拓展_一元二次方程的根与系数的关系
一元二次方程根与系数的关系及应用题
一元二次方程根与系数的关系及应用题一、 根与系数的关系(韦达定理);1、定理来源,用配方法推导出来的一元二次方程的求根公式中,由两个根的相互运算而得,2、定理内容,(1)12b x x a +=- (2) 12cx x a=3、定理特征:和与积的形式特点。
4、定理的延伸:当二次项系数为1时,两根之和等于一次项系数的相反数,两根之积为常数项。
5、解一元二次方程的又一种方法:观察法,总结观察法的知识要点:用了根的定义和韦达定理,是一种综合性题目,是竞赛中常见的一种题型。
若0a b c ++=,则有:11x =,2c x a =,(2)若0a b c -+=,则有:11x =-,2cx a= 这里的0a b c ++=是指各项系数不变号和为零的情况,这里的0a b c -+=是指要改变一次项系数符号后和为零的情况。
如: (1)2543215432210x x ++= (2)()219981997199910x x -⨯-=例1.(1)如果x x 12、是方程3x x 2720-+=的两个根,那么x x 12+=_______ x x 12=_______. (2)如果x x 12、是方程2x x 2350--=的两个根,那么x x 12+=________ x x 12=________. (3)如果方程20542=--x x 的两个根是x 1和x 2,则21x x +________ 21x x =_________.例2 已知32-是一元二次方程042=+-c x x 的一个根,则方程的另一根是 ;例3 已知关于x 的一元二次方程230x x --=的两个实数根分别为βα、,求: (1)11αβ+;(2)()()33++βα的值; (3)22αβ+; (4)αβ-.例 4 已知βα、是关于x 的一元二次方程()03222=+++m x m x 的两个不相等的实数根,且满足1-11=+βα,求m 的值.例5 △ABC 的一边长为4,另外两边是方程23150x x m -+=的两根,求m 的取值范围.变式练习:1.设1x ,2x是方程220x -+=的两根,求1211x x +的值.2.下列方程中,两根均为正数的有 个。
一元二次方程的根与系数的关系
一元二次方程的根与系数的关系一元二次方程是高中数学中的重要内容,它的解也是数学中的基础知识之一。
在本文中,我们将探讨一元二次方程的根与系数之间的关系。
一元二次方程的一般形式为: ax^2 + bx + c = 0 (其中,a、b、c为实数且a ≠ 0)这个方程中的根可以通过求解方程来得到。
一元二次方程的解可以分为三种情况,具体取决于判别式的值(Δ=b^2 - 4ac)。
1. 当Δ > 0时,方程有两个不相等的实根。
这是最常见的情况,我们可以通过求解公式 x = (-b ± √Δ) / (2a) 来找到这两个根。
2. 当Δ = 0时,方程有两个相等的实根。
这被称为方程的重根,解可以通过公式 x = -b / (2a) 求得。
3. 当Δ < 0时,方程没有实根。
在这种情况下,方程的解为复数根,我们可以用公式 x = (-b ± i√|Δ|) / (2a) 求得复数根,其中i是虚数单位。
根据以上三种情况,我们可以看出方程的根与系数之间的关系:1. 根与系数的和:根与系数的和是一个常数,可以通过视方程的一元一次项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的和可以表示为 -b / a。
这是因为根的和可以通过展开方程 (x-α)(x-β) =0 和整理可得的公式(α + β) = -b / a 来求得。
2. 根与系数的积:根与系数的积也是一个常数,可以通过方程的常数项来确定。
对于一元二次方程ax^2 + bx + c = 0,它的两个实根的积可以表示为 c / a。
这是因为根的积可以通过展开方程 (x-α)(x-β) = 0 和整理可得的公式(αβ) = c / a 来求得。
3. 系数的平方与根的乘积:系数的平方与根的乘积也是一个常数,它等于方程的常数项除以方程的二次项系数的平方。
即(α + β)(αβ) = c / a^2。
通过以上的分析,我们可以得出一元二次方程的根与系数之间的关系,并利用这些关系来推断方程的性质和求解方程。
一元二次方程的根与系数的关系
当今教科书指出:一元二次方程的根与系数的关系属选学内容,只供学习有余力的学生学习。
但是一元二次方程的根与系数的关系这个知识点的应用却是相当的广泛,习题的内容之多,题目的形式灵活多样,在中考及平时的考试中所占分值却很重,而大部分同学对这个内容却学得不好。
在此简单讲解一下一元二次方程的根与系数的关系的相关知识及相关应用,望对同学们有所帮助。
一元二次方程的根与系数的关系(以前的教科书叫韦达定理):如果方程ax2+bx+c=0(a ≠0)的两个根是x1、x2,那么x1+x2=-b/a,x1x2=c/a。
也就是说,两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数与二次项系数的比。
一元二次方程的根与系数的关系是通过求根公式演变过来的,下面是证明的过程:对于一元二次方程ax2+bx+c=0(a≠0),当判别式△=b2-4ac≥0时,方程有两个实数根,,,故有x1+x2=-b/a,x1x2=c/a。
该知识点的使用方法:先把一元二次方程化成一般形式ax2+bx+c=0(a≠0),然后确定二次项系数、一次项系数及常数项(特别是要注意这些系数的符号),最后再根据根与系数的关系,求出相关值。
一、根与系数的关系的直接应用例1:不解方程,求出2x2+4x=1的两根的和与两根的积。
解:将原方程化为一般形式得:2x2+4x-1=0确定a,b,c的值为a=2,b=4,c=-1于是x1+x2=- c/a=-2,x1x2=c/a=-1/2。
二、根与系数的关系的几种变形例2: x1、x2是方程2x2-3x-5=0的两个根,不解方程,求下列代数式的值:(1)x12+x22 (2)| x1-x2| (3)x12+3x22-3x2解:由根与系数关系可知 x1+x2=3/2, x1x2 =-5/2(1) x12+x22=(x1+x2)2 -2x1x2=(2) | x1-x2|=√(x1+x2)2-4x1x2=√19/2(3)由2x2-3x-5=0可得:2x2-3x=5故:原式= (x12+x22)+(2x22-3x2)= +5 = 12三、由根与系数的关系求字母的值例3:已知关于x的方程x2+2(m+2)x+m2-5=0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m的值。
(完整版)一元二次方程根与系数的关系的关系(含答案)
(完整版)一元二次方程根与系数的关系的关系(含答案)21。
2。
4 一元二次方程的根与系数的关系A基础知识详解————————--——-—☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k—1)x+k2-1=0有(完整版)一元二次方程根与系数的关系的关系(含答案) 两个实数根x 1、x 2.(1)求实数k 的取值范围;(2)若x 1、x 2满足x 12+x 22=16+x 1•x 2,求实数k 的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2—2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2—1)=16+(k 2-1),即k 2—4k —12=0,解得k=—2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式。
○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m —1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D ) A .—1或2 B .1或-2 C .—2 D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值。
解:(1)△=(m+2)2—4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m .∵2111x x +=2121x x x x +=—mm 2+=—2, 解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2—2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .—2 C .3 D .63.已知m ,n 是一元二次方程x 2—4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24。
一元二次方程根与系数的关系
第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。
一元二次方程根与系数的关系
一元二次方程根与系数的关系对于一元二次方程,当判别式△=时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么则是的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还常常要求同学们熟记一元二次方程根的判别式存在的三种情况,以及应用求根公式求出方程的两个根,进而分解因式,即。
下面就对应用韦达定理可能出现的问题举例做些分析,希望能给同学们带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。
解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值范围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。
解得:所以,使方程(1)有整数根的的整数值是。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。
解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。
设方程的两个根为,∵<0∴原方程有两个异号的实数根。
一元二次方程根与系数的关系的关系(含答案)
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
一元二次方程根与系数的关系
(2)解:当a=5为底边长时,b=c 当a=5为腰长时,不妨设a=b=5, 由根与系数的关系:5+c=2k-3 2 ∴Δ = (2K-5) =0,k=2.5, 5c=2k-4 2 原方程为:x -2x+1=0 解得:c=1,k=4.5 ∴b=c=1 ∵b+c<a ∴此三角形的周长为a+b+c=11 ∴此时不构成三角形,舍去。
_年 _月 _日
星期_______
天气_____ 自我评价:___________ 悄悄话:老师我想对你说______ _______________________ _______________________ ________________________
学习课题:_____________ 知识归纳与整理:________ _____________________ 有那些数学思想方法_____ 我的收获与困惑_________
分析解答
2、已知关于的方程。x2-(2k-3)x +2k-4=0 (1)求证:无论取什么实数值,方程总有实数根。 (2)若等腰三角形的一边长a=5,另两边长b、c恰好是这个方程的两个实数根, 求这个三角形的周长?
(1)证明: ∵Δ =[-(2k-3)]2-4(2k-4) =(2K-5)2 ∴不论k取何值,(2K-5)2 ≥0, 即Δ ≥0,原方程总有实数根。
2、方程2x2-3x+1=0的两根记作x1,x2, 不解方程,求:
(1) x1 x2 x2 x1 ;
分析解答
由根与系数的关系得:x1+x2=3/2 x1x2=1/2
x x ( x1 x2 ) 2 2 x1 x2 x1 x2 x1 x2 x1 x2 x2 x1
一元二次方程根与系数的关系
一元二次方程根与系数的关系【基础知识精讲】1.一元二次方程根与系数的关系(韦达定理): 设21x x 、是一元二次方程ax 2+bx+c=0 (a ≠0)的两根,则12b x x a+=-,a c x x =∙212.设21x x 、是一元二次方程ax 2+bx+c=0 (a ≠0)的两根,则:0,0)1(21>>x x 时,有⎪⎪⎩⎪⎪⎨⎧>=∙>-=+002121a c x x a b x x,0)2(21<<x x 时,有⎪⎪⎩⎪⎪⎨⎧>=∙<-=+002121a c x x a b x x,0)3(21<>x x 时,有21<=∙ac x x3.以两个数21x x 、为根的一元二次方程(二次项系数为1)是:212120x (x x )x x x -++=【例题巧解点拨】 1.探索韦达定理例1:一元二次方程)0(02≠=++a c bx ax 的两根为21,x x ,求21x x +, 21x x ∙的值。
例2.(2010•毕节地区)已知关于x 的一元二次方程x 2+(2m-1)x+m 2=0有两个实数根x1和x2.(1)求实数m 的取值范围; (2)当x 12-x 22=0时,求m 的值.2.已知一个根,求另一个根.例3.已知2+3是x 2-4x+k=0的一根,求另一根和k 的值。
3.求根的代数式的值例4:设x 1,x 2是方程x 2-3x +1=0的两个根,利用根与系数的关系,求下列各式的值:(1) x 13 x 24+ x 14 x 23; 2112)2(x xx x +4.求作新的二次方程例4:1.以2,-3为根的一元二次方程是_________________________.2.已知方程2x 2-3x -3=0的两个根分别为a ,b ,利用根与系数的关系,求一个一元二次方程 ,使它的两个根分别是:a+1、b+15.由已知两根和与积的值或式子,求字母的值。
一元二次方程的根与系数的关系
一元二次方程根与系数的关系一、课堂目标理解根与系数关系,会用根系关系求参数的值或快速求解含参方程二、知识讲解1. 根与系数的关系(韦达定理)在实数范围内,一元二次方程的根由其系数、、确定,它的根的情况(是否有实数根)由确定.设一元二次方程为,其根的判别式为:则①方程有两个不相等的实数根.②方程有两个相等的实数根.③方程没有实数根.一元二次方程的求根公式,不仅表示可以由方程的系数、、决定根的值,而且反应了根与系数间的关系.那么一元二次方程的根与系数之间的联系还有其他表现方式吗?探究1从因式分解法可知,方程(、为已知数)的两根为和,将方程化为一般式后,你能说一说两个根和系数之间的关系吗?探究2探究1是二次项系数为1时,根和系数的关系,现在扩展到一般式()中,探究根和系数的关系.当,即方程有实数根,由可知,,.因此,方程的两个根,和系数,,有如下关系:,.韦达定理:任何一个一元二次方程的根与系数的关系为:两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.例题1.若关于的一元二次方程的两根为,,则 .练习2.方程的解为、,则 ; .3.已知,是方程的两个实数根,则 .2. 根与系数关系的应用.不解方程,求与方程的根有关的代数式的值;.已知方程的一个根,求方程的另一个根;.与根的判别式相结合,解决一些综合题.【总结】几个重要变形:①;②;③;④.例题4.已知方程的一个根是,则它的另一个根是 .5.关于的方程有两个不相等的实数根,,且有,则的值是( ).A.B.C.或D.练习6.已知关于的一元二次方程的一根为,求的值以及方程的另一根.7.一元二次方程的两根为和,则的值是( ).A.B.C.D.8.设关于的一元二次方程的两个实数根分别为、,若,则的值为 .例题(1)(2)(3)(4)(5)(6)(7)(8)9.已知、是方程的两个实数根.则:........(9).练习(1)(2)10.已知关于的一元二次方程有两个不相等的实数根,.求的取值范围;若,求的值.11.己知、是一元二次方程的两个实数根,则的值是 .(1)(2)12.已知方程的两根是,.不解方程,求:..13.已知一元二次方程(其中为大于的常数)的两个实根为,,求的值.例题14.已知,且, ,那么.练习15.已知、是方程的两个根,那么.16.已知,是不相等的实数,且,,求的值.三、出门测17.已知、是一元二次方程的两个实数根,则的值是 .18.方程的所有实数根之和是 .19.已知关于的方程的两根为和,则 ,.一元二次方程的根与系数的关系 题集【A】20.已知一元二次方程的两个实数根分别是、,则.21.如果,是方程的两个根,那么;.22.若关于的方程的一个根是.则另一根 ;.23.若方程的一根为另一根的倍,求,所满足的关系式.24.已知关于的方程,若方程的一个根为,求的值以及方程的另一根.25.已知关于的方程的两个根为、,若,则.26.求一个一元二次方程,使得它的两根,满足:,.27.若关于的一元二次方程的两个实根互为倒数,则.(1)(2)(3)(4)28.已知、是方程的两根,不解方程求下列代数式的值.(结果用、、表示)....29.已知一元二次方程的两个根为、,则 ,, ,.30.已知,是方程的两个根,那么 , .31.已知、是方程的两根,求的值.32.已知,,求的值.33.若,且及,则,.34.设,是方程的两个实数根(),求的值.(1)(2)35.已知关于的一元二次方程.若方程有实数根,求实数的取值范围.若方程两实数根分别为,,且满足,求实数的值.(1)(2)36.已知关于的一元二次方程.求证:方程总有实数根.设这个方程的两个实数根分别为,,且,求的值.(1)(2)37.关于的一元二次方程的两个实数根分别为,.求的取值范围.若,求的值.一元二次方程的根与系数的关系 题集【B】38.已知一元二次方程的两根为、,则( ).A.B.C.D.39.一元二次方程的两根为和,则的值是( ).A.B.C.(1)(2)40.已知:关于 的方程.若方程总有两个实数根,求 的取值范围.若两实数根、满足,求的值.41.若关于的二次方程的两实根互为倒数,则.42.若方程的一个根是另一个根的倍,则、、的关系是( ).A.B.C.D.43.已知关于的方程的两根分别是,,且满足,则的值是 .44.已知关于的方程有两个实数根,,那么的取值范围是 ,若,则的值 .(1)(2)(3)(4)(5)(6)45.已知,是方程的两个实数根,求下列代数式的值:......46.已知实数,且满足,,则的值为( ).A.C.D.(1)(2)47.已知关于的一元二次方程有两个实数根,.求实数的取值范围.是否存在实数使得成立?若存在,请求出的值.若不存在,请说明理由.48.已知,是方程的两个根,求的值为 .49.设的两实数根为、,那么以、为两根的一元二次方程是 .。
专题:一元二次方程的根与系数的关系
九年级数学专题一:一元二次方程的根与系数的关系一、知识要点:一元二次方程20 (0)ax bx c a ++=≠的两个根为:12,22b b x x a a-+--==所以:12b x x a+=+=-,12244ac c x x a a⋅====定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.二、例题讲解类型一、一元二次方程的两个根的有关计算例1.设x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,求x 12+x 22的值. 解:∵x 1,x 2是方程x 2+2x ﹣3=0的两个实数根,∴x 1+x 2=﹣2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(﹣2)2﹣2×(﹣3)=10;例2.设x 1与x 2为一元二次方程x 2+3x +2=0的两根,求(x 1﹣x 2)2的值. 解:由题意可知:x 1+x 2=﹣6,x 1x 2=4,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2 =(﹣6)2﹣4×4=36﹣16=20,练习1:(1)设a ,b 是方程x 2﹣x ﹣2021=0的两个实数根,则a +b ﹣ab 的值为( )A .2022B .﹣2022C .2020D .﹣2020(2)已知方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则的值为( ) A .﹣2 B .2 C . D .﹣(3)设x 1,x 2是方程x 2﹣3x ﹣3=0的两个实数根,则x 12x 2+x 1x 22的值为( )A .9B .﹣9C .1D .﹣1(4)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .(5)已知a 、b 是方程x 2+5x +3=0的两个根,则的值是( )A .B .C .D . 练习2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.类型二、由已知一元二次方程的一个根求出它的另一个根及未知系数例3.关于x的方程x2+mx+3=0的一个根为1,则方程的另一个根与m的值.解:设方程的另一根为x=p.∵关于x的方程x2+mx+3=0的一个根为1,∴x=1满足关于x的一元二次方程x2+mx+3=0,∴1+m+3=0,解得m=﹣4;又由根与系数的关系知:1•p=3,解得p=3.故方程的另一根是3.练习3:(1)关于x的一元二次方程2x2﹣kx+12=0的一个根x1=2,则方程的另一个根x2和k的值为()A.x2=3,k=10B.x2=﹣3,k=﹣10C.x2=3,k=﹣10D.x2=﹣3,k=10(2)已知方程x2+bx+3=0的一根为+,则方程的另一根为.(3)若x=﹣1是方程x2+x+m=0的一个根,则此方程的另一个根是()A.﹣1B.0C.1D.2(4)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m的值为()A.4B.﹣4C.3D.﹣3(5)已知关于x的一元二次方程x2﹣4x﹣m2=0,若该方程的两实根x1、x2满足x1+2x2=9,求m的值.三、构造一元二次方程例4.已知实数x1,x2满足x1+x2=3,x1x2=﹣4,则以x1,x2为根的一元二次方程是()A.x2﹣3x﹣4=0B.x2﹣3x+4=0C.x2+3x﹣4=0D.x2+3x+4=0解:∵实数x1,x2满足x1+x2=3,x1x2=﹣4,∴以x1,x2为根的一元二次方程是x2﹣3x﹣4=0.故选:A.练习4:(1)在解一元二次方程x2+px+q=0时,小明看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0(2)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;例5.已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求a bb a的值;解:∵a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,∴a,b是x2﹣15x﹣5=0的解,当a≠b时,a+b=15,ab=﹣5,====﹣47.当a=b时,原式=2;练习5:若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则+的值为.练习6:已知实数a,b满足:2a4﹣7a2+1=0,2b4﹣7b2+1=0且a≠b,求a4+b4的值.练习7:已知实数a≠b,且满足(a+1)2=3﹣3(a+1),(b+1)2=3﹣3(b+1),则的值为()A.23B.﹣23C.﹣2D.﹣13练习8:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求①4s2﹣5s+t;②的值.例6.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,四、利用一元二次方程中的根降次例7.设a,b是方程x2+x﹣2023=0的两个实数根,则a2+2a+b的值为()A.2024B.2021C.2023D.2022解:∵a是方程x2+x﹣2023=0的实数根,∴a2+a﹣2023=0,∴a2=﹣a+2023,∴a2+2a+b=﹣a+2023+2a+b=2023+a+b,∵a,b是方程x2+x﹣2023=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=2023+(﹣1)=2022.故选:D.练习9:(1)设a,b是方程x2+x﹣2022=0的两个实数根,则a+b﹣ab的值为()A.2023B.﹣2021C.2021D.﹣2023(2)已知m,n是方程x2+2016x+7=0的两个根,则(m2+2015m+6)(n2+2017n+8)=()A.2008B.8002C.2009D.2020(3)已知x1,x2是一元二次方程x2﹣x﹣1=0的两根,则的值为()A.0B.2C.1D.﹣1(4)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.(5)已知α、β是方程x2﹣3x﹣1=0的两个根,则α2﹣5α﹣2β+7=.例8.如果m、n是一元二次方程x2+x=3的两个实数根,那么多项式m3+2n2﹣mn﹣6m+2022的值是()A.2022B.2023C.2029D.2030解:∵m、n是一元二次方程x2+x=3的两个实数根,∴m2+m﹣3=0,n2+n﹣3=0,∴m2=﹣m+3,n2=﹣n+3,∴m3=m(﹣m+3)=﹣m2+3m=﹣(﹣m+3)+3m =4m﹣3,∴m3+2n2﹣mn﹣6m+2022=4m﹣3+2(﹣n+3)﹣mn﹣6m+2022=﹣2(m+n)﹣mn+2025,∵m、n是一元二次方程x2+x﹣3=0的两个实数根,∴m+n=﹣1,mn=﹣3,∴原式=﹣2×(﹣1)﹣(﹣3)+2025=2030.故选:D.练习10:(1)若a,b为一元二次方程x2﹣7x﹣1=0的两个实数根,则a3+3ab+8b﹣42a值是()A.﹣52B.﹣46C.60D.66(2)已知x1,x2是方程x2﹣x﹣2022=0的两个实数根,则代数式x13﹣2022x1+x22的值是()A.4045B.4044C.2022D.1(3)已知方程x2﹣2021x+1=0的两根分别为x1,x2,则x12﹣的值为()A.1B.﹣1C.2021D.﹣2021五、利用两根的性质解决有关的问题例9.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)若x1+x2=6﹣x1x2,求m的值.解:(1)Δ=(2m﹣3)2﹣4m2=4m2﹣12m+9﹣4m2=﹣12m+9,∵△≥0,∴﹣12m+9≥0,∴m≤,∴实数m的取值范围是m≤;(2)由题意可得,x1+x2=﹣(2m﹣3)=3﹣2m,x1x2=m2,又∵x1+x2=6﹣x1x2,∴3﹣2m=6﹣m2,∴m2﹣2m﹣3=0,解得m1=3,m2=﹣1,又∵m≤,∴m=﹣1,即m的值为﹣1.练习11.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.练习12.已知关于x 的一元二次方程x 2+2mx +m 2+m =0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根分别为x 1、x 2,且x 12+x 22=12,求m 的值.练习13.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.练习14.已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1﹣x 2)2+m 2=21,求m 的值.例10.关于x 的方程x 2﹣(2k ﹣1)x +k 2﹣2k +3=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k , 使得|x 1|﹣|x 2|=?若存在,求出这样的k 值;若不存在,说明理由. 解:(1)∵方程有两个不相等的实数根,∴Δ=[﹣(2k ﹣1)]2﹣4(k 2﹣2k +3)=4k ﹣11>0,解得:k >;(2)存在,∵x 1+x 2=2k ﹣1,x 1x 2=k 2﹣2k +3=(k ﹣1)2+2>0,∴将|x 1|﹣|x 2|=两边平方可得x 12﹣2x 1x 2+x 22=5,即(x 1+x 2)2﹣4x 1x 2=5, 代入得:(2k ﹣1)2﹣4(k 2﹣2k +3)=5,解得:4k ﹣11=5,解得:k =4.练习15.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.练习16.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.例11.已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴Δ=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.练习17.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.。
一元二次方程根与系数关系
一元二次方程根与系数关系一、知识梳理:1、根与系数的关系一元二次方程,如果有实数根(即),设两实数根为x 1,x 2,则, 2、常见的含两根的对称式:(1) (2) (3) ; 21221214)(x x x x x x -+=-(4); 3、利用根与系数的关系判定一元二次方程的两根符号:由可判断两根符号之间的关系: 若,则x 1,x 2同号; 若,则x 1,x 2异号,即一正一负再由可判断两根大小的关系。
4、由x 1,x 2两根可构造的一元二次方程 以x 1,x 2为根的一个一元二次方程为;强调:应用一元二次方程根与系数的关系时,应注意: ①根的判别式042≥-ac b ②二次项系数0≠a ,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.二、典例精析:(一)、已知一元二次方程的一个根,求出另一个根。
例1、已知方程052622=+-+-m m x x 的一个根为2,求另一个根及的值。
(二)、不解方程,判断两根的情况。
例2、不解方程,试判断方程0632=-+x x 两根的符号;(三)、求作新的方程;例3、作一个一元二次方程,使它的两个根为一元二次方程0132=--x x 的两根的平方.(四)不解方程,求方程两根所组成的某些代数式的值,这种应用与根的判别结合在一起。
例4 (1)已知关于x 的方程3x 2+6x-2=0的两根为x 1 ,x 2,求2111x x +的值. (2) 已知关于x 的方程3x 2-mx-2=0的两根为x 1 ,x 2,且31121=+x x ,求 ①m 的值; ②求x 12+x 22的值.例5:已知、是方程的两个实数根,求的值。
例6:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?例7:已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根、满足,求的值。
一元二次方程根与系数的关系
一元二次方程根与系数的关系一、知识要点对于一元二次方程ax2+bx+c=0 (a≠0)总有x1+x2=-,x1·x2=,其中x1x2是方程的两根它的逆定理也是成立的,即如果两个数x1和x2,满足x1+x2=-,x1·x2=,那么x1, x2是方程ax2+bx+c=0 (a≠0)的两个根.这是根与系数的关系定理,又称韦达定理.二、例题分析1、已知一元二次方程的一个根,求出另一个根以及字母系数的值例1、已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值分析:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值.解法一:把x=2代入原方程,得22-6×2+m2-2m+5=0即m2-2m-3=0解得m1=3m2=-1当m1=3m2=-1时,原方程都化为x2-6x+8=0∴x1=2x2=4∴方程的另一个根为4,m的值为3或-1.解法二:设方程的另一个根为x.则∴或2、判别一元二次方程两根的符号.例1.不解方程,判别2x2+3x-7=0两根的符号分析:因为二次项系数,一次项系数,常数项皆为已知,可求根的判别式△,但△只能用于判定根存在与否,若判定根的正负,则需要考察x1·x2或x1+ x2的正负情况.解:∵△=32-4×2×(-7)=65>0∴方程有两个不相等的实数根设方程的两个根为x1, x2,∵x1·x2==-<0∴原方程有两个异号的实数根。
说明:判别根的符号,需要“根的判别式”,“根与系数的关系”结合起来进行确定.另外本题中x1·x2﹤0,可判定根为一正一负,若x1·x2>0,仍需考虑x1+ x2的正负,从而判别是两个正根还是两个负根.例2.当m为什么实数时,关于x的二次方程mx2-2(m+1)x+m-1=0的两个根都是正数。
1元二次方程根与系数的关系公式
1元二次方程根与系数的关系公式一元二次方程啊,这可是中学数学里的一个重要知识点。
咱先来说说一元二次方程一般式:$ax^2 + bx + c = 0$($a≠0$),如果这个方程有两个根$x_1$和$x_2$,那么就有一个神奇的关系,叫根与系数的关系公式,也叫韦达定理。
韦达定理说的是,$x_1 + x_2 = -\frac{b}{a}$,$x_1 \times x_2 =\frac{c}{a}$。
可别小看这两个公式,用处大着呢!我记得有一次给学生们讲这个知识点的时候,有个学生一脸懵地问我:“老师,这公式到底有啥用啊?感觉好复杂。
”我笑了笑,给他举了个例子。
假设我们有个一元二次方程$x^2 - 5x + 6 = 0$,那我们先通过因式分解,得到$(x - 2)(x - 3) = 0$,所以方程的两个根就是$x_1 = 2$,$x_2 = 3$。
那按照韦达定理,$x_1 + x_2 = 2 + 3 = 5$,而$-\frac{b}{a} = -\frac{-5}{1} = 5$,是不是对上啦?再看$x_1 \times x_2 = 2×3 = 6$,$\frac{c}{a} = \frac{6}{1} = 6$,也没错吧!这个学生眼睛一下子亮了,说:“老师,我好像有点明白了!”韦达定理在解决很多数学问题时都能派上用场。
比如说,已知方程的一个根,求另一个根;或者根据两根的关系,确定方程中的系数等等。
再比如,如果告诉你一个一元二次方程的两根之和是 8,两根之积是 15,那我们就能很快写出这个方程$x^2 - 8x + 15 = 0$。
而且啊,韦达定理还能和函数图像结合起来。
一元二次函数$y = ax^2 + bx + c$的图像与$x$轴的交点,对应的就是方程$ax^2 + bx + c = 0$的根。
通过韦达定理,我们能知道两根的和与积,进而对函数的性质有更深入的理解。
在做题的时候,要是能熟练运用韦达定理,那解题速度就能大大提高。
一元二次方程根与系数的关系—知识讲解(提高)
一元二次方程根与系数的关系—知识讲解(提高)【学习目标】1. 理解并掌握一元二次方程的根与系数的关系;2. 能应用一元二次方程的根与系数的关系解决以下问题:已知方程的一根,不解方程求另一根及参数系数;已知方程,求含有两根对称式的代数式的值及有关未知数系数;已知方程两根,求作以方程两根或其代数式为根的一元二次方程.【要点梳理】要点一、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++;⑦12||x x -==⑧22212121222222121212()211()x x x x x x xx x x x x++-+==; ⑨12x x -==⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【典型例题】类型一、一元二次方程的根与系数的关系的应用(1)1. 阅读材料:若一元二次方程ax 2+bx+c=0(a≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1x 2=ca. 根据上述材料解决下列问题:已知关于x 的一元二次方程x 2=2(1-m )x-m 2;有两个实数根:x 1,x 2. (1)求m 的取值范围;(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值. 【思路点拨】(1)首先将原方程化为一般式,由关于x 的一元二次方程x 2=2(1-m )x-m 2有两个实数根,则可知△≥0,解不等式即可求得m 的取值范围; (2)由y=x 1+x 2=-ba,代入即可求得:y=2-2m ,根据(1)中m 的取值范围,即可求得最小值. 【答案与解析】【总结升华】此题考查了根与系数的关系,以及判别式的应用.此题比较简单,注意将方程化为一般形式.举一反三:【变式】(杭州校级月考)已知x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根.(1)当m=0时,求方程的根;(2)若(x1﹣2)(x2﹣2)=41,求m的值;(3)已知等腰三角形ABC的一边长为9,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.【答案】解:(1)当m=0时,方程即为x2﹣4x=0,解得x1=0,x2=4;(2)∵x1、x2是关于x的一元二次方程x2﹣2(m+2)x+m2=0的两个实数根,∴x1+x2=2(m+2),x1x2=m2,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=m2﹣4(m+2)+4=m2﹣4m﹣4=41,∴m2﹣4m﹣45=0,解得m1=9,m2=﹣5.当m1=9时,方程为x2﹣22x+81=0,△=(﹣22)2﹣4×81=160>0,符合题意;当m1=﹣5时,方程为x2+6x+25=0,△=62﹣4×25=﹣64<0,不符合题意;故m的值为9;(3)①当9为底边时,此时方程x2﹣2(m+2)x+m2=0有两个相等的实数根,∴△=4(m+2)2﹣4m2=0,解得:m=﹣1,∴方程变为x2﹣2x+1=0,解得:x1=x2=1,∵1+1<9,∴不能构成三角形;②当9为腰时,设x1=9,代入方程得:81﹣18(m+2)+m2=0,解得:m=15或3,当m=15时方程变为x2﹣34x+225=0,解得:x=9或25,∵9+9<25,不能组成三角形;当m=3时方程变为x2﹣10x+9=0,解得:x=1或9,此时三角形的周长为9+9+1=19.2.(肇庆二模)设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值: (1)(x 1﹣x 2)2;(2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【思路点拨】欲求(x 1﹣x 2)2与的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案与解析】解:根据根与系数的关系可得:x 1+x 2=﹣2,x 1•x 2=.(1)(x 1﹣x 2)2=x 12+x 22﹣2x 1x 2=x 12+x 22+2x 1x 2﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2==10. (2)122111x x x x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=x 1x 2+1+1+==.【总结升华】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):根与系数的关系---例3】 【变式】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和. 【答案】(1)134; (2)3.类型二、一元二次方程的根与系数的关系的应用(2)3.(灌云县期末)已知关于x 的方程x 2+ax ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为2,求a 的值及该方程的另一根.【思路点拨】(1)根据方程的系数结合根的判别式即可得出△=a 2+8≥8,由此即可证出不论a 取何实数,该方程都有两个不相等的实数根;(2)将x=2代入原方程求出a 值,设方程的另一个根为m ,根据根与系数的关系即可得出2m=﹣2,解之即可得出结论.【答案与解析】解:(1)在方程x 2+ax ﹣2=0中,△=a 2﹣4×1×(﹣2)=a 2+8,∵a 2+8≥8,∴不论a 取何实数,该方程都有两个不相等的实数根. (2)将x=2代入原方程,4+2a ﹣2=0,解得:a=﹣1.设方程的另一个根为m , 由根与系数的关系得:2m=﹣2, 解得:m=﹣1.∴a 的值为﹣1,方程的另一根为﹣1.【总结升华】本题考查了根的判别式以及根与系数的关系,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.4. 求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【答案与解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-, 从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结升华】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数为根的一元二次方程是.”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.一元二次方程根与系数的关系—巩固练习(提高)【巩固练习】 一、选择题1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-12.已知a 、b 、c 是△ABC 的三条边,且方程2222cx bx a bx ax b ++=++有两个相等的实数根,那么这个三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 3.(曲靖一模)已知一元二次方程x 2﹣3x ﹣3=0的两根为α与β,则的值为( )A .﹣1B .1C .﹣2D .24.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .20135.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129-6.(芦溪县模拟)设x 1,x 2是方程2x 2﹣6x+3=0的两根,则x 12+x 22的值是( ) A .15 B .12 C .6 D .3二、填空题7.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________. 8.(凉山州)已知实数m ,n 满足3m 2+6m ﹣5=0,3n 2+6n ﹣5=0,且m≠n,则n m m n+= .9.(濮阳校级自主招生)求一个一元二次方程 ,使它的两根分别是方程x 2﹣7x ﹣1=0各根的倒数.10.在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程的两根,那么AB 边上的中线长是 .11.已知方程2(k+1)x 2+4kx+3k-2=0 ,(1)当k 为 时,两根互为相反数;(2)当k 为 时,有一根为零,另一根不为零. 12.(仁寿县一模)关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根分别是x 1、x 2,且x 12+x 22=7,则m 的值是 .三、解答题13. 已知关于x 的方程22210x mx m --+=的两根的平方和等于294,求m 的值.14.已知关于x 的方程 kx 2-2 (k +1) x +k -1=0 有两个不相等的实数根,(1) 求k 的取值范围;(2) 是否存在实数k ,使此方程的两个实数根的倒数和等于0 ?若存在,求出k 的值;若不存在,说明理由.15.(杭州校级期中)如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1•x 2=q ,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x 2+px+q=0的两根.(2)已知实数a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,求+的值;(3)已知关于x 的方程x 2+mx+n=0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【答案与解析】 一、选择题 1.【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.【答案】A ;【解析】方程化为(c-b)x 2+2(b-a)x+(a-b)=0,∴ △=4(b-a)2-4(c-b)(a-b)=0 即4(a-b)(a-c)=0,∴ a =b 或a =c ,∴ △ABC 为等腰三角形.3.【答案】A ;【解析】解:根据题意得α+β=3,αβ=﹣3,所以===﹣1.故选A .4.【答案】C ; 【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.5.【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=,又因为1ab ≠,所以1a b ≠,故a 和1b 可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.6.【答案】C ;【解析】解:∵x 1,x 2是方程2x 2﹣6x+3=0的两根,∴x 1+x 2=3,x 1x 2=,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=32﹣2×=6. 故选:C .二、填空题 7.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 8.【答案】﹣;【解析】解:∵m≠n 时,则m ,n 是方程3x 2+6x ﹣5=0的两个不相等的根,∴m+n=﹣2,mn=﹣.∴原式====﹣,故答案为:﹣.9.【答案】x 2+7x ﹣1=0;【解析】解:设方程x 2﹣7x ﹣1=0的两根为α、β,则有:α+β=7,α•β=﹣1. ∴==﹣7,=﹣1,∴以、为根的方程为x 2+7x ﹣1=0.故答案为:x 2+7x ﹣1=0.10.【答案】;【解析】因直角三角形两直角边a 、b 是方程的二根,∴有a+b=7①a·b=c+7②,由勾股定理知c 2=a 2+b 2③,联立①②③组成方程组求得c=5, ∴斜边上的中线为斜边的一半,故答案为.11.【答案】(1)k=0;(2)k=.【解析】解:设方程的两根为x 1, x 2,则x 1+x 2=-=-;x 1x 2= .(1)要使方程两根互为相反数,必须两根的和是零, 即x 1+x 2=-=0,∴k=0,当k=0时,△=(4k)2-4×2(k+1)(3k -2)=16>0 ∴当k=0时,方程两根互为相反数.(2)要使方程只有一个根为零,必须二根的积为零,且二根的和不是零, 即x 1x 2==0,解得k=.又当k=时,x 1+x 2=-≠0,当k=时,△=(4k)2-4×2(k+1)(3k -2)=>0,∴k=时,原方程有一根是零,另一根不是零.12.【答案】-1.【解析】解:根据题意得x 1+x 2=m ,x 1x 2=2m ﹣1,∵x 12+x 22=7,∴(x 1+x 2)2﹣2x 1x 2=7,∴m 2﹣2(2m ﹣1)=7,解得m 1=﹣1,m 2=5,当m=﹣1时,原方程变形为x 2+x ﹣3=0,△=1﹣4×(﹣3)>0,方程有两个不等实数根;当m=5时,原方程变形为x 2﹣5x+9=0,△=25﹣4×9<0,方程没有实数根; ∴m 的值为﹣1. 故答案为﹣1.三、解答题13. 【答案与解析】设方程的两根为x 1、x 2,则由根与系数关系,得122m x x +=,12122m x x -=. 由题意,得 2212294x x +=,即2121229()24x x x x +-=,∴ 212292224m m -⎛⎫-=⎪⎝⎭, 整理,得28330m m +-=.解得13m =,211m =-.当m =3时,△=28(21)490m m +-=>;当m =-11时,△=28(21)630m m +-=-<,方程无实数根. ∴ m =-11不合题意,应舍去. ∴ m 的值为3.14. 【答案与解析】(1) ∵方程有两个不相等的实数根,∴Δ=[-2(k +1)]2-4k (k -1)>0,且k ≠0,解得k >-13,且k ≠0 .即k 的取值范围是k >-13,且k ≠0 . (2) 假设存在实数k ,使得方程的两个实数根x 1 , x 2的倒数和为0.则x 1 ,x 2不为0,且01121=+x x ,即01≠-kk ,且01)1(2=-+kk k k ,解得k =-1 . 而k =-1 与方程有两个不相等实根的条件k >-13,且k ≠0矛盾, 故使方程的两个实数根的倒数和为0的实数k 不存在 .15.【答案与解析】解:(1)当p=﹣4,q=3,则方程为x 2﹣4x+3=0,解得:x 1=3,x 2=1.(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a 、b 是x 2﹣15x ﹣5=0的解, 当a ≠b 时,a+b=15,a ﹣b=﹣5, +====﹣47;当a=b 时,原式=2.(3)设方程x 2+mx+n=0,(n ≠0),的两个根分别是x 1,x 2,则+==﹣,•==,则方程x 2+x+=0的两个根分别是已知方程两根的倒数.。
解一元二次方程一元二次方程的根与系数的关系
解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系 解一元二次方程一元二次方程的根与系数的关系
பைடு நூலகம்