高中数学圆锥曲线基本知识与典型例题

合集下载

高中数学-圆锥曲线中的定点、定值与最值问题

高中数学-圆锥曲线中的定点、定值与最值问题

[例 2] 如图,在平面直角
坐标系 xOy 中,椭圆xa22+by22=1(a>b>0)的左、
右焦点分别为 F1(-c,0),F2(c,0).已知点(1,e)
和e,
23都在椭圆上,其中
e
为椭圆的离心率.
(1)求椭圆的方程;
(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直
线 BF2 平行,AF2 与 BF1 交于点 P,
法二:同(2)法一假设前内容. 假设平面内存在定点M满足条件,由图形对称性知,点M 必在x轴上. 取k=0,m= 3,此时P(0, 3),Q(4, 3), 以PQ为直径的圆为(x-2)2+(y- 3)2=4, 交x轴于点M1(1,0),M2(3,0); 取k=-12,m=2,此时P1,32,Q(4,0), 以PQ为直径的圆为x-522+y-342=4156, 交x轴于点M3(1,0),M4(4,0).
因为 MP =-4mk-x1,m3 , MQ =(4-x1,4k+m), 由 MP ·MQ =0,得-1m6k+4kmx1-4x1+x12+1m2k+3=0, 整理,得(4x1-4)mk +x12-4x1+3=0.(**) 由于(**)式对满足(*)式的m,k恒成立, 所以4x1x2-1-4x41=+03,=0, 解得x1=1. 故存在定点M(1,0),使得以PQ为直径的圆恒过点M.
圆锥曲线中的最值问题
[例3] 如图,在直角坐标系xOy中,点 P1,12到抛物线C:y2=2px(p>0)的准线的距 离为54.点M(t,1)是C上的定点,A,B是C上的 两动点,且线段AB被直线OM平分.
(1)求p,t的值; (2)求△ABP面积的最大值.
[思路点拨] (1)利用点M(t,1)在曲线上及点P 1,12 到准线的距 离为54求p与t的值;

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

高中数学圆锥曲线知识点梳理+例题解析

高中数学圆锥曲线知识点梳理+例题解析

高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。

两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。

二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。

高中数学圆锥曲线经典考点及例题专题讲解

高中数学圆锥曲线经典考点及例题专题讲解

圆锥曲线的综合问题考纲解读 1.求圆锥曲线过定点问题;2.利用圆锥曲线求定值、常数值;3.利用圆锥曲线求变量的取值范围,最值问题;4.利用圆锥曲线求解探索性、存在性问题.考点一 圆锥曲线过定点问题|方法突破[例1] (2018·淄博模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程.(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.[解析] (1)因为左焦点(-c,0)到点P (2,1)的距离为10,所以(2+c )2+1=10,解得c =1.又e =c a =12,解得a =2,所以b 2=a 2-c 2=3.所以所求椭圆C 的方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 化为3+4k 2>m 2.所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆右顶点D (2,0),k AD ·k BD =-1, 所以y 1x 1-2·y 2x 2-2=-1,所以y 1y 2+x 1x 2-2(x 1+x 2)+4=0, 所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0.化为7m 2+16mk +4k 2=0, 解得m 1=-2k ,m 2=-2k7.且满足3+4k 2-m 2>0.当m =-2k 时,l :y =k (x -2),直线过定点(2,0)与已知矛盾; 当m =-2k7时,l :y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0. 综上可知,直线l 过定点⎝⎛⎭⎫27,0 .[方法提升][母题变式]若本例的条件“以AB 为直径的圆过椭圆C 的右顶点”,改为“以AB 为直径的圆过椭圆C 的左顶点”.则直线l 是否还过定点?若过定点,求出该定点的坐标;若不过定点,说明理由.解析:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,化为3+4k 2>m 2. 所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆左顶点D (-2,0),k AD ·k BD =-1,所以y 1x 1+2·y 2x 2+2=-1,所以y 1y 2+x 1x 2+2(x 1+x 2)+4=0,所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2-16mk 3+4k 2+4=0.化为7m 2-16mk +4k 2=0,解得m 1=2k ,m 2=2k 7.且满足3+4k 2-m 2>0.当m =2k 时,l :y =k (x +2),直线过定点(-2,0)与已知矛盾; 当m =2k7时,l :y =k ⎝⎛⎭⎫x +27,直线过定点⎝⎛⎭⎫-27,0. 综上可知,直线l 过定点⎝⎛⎭⎫-27,0.考点二 圆锥曲线的定值问题|方法突破[例2] 已知椭圆C :x 24+y 23=1.若直线l :y =kx +m 与椭圆C 相交于A ,B 两点,且k OA ·k OB=-34(O 为坐标原点),判断△AOB 的面积是否为定值,若为定值,求出定值;若不为定值,说明理由.[解析] 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则由Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,得3+4k 2-m 2>0.又x 1+x 2=-8mk3+4k 2,x 1x 2=4(m 2-3)3+4k 2,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.又由k OA ·k OB =-34,得y 1y 2x 1x 2=-34,即y 1y 2=-34x 1x 2,∴3(m 2-4k 2)3+4k 2=-34·4(m 2-3)3+4k 2,即2m 2-4k 2=3. 又|AB |=1+k 2(x 1+x 2)2-4x 1x 2=24(1+k 2)3+4k 2.点O 到直线AB 的距离为d =|m |1+k2= 2-12(1+k 2)≥2-12=62. S △AOB =12|AB |d =1224(1+k 2)3+4k 2·|m |1+k 2=12 24(1+k 2)m 2(3+4k 2)(1+k 2)=12243+4k 2·3+4k 22= 3. [方法提升]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解析:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时,可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时,此时|AB |=3,|CD |=4;或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712.考点三 圆锥曲线中的范围(最值)问题|模型突破[例3] (2018·聊城模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上的一点,l :x =-a 2c ,且PQ ⊥l ,垂足为Q ,若四边形PQF 1F 2为平行四边形,则椭圆的离心率的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫22,1[解析] 设点P (x 1,y 1),由于PQ ⊥l ,故|PQ |=x 1+a 2c ,因为四边形PQF 1F 2为平行四边形,所以|PQ |=|F 1F 2|=2c ,即x 1+a 2c =2c ,则有x 1=2c -a 2c >-a ,所以2c 2+ac -a 2>0,即2e 2+e -1>0,解得e <-1或e >12,由于0<e <1,所以12<e <1,即椭圆离心率的取值范围是⎝⎛⎭⎫12,1. [答案] A [模型解法][高考类题]1.(2015·高考重庆卷)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)解析:如图所示,由题意知BC 为双曲线的通径,所以|BC |=2b 2a ,则|BF |=b 2a .又|AF |=c -a ,因为BD ⊥AC ,DC ⊥AB ,所以点D 在x 轴上,由Rt △BF A ∽Rt △DFB ,得|BF |2=|AF |·|FD |,即(b 2a )2=(c -a )|FD |,所以|FD |=b 4a 2(c -a ),则由题意知b 4a 2(c -a )<a +a 2+b 2,即b 4a 2(c -a )<a +c ,所以b 4<a 2(c -a )(a +c ),即b 4<a 2(c 2-a 2),即b 4<a 2b 2,所以0<b 2a 2<1,解得0<b a <1,而双曲线的渐近线斜率为±ba ,所以双曲线的渐近线斜率的取值范围是(-1,0)∪(0,1),故选A.答案:A2.(2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.解析:(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12.因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3. 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减,因此当k =12时,|P A |·|PQ |取得最大值2716.考点四 圆锥曲线的存在性问题|方法突破[例4] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解析] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m 1-n ,即M (m1-n,0).(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以 y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ , 点Q 的坐标为(0,2)或(0,-2). [方法提升][跟踪训练](2018·徐州模拟)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围.(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.解析:(1)由已知条件,直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.①直线l 与椭圆有两个不同的交点P 和Q 等价于①中 Δ=8k 2-4⎝⎛⎭⎫12+k 2 =4k 2-2>0, 解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)不存在,理由如下:设P (x 1,y 1),Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2), 由方程①得,x 1+x 2=-42k1+2k 2,y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+2 2.因为(OP →+OQ →)⊥AB →,AB →=(-2,1),所以(x 1+x 2)·(-2)+y 1+y 2=0, 即:-42k 1+2k 2·(-2)-42k 21+2k 2+22=0.解得:k =-24, 由(1)知k 2>12,与此相矛盾,所以不存在常数k 使OP →+OQ →与AB →垂直.[考点二](2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解析:(1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

高中数学 第2章 圆锥曲线与方程 2.5 圆锥曲线的统一定义 例谈点的轨迹方程的“完备性和纯粹性”的

高中数学 第2章 圆锥曲线与方程 2.5 圆锥曲线的统一定义 例谈点的轨迹方程的“完备性和纯粹性”的

2.5 例谈点的轨迹方程的“完备性和纯粹性”的处理方法求满足条件的动点的轨迹方程,是解析几何的常见问题,大部分同学很容易忽视求出的方程要满足完备性和纯粹性,在这实际解题中也不太会讨论,下面给出了求出点的轨迹方程后去检验“完备性和纯粹性”的几种常见情况。

一、利用三角形的顶点不共线。

例1、已知点A (-a ,0),B (a ,0),若△MAB 是以点M 为直角顶点的直角三角形,求顶点M 的轨迹方程。

解:设M (x ,y ),依题意得|MA|2+|MB|2=|AB|2∴ (22)(y a x ++)2+(22)(y a x +-)2=(2a )2化简得 x 2+y 2=a 2∵ △MAB 的顶点M 、A 、B 不共线 ∴ M 不能在x 轴上 ∴ x≠0 故点M 的轨迹方程为 x 2+y 2=a 2(x≠0)二、利用直线的斜率必须存在。

例2、已知点A (-1,0),B (1,0),动点P 使直线PA 和PB 的斜率之积为-2,求动点P 的轨迹方程。

解:设P (x ,y ) 则 k P A =10+-x y =1+x y k P B =10--x y =∴1+x y•1-x y =-2 化简得 2x 2+y 2=2 ∵ 直线PA 和PB 的斜率存在 ∴ x≠±1 故点P 的轨迹方程为 2x 2+y 2=2 (x≠±1)三、利用点所在的区域范围。

例3、已知点A 、B 分别在x 、y 轴的正半轴上运动, 且|AB|=2a (a >0),求AB 中点M 的轨迹方程。

解:设M (x ,y ),由中点坐标公式得 A (2x ,0) B (0,2y ) ∴22)20()02(y x -+-=2a化简得 x 2+y 2=a 2∵ 点A 、B 分别在x 、y 轴的正半轴上 ∴ 点M 在第一象限 即 x >0 y >0 故点M 的轨迹方程为x 2+y 2=a 2(x >0且y >0)四、根据条件解不等式。

圆锥曲线知识点总结与经典例题

圆锥曲线知识点总结与经典例题

圆锥曲线解题方法技巧第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容①倾斜角与斜率tan ,[0,)k ααπ=∈ 2121yy k x x -=-②点0(,)P x y 到直线0Ax By C ++=的距离d =③夹角公式:直线111222::l y k x b l y k x b =+=+ 夹角为α, 则2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离①AB =12AB x =-=③12AB y =-(4)两条直线的位置关系 (Ⅰ)111222::l y k x b l y k x b =+=+①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且(Ⅱ)11112222:0:0l A x B y C l A x B y C ++=++=①1212120l l A A B B ⊥⇔+=② 1212211221//0l l A B A B AC A C ⇔≠-=0且-或111222A B C A B C =≠者(2220A B C ≠) 两平行线距离公式1122::l y kx b l y kx b =+⎧⎨=+⎩ 距离1221d k =+ 1122:0:0l Ax By C l Ax By C ++=⎧⎨++=⎩ 距离1222d A B =+ 二、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1) 与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a}. 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 12222=+b y a x (b a >>0) 12222=-b y a x (a>0,b>0) px y 22=参数方程为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222(t 为参数) 范围 ─a ≤x ≤a ,─b ≤y ≤b |x| ≥ a ,y ∈R x ≥0 中心原点O (0,0) 原点O (0,0)顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0)对称轴 x 轴,y 轴; 长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0))0,2(p F 准 线x=±ca 2准线垂直于长轴,且在椭圆外.x=±ca 2准线垂直于实轴,且在两顶点的内侧.x=-2p 准线与焦点位于顶点两侧,且到顶点的距离相等.【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222by a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . ⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλb y a x .【备注2】抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2p AB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。

高考数学圆锥曲线典型例题(必考)

高考数学圆锥曲线典型例题(必考)

高考数学圆锥曲线典型例题(必考)9.1 椭 圆典例精析题型一 求椭圆的标准方程【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 210=1或3x 210+y 25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下:据此,可推断椭圆C 1的方程为 . x 212+y 26=1.题型二 椭圆的几何性质的运用【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.【解析】(1)e 的取值范围是[12,1).(2)21F PF S =12mn sin 60°=33b 2,【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2,|PF 1|≥a -c . 【变式训练2】已知P 是椭圆x 225+y 29=1上的一点,Q ,R 分别是圆(x +4)2+y 2=14和圆(x -4)2+y 2=14上的点,则|PQ |+|PR |的最小值是 .【解析】最小值为9.题型三 有关椭圆的综合问题【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.(1) 22.(2)为x 218+y 29=1.【变式训练3】已知椭圆x 2a 2+y2b 2=1(a >b >0)的离心率为e ,两焦点为F 1,F 2,抛物线以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若|PF 1||PF 2|=e ,则e 的值是( )A.32B.33C.22D.63【解析】选B 题型思 有关椭圆与直线综合问题【例4】【2012高考浙江理21】如图,椭圆C :2222+1x y a b =(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. .【变式训练4】【2012高考广东理20】在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b+=>>的离心率e=23,且椭圆C 上的点到Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由. 总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a 、 b 的值(即定量),若定位条件不足应分类讨论,或设方程为mx 2+ny 2=1(m >0,n >0,m ≠n )求解.2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.练习1(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =u u u r u u u r ,则||AF u u u u r=( )A. 2B. 2C.3D. 3 选A.2(2009浙江文)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =u u u r u u u r,则椭圆的离心率是( ) A 32 C .13 D .12【答案】D3.(2009江西卷理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o ,则椭圆的离心率为 A .22 B .33 C .12D .13 【答案】B 4.【2012高考新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30o 的等腰三角形,则E 的离心率为( ) ()A 12 ()B 23 ()C 34 ()D 45【答案】C5【2012高考四川理15】椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________。

高中数学圆锥曲线问题常用方法经典例题(含问题详解)

高中数学圆锥曲线问题常用方法经典例题(含问题详解)

专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 标为 。

高考圆锥曲线的基础典型题型

高考圆锥曲线的基础典型题型

高考圆锥曲线的基础典型题型2014.1.19-23 解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合能力要求最高的内容之一.直线和圆锥曲线位置关系问题是解析几何问题大题的难点问题,通常在解决直线和圆锥曲线问题上,往往要做三步,一就是联立方程组,二就是求判别式,并且判别符号..第三,运用韦达定理,如果这三步做完了,就是解不等式,或者求函数的值域或定义域的问题了. 具体如下:(1)直线与圆锥曲线的位置关系(含各种对称、切线)的研究与讨论仍然是重中之重.由于导数的介入,抛物线的切线问题将有可能进一步“升温”.(2)抛物线、椭圆与双曲线之间关系的研究与讨论也将有所体现.(3)与平面向量的关系将进一步密切,许多问题会“披着”向量的“外衣”.(4)函数、方程与不等式与《解析几何》问题的有机结合将继续成为数学高考的“重头戏”.(5)有几何背景的圆锥曲线问题一直是命题的热点.(6)数列与《解析几何》问题的携手是一种值得关注的动向.【命题特点试题常见设计形式】求曲线方程、求弦长、求角、求面积、求特征量、求最值、证明某种关系、证明定值、求轨迹、求参数的取值范围、探索型、存在性讨论等问题仍将是常见的问题.重点题型要熟练掌握,如:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数(2)焦点三角形问题椭圆或双曲线上一点,与两个焦点构成的三角形问题,常用正、余弦定理搭桥.(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法(4)圆锥曲线的有关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决;<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值(5)求曲线的方程问题<1>曲线的形状已知-----这类问题一般可用待定系数法解决;<2>曲线的形状未知-----求轨迹方程(6)存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内(当然也可以利用韦达定理并结合判别式来解决)【高考考点】:1、准确理解基本概念(如直线的倾斜角、斜率、距离等,也要注意斜率的存在与否)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、熟练掌握三大曲线的定义和性质;8、能够处理圆锥曲线的相关轨迹问题;9、能够处理圆锥曲线的相关定值、最值问题。

(word完整版)高中数学圆锥曲线基本知识与典型例题

(word完整版)高中数学圆锥曲线基本知识与典型例题

高中数学圆锥曲线基本知识与典型例题第一部分: 椭圆1. 椭圆的概念在平面内与两定点F1.F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a}, |F1F2|=2c, 其中a>0, c>0, 且a, c为常数:(1)若a>c, 则集合P为椭圆;(2)若a=c, 则集合P为线段;(3)若a<c, 则集合P为空集.2. 椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴: 坐标轴对称中心: 原点顶点A1(-a,0), A2(a,0)B1(0, -b), B2(0, b)B1(0,-b),B2(0,b)A1(0, -a), A2(0, a)B1(-b,0), B2(b,0)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a, b, c的关系c2=a2-b2典型例题例1.F1, F2是定点, 且|F1F2|=6, 动点M 满足|MF1|+|MF2|=6, 则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2.已知 的周长是16, , B .则动点的轨迹方程是.. )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3.若F(c, 0)是椭圆 的右焦点, F 与椭圆上点的距离的最大值为M, 最小值为m, 则椭圆上与F 点的距离等于 的点的坐标是.. )(A)(c, ) (C)(0, ±b) (D)不存在例4.设F1(-c ,0)、F2(c ,0)是椭圆 + =1(a>b>0)的两个焦点,P 是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为..)例5 P 点在椭圆 上, F1.F2是两个焦点, 若 , 则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18, 焦距为6; . (2)焦点坐标为 , ,并且经过点(2, 1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为 , 经过点(2, 0); .例7 是椭圆 的左、右焦点, 点 在椭圆上运动, 则 的最大值是 .第二部分: 双曲线1. 双曲线的概念平面内动点P 与两个定点F1.F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c), 则点P 的轨迹叫双曲线. 这两个定点叫双曲线的焦点, 两焦点间的距离叫焦距.集合P ={M|||MF1|-|MF2||=2a}, |F1F2|=2c, 其中a 、c 为常数且a>0, c>0: (1)当a<c 时, P 点的轨迹是双曲线; (2)当a =c 时, P 点的轨迹是两条射线; (3)当a>c 时, P 点不存在.2. 双曲线的标准方程和几何性质 标准方程- =1 (a>0, b>0)- =1(a>0, b>0)图形性 质范围x ≥a 或x ≤-a, y ∈Rx ∈R, y ≤-a 或y ≥a对称性对称轴: 坐标轴 对称中心: 原点顶点A1(-a,0), A2(a,0)A1(0, -a), A2(0, a)渐近线y =±b axy =±a bx离心率e = , e ∈(1, +∞), 其中c =实虚轴线段A1A2叫做双曲线的实轴, 它的长|A1A2|=2a ;线段B1B2叫做双曲线的虚轴, 它的长|B1B2|=2b ;a 叫做双曲线的半实轴长, b 叫做双曲线的半虚轴长a 、b 、c 的关系c2=a2+b2 (c>a>0, c>b>0)典型例题例8.命题甲: 动点P 到两定点A.B 的距离之差的绝对值等于2a(a>0);命题乙: 点P 的轨迹是双曲线。

圆锥曲线经典例题及总结

圆锥曲线经典例题及总结

圆锥曲线 1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

抛物线中:2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时 焦点在y 轴上时 。

(3)抛物线:3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆: (2)双曲线: (3)抛物线:提醒:在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+。

4.圆锥曲线的几何性质:(1)椭圆(以12222=+by a x (0a b >>)为例):①范围: ;②焦点: ;③对称性: (如何通过方程证明)四个顶点 ,其中长轴长为 ,短轴长为 ;④准线:两条准线 ; ⑤离心率: ,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

(2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围: ;②焦点:两个焦点 ;③对称性: 一个对称中心 ,两个顶点 ,其中实轴长为 ,虚轴长为 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线⇔1e >,等轴双曲线⇔e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线: 。

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

高中数学圆锥曲线系统讲解第18讲《三角形面积公式的坐标形式》练习及答案

第18讲 三角形面积公式的坐标形式知识与方法公式1:设点()11,A x y ,()22,B x y ,O 为原点,则122112OABS x y x y =−. 公式2:设点()11,A x y ,()22,B x y ,()33,C x y , 则()()()()2131312112ABCSx x y y x x y y =−−−−−. 典型例题【例题】在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,则OAB 的面积为______.【解析】解法1:如图,易求得OA OA 的方程为2 0x y −=,所以点B 到直线OA 的距离d ==,从而1722OABS==解法2:()17231122OABS =⨯−−⨯=. 【答案】72变式1 在平面直角坐标系xOy 中,已知点()2,1A ,()1,3B −,()1,1C −,则ABC 的面积为______.【解析】解法1:直线AC 的斜率()11221k −−==−,所以直线AC 的方程为()122y x −=−,即230x y −−=,从而点B 到直线AC 的距离d =,又AC ==,所以11422ABCSAC d =⋅==.解法2:如图,将A 、B 、C 三点同时向左移1个单位,向上移1个单位,则C 移到原点,A 、B 分别移到()1,2A ',()2,4B '−, 所以()1142242ABCOA B SS''==⨯−−⨯=. 【答案】4 【反思】当三角形的三个顶点都不在原点时,可以通过平移转化为有一个顶点在原点的情形来计算面积.变式2 在平面直角坐标系xOy 中,已知A 、B 为抛物线2:2C y x =上的两点,若OA OB ⊥,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠),设()11,A x y ,()22,B x y ,联立22x my ty x=+⎧⎨=⎩消去x 整理得:2220y my t −−=,判别式()242m t ∆=+, 由韦达定理,122y y t =−,所以222121222y y x x t =⋅=,因为OA OB ⊥,所以121221OA OB y y k k x x t⋅=⋅=−=−,从而2t =,满足0∆>,故直线AB 过定点()2,0D ,所以1211124222OABSOD y y OD =⋅−=⋅=⨯=, 当且仅当0m =时取等号,所以OAB 的面积的最小值为4.解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为1y x k=−,联立22y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或222x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以222,A k k ⎛⎫ ⎪⎝⎭,将k 换成1k −即得()22,2B k k −,所以()2212222222242OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当22k k=,即1k =±时取等号,故OAB 的面积的最小值为4. 解法3:设()211A y,()222B y ,则由题意,1222121221y y y y ⋅==−,所以122y y =−,212y y =−,从而()2212211212111112242OABSy y y y y y y y ⎫=−=−=+=+≥=⎪⎪⎭ 当且仅当112y y =,即1y =时取等号,故OAB 的面积的最小值为4. 【答案】4强化训练1.(★★)在平面直角坐标系xOy 中,已知点()1,0A ,()2,2B ,()1,3C −,则ABC 的面积为______.【解析】如图,()()()()172130112022ABCS=⨯−⨯−−−−⨯−=.【答案】722.(★★★)设直线:22l y x =−与抛物线2:4C y x =相交于A 、B 两点,若点()0,1D ,则DAB 的面积为______.【解析】解法1:如图,设()11,A x y ,()22,B x y ,联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=,不难发现直线l 过抛物线C 的焦点F ,所以1225AB x x =++=, 而点D 到直线l 的距离d ==11522DABSAB d =⋅=⨯=. 解法2:如图,由题意,可设()11,22A x x −,()22,22B x x −, 联立2224y x y x=−⎧⎨=⎩消去y 整理得:2310x x −+=判别式()234115∆=−−⨯⨯=, 所以()()()()12211213302210221222DABSx x x x x x =−−−−−−−=−==.3.(★★★★)在平面直角坐标系xOy 中,已知A 、B 为抛物线2:4C y x =上的两点,若直线OA 、OB 的斜率之积等于2−,则OAB 的面积最小值为______.【解析】解法1:如图,显然直线AB 不与y 轴垂直,故可设其方程为()0x my t t =+≠,设()11,A x y ,()22,B x y ,联立24x my t y x=+⎧⎨=⎩消去x 整理得:2440y my t −−=,判别式()216m t ∆=+,由韦达定理,124y y m +=,124y y t =−,所以222121244y y x x t =⋅=,故直线OA 、OB 的斜率之积为12124y y x x t⋅=−,由题意,42t−=−,故2t =,满足0>,从而直线AB 过定点()2,0D ,故1211122212OABSOD y y OD =⋅−=⋅⋅=⨯= 当且仅当0m =时取等号,所以OAB的面积的最小值为解法2:设直线OA 的方程为()0y kx k =≠,则直线OB 的方程为2y x k=−,联立24y kx y x=⎧⎨=⎩解得:00x y =⎧⎨=⎩或244x k y k ⎧=⎪⎪⎨⎪=⎪⎩,所以244,A k k ⎛⎫ ⎪⎝⎭,将k 换成2k −即得()2,2B k k −,所以()22144442222OABSk k k k k k k k =⋅−−⋅=+=+≥=, 当且仅当42k k=,即k =OAB的面积的最小值为 解法3:设()211,2A y y ,()222,2B y y ,则由题意,122112122242y y y y y y ⋅==−,所以122y y =−,212y y =−,从而 ()22122112121111122222222OABSy y y y y y y y y y y y ⎛⎫=⋅−⋅=−=+=+≥⨯= ⎪ ⎪⎝⎭当且仅当112y y =,即1y =时取等号,故OAB的面积的最小值为【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆锥曲线基本知识与典型例题第一部分:椭圆1.椭圆的概念在平面与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2典型例题例1.F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3. 若F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a ±) 2()(,)b B c a-± (C)(0,±b ) (D)不存在例4. 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +22y b=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为( )例5 P 点在椭圆1204522=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为23,经过点(2,0); . 例7 12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .第二部分:双曲线1.双曲线的概念平面动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1 (a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±bax y=±abx 离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长a、b、c的关系c2=a2+b2 (c>a>0,c>b>0)典型例题例8.命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。

则命题甲是命题乙的( )(A ) 充要条件 (B ) 必要不充分条件 (C) 充分不必要条件 (D) 不充分也不必要条件例9. 过点(2,-2)且与双曲线1222=-y x 有相同渐近线的双曲线的方程是( ) (A)12422=-y x (B)12422=-x y (C)14222=-y x (D)14222=-x y例10. 双曲线221(1)x y n n-=>的两焦点为12,,F F P 在双曲线上,且满足12PF PF +=则12F PF 的面积为( )()1A 1()2B ()2C ()4D例11. 设ABC ∆的顶点)0,4(-A ,)0,4(B ,且C B A sin 21sin sin =-,则第三个顶点C 的轨迹方程是________.例12. 连结双曲线12222=-b y a x 与12222=-ax b y (a >0,b >0)的四个顶点的四边形面积为1S ,连结四个焦点的四边形的面积为2S ,则21S S 的最大值是________. 例13.根据下列条件,求双曲线方程:⑴与双曲线221916x y -=有共同渐近线,且过点(-3,32);⑵与双曲线221164x y -=有公共焦点,且过点(2).例14 设双曲线2212y x -=上两点A 、B ,AB 中点M (1,2) ⑴求直线AB 方程;⑵如果线段AB 的垂直平分线与双曲线交于C 、D 两点,那么A 、B 、C 、D 是否共圆,为什么?第三部分:抛物线1. 抛物线的概念平面与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2. 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0F ⎝ ⎛⎭⎪⎫-p 2,0F ⎝ ⎛⎭⎪⎫0,p 2F ⎝ ⎛⎭⎪⎫0,-p 2 离心率e =1准线方程x =-p 2x =p 2y =-p 2y =p 2围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下典型例题例15. 顶点在原点,焦点是(0,2)-的抛物线方程是( )(A )x 2=8y (B)x 2= 8y (C)y 2=8x (D)y 2=8x例16. 抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) (A )1716 (B)1516 (C)78(D)0 例17.过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) (A )4条 (B)3条 (C)2条 (D)1条例18. 过抛物线2y ax =(a >0)的焦点F 作一直线交抛物线于P 、Q 两点,若线段P F 与FQ 的长分别为p 、q ,则11p q+等于( )(A )2a (B)12a (C)4a (D)4a例19. 若点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|PA |+|PF |取最小值,P 点的坐标为( )(A )(3,3) (B)(2,2) (C)(21,1) (D)(0,0) 例20. 动圆M 过点F(0,2)且与直线y =-2相切,则圆心M 的轨迹方程是 .例21. 过抛物线y 2=2px 的焦点的一条直线和抛物线交于两点,设这两点的纵坐标为y 1、y 2,则y 1y 2=_________.例22. 以抛物线x y 23=-的焦点为圆心,通径长为半径的圆的方程是_____________.例23. 过点(-1,0)的直线l 与抛物线y 2=6x 有公共点,则直线l 的倾斜角的围是 .例题答案例1. D 例2. B 例3. C.例5. B.例7. (3,±4) 或(-3, ±4)例8. (1)1162522=+y x 或1251622=+y x ; (2) 13622=+y x ;(3)1922=+y x 或181922=+y x ; (4) 1422=+y x 或116422=+y x .例9. 12||||PF PF ⋅≤2212||||()42PF PF a +== 例11. B 例13. D 例16. A 例17.)2(112422-<=-x y x 例18. 12 例19.⑴221944x y -=;⑵221128x y -= 例20.⑴直线AB :y =x +1⑵设A 、B 、C 、D 共圆于⊙OM ,因AB 为弦,故M 在AB 垂直平分线即CD 上;又CD 为弦,故圆心M 为CD 中点。

因此只需证CD 中点M 满足|MA|=|MB|=|MC|=|MD|由22112y x y x =+⎧⎪⎨-=⎪⎩得:A (-1,0),B (3,4)又CD 方程:y =-x +3 由22312y x y x =-+⎧⎪⎨-=⎪⎩得:x 2+6x -11=0设C (x 3,y 3),D (x 4,y 4),CD 中点M (x 0,y 0) 则340003,362x x x y x +==-=-+=∴ M (-3,6) ∴ |MC|=|MD|=21|CD|=102又|MA|=|MB|=102∴ |MA|=|MB|=|MC|=|MD| ∴ A 、B 、C 、D 在以CD 中点,M (-3,6)为圆心,102为半径的圆上例21. B(22,4282pp x py y =-=-==-即) 例22. B 例23. B(过P 可作抛物线的切线两条,还有一条与x 轴平行的直线也满足要求。

)例24. C 作为选择题可采用特殊值法,取过焦点,且垂直于对称轴的直线与抛物线相交所形成线段分别为p ,q ,则p =q =|F K |1||2FK a=而, 112241()2a p q p a∴+===例25. 解析:运用抛物线的准线性质.答案:B 例26. x 2=8y 例27. -p 2例28.223()94x y ++= 例29.[0,arctan ][arctan )22ππ-。

相关文档
最新文档