《不等式的基本性质》
不等式的基本性质
4
3
2
= 2x (x -1)+(1- x)(1+ x) 3 =(x -1)(2x - x -1) 2 = (x 1)(x 1)(2x 2x 1) 1 1 = (x -1) 2(x + 2) + 2 > 0
2 2
3
∴A>B
1、不等式的基本性质: ①对称性: a b b a
考点突破 利用不等式性质判断命题真假 运用不等式的性质判断时,要注意不等式成立的 条件,不要弱化条件,尤其是不能凭想当然随意 捏造性质.解有关不等式的简单判断和选择题时,
也可采用特殊值法进行排除,注意取值一定要遵
循如下原则:一是满足题设条件;二是取值要简
单,便于验证计算.
对于实数 a,b,c,下列命题中的真命题 是( ) A.若 a>b,则 ac2>bc2 1 1 B.若 a>b>0,则a>b b a C.若 a<b<0,则 > a b 1 1 D.若 a>b,a>b,则 a>0,b<0
本专题知识结构
第一讲 不等式和绝对值不等式
不 等 式 选 讲
第二讲 证明不等式的基本方法 第三讲 柯西不等式与排序不等式 第四讲 数学归纳法证明不等式
第一讲
不等式和绝对值不等式
1.不等式的基本性质
知识回顾
A B a b b>a B b
a>b
A a
a>b a-b>0
解:
2
2
2 2 2
4 2 4
4
,
4
不等式的四条基本性质
不等式的四条基本性质
不等式的四条基本性质是数学中一种重要的概念,它是解决方程的基础,是一门数学的基本知识。
归纳一下,不等式的四条基本性质包括:转置法则、结合率、分配法则、乘法法则。
首先,不等式的转置法则表明当两个不等式之间没有任何改动时,它们保持其相等状态。
例如,对于x>y,则y<x恒成立。
其次,不等式的结合率表明将二元不等式(即只包含两个未知量的不等式)通过乘以一个正实数结合到一起,它不会改变不等式的解的乘法,即任何一个二元不等式的乘法都是它的解的结合率。
例如,若x>0,不论乘以多少正实数都会使x
的大小保持不变,最终仍然>0。
再次,不等式的分配法则表明,当将一个正实常数分别与不等式的两边相乘时,它将被均匀地分配到不等式的两边。
例如,我们如果将2x与3x分别乘以k,那么可以得到(2kx + 3kx)>0,原来的不等式不变,同时常数k也是均匀地分配到不等式的两边。
最后,不等式的乘法法则表明,当将一个变量和一个正实常数相乘时,不等式的大小状态将保持不变。
例如,当我们将一个变量x和c乘起来,x>0时,必然有cx>0,而x<0时,有cx<0,因此这条不等式的大小状态不变。
总的来说,不等式的四条基本性质是探究方程解的根基,由它们可以更进一步地求解数学方程,对学习数学解题技巧再次有所帮助。
不等式的基本性质
质。
02
绝对值不等式的形式
绝对值不等式的一般形式是$|a| < b$或$|a| > b$,其中$a$和$b$是
实数。
03
绝对值不等式的解法
求解绝对值不等式需要利用绝对值的性质和运算规则,通常将其转化
为若干个简单的绝对值不等式或等式进行求解。
柯西不等式
柯西不等式的定义
柯西不等式是一类重要的不等式,它反映了内积空间中向量的模长的平方和与它们内积的 之间的关系。
详细描述
不等式的可加性也是我们在解决不等式问题时常用的性质之一。它基于加法法则 ,即如果a>b且c>d,那么a+c>b+d。这个性质可以用于简化不等式,有时也可 以帮助我们找到不等式之间的联系。
不等式的可乘性
总结词
不等式的可乘性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的可乘性是我们在解决不等式问题时常用的性质之一 。它基于乘法法则,即如果a>b且c>d,那么ac>bd。这个 性质可以用于简化不等式,有时也可以帮助我们找到不等式 之间的联系。
02
经济学中,投资回报不等式用于比较不同投资项目的回报率,
以及确定最优投资策略。
风险评估不等式
03
在经济学中,风险评估不等式用于评估投资风险,比较不同投
资项目的风险水平,以及制定风险管理策略。
不等式在物理学中的应用
力学不等式
在物理学中,力学不等式用于比较物体之间的作用力和反作用力,以及确定物体运动状态 变化的趋势。
03
不等式的证明方法
利用不等式的性质证明不等式
同一性质
如果a>b,c>d,那么ac>bd。
不等式的基本性质和证明的基本方法
通过构造平方和并利用非负性进行证明。
应用领域
在线性代数、函数分析和概率论中有广泛应用,如证明某些函数的可 积性等。
切比雪夫不等式
定义
对于任意两个实数序列,序列和的乘积小于或等于序列各项乘积 的和。
证明方法
通过排序后应用算术-几何平均不等式进行证明。
应用领域
在数论、概率论和统计学中有应用,如证明某些概率分布的性质等。
06
经典不等式介绍及其证明
算术-几何平均不等式
定义
对于所有非负实数,算术平均数永远大于或等于 几何平均数。
证明方法
通过数学归纳法或拉格朗日乘数法进行证明。
应用领域
在概率论、信息论和统计学中广泛应用,如证明 熵的最大值等。
柯西-施瓦茨不等式
定义
对于任意两个向量,它们的内积的绝对值小于或等于它们的模的乘 积。
数列的单调性
利用不等式的性质,可以判断数列的单调性,即数列是递增还是 递减。
数列的有界性
通过不等式的性质,可以证明数列的有界性,即数列的每一项都落 在某个区间内。
数学归纳法中的不等式证明
在数学归纳法中,经常需要利用不等式的性质进行证明,如证明某 个不等式对所有的自然数都成立。
05
证明不等式的基本策略
不等式在数学、物理、工程等领域都有广泛应用,研究不等式有 助于解决实际问题。
不等式的基本性质概述
01
传递性
02
可加性
03 可乘性
04
特殊性
对称性
05
如果a>b且b>c,则a>c。 如果a>b,则a+c>b+c。 如果a>b且c>0,则ac>bc。 任何数都大于负数,小于正数。 如果a=b,则b=a。
不等式的性质一
不等式的性质一不等式是数学中常见的一种数值关系表达方式,用于描述两个数之间的大小关系。
与等式相比,不等式中的符号不仅包括等号(=),还包括大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)等。
不等式的性质是研究不等式在数学中的基本特点和规律的重要内容之一。
本文将介绍不等式的基本性质以及应用。
一、不等式的基本性质1. 传递性:对于任意实数 a、b、c,如果 a<b,b<c,则有 a<c。
这说明不等式的大小关系具有传递性,可以通过中间比较数来判断其他数的大小关系。
2. 反身性:对于任意实数 a,a=a。
这说明不等式中的等号是可以成立的,即两个相等的数之间也可以用等号连接。
3. 对称性:如果 a<b,则-b< -a。
这说明不等式中的大小关系在取反时保持不变,即如果一个数 a 小于另一个数 b,则取相反数后,-a 大于-b。
4. 加法性:对于任意实数 a、b、c,如果 a<b,则 a+c<b+c。
这说明不等式的大小关系在两边同时加上相同的数时保持不变,即两个不等式同时加上一个数,其大小关系不变。
5. 减法性:对于任意实数 a、b,如果 a<b,则 a-c<b-c。
这说明不等式的大小关系在两边同时减去相同的数时保持不变,即两个不等式同时减去一个数,其大小关系不变。
二、不等式的应用1. 求解不等式:不等式可以用来求解关于未知数的数值范围。
通过运用不等式性质,我们可以将复杂的不等式转化为简单的形式,并找到解集合。
例题1:求解不等式 2x-5<3。
解:首先,将不等式转化为简单形式,得到 2x<8。
然后,除以 2,得到 x<4。
所以,解集合为 x 的取值范围为 (-∞, 4)。
2. 不等式的证明:通过应用不等式的性质,可以进行不等式的证明。
证明不等式的方法包括直接证明法、间接证明法、数学归纳法等。
例题2:证明对于任意正实数 a,b,有a*b ≤ (a+b)/2²。
不等式的基本性质
不等式的基本性质
不等式的基本性质
不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘
法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
一、不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减
去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0
的整式,不等号方向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0
的整式,不等号方向改变;<>
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N
次幂(N为负数)。
< p>
二、不等式的基本性质的另一种表达方式
1.对称性;
2.传递性;
3.加法单调性,即同向不等式可加性;
4.乘法单调性;
5.同向正值不等式可乘性;
6.正值不等式可乘方;
7.正值不等式可开方;
8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
不等式的基本性质
如果a+b>c,则a与c-b?
推论1:如果a+b>c,则a>c-b.
证明 :因为 所以 即 a+b>c, a+b+(-b)>c+(-b), a>c-b.
综合法:指从已知条件出发,借助其性质和有 关定理,经过逐步的逻辑推理,最后达到特征结论 或需求问题的方法。其特点和思路是:由因到果。
小试牛刀
(1)在-6<2 (2)在4>-3 的两边都加上9,得 的两边都减去6,得 3<11 ;
(3)如果 a<b,那么 a-3 (4)如果 x>3,那么 x+2
-2>-9 ; < b-3;
> 5; (5)如果 x+7>9,那么两边都 减去7,得 x>2.
把不等式60>36的两边同时乘以任意一个
不为0的数,你发现什么规律了吗?
如果不等式两边都乘同一个正数,则不等
号的方向不变,如果都乘同一个负数,则不等
趣味探索不等式
10年后爷爷和爸爸他们各自多少 岁呢?爷爷的年龄还比爸爸的年 龄大吗?10年前呢?X年后呢?
10年后,60+10>36+10 10年前,60-10>36-10 x年后,60+x>36+x
不等式的两边都加上(或减去)同一个数,不等号的方向不变。
趣味探索不等式
a>b
b
c b b+c b+c c
号的方向改变。
趣味探索不等式
3.不等式性质3(乘法法则) :如果 a>b,c>0,则ac>bc; 如果 a>b,c<0,则ac<bc. 证明:因为 ac-bc=(a-b)c, 又由 a>b,即 a-b>0, 所以 当c>0时,(a-b)c>0,即 ac>bc; 所以 当c<0时,(a-b)c<0,即 ac<bc.
初中数学八年级《不等式的基本性质》
5.已知a<b,则不等式组的解集是
a____x____b____
x a x b
6.若不等式组
2x a 1 x 2b 3
的解是1 x 1
则 (a 1)(b 1) 的值为__-_6________
7.如果不等式 2x m 0的负整数解是
当购由yy乙买由 由y甲甲书两yy==甲甲当法种(><y22购练优乙yy55乙乙买习惠,, ,书本办得11所得 得法的法005以练本x的55+,xx习数实5++5当2(22本多x际0x00购)0的于付00=买><本5款1440954..0数金本055.05)本xx不%额书x+++书少22相,522法2于等选..x255练415,,,择.0,习5可本乙解解2x本解0以且优之之0时之任多惠(得 得2,x选于办得2xx5一5法x><0(=551种付本x0005优款; 。时)0惠更。,10省)钱;
10. 不等式 x 3 1 3x 1 的负整数解的个数有( C)
A. 0个 2 B. 2个 3 C. 4个
D. 6个
11.不等式组 1 2x 4
1 3
x
2 3
x
的整数解的和是( B)
A. 1
B. 0
C. -1
D. -2
12.下列四个不等式(1)ac>bc(2)ma mb
((自程(时早(速23行的))1间到度2v车函))自?多请分谁=和数两谁长你别出8摩关8到时人0分发是达间托 系在得1别多乙?0车 式途较k求少m地行 。早中/出较?h驶?;行早表早过v驶?摩示多=的长5- 803 =40km / h
不等式的四个基本性质
不等式的四个基本性质
《不等式的四个基本性质》
不等式是数学中一个重要的概念,它是用来判断两个数大小关系的符号表达式,用於限定变量的一系列值范围,是数学中重要的研究问题,涉及到许多数学应用,如优化问题等。
一般而言,不等式的四个基本性质是指:互换律、结合律、抵消律和对称性。
首先,不等式的互换律指的是变量在不等式中的顺序不会造成结论的改变,也就是说如果“x > y”,那么“y < x”也是成立的,数学上就满足交换律,所以这也是
不等式的一个基本性质。
其次,不等式的结合律是指可以在不等式的右边或左边添加同号的数,而不会改变不等式的结果,也就是说,“x > y”,当把m+n(m和n为正数)添加到右边时,“x > y + m+n ”也同样成立,所以这也是不等式的一个基本性质。
此外,不等式的抵消律指的是在不等式式左右加上少量
同号的数,可以抵消掉它们,也就是将等式变成不等式。
比如,“x = y + m+n”时,可以令“x > y+m-n”成立,因此抵消律也是不等式的一个基本性质。
最后一个不等式的基本性质是对称性,指的是不等式可以将大于(>)和小于(<)符号进行互换,使得其结果改变,而不必改变数字部分。
如“x > 2”,可以将大
于号换成小于号,得“x < 2”,所以对称性也是不等
式的一个基本性质。
总之,不等式的四个基本性质分别是:互换律、结合律、抵消律和对称性,是在探究不等式时需要遵循的基本性质,是研究不等式的前提。
理解并熟练掌握这四个性质有利于解决更多复杂不等式。
不等式的概念和基本性质
不等式的概念和基本性质重点:不等式的基本性质难点:不等式基本性质的应用主要内容:1.不等式的基本性质(1)a>b b<a(2)a>b,b>c a>c(3)a+b<c a<c-ba>b a+c>b+c(4)a>b2.不等式的运算性质(1)加法法则:a>b,c>d a+c>b+d(2)减法法则:a>b,c>d a-d>b-c(3)乘法法则:a>b>0,c>d>0ac>bd>0(4)除法法则:a>b>0,c>d>0>>0(5)乘方法则:a>b>0,a n>b n>0 (n∈N, n≥2)(6)开方法则:a>b>0,>>0(n∈N, n≥2)3.基本不等式(1)a∈R,a2≥0 (当且仅当a=0时取等号)(2)a,b∈R,a2+b2≥2ab(当且仅当a=b时取等号)(3)a,b∈R+,≥(当且仅当a=b时取等号)(4)a,b,c∈R+,a3+b3+c3≥3abc(当且仅当a=b=c时取等号)(5)a,b,c∈R+,≥(当且仅当a=b=c时取等号)(6)|a|-|b|≤|a±b|≤|a|+|b|4.不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。
基本不等式可以在解题时直接应用。
例1.对于实数a,b,c判断以下命题的真假(1)若a>b, 则ac<bc;(2)若ac2>bc2, 则a>b;(3)若a<b<0, 则a2>ab>b2; (4)若a<b<0, 则|a|>|b|;(5)若a>b, >, 则a>0, b<0.解:(1)因为c的符号不定,所以无法判定ac和bc的大小,故原命题为假命题。
不等式的基本性质
题型一
题型二
题型三
题型四
反思对于考查不等式的基本性质的选择题,解答时,一是利用不等
式的相关性质,其中,特别要注意不等号变号的影响因素,如数乘、
取倒数、开方、平方等;二是对所含字母取特殊值,结合排除法去
选正确的选项,这种方法一般要注意选取的值应具有某个方面的代
表性,如选取0、正数、负数等.
题型一
题型二
谢谢!
≤ .
2 2 2 2
2
2
2
题型一
题型二
题型三
题型四
π+ππ≤ 和− ≤2
2
2
2
-
π
π
≤ 的错误,导致该种错误的原因是忽视了 , 不能同时取到
2
2
2 2
4
π
和 − 以及忽视了α,β 的大小关系.
4
错因分析:在解答本题的过程中易出现 − ≤
题型一
题型二
正解: ∵
题型三
题型四
π
π
− 2≤α<β≤2,
π π -
π
即
的取值范围为 - ,
,
的取值范围为 - ,0 .
2
2 2 2
2
题型一
题型二
题型三
题型四
反思求代数式的取值范围是不等式性质应用的一个重要方面,严
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.
在使用不等式的性质时,如果是由两个变量的取值范围求其差的取
值范围,一定不能直接作差,而要先转化为同向不等式后再求和.
第一讲 不等式
和绝对值不等式
一 不等式
1.不等式的基本
性质
学习目标:
不等式的基本性质
第二节1.2不等式的基本性质—目标导引1.历经不等式基本性质探索,进一步体会不等式与等式的区别.2.掌握并能灵活运用不等式的基本性质1.2不等式的基本性质—内容全解1.不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向.2.等式性质与不等式性质的区别其最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变第二课时●课题§1.2 不等式的基本性质●教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.●教学重点探索不等式的基本性质,并能灵活地掌握和应用.●教学难点能根据不等式的基本性质进行化简.●教学方法 类推探究法即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A ) 第二张:(记作§1.2 B ) ●教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a <5+a 3-a <5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究. [生]∵3<5 ∴3×2<5×23×21<5×21. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<53×(-2)>5×(-2) 所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×33×31<4×31 3×(-3)>4×(-3)3×(-31)>4×(-31)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释π42l >162l 的正确性[师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π42l 和162l ,且有π42l >162l 存在,你能用不等式的基本性质来解释吗?[生]∵4π<16 ∴π41>161 根据不等式的基本性质2,两边都乘以l 2得π42l >162l 3.例题讲解将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得 x >-1+5 即x >4;(2)根据不等式的基本性质3,两边都除以-2,得x <-23; (3)根据不等式的基本性质2,两边都除以3,得 x <-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A )或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流. [生](1)正确∵a <b ,在不等式两边都加上c ,得 a +c <b +c ; ∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c ,得 ac <bc , 所以正确.(4)根据不等式的基本性质2,两边都除以c ,得c a <cb 所以结论错误.[师]大家同意这位同学的做法吗? [生]不同意.[师]能说出理由吗? [生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a <b ,两边同时乘以c 时,没有指明c 的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c =0,则有ac =bc ,正是因为c 的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac <bc .只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c ≠0,但不知c 是正数还是负数,所以不能决定不等号的方向是否改变,若c >0,则有c a <c b ,若 c <0,则有c a >cb,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x >a ”或“x <a ”的形式.(1)x -1>2 (2)-x <65 [生]解:(1)根据不等式的基本性质1,两边都加上1,得x >3 (2)根据不等式的基本性质3,两边都乘以-1,得 x >-65 2.已知x >y ,下列不等式一定成立吗? (1)x -6<y -6; (2)3x <3y ; (3)-2x <-2y . 解:(1)∵x >y ,∴x -6>y -6. ∴不等式不成立; (2)∵x >y ,∴3x >3y ∴不等式不成立;(3)∵x >y ,∴-2x <-2y ∴不等式一定成立. 投影片(§1.2 B )Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.●板书设计●备课资料 参考练习1.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3;(2)6x <5x -1; (3)21x >5;(4)-4x >3. 2.设a >b .用“<”或“>”号填空. (1)a -3 b -3;(2)2a 2b ; (3)-4a -4b ;(4)5a 5b ;(5)当a >0,b 0时,ab >0; (6)当a >0,b 0时,ab <0; (7)当a <0,b 0时,ab >0; (8)当a <0,b 0时,ab <0. 参考答案:1.(1)x <5;(2)x <-1; (3)x >10;(4)x <-43. 2.(1)> (2)> (3)< (4)>(5)> (6)< (7)< (8)>.●迁移发散 迁移1.若a <b ,则下列不等式中成立的是哪些,说明理由. ①-3+a <-3+b ②-3a <-3b③-3a -1<-3b -1 ④-3a +1>-31b +1 解:在已知条件下成立的有①,其余皆错.错因:②在a <b 的条件下,根据不等式的基本性质3应有-3a >-3b ; ③基本上同②;④在a <b 条件下,由不等式的基本性质,两边必须加(减、乘、除)同一个整式或数.2.判断x =-51能否满足不等式3-2x <5+6x ,x =-1呢? 解:将x =-51代入得:3-2×(-51)<5+6×(-51)3+52<5-56,519517 ∴x =-51满足不等式3-2x <5+6x当x =-1时,代入不等式得:3-2×(-1)<5+6×(-1),3+2<5-6,5<-1 显然不能成立.∴x =-1不能满足不等式3-2x <5+6x . 发散本节我们用到了我们以前学过的知识如下:等式的基本性质1:等式的两边都加上(或都减去)同一个整式,等式仍成立. 等式的基本性质2:等式的两边都乘以(或除以)同一个不为零的数,等式仍成立.●方法点拨[例1]判断下列各运算运用了不等式的哪一条性质. ①∵2<3 ∴2×5<3×5 ②∵2<3 ∴2+x <3+x③∵2<3 ∴2×(-1)>3×(-1) 解:①运用了不等式的性质2. ②运用了不等式的性质1. ③运用了不等式的性质3.[例2]判断下列运算是否正确,请说明理由. ∵2<3 ∴2a <3a .点拨:在此没有说明a 的取值,所以要分三种情况讨论.即a >0,a =0,a <0. 解:此运算错误.当a >0时,则有2a <3a . 当a =0时,不等式不成立. 当a <0时,则有2a >3a .[例3]根据不等式的性质.把下列不等式化为x >a 或x <a 的形式. (1)2x -15<5 (2)3x >2x +1 (3)3x +1<5x -2(4)31x >51x +1. 解:(1)先由不等式基本性质1,两边都加15得:2x <5+15.即2x <20. 再由不等式基本性质2,两边都乘以21得:x <10. (2)由不等式的基本性质1,两边都减去2x 得:3x -2x >1.即x >1.(3)先由不等式的基本性质1,两边都加上-5x -1得:3x -5x <-2-1,即-2x <-3.再由不等式的性质3,两边都除以-2得:x >23(注意不等号变向). (4)先由不等式的基本性质1,两边都减去51x 得:31x -51x <1,即152x <1.再由不等式的基本性质2,两边都乘以215得:x <215.[例4]在下列横线上填上适当的不等号(>或<)(1)如果a >b ,则a -b __________0. (2)如果a <b ,则a -b __________0. (3)如果2x <x ,则x __________0.(4)如果a >0,b <0,则ab __________0. (5)如果a +b >a ,则b __________0.(6)如果a >b ,则2(a -b )__________3(a -b ). 解:(1)> (2)< (3)< (4)< (5)> (6)<●作业指导 随堂练习1.解:(1)先由不等式的基本性质1,两边加1得:4x >2+1. 即4x >3.再由不等式基本性质2,两边都除以4得:x >43. (2)由不等式的基本性质3,两边都乘以-1得:x >-65. 2.解:(1)不成立. (2)不成立.(3)由不等式的基本性质3得成立. 习题1.21.解:(1)< (2)< (3)> (4)<2.解:(1)先由不等式的基本性质1,两边都减去3得:5x <-1-3 即5x <-4.再由不等式的基本性质2,两边都除以5得:x <-54. (2)由不等式的基本性质3,两边都乘以-3得:x <-15.试一试解:当a >0时,2a >a ;当a =0时2a =a ;当a <0时,2a <a .§1.2 不等式的基本性质●温故知新 想一想,做一做填空1.等式的两边都加上或都减去__________,结果仍是等式. 2.等式两边都乘以或除以__________,结果仍是等式. 3.用__________连接而成的式子叫做不等式.4.①若a 为非负数,则a __________(列出不等式). ②若a 为非正数,则a __________. ③若a 不小于3,则a __________. ④若a 不大于-3,则a __________. 你做对了吗?我们一起来对对答案:1.同一个整式2.同一个不为零的整式3.“<” “≤” “>” “≥”4.①≥0 ②≤0 ③≥3 ④≤-3 看看书,动动脑填空1.不等式的两边都加上(或减去)同一个整式,不等式的方向__________. 2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________. 3.不等式两边都乘以(或除以)同一个负数,不等号方向__________.2.不等式的基本性质作业导航理解并掌握不等式的基本性质,会运用不等式的基本性质有根据地进行不等式的变形. 一、选择题1.若a +3>b +3,则下列不等式中错误的是( ) A.-55b a -< B.-2a >-2bC.a -2<b -2D.-(-a )>-(-b ) 2.若a >b ,c <0,则下列不等式成立的是( ) A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c3.有理数a 、b 在数轴上的位置如图1所示,在下列各式中对a 、b 之间的关系表达不正确的是( )图1A.b -a >0B.ab >0C.c -b <c -aD.ab 11> 4.已知4>3,则下列结论正确的是( )①4a >3a ②4+a >3+a ③4-a >3-aA.①②B.①③C.②③D.①②③ 5.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA.2B.3C.4D.5 二、填空题(用不等号填空)6.若a <b ,则-3a +1________-3b +1.7.若-35x >5,则x ________-3. 8.若a >b ,c ≤0,则ac ________bc .9.若ba b a --||=-1,则a -b ________0. 10.若ax >b ,ac 2<0,则x ________a b . 三、解答题11.指出下列各题中不等式变形的依据.(1)由21a >3,得a >6. (2)由a -5>0,得a >5. (3)由-3a <2,得a >-32. 12.根据不等式性质,把下列不等式化成x >a 或x <a 的形式.(1)x +7>9(2)6x <5x -3 (3)51x <52 (4)-32x >-1 13.如果a >ab ,且a 是负数,那么b 的取值范围是什么?*14.已知m <0,-1<n <0,试将m ,mn ,mn 2从小到大依次排列.参考答案一、1.B 2.B 3.D 4.C 5.B二、6> 7.< 8.≤ 9.< 10.<三、11.略12.(1)x >2 (2)x <-3 (3)x <2(4)x <23 13.b >1 14.m <mn 2<mn§1.2 不等式的基本性质(15分钟练习)班级:_______ 姓名:_______一、快速抢答用“>”或“<”填空,并在题后括号内注明理由:(1)∵a >b∴a -m ________b -m ( )(2)∵a >2b∴2a ________b ( ) (3)∵3m >5n ∴-m ________-35n ( ) (4)∵4a >5a∴a ________0( )(5)∵-24n m -< ∴m ________2n ( )(6)∵2x -1<9∴x ________5( )二、下列说法正确吗?(1)若a <b ,则ac 2<bc 2.( )(2)若b <0,则a -b >a .( )(3)若x >y ,则x 2>y 2.( )(4)若x 2>y 2,则x -2>y -2.( )(5)3a 一定比2a 大.( ) 三、认真选一选(1)若m +p <p ,m -p >m ,则m 、p 满足的不等式是( )A.m <p <0B.m <pC.m <0,p <0D.p <m(2)已知x >y 且xy <0,a 为任意实数,下列式子正确的是( )A.-x >yB.a 2x >a 2yC.a -x <a -yD.x >-y(3)实数a 、b 满足a +b >0,ab <0,则下列不等式正确的是( )A.|a |>|b |B.|a |<|b |C.当a <0,b >0时,|a |>|b |D.当a >0,b <0时,|a |>|b |四、根据不等式的性质,把下列不等式化为x >a 或x <a 的形式 (1)3432-<x (2)-0.3x >0.9(3)x +2≤-3(4)4x ≥3x +5参 考 答 案一、(1)>,不等式的性质1(2)>,不等式的性质2(3)<,不等式的性质3(4)<,不等式的性质1(5)>,不等式的性质3(6)<,不等式的性质1和2二、(1)×(2)√(3)×(4)×(5)×三、(1)C (2)C (3)D四、(1)x<-2 (2)x<-3 (3)x≤-3-2(4)x≥5。
《不等式的基本性质》PPT
不等式基本性质2:如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
本课小结:
不等式基本性质3:如果a>b,c<0 那么ac<bc(或 )就是说不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
>
>
已知-1< 3,那么-1×2____3×2, -1×(- 4)____3×( - 4),
-1÷2____3÷2, -1÷ (- 4)____3÷ ( - 4)
>
>
<
<
<
<
不等式基本性质2:不等式的两边都乘以(或除以)同一个____,不等号的方向____。
不等式基本性质3:不等式的两边都乘以(或除以)同一个____,不等号的方向____。
如果________,那么______________
不变
正数
a>b,c>0
ac>bc (或 )
负数
改变
如果________,那么______________
a>b,c<0
ac<bc (或 )
例1:设a>b,用“<”或“>”填空并口答是根据哪一条不等式基本性质。
即:如果____,那么_______.
不等号的方向不变。
a>b
a±c>b±c
7÷5 ____ 3÷ 5 , 7 ÷ (-5)____3÷ (-5)
不等式还有什么类似的性质呢?
已知 7 > 3
初一数学《不等式的基础概念》
不等式的概念:(1)用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.
(2)凡是用不等号连接的式子都叫做不等式.常用的不等号有“<”、“>”、“≤”、“≥”、“≠”.另外,不等式中可含未知数,也可不含未知数.
(1)一元一次不等式组的定义:
(1)不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若a>b,那么a±m>b±m;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
若a>b,且m>0,那么am>bm或 >
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
若a>b,且m<0,那么am<bm或 <
(2)不等式的变形:①两边都加、减同一个数,ቤተ መጻሕፍቲ ባይዱ体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
【规律方法】
1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
几个含有同一个未知数的一元一次不等式组合在一起,就组成了一个一元一次不等式组.
(2)概念解析
形式上和方程组类似,就是用大括号将几个不等式合起来,就组成一个一元一次不等式组.但与方程组也有区别,在方程组中有几元一般就有几个方程,而一元一次不等式组中不等式的个数可以是两个及以上的任意几个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2.2 不等式的基本性质》
主备人:秦金良课时安排:第14课时
学习目标:
1.掌握不等式的基本性质。
2.经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。
3.进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
三、教学过程分析
本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。
第二环节:活动探究,验证明确结论
活动内容:参照教材与多媒体课件提出问题:
(1) 还记得等式的基本性质吗?
(2) 等式的基本性质1用字母可以表示为:c b c a b a ±=±∴=, ,
那么不等式的基本性质1是什么?先猜一猜。
(3) 如果在不等式的两边都加上或都减去同一个整式,结果会怎样?请举
几例试一试,并与同伴交流。
(4) 不等式的基本性质与等式的基本性质类似,对于等式的基本性质2,
用字母可以表示为:c b c a c b c a b a ÷=÷⨯=⨯∴=,, ,其中
0≠c 。
对应的大家能不能归纳出不等式的基本性质2是什么呢?
(5) 例如:如果比高度的两个人不是同时增加或减少相同的高度,而是成
倍的增加(或缩小)自身的高度,结果又会怎样?
(6) 例如:商场A 种服装的标价高于B 种服装的标价,如果都打八折出
售,那么还是A 种服装价格高。
通过这些例子,你发现了什么?能
得到一个什么类似的结论?
(7) 如果乘以(或除以)同一个负数呢?
(8) 通过实际的计算、观察、与同伴交流,得出什么类似的结论?
活动目的:通过等式的基本性质对比不等式的基本性质,由数学情境转化成数学问题,由特殊的数值到字母代表数,从中归纳出一般性结论。
进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。
活动实际效果:以问题串的形式引导学生一步步从对比中自己先猜想不等式的基本性质、再通过具体数值验算性质、最后自己总结归纳出性质并能用字母表示出来。
因此在整个教学教程中,学生均处于主导地位,教师只是从旁引。
这时,学生对于由自己推导出性质定理感到非常兴奋。
第三环节:例题讲解及运用巩固
活动内容:1、在上一节课中,我们猜想,无论绳长l 取何值,圆的面积总大于正方形的面积,即16
42
2l l >π。
你相信这个结论吗?你能利用不等式的基本性质
解释这一结论吗?
2、将下列不等式化成“a x >”或“a x <”的形式:
(1)15->-x (2)32>-x
3、将下列不等式化成“a x >”或“a x <”的形式:
(1)21>-x (2)65<-x (3)32
1≤x 4、已知y x >,下列不等式一定成立吗?
(1)66-<-y x (2)y x 33<
(3)y x 22-<- (4)1212+>+y x
活动目的:在讲解例题的过程中要求学生说出每一步变形的依据,加强学生对不等式的基本性质的理解。
随堂练习学生独立完成,师生共同讲解,能说出一个不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯,并通过这种方式达到熟练掌握不等式的基本性质的目的。
活动实际效果:学生在讲解例题与练习的过程中,思维非常活跃,都非常踊跃的举手要求上黑板示范,并且每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范,达到预期教学目的。
第四环节:课堂小结
活动内容:学生自己总结今天这节课有什么收获,思考后对全班说出,与全班同学讨论交流。
活动目的:学生说出自己的收获与感想与全班交流,若有任何疑问可以当堂提出供大家讨论。
教师要学会倾听并鼓励学生的回答,关注学生对问题的实质性认识与理解,尊重学生的个体差异,关注学生的学习情感和自信心的建立。
活动实际效果:学生自我总结本节课所学到的知识和重点注意的问题,畅
所欲言自己的切身感受与实际收获,除了今天所学新的内容之外,还复习巩固了等式的基本性质,体会新旧知识的联系与区别。
第五环节:布置作业
习题2.2
四、教学反思。