∵AD=2CD,∠ADC=60°,∴△ACD为直角三角形,则AC⊥CD,∵AA1⊥平面ABC,∴CD⊥平面ACC1A1,则CD⊥A1C,∵A1C∩CD=C,∴AC1⊥平面A1B1CD.解:(2)∵CD=2,AD=2CD,∠ADC=60°,∴AD=4,AC==2,设AA1=λAC=2λ,建立以C为坐标原点,CD,CB,CC1分别为x,y,z轴的空间直角坐标系如图:则C(0,0,0),D(2,0,0),A(0,2,0),C1(0,0,2λ),A1(0,2,2λ),则=(2,0,﹣2),=(0,2,﹣2),=(0,0,﹣2),设面C1AD的一个法向量为=(x,y,z),则,取z=1,得=(),设面C1DC的一个法向量为=(0,1,0),∵二面角A﹣C1D﹣C的余弦值为,∴|cos<,>===,解得λ=1,即AA1=AC,﹣A1CD的体积V=V=CD AC•AA1=×2×则三棱锥C2=4.19.(12分)计划在某水库建一座至多安装2台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足100的年份有40年,不低于100的年份有10年.将年入流量在以上两段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多1年的年入流量不低于100的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X的限制,并有如下关系:某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【解答】解:(1)依题意,P(40<X<100)=,P(X≥100)=,由二项分布知,在未来4年中至多有1年入流量不低于100的概率为:P=C40•(0.8)4+C41•(0.8)3•0.2=0.8192;(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,所以一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000.②安装2台发电机.依题意,当40<X<100时,一台发电机运行,此时Y=5000﹣800=4200,因此P(Y=4200)=P(40<X<100)==0.8,当X≥100时,两台发电机运行,此时Y=5000×2=10000,因此,P(Y=10000)=P(X≥100)==0.2,由此得Y的分布列如下:∴E(Y)=4200×0.8+10000×0.2=5560.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.20.(12分)已知椭圆C:+=1(a>b>0)的两焦点分别为F1,F2,离心率为.设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点T(4,0),证明:当直线l变化时,直线TS与TR的斜率之和为定值.【解答】解:(Ⅰ)由椭圆的离心率e==,则a=2c,将x=c代入椭圆方程,解得:y=±,|RS|==3,由a2=b2+c2,则a=2,b=,c=1,∴椭圆的标准方程为;(Ⅱ)证明:当直线l垂直与x轴时,显然直线TS与TR的斜率之和为0,当直线l不垂直与x轴时,设直线l的方程为y=k(x﹣1),R(x1,y1),S(x2,y2),,整理得:(3+4k2)x2﹣8k2x+4k2x+4k2﹣12=0,△=64k4﹣4(3+4k2)(4k2﹣12)=k2+1>0恒成立,x1+x2=,x1x2=,由k TR+k TS=+,TR,TS的斜率存在,由R,S两点的直线y=k(x﹣1),故y1=k(x1﹣1),y2=k(x2﹣1),则=,由2x1x2﹣5(x1+x2)+8=2×﹣5×+8=0,∴k TR+k TS=0,∴直线TS与TR的斜率之和为0,综上所述,直线TS与TR的斜率之和为为定值,定值为0.21.(12分)已知函数,a∈R.(1)讨论f(x)的单调性;(2)当a=﹣2时,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:.【解答】解:(1)∵f(x)=lnx﹣+(1﹣a)x,a∈R,∴f′(x)=﹣ax+(1﹣a)=,…(1分)当a≤0时,∵x>0,∴f′(x)>0.∴f(x)在(0,+∞)上是递增函数,即f(x)的单调递增区间为(0,+∞),无递减区间.…(3分)当a>0时,f′(x)=,令f′(x)=0,得x=.∴当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0.∴f(x)的单调递增区间为(0,),单调递减区间为(,+∞).…(5分)综上,当a≤0时,f(x)的单调递增区间为(0,+∞),无递减区间;当a>0时,f(x)的单调递增区间为(0,),单调递减区间为(,+∞).…(6分)(2)当a=﹣2时,f(x)=lnx+x2+3x,(x>0)正实数x1,x2满足f(x1)+f(x2)+x1x2=0,⇒lnx1+x12+3x1+lnx2+x22+3x2,+x1x2=0⇒(x1+x2)2+3(x1+x2)=x1x2﹣ln(x1x2)令函数g(t)=t﹣lnt,(t>0),则g′(t)=1﹣t∈(0,1)时,g′(t)<0,t∈(1,+∞)时,g′(t)>0∴g(t)≥g(1)=1∴(x1+x2)2+3(x1+x2)=x1x2﹣ln(x1x2)≥1.则x1+x2≥,或x1+x2(舍去).∴x1+x2≥.在22,23两题中任选一题作答,如果多做则按所作第一题计分[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(t为参数),以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为.(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面的公共点,求的取值范围.【解答】解:(Ⅰ)因为圆C的极坐标方程为,所以所以圆C的直角坐标方程.(Ⅱ)由圆C的方程,可得,所以圆C的圆心是,半径是2,将,代入,得u=4﹣t,又直线l过,圆C的半径是2,所以﹣2≤t≤2,即的取值范围是[2,6].[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)<4;(2)若存在实数x0,使得不等式f(x0)<|m+t|+|t﹣m|对任意实数t恒成立,求实数m的取值范围.【解答】解:(1)∵函数f(x)=|2x﹣1|+|x+1|=,∵不等式f(x)<4,∴①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x≤,解③求得<x<.综上可得,不等式的解集为{x|﹣<x<}.(2)若存在实数x0,使得f(x0)<|m+t|+|t﹣m|对任意实数t恒成立,由(1)知函数f(x)的最小值为f()=,∴=|m+t|+|t﹣m|<|m+t﹣t+m|=|2m|对任意实数t恒成立成立,故|2m|>,解得:m>或m<﹣,故实数t的取值范围为{m|m>,或m<﹣}.。

2017-2018学年安徽省合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)〖详解wor

2017-2018学年安徽省合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)〖详解wor

百度文库一一让每个人平等地提升自我2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷〔理科〕、选择题:本大题共 12个小题,每题 5分,共60分.在每题给出的四个选项中,只 有一项为哪一项符合题目要求的1. (5 分)设集合 A={x|x2 —4x+3<0}, B = {x|3x―6>0},那么 AAB=()A . (-2, 1)B. (-2, 3)C. (1, 2)D, (2, 3)2. (5分)i 是虚数单位,假设复数(1-mi) (1 + i)的实部与虚部相等,那么实数m=()A . - 1B. 0C. 1D. 23. (5分)向量□= (3, -2), b= (1, -4),假设向量4^+b 与a -止平行,那么实数 入中生有一颗类似芦苇的植物,露出水面一尺,假设把它引向岸边,正好与岸边齐〔如图所 示〕,问水有多深,该植物有多长?其中一丈为十尺.假设从该葭上随机取一点,那么该点取 自水下的概率为〔〕“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.〞其意思是:有一水池一丈见方,池 5. 〔5分〕?九章算术?勾股章有一 “引葭赴岸〞问题:那么 f (iog25)=()L1B.二(5分)函数 =3 x+0 ) (A>0, 3>.,假设将函数f 〔x 〕的图象向左平移 g-个单位,那么所得图象对应的函数可以为〔6. 102〔5分〕函数1+工 ,|X |<1,其中 a>0 且 awl,假设 f ( — 1) =f (2),7. 8. 〔5分〕执行如下图的程序框图,那么输出的〔5分〕假设实数x, yi 的值为〔C. 6击的最小值是〔D -1D. 79.10的图象如下图,»A • 尸-2si 门〔2x1 J : 〕 B- 尸2sin ⑵।手 〕4冗 耳冗C.二 一 ,n :二门,'D. 一「一 一 1 门 i 一 二H:—:10. 〔5分〕假设两个正实数 x, y 满足/L ■+ :=1,且 4+去-6冗恒成立,那么实数 m 的取值范围是〔 〕 A. 〔-8, 2〕 B.〔-巴 8〕 U 〔 2, +8〕 C. 〔-2, 8〕D. 〔-8, - 2〕 U 〔8, +8〕11. 〔5分〕在平面直角坐标系 xOy 中,点A 〔-1, 1〕在抛物线 C: x 2= ay 〔aw0〕上,抛 物线C 上异于点A 的两点P, Q 满足的二黑赢〔入<0〕,直线OP 与QA 交于点R, △ PQR 和△ PAR 的面积满足Sh PQR = 3S APAR ,那么点P 的横坐标为〔 〕 A.-4B. - 2C. 2D. 412. 〔5分〕函数f 〔x 〕 = 〔 1+ax+x 2〕 e x -x 2,假设存在正数x0,使得f〔x0〕< 0,那么实数a 的取值范围是〔 〕 A. [e- 2, +8〕B, 〔-8, e- 2]C. [—-2,D. 〔-co,工-2]ee二、填空题〔每题 5分,,茜分20分,将答案填在做题纸上〕13. 〔5分〕在〔x-2〕 8 〔x+1〕的展开式中,x7的系数为 .〔用数字作答〕 14. 〔5分〕k 可-2, - 1],那么双曲线x 2+ky 2=1的离心率的取值范围是15. 〔5分〕某三棱锥的三视图如下图,那么该三棱锥的四个面中最大的面积为俯视图一*、一一、八一、、“一… ,,」a1,a2,…,an 〔nC N 〕满足 an+an+1 = an+2+an+3,就称该数列为相侧视图16. 〔5分〕假设有穷数列邻等和数列〞,各项都为正整数的数列 {an }是项数为8的“相邻等和数列〞 =8, a2+a3=9,那么满足条件的数列{an }有 个.三、解做题〔本大题共 6小题,共70分.解容许写出文字说明、证实过程或演算步骤 .〕17. 〔10分〕递增的等比数列 {an }和等差数列{bn },满足ai+a4=18, a2a3=32, b2是 ai 和a2的等差中项,且b3=a3- 3.〔I 〕求数列{an }和{bn }的通项公式;(I )求AC, CD 的长;[60, 70), [70, 80), [80, 90), [90 , 100]分组,得到如下图的频率分布直方图.〔I 〕假设同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成 绩;〔n 〕估计参加这次知识竞赛的学生成绩的中位数〔结果保存一位小数〕;〔出〕假设规定80分以上〔含80分〕为优秀,用频率估计概率,从全体参赛学生中随机 抽取3名,记其中成绩优秀的人数为E,求E 的分布列与期望.,且 ai+a2(□)假设 ,求数列{Cn }的前n 项和Sn.18. (12 分)如图,在^ ABC 中,C= — 456,COS -ZADB=-Z -. 、J 5 ,不•西=48,点D 在BC 边上,且 AD =19. 〔12分〕2021年?诗词大会?火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国〞 的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩作为样本.对这 60名学生的成绩进行统计,并按[40, 50〕, [50, 60〕, (n)求 cos/ BAD 的值.20. (12分)在四棱锥 P-ABCD 中,底面 ABCD 是菱形,AC=AB, PA ,平面 ABCD ,E, F 分别是AB, PD 的中点.(n)假设 AB=2AP=2,求平面PAD 与平面PCE 所成锐二面角的余弦值.21. (12分)椭圆Ci :(a>b>O )的离心率为—,椭圆Ci 截直线y=x 所得的b 22弦长为织〞.过椭圆Ci 的左顶点A 作直线l 与椭圆交于另一点 M,直线l 与圆C2: (x5-4) 2+y 2=r 2 (r>0)相切于点 N. (I )求椭圆C1的方程;(n)右AN=^MN ,求直线।的方程和圆C2的半径r. 22. (12 分)设函数 f(K )=-^^-+x-a+2(a6R) .(I)当曲线y = f (x)在点(1, f (, 1))处的切线与直线 y=x 垂直时,求a 的值; (n)假设函数尸(力二£(*)记一有两个零点,求实数 a 的取值范围.成绩(I )求证:AF//平面 PCE;4x2021-2021学年安徽省巢湖一中、合肥八中、淮南二中等十校联考高三第一学期摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1 .【解答】解:求解不等式可得:A={x|1<x<3}, B={x|x>2},A n B= {x|2v xv 3},写为区间的形式即(2, 3).应选:D.2 .【解答】解:♦「( 1-mi) (1 + i) = 1 + m+ (1 - m) i的实部与虚部相等,-- 1 + m= 1 - m,解得m=0.应选:B.3 .【解答]解:4 为+b=4 (3, — 2) + (1, — 4) = (13, —12),己一入b= (3—入,—2+4 X),;向量4a+b与0—北平行,13 (—2+4 A +12 (3— X) =0,解得上一工.4应选:C.4 .【解答】解:由题意知,函数f (x)的定义域为(-8, 0) U (0, +8),:•一_「,,.Jn Jk A L Jite -e e -e・♦・函数f (x)是偶函数,排除C、D;又f(l)二一排除B,e-e应选:A.5 .【解答】解:设水深为x尺,那么(x+1) 2=x2+52,解得x=12,即水深12尺.又葭长13尺,…_ 一一1 2那么所求概率:,6 .【解答】解::函数f(x)=,1+工,其中a>0且aw 1,.••f ( - 1) = ----------- W ----- =且,f (2) = a2,1+ C-l)2 2•••f (― 1) =f (2), •••包工〞,2 S解得a= ',2log14"f (log25) = (1) 1.叼5=普)2 =±应选:D.7 .【解答] 解:当S= 0, i=1时,不满足S> 1,那么S=9, i = 2; -w-当S= —, i= 2 时,不满足S> 1,那么S= —, i = 3;2 4当S= —, i= 3 时,不满足S> 1,那么S= —, i = 4;4 12当S=HL, i = 4时,不满足S> 1,那么S=筌,i = 5;12 24当S=2», i=5 时,满足S>1,24故输出的i值为5,应选:B.8 .【解答】解:作出实数x, y满足〞对应的平面区域如图:L设z=3±£=1+X二二,那么z的几何意义为过Q ( - 1, 1)的直线的斜率加1;z+1 x+1由图象可知当直线经过点A时,直线QBA的斜率最小,G二1 1 91q由, ,解得A (1, 3),此时QA的斜率k=-7—= 4,[x=2y 2 1+1 4应选:C.根据余弦函数图象:工卫2" 8' B 2解得:T=兀. 利用周期公式:- ,■ 3解得:3=2.根据函数的图象,当 x='L 时,二o ,8 8贝u : 2?工f K kn+三〔k Cz 〕,82解得:氏kn+W-〔k &〕. 4由于回|<-^-, 解得0=21, 4 那么:., 「ill.,将函数f 〔X 〕的图象向左平移 三个单位,2得到। ,,整理得:g 〔i 〕=-2sin 〔2x-4^〕. 应选:A.【解答】解::Vx+Wy=〔Vx+Wy 〕〕〔JL+3〕 当x=4y,即x=36且y=9时,虫后取最小值16. <4+4>々>3-6口恒成立,贝U 16>m 2-6m,解关于m 的不等式可得-2vmv8, 应选:C.11 .【解答】解:,一点A (― 1, 1)在抛物线 C: x 2= ay (aw0)上,,a= 19. 10 【解答】 解:根据余弦函数的图象的对称性求得: A=2,>16,••・抛物线方程为:x2=y.•••抛物线C上异于点A的两点P, Q满足而工£了(入<0),直线OP与QA交于点R,可得图形如下,且OA//PQ, (P在第二象限).,「koA=-1,可设PQ 的方程为:y= - x+b, P (x1, y1), Q (x2, y2)OA II PQ, S AF AQ=S;A POQ, ? S A PAR= S A ORQ•--S APQR=3S A PRA,'-S A PQR=3S A ORQ••.PR: OR=3: 1? OA: PQ = 1: 3PQ= 30A = 3&由,r= *+b得x% b=o,JX可x1+x2= — 1, x1x2= - bPQ=<1 + 1 ./"])2_4"卜’=3,厄,解得b= 2可得P ( - 2, 4)12 .【解答】解:当a=- 2 时,函数f (x) = ( 1 - 2x+x2) ex-x2,显然x=1 时,f (1)=-1<0,满足题意,排除选项A, C.当2 = 3- 2 时,函数 f (x) = ( ex+1 — 2x+x2) e' — x2= (1—x) 2ex+ e^〔x — x2= (1—x)2ex+x (ex+1- x),x>0时,(1-x) 2ex>0, x (e x+1-x) >0,所以不存在满足题意的正数xo,使得f (xo) <0,排除选项B.应选:D.填空题〔每题 5分,?茜分20分,将答案填在做题纸上〕「2?22-「1?2=96. 故答案为:96.其焦点在x 轴上,2其标准方程为 箕2茎「二1, k 、21其离心率e 2= £—2a又由 kq-2, - 1], 那么有 Wwe 2w2, 2 即丞wg 加,2故答案为: 曲,收•【解答】解:由题意知,该三棱锥的直观图如图中的A- BCD 所示,那么$ABCD 至黑1 X 2二1,江的而乂近X 2=V^,①好匚至乂在X 1=^故其四个面中最大的面积为可得:a2= 8 - a, a3=1+a, a4=7—a, a5=2+a, a6= 6- a, a7= 3+a, as= 5 - a. :数歹U {an}各项都为正整数,13 【解答】解:〔x — 2〕 8=C?x8-;x 7?2+/?22-.x ?27i?28,(x-2) 8 (x+1)的展开式中,x 7的系数为14 【解答】解:根据题意,双曲线的方程为x 2+ky 2=1,且 kC[ —2, - 1],L I -I ,k15 ,△ABD =V * 近又^[2 _3那么有离心率eC16故答案为:,设 a1 = a,-,I _ *解得:1 w aw 4, a CN ,那么满足条件的数列{an}有4个.故答案为:4.三、解做题(本大题共6小题,共70分.解容许写出文字说明、证实过程或演算步骤.)a [ + 3, a 二1817 .【解答】(I)由题意知,〞已1%二行2%二32%<为’七二2解得1 1,射16设等比数列{an}的公比为q,111q = 2,由题意知,•. I :,那么等差数列{bn}的公差d=2,'1• bn= b2+ ( n - 2) d = 3+2 (n - 2) = 2n - 1.(n) r ---------- ------- -<-- ----- -% (2n-D(2n+l) 2 ^2n-l 2n+l)4吟(*i)+…4易r忌T)__ 之18 .【斛答】斛:(I )在^ ABD 中,.8S NADB==",5. 4sinN ADB 5sin / CAD = sin (/ ADB - / ACD& 乂返也乂返必--- A-■—A ".5 2 5 2 10在4ADC中,由正弦定理得——芈——二sinZADC AC_CD〞一返一叵,5 10 2解得:AC=8,CD=^.(n) CA,CB:48, C=—.4V2•・一’・,1:, )sinz_ADBcQs -cusz_ADBsin—£5 ________ AL, sinZCAD sinZACD解得:口二6b,二-1 : 1,在△ ABC 中,:叱2_2XgX6&X *二2疝, 〔2715产+ 〔5料〕2-〔研〕* /2X2后 X5VS 节19 .【解答】解:〔I 〕 设样本数据的平均数为:X , 那么 三二45 乂0. 05+55X0. 15+65 乂0.2+75X0.3+85X0. 2+95 乂0. 1=72. .,估计参赛学生的平均成绩为 72.5分.〔n 〕设样本数据的中位数为 a,由0.05+0.15+0.2+0.3 >0.5知aC 〔70, 80〕. • ・0.05+0.15+0.2+ 〔a — 70〕 X 0.03 = 0.5,解得 ^^^^73,3, 故估计参加这次知识竞赛的学生成绩的中位数约为73.3分.〔出〕由题意知,样本中 80分以上〔包括80分〕的概率为 旦, 10 那么随机抽取一名学生的成绩是优秀的概率为 旦,,hB 〔3,旦〕.1010・"需=.〕=喘〕3裁,p 〔a=i 〕=c ;x 磊X 〔4〕2二就;P02〕pX 扁号掇;pg 步号尸后a[〔.二3X 卷号.20.【解答】 证实:〔I 〕取PC 中点H,连接EH 、FH.・•.E 为AB 的中点,ABCD 是菱形,,AE//CD,且AE 』CD, 2又F 为PD 的中点,H 为PC 的中点,,FH // CD,且FHh^CD , AE// FH ,且AE=FH,那么四边形 AEHF 是平行四边形, AF // EH .又 AF?平面 PCE, EH?面 PCE,・•.AF//平面 PCE.解:〔n 〕取BC 的中点为 O, ABCD 是菱形,AC=AB,第12页〔共18页〕在4ABD 中,由余弦定理可得:G 口 s/BAD=令y=- 1,那么丑=2, .•・平面PCE 的一个法向量为 7=〔我,-L 2〕, 又平面PAD 的一个法向量为ir= 〔1, 0, 0〕..一,-一、—m *n cosv ip,门〉 ~I m I , I n |Vo V【解答】解:〔I 〕由题意知, 工妾,即一 / 4, •- a 2=4b 2, a / a "•.・由椭圆C1截直线y=x 所得的弦长为 丝°,5AO± BC,AO, AD , AP 所在直线分别为 x, y, z 轴,建立空间直角坐标系 A - xyz,B (V5, -i, o), c(V5,i, o), D (O ,PCO, 0, 1), E 除卷,0), T), EC=(淬,y* 0),访二(泥,2, 0).〕,设平面的法向量为7=21即平面PAD 与平面PCE 所成锐二面角的余弦值为・♦.弦在第一象限的端点的坐标为(2杏,等),—^―-I一=1,将a2=4b2代入上式,解得a=2, b=1.5a2 5b22.♦・椭圆Ci的方程为:+/二i;(n)由(I)知, A (― 2, 0),设M (xi, yi), N(X2, y2),• -* 4 —,, • -• 1 -r 40 .. 」一- AN=yMN,一姗万视,倚y2=4yi,设直线l的方程为x= ?y- 2 (入W 0),s= X y-2联立* 丫?9,得〔 ,+4〕 y2-4'=0, v 二―—全+ /=1 1联立*町,得〔?+1〕 y2— 12 少+36 — r2= 0,&-4产+/二产..A n . 2 36 口6 入• △= 0,• • r =_G—,且疗_$—X 2+12 X 2+1••• 6}二4・4:,解得了工得x2+l X 2+452 r2 = 2 0,,直线I的方程为:5K ±2浜片10二0,圆C2的半径r= 2泥.22.【解答】解:(I)由题意知,函数f(x)的定义域为(0, +8),£'〔¥〕二.〔1口:_]〕+], f 〔1〕 = 1 - a= - 1,解得a=2. x2(n)假设函数卜6)二£@)+^—有两个零点,4z那么方程且皿^F+240—二0恰有两个不相等的正实根,x 4x2即方程-皂1口工+ x ^―(a_2) x+~~二0恰有两个不相等的正实根.4x2设函数晨K)=-&lnx+ J-Ca-2)工+^■,.』,%口 / 力、a_ 2s2-(a-2)x-a (2x-a) (x+1)g lx)=2K-(a-2) x------- ----------------- 二 ------------当aw.时,g' (x) >0恒成立,那么函数g (x)在(0, +°0)上是增函数,・♦・函数g (x)最多一个零点,不合题意,舍去;当a>0时,令g' (x) >0,解得x>—,令g' (x) < 0,解得.<算<且,2 2那么函数g (x)在(0, 内单调递减,在伊 +8)上单调递增.易知x—0时,g 〔x〕 >0恒成立,要使函数g 〔x〕有2个正零点, 2 2贝U g〔x〕的取小值名瑞.〕<o,即一皂]—〔0一2〕义"^"+今一<0, 即Flrr1+a<0,丁a> 0,1 成?1,解得a>2e,即实数a的取值范围为〔2e, +8〕■ ■>_>|, Z" .♦y ( 1—一"x2+(——— 5 0y -♦_x+y ~>一»♦_♦_■6—,第17页〔共18页〕'Ll - -一I,“1. ■■ ,■I a-i—IIS ■" .■■■I ,,"。

2017年安徽省蚌埠市高考数学一模试卷(理科)

2017年安徽省蚌埠市高考数学一模试卷(理科)

2017年安徽省蚌埠市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知A={x|2x<1},B={x|y=},则A∩B=()A.[-2,0)B.[-2,0]C.(0,+∞)D.[-2,+∞)【答案】A【解析】解:A={x|2x<1}={x|x<0}=(-∞,0),B={x|y=}=[-2,+∞)∴A∩B=[-2,0),故选:A.求出集合A,B,根据集合的基本运算,即可得到结论.本题主要考查集合的基本运算,比较基础.2.复数Z在映射f下的象为(1+i)Z,则-1+2i的原象为()A. B. C. D.【答案】B【解析】解:根据题意,若设-1+2i的原象为复数z,则得出(1+i)z=-1+2i,所以z===故选B先由已知,得出-1+2i的原象为,再化简计算即可.本题考查映射中原象与象的概念与关系,复数除法的运算.关键是由已知得出1+2i的原象的表达式,再化简计算.3.若cos()=,则cos2α=()A. B. C.一 D.【答案】B【解析】解:∵cos()=,可得:-sinα=,∴sinα=-,∴cos2α=1-2sin2α=1-2×(-)2=.由已知利用诱导公式可求sinα的值,进而利用二倍角的余弦函数公式即可计算得解.本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.已知非零向量,满足3||=2||,<,>=60°,若⊥(t+)则实数t的值为()A.3B.-3C.2D.-2【答案】B【解析】解:非零向量,满足3||=2||,<,>=60°,∴cos<,>=,又⊥(t+),∴•(t+)=t•+2=t||•||•+||2=t•+=0,解得t=-3.故选:B.根据两向量垂直,数量积为0,列出方程求出t的值.本题考查了平面向量数量积的运算与向量垂直的应用问题,是基础题目.5.M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,O为坐标原点,若|MF|=p,K是抛物线C准线与x轴的交点,则∠MKO=()A.15°B.30°C.45°D.60°【答案】C【解析】解:由题意,取点M(,p),∵K(-,0),∴k KM=1,∴∠MKO=45°,故选C.由题意,取点M(,p),K(-,0),由此,即可得出结论.本题考查抛物线的方程与定义,考查斜率的计算,比较基础.6.若实数x,y满足>,则的取值范围是()A.[,4]B.[,4)C.[2,4]D.(2,4]【答案】解:作出不等式组对应的平面区域如图,则设z==,则z的几何意义是区域内的P点与点M(-,0)的斜率k;如图所示(k)min=k PA=,(k)max=k PB=4,则的取值范围是[,)故选:B.作出不等式组对应的平面区域,利用直线斜率的几何意义进行求解即可.本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.7.已知函数f(x)定义域为R,命题:p:f(x)为奇函数,q:f(x)dx=0,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】解:由f(x)为奇函数,得f(x)dx=0,是充分条件,反之不成立,不是必要条件,故选:A.根据充分必要条件的定义以及函数的奇偶性判断即可.本题考查了函数的奇偶性,考查充分必要条件,是一道基础题.8.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象上相邻两个最高点的距离为π.若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则函数f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin (2x+)【答案】C【解析】∴函数周期T=π,即T==π,即ω=2,即f(x)=2sin(2x+φ),若将函数f(x)的图象向左平移个单位长度后,得f(x)=2sin[2(x+)+φ)]=2sin (2x++φ),若图象关于y轴对称.则+φ=+kπ,即φ=+kπ,k∈Z,∵0<φ<π,∴当k=0时,φ=,即f(x)=2sin(2x+),故选:C.根据函数的图象求出函数的周期,利用函数的对称性求出ω和φ的值即可得到结论.本题主要考查三角函数解析式的求解,根据三角函数的性质求出ω和φ的值是解决本题的关键.9.阅读如图的程序框图,运行相应的程序,则输出的值为()A.3B.4C.6D.7【答案】C【解析】解:模拟程序的运行,可得S=3,n=0不满足条件S≥5,S=6,n=1,不满足条件n>4,执行循环体,满足条件S≥5,S=3,n=2,不满足条件n>4,执行循环体,不满足条件S≥5,S=6,n=3,不满足条件n>4,执行循环体,满足条件S≥5,S=3,n=4,不满足条件n>4,执行循环体,不满足条件S≥5,S=6,n=5,满足条件n>4,退出循环,输出S的值为6.出循环,输出S的值为6,即可得解.本题主要考查了循环结构的程序框图的应用,当循环的次数不多或有规律时常采用模拟程序运行的方法来解决,属于基础题.10.我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有()A.28个B.21个C.35个D.56个【答案】B【解析】解:因为1+1+4=6,1+2+3=6,2+2+2=6,0+1+5=6,0+2+4=6,0+3+3=6,0+0+6=6,所以可以分为7类,当三个位数字为1,1,4时,三位数有3个,当三个位数字为1,2,3时,三位数有A33=6个,当三个位数字为2,2,2时,三位数有1个,当三个位数字为0,1,5时,三位数有A21A22=4个,当三个位数字为0,2,4时,三位数有A21A22=4个,当三个位数字为0,3,3时,三位数有2个,当三个位数字为0,0,6时,三位数有1个,根据分类计数原理得三位数共有3+6+1+4+4+2+1=21.故选B.根据1+1+4=6,1+2+3=6,2+2+2=6,0+1+5=6,0+2+4=6,0+3+3=6,0+0+6=6,所以可以分为7类,分别求出每一类的三位数,再根据分类计数原理得到答案.本题主要考查了分类计数原理,关键是找到三个数字之和为6的数分别是什么,属于中档题.11.某几何体的三视图如图所示,则该几何体的外接球的半径为()A.2B.C.3D.【答案】B【解析】解:由已知中的三视图可得:该几何体是一个棱长为2的正方体,切去四个角所得的正四面体,其外接球等同于棱长为2的正方体的外接球,故2R==2,故R=,体,其外接球等同于棱长为2的正方体的外接球,进而得到答案.三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.12.已知函数f(x)=且x>0).若存在实数p,q(p<q),使得f(x)≤0的解集恰好为[p,q],则a的取值范围是()A.(0,]B.(一∞,]C.(0,)D.(一∞,)【答案】C【解析】解:当a=0时,f(x)=-e-x<0,则不存在f(x)≤0的解集恰为[p,q],当a<0时,f(x)<0,此时函数f(x)单调递增,则不存在f(x)≤0的解集恰为[p,q],当a>0时,由f(x)≤0得≤e-x,当x>0时,不等式等价为a≤,设g(x)=,则g′(x)=,当x>1时,g′(x)<0,当0<x<1时,g′(x)>0,即当x=1时,g(x)取得极大值,同时也是最大值g(1)=,∴若存在实数p,q,使得f(x)≥0的解集恰为[p,q],则必有a<,即0<a<,故选:C.分别讨论a的取值范围,利用参数分离法,结合导数研究函数的最值即可得到结论.本题主要考查导数的综合应用,考查分类讨论的数学思想,综合性较强,难度较大.二、填空题(本大题共5小题,共32.0分)13.双曲线-=1(a>0,b>0)的渐近线与圆(x-)2+y2=1相切,则此双曲线的离心率为______ .【答案】【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,双曲线-=1(a>0,b>0)的渐近线与圆(x-)2+y2=1相切,可得:=1,可得a2=b2,c=a,∴e=.故答案为.求出双曲线的渐近线方程,利用渐近线与圆相切,得到a、b关系,然后求解双曲线的离心率.本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.14.若()a的展开式中只有第5项的二项式系数最大,则展开式中常数项是______ .【答案】7【解析】解:根据题意,()a的展开式中只有第5项的二项式系数最大,则a=8,则()8的二项展开式为T r+1=C88-r•()8-r•(-)r=(-1)r•()8-r•C88-r•,令=0,解可得,r=6;则其常数项为7.()a的展开式中只有第5项的二项式系数最大,则a=8,可得(8的根据题意,二项展开式,令=0,解可得,r=6;将其代入二项展开式,可得答案.本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.15.《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能放多少斛米”(古制1丈=10尺,1斛=1.62立方尺,圆周率π=3),则该圆柱形容器能放米______ 斛.【答案】2700【解析】解:设圆柱的底面半径为r,则2πr=54,r=9,故米堆的体积为π×92×18=4374立方尺,∵1斛米的体积约为1.62立方尺,∴4374÷1.62≈2700斛,故答案为2700.由底面圆周长五丈四尺求出圆柱底面半径,根据圆柱的体积公式计算出对应的体积,除以1.62得答案.本题考查圆柱体积的求法,考查圆的周长公式的应用,是基础题.16.在△ABC中,内角A,B,C的对边分别为a,b,c,外接圆半径为1,且=,则△ABC面积的最大值为______ .【答案】【解析】解:∵外接圆半径为1,∴;又∵=,∴⇔sin A cos B=2sin C cos A-sin B cos A⇔sin C=2sin C cos A⇔cos A=,∴A=,sin A=,那么:=•2sin B•2sin C•sin A=sin B•sin C.令y=sin B•sin C.∵,∴y=sin B•sin()=sin B cos B-sin2B=sin2B cos2B-=sin(2B+).∵<<,∴2B+∈(,),当2B+=时,y取最大值为.∴△ABC面积的最大值为.故答案为:由题意,已知外接圆半径,利用正弦定理把边化角,求解出角A,根据=•2sin B•2sin C•sin A=sin B•sin C.转化为函数问题,利用三角函数的有界限求最值.本题考查了正弦定理的运用和三角函数的化简以及利用三角函数的有界限求最值.属于中档题.(2)若数列{a n}满足b n+1-b n=a n(n∈N*)且b1=3,求{}的前n项和T n.【答案】解:(1)设等差数列{a n}的公差为d,∵S5=45,S6=60,∴,解得.∴a n=5+(n-1)×2=2n+3.(2)∵b n+1-b n=a n=2n+1,b1=3,∴b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1=[2(n-1)+3]+[2(n-2)+3]+…+(2×1+3)+3==n2+2n.∴=.∴T n=…+==.【解析】(1)利用等差数列的前n项和公式即可得出;(2)利用“累加求和”、裂项求和、等差数列的前n项和公式即可得出.熟练掌握等差数列的前n项和公式、“累加求和”、裂项求和等是解题的关键.三、解答题(本大题共6小题,共70.0分)18.某校开展“读好书,好读书”活动,要求本学期每人至少读一本课外书,该校高一共有100名学生,他们本学期读课外书的本数统计如图所示.(I)求高一学生读课外书的人均本数;(Ⅱ)从高一学生中任意选两名学生,求他们读课外书的本数恰好相等的概率;(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,求随机变量ζ的分布列及数学期望E.【答案】解:(Ⅰ)由图知读课外书1本、2本、3本的学生人数分别为10,50和40,∴高一学生读课外书的人均本数为:(Ⅱ)从高一学生中任选两名学生,他们读课外书的本数恰好相等的概率为:p==.(Ⅲ)从高一学生中任选两名学生,记“这两人中一人读1本书,另一人读2本书”为事件A,“这两人中一人读2本书,另一人读3本书”为事件B,“这两人中一人读1本书,另一人读3本书”为事件C,从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,则ζ的可能取值为0,1,2,P(ζ=1)==,P(ζ=1)=P(A)+P(B)=+=,P(ζ=2)=P(C)==,E(ζ)==.【解析】(Ⅰ)由图知读课外书1本、2本、3本的学生人数分别为10,50和40,由此能求出高一学生读课外书的人均本数.(Ⅱ)从高一学生中任选两名学生,利用互斥事件概率加法公式能求出他们读课外书的本数恰好相等的概率.(Ⅲ)从高一学生中任选两名学生,用ζ表示这两人读课外书的本数之差的绝对值,则ζ的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量ζ的分布列及数学期望Eζ.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.在三棱柱ABC-A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA l,A1B1上,且AE=,A1F=,CE⊥EF,M为AB中点(I)证明:EF⊥平面CME;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【答案】在R t△EAM和R t△FA1E中,,又∠EAM=∠FA1E=,∴R t△EAM∽R t△FA1E,∴∠AEM=∠A1FE,∴EF⊥EM,又EF⊥CE,ME∩CE=E,∴EF⊥平面CEM.解:(Ⅱ)在等腰三角形△CAB中,∵CA⊥CB,AB=2,∴CA=CB=,且CM=1,设线段A1B1中点为N,连结MN,由(Ⅰ)可证CM⊥平面ABB1A1,∴MC,MA,MN两两垂直,建立如图所示的空间直角坐标系,则C(1,0,0),E(0,1,),F(0,,2),A(0,1,0),C1(1,0,2),=(-1,1,),=(0,-,),=(1,-1,2),设平面CEF的法向量为=(x,y,z),则,取z=2,得=(5,4,2),设直线AC1与平面CEF所成角为θ,则sinθ==,∴直线AC1与平面CEF所成角的正弦值为.【解析】(Ⅰ)推导出R t△EAM∽R t△FA1E,从而EF⊥ME,又EF⊥CE,由此能证明EF⊥平面CEM.(Ⅱ)设线段A1B1中点为N,连结MN,推导出MC,MA,MN两两垂直,建空间直角坐标系,利用向量法能求出直线AC1与平面CEF所成角的正弦值.本题考查线面垂直的证明,考查线面角的正弦值求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.已知椭圆C:+=1(a>b>0)的长轴长为4,离心率为,右焦点为F.(1)求椭圆C的方程;(2)直线l与椭圆C相切于点P(不为椭圆C的左、右顶点),直线l与直线x=2交于点A,直线l与直线x=-2交于点B,请问∠AFB是否为定值?若不是,请说明理由;若是,请证明.【答案】解:(1)2a=4,即a=2,e==,∴c=,b==1,∴椭圆方程为:,(2)证明:当l的斜率为0时,∠AFB为直角,则∠AFB为定值,为,当斜率不为0时,设切点为P(x0,y0),则l:,∴A(2,),B(-2,),∴k AF•k BF=•==-1,∴∠AFB为定值.【解析】(1)由2a=4,离心率e==,b=即可求得a和b,即可求得椭圆C的方程;(2)l的斜率为0时,∠AFB为直角,则∠AFB为定值,当斜率不为0时,将切点代入椭圆方程,求得交点坐标,求得AF和BF的斜率k AF及k BF,即可求得k AF•k BF=-1,即可求得∠AFB为定值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查计算能力,属于中档题.21.已知函数f(x)=(其中e是自然对数的底数,a∈R).(I)若曲线f(x)在x=l处的切线与x轴不平行,求a的值;(Ⅱ)若函数f(x)在区间(0,1]上是单调函数,求a的最大值.【答案】解:(Ⅰ)依题意,f′(x)=,f′(1)=0,且曲线f(x)在x=1处的切线方程为y=,∵切线与x轴不平行,故切线与x轴重合,∴,即a=-1;(Ⅱ)f′(x)=,设h(x)=,则h′(x)=-2x+(2-a)+.h′(x)在(0,1]上是减函数,从而h′(x)>h′(1)=2-a.①当2-a≥0,即a≤2时,h′(x)≥0,h(x)在区间(0,1)上为增函数.∵h(1)=0,∴h(x)≤0在(0,1]上恒成立,即f′(x)≤0在(0,1]上恒成立.∴f(x)在(0,1]上是减函数.∴a≤2满足题意;②当2-a<0,即a>2时,设函数h′(x)的唯一零点为x1,则h(x)在(0,x1)上递增,在(x1,1)上递减.又∵h(1)=0,∴h(x1)>0.又∵h(e-a)=-e-2a+(2-a)e-a+a-e a+lne-a=-e-2a+(2-a)e-a-e a<0,∴h(x)在(0,1)内由唯一一个零点x′,当x∈(0,x′)时,h(x)<0,当x∈(x′,1)时,h(x)>0.从而f(x)在(0,x′)上递减,在(x′,1)上递增,与在区间(0,1]上是单调函数矛盾.∴a>2不合题意.综上,a的最大值为2.【解析】(Ⅰ)求出原函数的导函数,可得f′(1)=0,得到曲线f(x)在x=1处的切线方程为y=,结合切线与x轴不平行,可得,从而求得a值;(Ⅱ)由f′(x)=,设h(x)=,求出h′(x),可知h′(x)在(0,1]上是减函数,从而h′(x)>h′(1)=2-a.然后分当2-a≥0,和2-a<0分类研究函数的单调性得答案.本题考查利用导数研究函数的单调性,考查了利用导数求曲线上某点处的切线方程,体现了分类讨论的数学思想方法,考查逻辑思维能力及推理运算能力,属难题.22.在直角坐标系x O y中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系x O y取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(I)求直角坐标下圆C的标准方程;(Ⅱ)若点P(l,2),设圆C与直线l交于点A,B,求|PA|+|PB|的值.【答案】解:(I)圆C的方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程:x2+y2=6y,配方为x2+(y-3)2=9.(II)直线l的参数方程为(t为参数),代入圆的方程可得:t2-7=0,解得t1=,t2=-.∴|PA|+|PB|=|t1-t2|=2.【解析】(I)圆C的方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程,配方可得标准方程.(II)直线l的参数方程为(t为参数),代入圆的方程可得:t2-7=0,解得t1,t2.利用|PA|+|PB|=|t1-t2|,即可得出.本题考查了直线的参数方程及其应用、圆的极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.23.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【答案】解:(1)由||x-1|+2|<5,得-5<|x-1|+2<5∴-7<|x-1|<3,得不等式的解为-2<x<4…(5分)(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,所以|a+3|≥2,解得a≥-1或a≤-5,所以实数a的取值范围为a≥-1或a≤-5.…(10分)【解析】(1)利用||x-1|+2|<5,转化为-7<|x-1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.。

安徽省蚌埠市怀远县2017届高三上学期教学质量摸底考试理数试题 含答案

安徽省蚌埠市怀远县2017届高三上学期教学质量摸底考试理数试题 含答案

数学(理)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}{}31,3,9,27,81,|log ,A B y y x x A ===∈,则A B =( )A .{}1,3B .{}3,27,81C .{}1,3,9D .{}9,272.数列{}na 是等比数列,2104aa =,且2100a a +>,则6a =()A .1B .2C .1±D .2± 3.0000cos10cos 20cos80sin 20-=()A .12B .0cos10 C 32D .0sin10-4。

已知两个单位向量12,e e 的夹角为θ,则下列结论不正确的是( ) A .1e 在2e 方向上的投影为cos θ B .2212ee = C .()()1212e e e e +⊥-D .121ee =5。

“11x>”是“11x e-<”的( )A .充分且不必要条件B .必要且不充分条件C .充要条件D .既非充分也非必要条件6.设nS 是等差数列{}na 的前n 项和,若87135aa =,则1513S S =( )A .1B .2C .3D .47。

函数()2a f x x x =+(其中a R ∈)的图象不可能是( )A .B .C .D .8.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin sin 2A C B +=,则ABC ∆中最大角的度数等于( )A .90°B .75°C .135°D .105°9。

《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的概率,内容涉及方程、几何、数列、面积、体积的计算等多方面,书的第6卷19题:“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀变细(各节容量成等差数列),则其余两节的容量共多少升( ) A .15166B .3122C .15266D .322210。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档