动力学的基本定律
动力学三大基本公式
![动力学三大基本公式](https://img.taocdn.com/s3/m/26f35ae89fc3d5bbfd0a79563c1ec5da51e2d674.png)
动力学三大基本公式
1动力学三大基本公式
动力学是力学的一个分支,旨在探讨受力系统中物体运动的原理,是现代物理学中很重要的一环。
动力学有三大基本公式,即经典动力学三大定律,即牛顿运动定律、牛顿第二定律和拉普拉斯定律。
2牛顿运动定律
牛顿运动定律,又称牛顿第一定律,是运动学中最基本的定律。
是由英国物理学家、数学家牛顿提出的,也是动力学中三大基本定律中最为重要的定律。
牛顿运动定律包括物体静止定律和物体运动定律,即:物体处于静止状态时,其受力和外力的总和为零;物体处于运动状态时,其受力和外力的总和为物体的质量乘以加速度。
3牛顿第二定律
牛顿第二定律即牛顿定理,也叫受力定律,牛顿第二定律的内容是:物体受外力的作用时,物体产生的力与外力成正比,而力的方向与外力方向相反;物体受外力的作用时,产生的力称为反作用力。
特殊地,当物体在接触面上产生摩擦力时,反作用力与外力并不成正比,而是根据摩擦力大小而有所不同。
4拉普拉斯定律
拉普拉斯定律是法国物理学家、数学家拉普拉斯提出的,又被称为拉普拉斯补偿定律,是力学中的基本定律。
拉普拉斯定律的内容
是:受外力作用的物体,其偶合外力的效果是可以引起物体的动量平衡的趋向的,即物体的动量守恒的原理。
以上就是动力学中三大基本公式的内容,这三大公式对经典运动学的研究有重要的意义,包括受力系统的运动、物体动量的守恒、外力对物体产生力的效果等等都是基于这三条定理来研究的。
动力学的基本定律
![动力学的基本定律](https://img.taocdn.com/s3/m/a6a127d3afaad1f34693daef5ef7ba0d4a736dfe.png)
动力学的基本定律动力学是研究物体运动的科学领域,它描述了物体运动的规律和原因。
在动力学中,有三个基本定律被公认为是最重要的。
本文将介绍这三个基本定律并探讨它们在我们日常生活中的应用。
第一定律:牛顿惯性定律牛顿第一定律,也被称为惯性定律,表明一个物体会保持匀速直线运动或保持静止,除非有其他力作用于它。
这意味着物体具有惯性,需要外力才能改变其运动状态。
例如,当你开车突然刹车,乘坐车内的物体会因为惯性而向前运动,直到受到人或座椅的阻止。
这个定律解释了为什么我们在车辆转弯时会倾向于向外侧倾斜。
第二定律:牛顿运动定律牛顿第二定律描述了物体受力时的加速度与所受力的关系。
它的数学表达式为:力等于质量乘以加速度(F=ma)。
这意味着一个物体所受的力越大,它的加速度也会越大。
例如,当你用力推一个小车,你施加在小车上的力越大,小车的加速度就越大。
这个定律也解释了为什么不同质量的物体在受到相同力的作用下会有不同的加速度。
第三定律:牛顿作用-反作用定律牛顿第三定律表明,对于任何一个物体施加的力都会有一个相等大小、方向相反的反作用力。
简而言之,这意味着每个动力学系统都会存在一个等量但方向相反的力对。
例如,当你站在地面上,你对地面施加一个向下的力,地面会对你施加一个同样大小但方向相反的向上的力。
这个定律解释了为什么我们可以行走和奔跑,以及为什么喷气式飞机能够飞行。
这三个基本定律是动力学的基石,在物理学和工程学等领域应用广泛。
它们提供了一种解释和预测物体运动的方法,并为科学家和工程师提供了指导。
无论是建筑设计、车辆制造还是航空航天技术,都离不开这些基本定律。
总结:动力学的基本定律对于理解物体运动至关重要。
牛顿的三个定律揭示了物体运动的规律,并在科学和工程应用中发挥着重要作用。
了解这些定律不仅可以帮助我们理解自然界中的运动现象,而且可以为我们解决实际问题提供一种方法和框架。
在日常生活中,我们可以通过这些定律来解释和理解我们所观察到的各种现象,使我们对物质世界的认识更加深入。
动力学三大观点
![动力学三大观点](https://img.taocdn.com/s3/m/b5a037dd941ea76e58fa047b.png)
二、力学的知识体系
这里涉及的力有:重力(引力)、弹力、摩擦力、 浮力等;涉及的运动形式有:静止(F=0)、匀 速直线运动(F=0)、匀变速直线运动(F=恒量)、 匀变速曲线运动(F=恒量)、匀速圆周运动(|F|= 恒量)、简谐运动(F=-kx等.
三、三大观点选用的原则
力学中首先考虑使用两个守恒定律.从两个守恒定 律的表达式看出多项都是状态量(如速度、位置),所 以守恒定律能解决状态问题,不能解决过程(如位移 x,时间t)问题,不能解决力(F)的问题. (1)若是多个物体组成的系统,优先考虑使用两个守 恒定律. (2)若物体(或系统)涉及到速度和时间,应考虑使用 动量 定理. (3)若物体(或系统)涉及到位移和时间,且受到恒 力作用,应考虑使用牛顿运动定律.
物体 A 经过圆弧时克服阻力做的功 1 Wf=1×10×(5+1) J- ×1×102 J=10 J 2
答案 (1)100 N (2)1.25 m (3)10 J
例 题 讲 解
例4
如图 4 所示,abc 是光滑的轨道,其中 ab 是水平的,
bc 是位于竖直平面内与 ab 相切的半圆, 半径 R =0.40 m . 质 量 m = 0.30 kg 的小球 A 静止在水平轨道上,另一质量 M =0.50 kg 的小球 B 以 v 0=4 m/s 的初速度与小球 A 发生正 碰.已知碰后小球 A 经过半圆的最高点 c 后落到轨道上距 b 点为 L =1.2 m 处, 重力加速度 g=10 m/s2.求碰撞结束后:
0.2×1×10 μmCg aB= = m/s2=0.5 m/s2 (mA+mB) 1+ 3 由速度公式得木板刚开始运动时的速度 vB1=vB2+aBt=(2+0.5×1)m/s=2.5 m/s vB1+vB2 2+2.5 木板 B 运动的距离 sB= t= ×1 m=2.25 m 2 2 长木板 B 的长度 L=sB-sC=1.25 m (3)物体 A 与长木板 B 碰撞过程中动量守恒 mAvA2=(mA+mB)vB1 (1+3)×2.5 vA2= m/s=10 m/s 1 物体 A 从静止释放到与长木板 B 碰撞前,由动能定理 1 mAg(h+R)-Wf= mAvA22-0 2
动力学基本定律(牛顿定律)
![动力学基本定律(牛顿定律)](https://img.taocdn.com/s3/m/341361c148649b6648d7c1c708a1284ac85005f9.png)
1.第⼀定律——惯性定律
任何质点如不受⼒的作⽤,则将保持静⽌或匀速直线运动状态。
这个定律表明了任何质点都有保持静⽌或匀速直线运动状态的属性。
这种属性称为该质点的惯性。
所以第⼀定律叫做惯性定律。
⽽质点作匀速直线运动称为惯性运动。
由惯性定律可知.如果质点的运动状态(静⽌或匀速直线状态)发⽣改变,即有了加速度,则质点上必受到⼒的作⽤。
因此,⼒是物体运动状态改变的原因。
2.第⼆定律——⼒与加速度的关系定律
质点受⼀⼒F作⽤时所获得的加速度a的⼤⼩与⼒F的⼤⼩成正⽐,⽽与质点的质量成反⽐;加速度的⽅向与作⽤⼒⽅向相同,即
ma=F (4-3-1)
如果质点同时受⼏个⼒的作⽤,则上式中的F应理解为这些⼒的合⼒,⽽a应理解为这些⼒共同作⽤下的质点的加速度,这样式(4—3—1)可写为
ma=ΣFi (4-3-2)
式(4—3—1)或式4—3—2)称为质点动⼒学基本⽅程。
3.第三定律——作⽤与反作⽤定律
两质点相互作⽤的⼒总是⼤⼩相等,⽅向相反,沿同⼀直线,并分别作⽤在两质点上。
这些定律是古典⼒学的基础,它们不仅只适⽤于惯性坐标系,且只适⽤于研究速度远少于光速的宏观物体。
由于⼀般⼯程问题中,⼤多问题都属于上述的适⽤范围,因此以基本定律为基础的古典⼒学在近代⼯程技术中仍占有很重要的地位。
动力学的基本定律和应用
![动力学的基本定律和应用](https://img.taocdn.com/s3/m/d6bd5848f56527d3240c844769eae009581ba2de.png)
动力学的基本定律和应用动力学(dynamics)是研究物体运动的规律以及运动状态变化的学科。
在物理学中,动力学通过基本定律来描述和解释物体运动的方式。
本文将介绍动力学的基本定律,并探讨其在科学研究和技术应用中的具体应用。
一、牛顿第一定律——惯性定律牛顿第一定律也被称为惯性定律,其表述为:“一个物体如果受到合力的作用,将会以匀速直线运动的状态持续下去;一个物体如果不受合力的作用,将会保持静止状态”。
惯性定律在科学研究中具有广泛的应用。
例如,在天文学中,根据惯性定律,科学家可以预测行星、恒星等天体在太空中的运动轨迹,进而研究宇宙演化的规律。
此外,惯性定律也在交通工具设计中发挥着重要作用。
以汽车为例,当车辆突然加速或者减速时,驾驶员和乘客的身体会出现相应的惯性反应,这就是惯性定律的具体表现。
工程师们通过研究惯性定律,设计和改进车辆的安全设施,以减轻事故发生时乘员受伤的可能性。
二、牛顿第二定律——运动定律牛顿第二定律是动力学中最重要的定律之一,它可以描述物体在受力作用下的运动状态。
牛顿第二定律的公式表述为:F = ma,其中F代表作用力,m代表物体的质量,a代表物体的加速度。
牛顿第二定律可以用于解释各种物体运动的现象。
例如,当足球在比赛中被踢出一脚时,根据牛顿第二定律,可以计算出足球在空中的运动轨迹和速度。
运动员在进行射门时,也需要根据牛顿第二定律调整自己的动作和力度,以确保足球获得期望的运动状态。
此外,牛顿第二定律也在工程学领域得到广泛应用。
例如,建筑物的结构设计中考虑到重力和风力等外力对建筑物的作用,通过应用牛顿第二定律,工程师可以计算建筑物在不同条件下的受力情况,从而保证建筑物的稳定性和安全性。
三、牛顿第三定律——作用与反作用定律牛顿第三定律也被称为作用与反作用定律,其表述为:“对于两个物体之间的相互作用,作用力与反作用力大小相等、方向相反,且分别作用于两个物体上”。
作用与反作用定律在现实生活中随处可见。
动力学三大基本定律
![动力学三大基本定律](https://img.taocdn.com/s3/m/65f724eb4128915f804d2b160b4e767f5acf80a6.png)
动力学三大基本定律牛顿的物理学思想主要是在绝对空间建立了经典物理学体系,这包括动力学三大定律,在前人的工作上结合他杰出的数学思维发现了引力定律,实现了天上的物理学和地上的物理学的一个大综合。
牛顿的宇宙观为,时间是绝对的、单向的,空间是均匀无限的。
牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。
物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。
物体的这种性质称为惯性。
所以牛顿第一定律也称为惯性定律。
第一定律也阐明了力的概念。
明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。
因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。
在日常生活中不注意这点,往往容易产生错觉。
牛顿第二定律:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
第二定律定量描述了力作用的效果,定量地量度了物体的惯性大小。
它是矢量式,并且是瞬时关系。
物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。
真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的质量如何,都具有的相同的加速度。
因此在作自由落体时,在相同的时间间隔中,它们的速度改变是相同的。
牛顿第三定律:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。
要改变一个物体的运动状态,必须有其它物体和它相互作用。
物体之间的相互作用是通过力体现的。
并且指出力的作用是相互的,有作用必有反作用力。
它们是作用在同一条直线上,大小相等,方向相反。
动力学三大守恒定律
![动力学三大守恒定律](https://img.taocdn.com/s3/m/bea3a8c370fe910ef12d2af90242a8956aecaa5d.png)
动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。
这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。
本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。
2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。
动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。
动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。
2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。
也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。
2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。
在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。
在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。
3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。
角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。
3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。
即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。
3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。
它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。
理论力学动力学
![理论力学动力学](https://img.taocdn.com/s3/m/745b42ff910ef12d2af9e7de.png)
二、四种特例
• 动系作平动。 J Fc = 0 •动系作匀速直线平动。
F
J e
ma r = F + F
J c
J e
= F
= 0
ma r = F
•相对平衡——43; F eJ + F cJ = 0
•相对静止——质点在动系中保持静止。
ar = 0
vr = 0
F + FeJ = 0
ac = 0
FeJ
T
θ
a a
P
例一: (书例6-7)
ω T M G φP
θ
F+F =0
J e
FeJ
T+G+F = 0
J e
T + P = 0 ——牵连 惯性力与万有引力之和为重力。 即重力不指向地球中心,而是有一微 小偏角θ。
又 dv x dt = (dv x dx ) (dx dt ) = v x dv x dx
N
∫
vx
0
v x dv x = ∫ (
x b
− Px m x +h
2 2
dx )
v 2 2 = P b 2 + h2 − x 2 + h2 m x
(
)
令 x = c,v = v x = 2 P( b 2 + h2 − x 2 + h2)m
§9-3 质点在非惯性坐标系中的运动
一、相对运动微分方程 对静系: ma = F
由于 a = ar+ ae+ ac 有 m ( ar+ ae+ ac) = F
Z’
z
O’ X’
M a F
Y’
动力学原理
![动力学原理](https://img.taocdn.com/s3/m/dd3b8b7c366baf1ffc4ffe4733687e21ae45ff6a.png)
动力学原理介绍
动力学是研究物体运动状态与时间的关系,以及力的作用效果与物体运动状态变化关系的科学。
动力学的基本原理包括牛顿第二定律、动量定理、动能定理等。
1.牛顿第二定律:
F=ma,其中F是力,m是质量,a是加速度。
这个定律描述了力与加速度之间的关系,即力的大小与物体的质量和加速度成正比。
2.动量定理:
Ft=mv,其中F是力,t是力的作用时间,m是质量,v是物体的速度。
这个定理描述了力的作用时间与物体的动量变化之间的关系,即力的作用时间与物体的动量变化成正比。
3.动能定理:
Fs=ΔE,其中Fs是力做的功,ΔE是物体动能的变化量。
这个定理描述了力做的功与物体动能变化之间的关系,即力做的功等于物体动能的变化量。
此外,动力学还涉及到一些复杂的概念,如动量守恒、能量守恒等。
这些概念在解决一些复杂的问题时非常有用。
例如,在研究天体运动时,牛顿运动定律和万有引力定律是解决天体运动问题的关键。
在研究碰撞问题时,动量定理和动能定理是解决碰撞问题的关键。
总之,动力学是物理学中的一个重要分支,它涉及到许多重要的概念和原理。
通过学习动力学,我们可以更好地理解物体的运动状态和力的作用效果,从而更好地解释自然现象并解决实际问题。
动力学的基本定律质点系统的动量守恒与动能守恒
![动力学的基本定律质点系统的动量守恒与动能守恒](https://img.taocdn.com/s3/m/b98ea2fac67da26925c52cc58bd63186bceb92de.png)
动力学的基本定律质点系统的动量守恒与动能守恒动力学的基本定律:质点系统的动量守恒与动能守恒动力学是研究物体运动的力学分支,通过运用基本定律来描述和解释物体运动的规律。
在动力学中,有两个重要的定律,即动量守恒定律和动能守恒定律。
本文将详细介绍这两个定律以及它们在质点系统中的应用。
一、动量守恒定律动量是物体运动的重要属性,定义为物体的质量乘以其速度。
动量守恒定律表明,在没有外力作用的情况下,质点的动量保持不变。
具体而言,对于一个孤立系统(也称为自由系统),质点在相互作用力的作用下,其动量的代数和保持不变。
这意味着在系统内发生的各种碰撞和相互作用过程中,质点的总动量始终保持不变。
动量守恒定律可以用数学表达式表示为:∑m1v1 = ∑m2v2其中,m1和m2分别是碰撞或相互作用前后各个质点的质量,v1和v2分别是其对应的速度。
通过使用动量守恒定律,可以推导出各种碰撞类型(如弹性碰撞和非弹性碰撞)的动量守恒方程式。
二、动能守恒定律动能是物体运动的能量形式,定义为物体的质量乘以速度的平方的一半。
动能守恒定律表明,在没有非弹性碰撞和其他形式的能量转化的情况下,质点的总动能保持不变。
同样地,对于一个孤立系统,质点在相互作用力的作用下,其总动能保持不变。
这意味着在碰撞和相互作用中,质点的动能可以从一个物体转移到另一个物体,但是系统的总动能保持不变。
动能守恒定律可以用数学表达式表示为:∑(1/2)mv1^2 = ∑(1/2)mv2^2其中,m为质点的质量,v1和v2为其相应的速度。
通过使用动能守恒定律,我们可以推导出各种碰撞类型(如完全弹性碰撞和部分非弹性碰撞)的动能守恒方程式。
三、质点系统中的定律应用在质点系统中,动量守恒定律和动能守恒定律都可以用来解释和描述质点之间的相互作用。
比如,在多个质点组成的系统中,当发生碰撞或相互作用时,动量守恒定律可以帮助我们计算各个质点的速度变化。
例如,考虑两个质点A和B之间的弹性碰撞。
第2章-牛顿定律
![第2章-牛顿定律](https://img.taocdn.com/s3/m/8231e6210722192e4536f628.png)
数学形式:
或
F ma
F m dv dt F d(mv) dt
力的叠加原理: 几个力同时作用在一个物体上 所产生的加速度a,等于各个力单独作用时所 产生加速度的矢量和。 在直角坐标系Oxyz中:
Fix ma x Fiy ma y Fiz ma z
T1 m1 g m1a1 (1)
X2方向:
T2 m2 g 解题思路 a2 (2) m2
1. 分析受力情况; 2. 建立坐标系; 不计滑轮质量,有 T1 3. 建立牛顿方程求解;
m3
X3
T2 T
X3方向有: m3 g 2T m3a3 (3) x3 ( x1 x2 ) 2 1 a3 (a1 a2 ) (4) 由 1 -- 4 式可解 2
A
N mg sin m 解题思路
1. 分析受力情况; 2. 建立坐标系; 3. 建立牛顿方程求解;
v
2
n N
R
dv dt
dvds dsdt
v
dv Rd
τ
mg
vdv Rg cos d
v
0
vdv Rg cos d
0
A
1 2
n N
v Rg sin
牛顿第一定律(惯性定律)
任何物体都将保持静止或匀速直线运动的 状态直到其他物体所作用的力迫使它改变这种
状态为止。
数学形式: v 恒矢量 , F 0
惯性: 任何物体保持其运动状态不变的性质。
牛顿第二定律(牛顿运动方程)
物体受到外力作用时,它所获得的加速 度的大小与合外力的大小成正比,与物体的 质量成反比,加速度的方向与合外力的方向 相同。
大学物理 第二章牛顿运动定律
![大学物理 第二章牛顿运动定律](https://img.taocdn.com/s3/m/d8e6074c852458fb770b5630.png)
赵 承 均
万有引力定律 任意两质点相互吸引,引力的大小与两者质量乘积成正比, 任意两质点相互吸引,引力的大小与两者质量乘积成正比,与其距离的 平方成反比,力的方向沿着两质点连线的方向。 平方成反比,力的方向沿着两质点连线的方向。
r m1m2 r F = −G 3 r r
赵 承 均
&& mx = p sin ωt
o
v Fx
x
x
即:
m
dv = p sin ωt dt
重 大 数 理 学 院
r r F ( t ) = ma ( t ) r & = mv ( t ) r && ( t ) = mr
此微分形式表明:力与加速度成一一对应关系。 此微分形式表明:力与加速度成一一对应关系。
赵 承 均
牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于宏观低速情况, 牛顿第二定律适用于宏观低速情况,而在微观 ( l ≤ 1 0 − 1 0 m 情况与实验有很大偏差。 高速 ( v ≥ 1 0 − 2 c ) 情况与实验有很大偏差。 牛顿第二定律适用于惯性系,而对非惯性系不成立。 牛顿第二定律适用于惯性系,而对非惯性系不成立。
赵 承 均
牛顿第二定律 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 与物体的质量成反比,方向与力的方向相同。 与物体的质量成反比,方向与力的方向相同。
r r F = ma
在国际单位中,质量的单位为kg(千克),长度的单位为m 在国际单位中,质量的单位为kg(千克),长度的单位为m(米), kg ),长度的单位为 时间的单位为s ),这些是基本单位。力的单位为N 牛顿), 这些是基本单位 ),是 时间的单位为s(秒),这些是基本单位。力的单位为N(牛顿),是导 出单位: 出单位: =1kg× 1N =1kg×1m/s2
动力学的基本定律
![动力学的基本定律](https://img.taocdn.com/s3/m/b105e44c78563c1ec5da50e2524de518974bd355.png)
动力学的基本定律动力学是研究物体运动和运动变化规律的科学,是物理学的一个重要分支。
在动力学中,有三条基本定律被广泛接受和应用,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
一、牛顿第一定律:惯性定律牛顿第一定律又称为惯性定律,它表明若物体处于静止状态,则会继续保持静止;若物体处于匀速直线运动状态,则会继续保持匀速直线运动,除非有外力作用于它。
简单来说,物体的运动状态不会自发改变,除非有力使它改变。
二、牛顿第二定律:运动定律牛顿第二定律是描述物体运动状态变化的原因,它表明物体所受合力与物体的加速度成正比,且方向与合力相同。
其数学表达式为F=ma,其中F表示物体所受合力,m表示物体的质量,a表示物体的加速度。
这个定律说明了物体的加速度与作用在物体上的合力成正比,且与物体的质量成反比。
三、牛顿第三定律:相互作用定律牛顿第三定律又称为相互作用定律,它规定当物体A对物体B施加力时,物体B一定会对物体A施加同大小、反方向的力。
这意味着所有的力都是成对出现的,且两个相互作用力的大小相等、方向相反,并作用在不同的物体上。
换句话说,如果有一个物体对另一个物体施加了力,那么这两个物体之间一定存在相互作用力。
通过牛顿的三个基本定律,我们可以对物体的运动进行分析和预测。
牛顿的运动定律不仅适用于地球上的物体,也适用于宇宙中的天体运动。
这些定律为我们解释了许多经典力学现象,如自由落体运动、弹簧振子的运动等。
除了牛顿力学外,还有其他形式的动力学定律,在研究微观领域的物理现象时起到了重要作用。
例如,量子力学描述了微观粒子的运动行为,而相对论则描述了高速运动物体的性质。
总结起来,动力学的基本定律是牛顿的三个定律,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
这些定律不仅在物理学领域发挥着重要作用,也被广泛应用于其他科学和工程领域,为我们理解和探索世界提供了坚实的基础。
大学物理第2章动力学牛定律
![大学物理第2章动力学牛定律](https://img.taocdn.com/s3/m/1721b68b4128915f804d2b160b4e767f5acf8034.png)
牛顿第三定律是处理碰撞问题 的基本定律,通过它可以确定 碰撞后物体的运动状态。
02
动力学基本概念与原理
质点与刚体模型
质点
用来代替物体的有质量的点,是实际物体的一种理想化模型。当 物体的大小和形状对所研究的问题影响可忽略不计时,可将物体 视为质点。
刚体
在力的作用下,大小和形状始终保持不变的物体。刚体模型忽略 了物体的形变,突出了物体间的相互作用。
万有引力定律的应用
航空航天技术中,万有引力定律是基本的动力学原理之一。它解释了天体之间的相互作用力,对于设计航天器和预测 其轨道至关重要。
牛顿第一定律的应用
牛顿第一定律(惯性定律)在航空航天技术中也有广泛应用。例如,航天器在太空中保持匀速直线运动或静止状态, 除非受到外力作用。
空气动力学原理
空气动力学是研究空气与物体相对运动时产生的力和力矩的科学。在航空航天技术中,空气动力学原理 对于设计飞行器的形状和结构至关重要,以减小空气阻力并提高升力。
06
总结与展望
本章内容回顾与总结
牛顿运动定律
深入探讨了牛顿三大运动定律,包括惯性定律、动量定律和作用 与反作用定律,以及其在各种物理现象和实际问题中的应用。
动力学基本概念
介绍了质点、质点系、内力、外力等基本概念,以及动量、 冲量、功、动能等动力学量,为后续学习打下基础。
动力学问题的分析方法
详细阐述了动力学问题的分析方法和解题思路,包括受力分析、运动分析、 动量定理、动能定理等,培养了学生的分析问题和解决问题的能力。
动力学数值模拟与仿真技 术的发展
随着计算机技术的不断进步, 动力学数值模拟与仿真技术将 在未来得到更广泛的应用。这 将有助于更深入地理解物理现 象,并为工程设计提供更精确 的依据。
动力学基本原理
![动力学基本原理](https://img.taocdn.com/s3/m/d84934aa534de518964bcf84b9d528ea81c72f8a.png)
动力学基本原理动力学是研究物体运动的一门科学,涉及力、质量、加速度和速度等概念。
它的基本原理是牛顿三定律,即惯性定律、动量定律和作用反作用定律。
第一,惯性定律:物体会保持其运动状态,直到有外力干扰。
这意味着如果一个物体处于静止状态,则它将始终保持静止,直到有力使其运动。
同样,如果一个物体正在运动,它将继续以相同的速度和方向运动,除非有力改变它的状态。
这个定律解释了为什么在没有阻力或摩擦力的情况下,物体可以继续运动。
第二,动量定律:动量是物体的运动属性,定义为物体的质量乘以其速度。
动量定律表明物体的动量随时间的变化率等于物体所受的外力。
外力会改变物体的动量,如果物体受到的力增加,则其动量也增加。
这个定律解释了为什么巨大的力会使物体加速,而小的力则只会产生微弱的影响。
第三,作用反作用定律:任何作用力都会有一个相等大小但方向相反的反作用力。
这意味着每当一个物体施加力于另一个物体时,被施加力的物体也会以相同的大小但反向的力作用于施加力的物体。
这个定律解释了为什么一个人站在滑冰板上,当他把脚迅速向后推时,滑冰板也会向前移动。
因为人对滑冰板施加的力使滑冰板对人施加反向力。
以上三个定律共同构成了动力学的基本原理。
它们共同揭示了物体运动的规律和力的作用方式。
因此,在研究物体的运动过程中,我们可以根据这些基本原理预测和解释物体的运动行为。
除了这些基本原理,动力学还涉及其他重要的概念和原理。
其中一个是动能,它是物体由于其运动而具有的能量。
动能取决于物体的质量和速度,其公式为动能= 1/2 ×质量 ×速度的平方。
根据动能定理,力所做的功等于物体动能的变化量。
另一个重要原理是动量守恒定律。
它指出,在没有外力干扰的情况下,系统的总动量保持不变。
这意味着一个物体的增加动量必须与另一个物体的减少动量相等。
动量守恒定律被广泛应用于各种物理现象和实验中,如碰撞和爆炸。
动力学的研究对于理解和解释各种自然现象以及工程应用具有重要意义。
牛顿定律与动力学基本关系
![牛顿定律与动力学基本关系](https://img.taocdn.com/s3/m/3e63802953d380eb6294dd88d0d233d4b14e3f14.png)
牛顿定律与动力学基本关系牛顿定律是力学领域中最基本的定律之一,它描述了物体运动的规律。
牛顿定律的提出,极大地推动了物理学的发展,对于我们理解和解释自然界中的各种现象起到了重要的作用。
第一定律,也被称为惯性定律,表明物体在没有外力作用下,将保持静止或匀速直线运动的状态。
这一定律的提出,揭示了物体运动状态的本质,即物体的运动状态只有在外力作用下才会发生改变。
这一定律为我们理解和解释许多日常生活中的现象提供了基础,比如为什么我们坐在车上,车突然启动时会感到向后倾斜。
第二定律,也称为运动定律,描述了物体的加速度与作用力之间的关系。
根据牛顿第二定律的表达式F=ma,我们可以得知,物体的加速度与作用力成正比,质量越大,加速度越小;作用力越大,加速度越大。
这一定律为我们研究物体运动的加速度提供了重要的依据。
牛顿第三定律,也被称为作用-反作用定律,表明任何两个物体之间的相互作用力大小相等、方向相反。
这一定律揭示了物体之间相互作用的本质,它告诉我们,任何物体所受到的力都是与其他物体相互作用的结果。
例如,当我们站在地面上时,我们对地面施加了一个向下的力,而地面对我们也施加了一个向上的力,这就是牛顿第三定律的体现。
动力学是研究物体运动的学科,它是建立在牛顿定律基础上的。
动力学研究的核心问题是物体的运动轨迹和速度变化规律。
通过牛顿定律,我们可以推导出物体的运动方程,进而计算出物体在不同时间点的位置和速度。
动力学的研究对于我们理解和解释自然界中的各种运动现象具有重要意义。
除了牛顿定律外,动力学还包括其他一些重要的概念和定律,如动量守恒定律、角动量守恒定律等。
这些定律和概念进一步丰富和完善了我们对物体运动的认识,使我们能够更准确地描述和预测物体的运动状态。
总结起来,牛顿定律与动力学是物理学中非常重要的基础理论。
牛顿定律揭示了物体运动的规律,为我们理解和解释自然界中的各种现象提供了基础。
而动力学则是在牛顿定律基础上发展起来的学科,研究物体的运动轨迹和速度变化规律。
动力学的基本原理与运动方程推导
![动力学的基本原理与运动方程推导](https://img.taocdn.com/s3/m/9566c97bbf1e650e52ea551810a6f524ccbfcbf1.png)
动力学的基本原理与运动方程推导动力学是物理学中研究物体运动的学科,它的基本原理和运动方程推导是了解和掌握动力学的关键。
本文将介绍动力学的基本原理,并推导出运动方程,以帮助读者更好地理解这一领域的知识。
一、动力学的基本原理动力学的基本原理包括牛顿三定律和能量守恒定律。
1. 牛顿第一定律:物体在没有外力作用下,将保持静止或匀速直线运动。
这意味着物体的速度只有在受到外力作用时才会改变。
2. 牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。
数学表达式为F=ma,其中F是物体所受的力,m是物体的质量,a是物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
这意味着物体之间的相互作用力总是成对出现的。
4. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。
能量可以在不同形式之间相互转化,但总能量保持恒定。
二、运动方程的推导在了解了动力学的基本原理之后,我们可以推导出物体的运动方程。
假设一个物体在一维空间中运动,且只受到一个力的作用。
根据牛顿第二定律,我们知道物体的加速度与作用在其上的力成正比,与物体的质量成反比。
可以将牛顿第二定律表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
根据运动学的定义,加速度可以表示为速度的变化率。
假设物体的初始速度为v0,加速度为a,时间为t,物体的速度可以表示为:v = v0 + at同样地,速度的变化率就是位移的变化率。
假设物体的初始位移为x0,位移为x,时间为t,物体的位移可以表示为:x = x0 + v0t + 1/2at^2这就是物体的运动方程,它描述了物体在给定时间内的位移。
通过上述推导,我们可以看到物体的运动方程与物体的质量、加速度、速度和位移之间的关系。
在实际应用中,我们可以通过测量物体的运动参数,来计算物体的质量或者力的大小。
三、动力学的应用动力学的原理和运动方程在很多领域都有广泛的应用。
动力学公式
![动力学公式](https://img.taocdn.com/s3/m/39609207a6c30c2259019e86.png)
四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子五、振动和波(机械振动与机械振动的传播)1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(3)干涉与衍射是波特有的;1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh216.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化(6) 能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
动力学知识点
![动力学知识点](https://img.taocdn.com/s3/m/f64f2c015b8102d276a20029bd64783e09127d0d.png)
动力学知识点动力学是研究物体运动、相互作用、改变运动状态的学科,它运用数学和物理原理来描述物体的运动规律。
在日常生活中,各种运动现象都与动力学相关,例如浆棒、自行车、电梯等等。
本文将介绍一些动力学知识点,帮助读者更好地理解运动学的重要性。
一、牛顿第一定律——惯性定律牛顿第一定律也称为惯性定律,指的是物体在没有受到力的作用时,将始终保持静止或匀速运动的状态。
在实际生活中,这个定律可以举出很多例子,例如在一辆自行车刹车时,人仍然会匀速前行;或者是在一个物体上施加力时,物体仅在力的作用下发生运动。
二、牛顿第二定律——动力学定律牛顿第二定律也称为动力学定律,它描述了物体所受合力与物体运动状态之间的关系。
具体而言,物体所受的合力等于物体的质量乘上加速度,即F=ma。
这个定律可以用来计算物体所受的力和加速度,并帮助我们了解物体如何受到力的影响来改变运动状态。
例如,在我们熟知的地球引力的作用下,苹果从树上落下的速度就可以用牛顿第二定律来解释。
三、牛顿第三定律——作用反作用定律牛顿第三定律也称为作用反作用定律,指的是两个物体之间相互作用的力具有同等大小、方向相反的特性。
例如,当一个人在地上跳时,他会将地面向下推一定程度,地面也会向他反推同等力的距离。
在这种情况下,如果人和地面的质量相等,则两个物体以相等的速度和力互相推离。
四、动量守恒定律动量守恒定律描述了在相互作用过程中动量守恒的现象。
其意义在于,当两个物体之间相互作用时,它们的总动量将始终保持不变。
具体而言,在碰撞或爆炸时,动量的总和是相等的,因此一个物体的动量增加,另一个物体的动量必然会减小。
例如,在日常生活中,汽车的碰撞就是不能违反动量守恒定律的经典案例。
五、角动量守恒定律角动量守恒定律描述了在相互作用过程中角动量守恒的现象。
其中“角动量”指的是物体旋转时的动量,是一个向量,并且旋转轴和速度之间的乘积。
在不受外部力矩影响的情况下,一个物体的角动量将始终保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学的基本定律2、动力学基本定律
动力学的基本定律
动力学的基本定律
第一定律 (惯性定律)
不受力作用的质点(包括平衡力系作用的质点),将保持静止或作匀速直线运动。
第二定律(力与加速度之间的关系定律) ma F 质点所具有的这种性质称为惯性。
质量是质点惯性的度量。
第三定律 (作用与反作用定律)
两个物体间的作用力与反作用力总是大小相等,方向相反,沿着同一直线,且同时分别作用在这两个物体上。
惯性参考系
一般的工程问题
固定于地面或相对于地面匀速直线运动
人造卫星
洲际导弹 地心为原点,三轴指向三颗恒星
天体运动 太阳心为原点,三轴指向三颗恒星 以牛顿三定律为基础的力学称为古典力学(经典力学)。
质量是不变的的量;
空间和时间是绝对的,与物体运动无关。
速度远小于光速时,一般工程中的机械运动问题,应用古典力学可以得到足够精确的结果。
动力学的基本定律。