安徽省2017年中考数学总复习 第二轮 解答题专题学习突破 专题复习(五)解直角三角形及其实际应用题试题
安徽省2017年中考数学总复习 第二轮 中考题型专题复习二 解答题专题学习突破 专题复习(二)
x -3 3 ⎧⎪x = , 3x -1 6x -2 ⎩ ⎪ ⎩ ⎩ 专题复习(二) 方程、不等式的解法类型 1 方程(组)的解法1.(2015·广州)解方程:5x =3(x -4). 解:去括号,得 5x =3x -12.移 项,得 5x -3x =-12.合并同类项,得 2x =-12.系数化为 1,得 x =-6.⎧⎪2x +y =4,① 2.(2015·邵阳)解方程组:⎨ ⎪x -y =-1.②解:①+②,得 2x +y +x -y =4-1.解得 x =1. 把 x =1 代入①,得 2+y =4.解得 y =2.⎧x =1, ∴原方程组的解为⎨⎪y =2.3.解方程:x 2-4x =6.解:两边都加上 4,得 x 2-4x +4=6+4,即(x -2)2=10. ∴x -2=± 10.∴原方程的解为 x 1=2+ 10,x 2=2- 10.2x -1 4.解方程: =3.解:方程两边同乘(x -3),得 2x -1=3x -9. 解得 x =8.检验:当 x =8 时,x -3≠0,∴x =8 是原分式方程的解.⎧⎪6x =3-y ,① 5.解方程组:⎨ ⎪3x +y =2.②解:由①,得 6x +y =3.③②×2-③,得 y =1.1 把 y =1①,得 x = .1 ∴原方程组的解为⎨ 3⎪⎩y =1.6.(2015·兰州)解方程:x 2-1=2(x +1). 解:原方程可以化为(x +1)(x -1)-2(x +1)=0, 左边 分解因式,得(x +1)(x -3)=0, ∴x +1=0 或 x -3=0.∴原方程的解为 x 1=-1,x 2=3.2 3 7.(2016·阜阳二模)解方程: -1= .解:方程两边同乘 2(3x -1),得 4-2(3x -1)=3.222⎪⎩223(x+2)≥x+4,②2⎩⎩去括号,得4-6x+2=3.移项、合并同类项,得6x=3.1解得x=.1检验:当x=时,2(3x-1)≠0,1∴x=是原分式方程的解.类型2不等式(组)的解法9.(2016·舟山)解不等式:3x>2(x+1)-1.解:去括号,得3x>2x+2-1.移项,得3x-2x>2-1.合并同类项,得x>1.∴不等式的解为x>1.⎧⎪2x+1<x+5,①10.(2016·淮安)解不等式组:⎨⎪4x>3x+2.②解:解不等式①,得x<4.解不等式②,得x>2.∴不等式组的解集为2<x<4.⎧⎪2x+5>3(x-1),①11.(2016·北京)解不等式组:⎨x+74x>.②解:解不等式①,得x<8.解不等式②,得x>1.∴不等式组的解集为1<x<8.3x-112.(2016·苏州)解不等式2x-1>,并把它的解集在数轴上表示出来.解:4x-2>3x-1.x>1.这个不等式的解集在数轴上表示如下:⎧⎪2x<5,①13.(2016·广州)解不等式组:⎨并在数轴上表示解集.⎪5解:解不等式①,得x<.解不等式②,得x≥-1.解集在数轴上表示为⎪⎩-x<5x+12,②并写出它的整数解.⎧⎪14.(2016·南京)解不等式组:⎨3x+1≤2(x+1),①解:解不等式①,得x≤1.解不等式②,得x>-2.所以不等式组的解集是-2<x≤1,该不等式组的整数解是-1,0,1.。
安徽省2017年中考数学总复习 第二轮 中考题型专题复习二 解答题专题学习突破 专题复习(一)
二、解答题专题学习突破专题复习(一) 数与式的运算类型1 实数的运算1.(2016·阜阳模拟)计算:12×⎝ ⎛⎭⎪⎫-13+8×2-2-(-1)2. 解:原式=-4+2-1=-3.2.(2016·邵阳)计算:(-2)2+2cos 60°-(10-π)0. 解:原式=4+2×12-1=4+1-1=4.3.(2016·滁州模拟)计算:(-3)2+|-4|×2-1-(2-1)0.解:原式=3+4×12-1=4.4.(2016·马鞍山模拟)计算:-22+|-3|+2sin 60°-12.解:原式=-4+3+2×32-2 3 =-4.5.(2016·宜宾)计算: ⎝ ⎛⎭⎪⎫13-2- (-1)2 016-25 + (π-1)0.解:原式=9-1-5+1=4.6.(2016·广安)计算: ⎝ ⎛⎭⎪⎫13-1-27+tan 60°+||3-23.解:原式=3-33+3-3+23=0.类型2 整式的运算7.计算:(x -3)(3+x)-(x 2+x -1).解:原式=x 2-9-x 2-x +1=-x -8.8.化简:a(2-a)-(3+a)·(3-a).解:原式=2a -a 2-(9-a 2)=2a -9.9.(2016·马鞍山模拟)计算:(x +3)(x -5)-x(x -2).解:原式=x 2-5x +3x -15-x 2+2x =-15.10.(2016·茂名)先化简,再求值:x(x -2)+(x +1)2,其中x =1.解:原式=x 2-2x +x 2+2x +1=2x 2+1.当x =1时,原式=2+1=3.11.(2016·衡阳)先化简,再求值:(a +b)(a -b)+(a +b)2,其中a =-1,b =12. 解:原式=a 2-b 2+a 2+2ab +b 2=2a 2+2ab.当a =-1,b =12时,原式=2×(-1)2+2×(-1)×12=2-1=1.类型3 分式的化简与求值12.(2016·宿州模拟)化简:⎝⎛⎭⎪⎫x +1x -x x -1·(x-1)2. 解:原式=[x 2-1x (x -1)-x 2x (x -1)]·(x-1)2 =-1x (x -1)·(x-1)2 =1-x x.13.(2016·甘孜州)化简:x +3x 2-9+1x -3. 解:原式=x +3(x +3)(x -3)+x +3(x +3)(x -3)=2(x +3)(x +3)(x -3) =2x -3.14.(2016·宣城模拟)先化简,再求值: a 2-2a +1a 2-1÷⎝ ⎛⎭⎪⎫1-3a +1,其中a =0.解:原式=(a -1)2(a +1)(a -1)÷a +1-3a +1=(a -1)2(a +1)(a -1)·a +1a -2=a -1a -2. 当a =0时,a -1a -2=12.15.(2016·淮北模拟)先化简,再求值:1a +1-a (a +1)2,其中a =2-1. 解:原式=a +1(a +1)2-a (a +1)2 =1(a +1)2. 当a =2-1时,原式=1(2-1+1)2=12.16.(2016·娄底)先化简,再求值:⎝ ⎛⎭⎪⎫1-2x -1·x 2-x x 2-6x +9,其中x 是从1,2,3中选取的一个合适的数. 解:原式=x -3x -1·x (x -1)(x -3)2=x x -3. 当x =1,3时原方程无意义.当x =2时,原式=22-3=-2.17.(2016·枣庄)先化简,再求值:a 2+a a 2-2a +1÷⎝ ⎛⎭⎪⎫2a -1-1a ,其中a 是方程2x 2+x -3=0的解. 解:原式=a (a +1)(a -1)2÷2a -(a -1)a (a -1)=a (a +1)(a -1)2·a (a -1)a +1=a 2a -1. 由2x 2+x -3=0,得x 1=1,x 2=-32. 又a -1≠0,即a≠1,∴a =-32. ∴原式=(32)2-32-1=-910.18.(2016·河南)先化简,再求值:⎝ ⎛⎭⎪⎫x x 2+x -1÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4的整数解中选取. 解:原式=x -x 2-x x (x +1)·(x +1)2(x -1)(x -1)=-x x +1·x +1x -1=x 1-x. 解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4得-1≤x<52, 当x =-1,0,1时,原方程无意义.当x =2时,原式=21-2=-2.。
安徽省2017年中考数学总温习第二轮中考题型专题温习二解答题专题学习冲破专题温习十一几何探讨题类型2
类型2 与相似三角形有关的几何探讨题:5.(2012·安徽)如图1,在△ABC 中,D ,E ,F 别离为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a ,AC =b ,AB =c.(1)求线段BG 的长;(2)求证:DG 平分∠EDF;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG⊥CG.解:(1)∵D,E ,F 别离是△ABC 三边中点,∴DE ∥12AB ,DE=12AB ,DF ∥12AC ,DF=12AC. 又∵△BDG 与四边形ACDG 的周长相等,即BD +DG +BG =AC +C D +DG +AG ,∴BG =AC +AG.∵BG =AB -AG ,∴BG =AB +AC 2=b +c 2. (2)证明:BG =b +c 2,FG =BG -BF =b +c 2-c 2=b 2,∴FG =DF.∴∠FDG=∠FGD. 又∵DE∥AB,∴∠EDG =∠FGD.∴∠FDG =∠EDG.∴DG 平分∠EDF.(3)证明:在△DFG 中,∠FDG =∠FGD,∴△DFG 是等腰三角形.∵△BD G 与△DFG 相似,∴△BDG 是等腰三角形.∴BD =DG.∴CD =BD =DG.∴B,G ,C 三点共圆.∴∠BGC =90°.∴BG ⊥CG.6.(2016·合肥十校联考)如图1,在四边形ABCD 中,∠DAB 被对角线AC 平分,且AC 2=AB ·AD,咱们称该四边形为“可分四边形”,∠DAB 称为“可分角”.(1)如图2,四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,若是∠DCB=∠DAB,那么∠DAB=120°;(2)如图3,在四边形ABCD 中,∠DAB =60°,AC 平分∠DAB,且∠BCD=150°,求证:四边形ABCD 为“可分四边形”;(3)现有四边形ABC D 为“可分四边形”,∠DAB 为“可分角”,且AC =4,BC =2,∠D =90°,求AD 的长.解:(1)提示:由题意易知△ADC∽△ACB,则∠D=∠ACB,∠ACD =∠B.∵∠DCB=∠DAB,∴∠DAB =13×360°=120°.(2)证明:∵AC 平分∠DAB,∠DAB =60°,∴∠DAC =∠CAB=30°.∵∠DCB =150° ,∴∠DCA =150°-∠ACB.在△ADC 中,∠ADC =180°- ∠DAC- ∠DCA =180°-30°-(150°-∠ACB)=∠ACB,∴△ACD ∽△ABC. ∴AD AC =AC AB .∴AC 2=AB·AD. 又∠DAC=∠CAB, ∴四边形ABCD 为“可分四边形”.(3)∵四边形ABCD 为“可分四边形”,∠DAB 为“可分角”,∴AC 平分∠DAB,AC 2=AB·AD.∴∠DAC =∠CAB,AD AC =AC AB.∴△ACD∽△ABC. ∴∠ACB =∠D=90°.在Rt △ACB 中,AB =AC 2 + BC 2=2 5.∵ AC 2=AB·AD,∴AD =AC 2AB =4225=855. 7.(2016·淮北濉溪县一模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC =∠A=∠B=90°,求证:AD·B C =AP·BP;(2)探讨:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是不是仍然成立?说明理由;(3)应用:请利用(1)(2)取得的体会解决问题:如图3,在△ABD 中,AB =6,AD =BD =5,点P 以每秒1个单位长度的速度,由点A 起身,沿边AB 向点B 运动,且知足∠DPC=∠A,设点P 的运动时刻为t(秒),当以D 为圆心,DC 为半径的圆与AB 相切时,求t 的值.解:(1)证明:∵∠DPC=∠A=∠B=90°,∴∠ADP +∠APD=90°,∠BPC +∠APD=90°,即∠ADP=∠BPC.∴△ADP ∽△BPC.∴AD BP =AP BC,即AD·BC=AP·BP. (2)结论AD·BC=AP·BP 仍然成立.理由:∵∠BPD=∠DPC+∠BPC,∠BPD =∠A+∠ADP,∴∠DPC +∠BPC=∠A+∠ADP.∵∠DPC =∠A=∠B=θ,∴∠BPC =∠ADP.∴△ADP ∽△BPC.∴AD BP =AP BC,即AD·BC=AP·BP. (3)过点D 作DE⊥AB 于点E.∵AD =BD =5,AB =6,∴AE =BE =3.由勾股定理可得DE =4.∵以点D 为圆心,DC 为半径的圆与AB 相切,∴DC =DE =4.∴BC=BD -DC =1.又∵AD=BD ,∴∠A =∠B.∴∠DPC =∠A=∠B.由(1)、(2)的体会可知AD·BC=AP·BP.∴5×1=t(6-t),解得t 1=1,t 2=5.∴t 的值为1或5.8.已知:△A BC 中,∠C =90°,AC =BC ,点M ,N 别离在AC ,BC 上,将△ABC 沿MN 折叠,极点C 恰好落在斜边的P 点上.(1)如图1,当MN∥AB 时,求证:①AM =MC ;②PA PB =CM CN; (2)如图2,当MN 与AB 不平行时,PA PB =CM CN还成立吗?请说明理由. 解:(1)证明:①由折叠可知∠CMN=∠NMP,CM =PM.∵MN ∥AB ,∴∠CMN =∠A,∠NMP =∠MPA,即∠A=∠MPA.∴MA =MP.∴AM =MC.②由①可知∠CMN=∠A =45°,∠CNM =∠B=45°,∠A =∠B=45°, ∴MC =NC =AM =BN ,∠PMA =∠PNB=90°.∴△APM ∽△BPN.∴PA PB =AM BN .∴PA PB =CM CN. (2)成立.理由:过点M ,N 别离做AB 的垂线,垂足别离为点E ,F. 由题意可知,CM =PM ,CN =PN ,∠MPN =90°,∴∠MPE +∠NPF=90°.∵∠MPE +∠EMP=90°,∴∠EMP =∠NPF.∴△MEP ∽△PFN.∴MP PN =ME PF =PE NF. ∵∠A =∠B=45°,ME ⊥AP ,NF ⊥AB ,∴△MAE 和△NFB 均为等腰直角三角形,即ME =AE ,NF =BF. ∵ME PE =PF NF .∴AE PE =PF BF . ∴AE +PE PE =PF +BF BF ,即AP PE =PB BF . ∴AP PB =PE BF =PE NF . ∴PA PB =MP PN =CM CN .。
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题试题-人教版初中九年级
题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
安徽省2017年中考数学总复习第二轮中考题型专题复习二解答题专题学习突破专题复习(一)数
专题复习(一)数与式的运算类型1实数的运算1 . (2016 •阜阳模拟)计算:解:原式=一 4+ 2— 1 = — 3.2 . (2016 •邵阳)计算:(一2)2 + 2COS 60°— (10— n )°. 1解:原式=4 + 2X ^— 1 = 4 + 1 — 1 = 4.3. (2016 •滁州模拟)计算:(—.3)2 + | — 4| X2 — 1— ( 2— 1)0.1解:原式=3 + 4X ^— 1 = 4.4. (2016 •马鞍山模拟)计算:—22+ | — 3| + 2sin 60°— ;12. 解:原式=—4 +3+ 2X #— 2 3=—4. 2(x + 3) ( x — 3)2x —.2 (2016 •宜宾)计算: 解答题专题学习突破12X - 3 + 8X2 k 3丿 -2 2-(-1).6. (2016 •广安)计算:1—.27+ tan 60°+ | 3 — 2 3| .解:原式=3 — 3 3 +3 — 3+ 2 3= 0.类型2整式的运算—25 + ( 解:原式=9— 1 — 5+ 1 = 4. —1)7 •计算:(x — 3)(3 + x) — (x + x — 1).2 2解:原式=x — 9 — x — x + 1=—x — 8.8 .化简:a(2 — a) — (3 + a) • (3 — a).2 2解:原式=2a — a — (9 — a)=2a — 9.9. (2016 •马鞍山模拟)计算:(x + 3)(x — 5) — x(x — 2).2 2解:原式=x — 5x + 3x — 15 — x + 2x =— 15.10 . (2016 •茂名)先化简,再求值:x(x — 2) + (x + 1),其中x = 1. 解:原式=x * 3— 2x + x 2+ 2x + 1= 2x 2+ 1.当x = 1时,原式=2+ 1= 3.2 1 11 . (2016 •衡阳)先化简,再求值:(a + b)(a — b) + (a + b),其中 a =— 1, b =-. 解:原式=a 2— b 2+ a 2+ 2ab + b 2= 2a 2 + 2ab.1 2 1 当 a =— 1, b = §时,原式=2X ( — 1)2+ 2X ( — 1) x 2= 2 — 1= 1.类型3分式的化简与求值|'X+ 1 x12 . (2016 •宿州模拟)化简: ——x —• (x — 1)x 2— 1x 2 2解:原式=[ —]• (x — 1)x (x — 1) x (x —1 ) —1 ,八 2= • (x — 1)x (x — 1 ) ' ' 13 . (2016 •甘孜州)化简:字9+ 士 x 9 x 3x + 3 _____ x + 3(x + 3) ( x — 3) ( x + 3)( x — 3)2 (x + 3)=(a + 1)解:原式= 1-占,其中a = 0.2(a —1) 亠a+ 1 — 3 解:原式=(a+ 1)( a—1)2 2a + 1a 解:原式=2— 2 (a + 1) (a + 1) 12X — X - — ,其中x 是从1 , 2, 3中选取的一个合适的数. x — 6x + 9x (x — 1) x (x — 3) 2 x — 3'当x = 1, 3时原方程无意义.当x = 2时,原式一2—5=— 2.a (a + 1) . 2a —( a — 1) (a — 1) 2 ' a (a — 1)a (a + 1) a ( a — 1) 2・ (a — 1) a + 12 a a — 1.2 由 2x + x — 3— 0,得 X 1 = 1 , 又 a — 1工0,即卩 1,「. a = — |.18 . (2016 •河南)先化简,再求值: 丘—4 ―x w 1x 的值从不等式组£ '的整数解中选取.2x — 1<4当 a = 2—1 时,原式=(2—1 +1) 2(a — 1) a + 1 (a + 1)( a - 1) a —2 a — 1 a —2 当a = 0时, a — 1 _ 1 a —2 = 2.15. (2016 •淮北模拟)先化简,再求值:a _ (a +1) 2,其中 a = 2— 1. 17 . (2016 •枣庄)先化简,再求值: 2a — 2a + 1 2a 是方程2x + x — 3 - 0的解.原式= 9_ 10.16 . (2016 •娄底)先化简,再求值: 1解:原式= x — 3 x — 解:原式= X 2=_,其中x 2— 1 2 x + 2x + 122解:原式— 2x — x — x (X + 1 )X (x + 1) ( x — 1)( X — 1)x x + 1__ ■ ♦-----x + 1 x —1x=1 —x.—x w 1, 5解不等式组* 得—1W X<£,2x—1<4 2当x=—1, 0, 1时,原方程无意义.2当x= 2 时,原式= 1 —2 =—2.2a—2a+114 . (2016 •宣城模拟)先化简,再求值:a2—1—。
2017年安徽省中考数学二模试卷解析及答案
2017年安徽省中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.﹣2的相反数是()A.2 B.1 C.D.﹣【考点】相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣2的相反数是2.故选:A.2.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么这个立体图形不可能是()A.B. C. D.【考点】由三视图判断几何体.【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【解答】解:A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.3.下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选D.4.2016年2月初,合肥市教育考试院召开新闻发布会,公布了合肥市市区参加2016年中考的学生约为27600人,与去年相比增加300多人,用科学记数法表示“27600”正确的()A.2.76×103B.2.76×104C.2.76×105D.0.276×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:27600=2.76×104,故选:B.5.如图,已知AB∥DE,∠ABC=65°,∠CDE=138°,则∠C的值为()A.21°B.23°C.25°D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据两直线平行,内错角相等以及三角形外角和定理即可解答.【解答】解:如图,反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=65°,∴∠CMD=180°﹣∠BMD=115°,又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.故选:B.6.“国庆黄金周”期间,小东和爸爸、妈妈外出旅游,一家三人随机站在一排拍照纪念,小东恰好站在中间的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出小东站在中间的结果数,然后根据概率公式求解.【解答】解:设小东和爸爸、妈妈分别为:甲、乙、丙,画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以小东在中间的概率=.故选:B.7.甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?设快车的速度为x千米/时,则下列方程正确的是()A.B.=40C.D.【考点】由实际问题抽象出分式方程.【分析】设快车的速度为x千米/时,根据快车比慢车早40分钟到达乙站,列方程求解.【解答】解:设快车的速度为x千米/时,可得:,故选C8.如图所示,△ABC是等边三角形,点D为AB上一点,现将△ABC沿EF折叠,使得顶点A与D点重合,且FD⊥BC,则的值等于()A.B.C.D.【考点】翻折变换(折叠问题);等边三角形的性质.【分析】过点E作EG⊥BC,由翻折性质知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,在Rt△DEG中表示出AE=DE=2EG=2x、DG=x,继而在Rt△BEG中求得BE==x、BG==x,即可得AB=BC=AE+BE=x、CD=BC﹣BD=x,从而得出AF=DF=CDtanC=(2﹣2)x,即可得出答案.【解答】解:如图,过点E作EG⊥BC于点G,由题意知AE=DE、AF=DF、∠A=∠EDF=60°,设EG=x,∵FD⊥BC,∴∠FDC=90°,∴∠EDG=30°,则AE=DE=2EG=2x,DG==x,∴BE===x,BG===x,∴BC=AB=AE+BE=2x+x=x,∵CD=BC﹣BD=x﹣(x+x)=x,∴AF=DF=CDtanC=x•=(2﹣2)x,∴==,故选:D.9.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为()A.①②B.②③C.①③D.①②③【考点】中心对称图形.【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,由于原来该大长方形的周长是120,得出2(a+2b+c)=120,a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.【解答】解:如图,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,∵原来该大长方形的周长是120,∴2(a+2b+c)=120.根据图示,可得,①﹣②,可得:a﹣b=b﹣c,∴2b=a+c,∴120=2(a+2b+c)=2×2(a+c)=4(a+c),或120=2(a+2b+c)=2×4b=8b,∴2(a+c)=60,4b=60,∵图形①的周长是2(a+c),图形②的周长是4b,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.10.一元二次方程m1x2+x+1=0的两根分别为x1,x2,一元二次方程m2x2+x+1=0的两根为x3,x4,若x1<x3<x4<x2<0,则m1,m2的大小关系为()A.0>m1>m2B.0>m2>m1C.m2>m1>0 D.m1>m2>0【考点】根与系数的关系.【分析】设f(x)=m1x2+x+1,方程f(x)=0的两实根为x1,x2(x1<x2),x3,x4是一元二次方程m2x2+x+1=0的两根,所以由x1<x3<x4<x2成立,即x3,x4在两实根x1,x2之间,可由根的分布的相关知识将这一关系转化为不等式,得出m1与m2的关系.【解答】解:∵x1,x2是一元二次方程m1x2+x+1=0的两根,∴m1x12+x1+1=0,m1x22+x2+1=0,∴f(x3)=m1x32+x3+1,f(x4)=m1x42+x4+1,∵x3,x4是一元二次方程m2x2+x+1=0的两根,∴m2x32+x3+1=0,m2x42+x4+1=0,∴f(x3)=(m1﹣m2)x32,f(x4)=(m1﹣m2)x42,∵x1<x3<x4<x2<0,∴,∴,∴m2>m1>0.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.12.若函数y=,则当函数值y=15时,自变量x的值是﹣2或5.【考点】函数值.【分析】将y=15代入函数解析式中,求出x值,此题得解.【解答】解:当y=x2+3=15,解得:x=﹣2或x=2(舍去);当y=3x=15,解得:x=5.故答案为:﹣2或5.13.观察下列图形规律:当n=11时,图形“△”的个数是“●”的个数的2倍.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“△”的个数是“●”的个数的2倍,求出n的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;∴第n个图形中“•”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,解得n=11或n=0(舍去),故答案为:11.14.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.,则下列结论正确的是①④(将正确的结论填在横线上).=s△ODB,②BD=4AD,③连接MD,S△ODM=2S△OCE,④连接ED,则△BED∽①s△OEB△BCA.【考点】反比例函数综合题.=S△OBA,由点E、点D在反【分析】①正确.由四边形ABCD是矩形,推出S△OBC=S△OAD=,即可推出S△OEB=S△OBD.比例函数y=(x>0)的图象上,推出S△CEO②错误.设点B(m,n),D(m,n′)则M(m,n,),由点M,点D在反比例函数y=(x>0)的图象上,可得m•n=m•n′,推出n′=n,推出AD=AB,推出BD=3AD,故②错误.=S△OBD﹣S△BDM=•b•a﹣•b•a=ab,S△CEO=S△OAD=③错误.因为S△ODM•a•b=ab,所以S△ODM:S△OCE=ab:ab=3:2,故③错误.④正确.由==3,推出DE∥AC,推出△BED∽△BCA.【解答】解:∵四边形ABCD是矩形,=S△OBA,∴S△OBC∵点E、点D在反比例函数y=(x>0)的图象上,=S△OAD=,∴S△CEO=S△OBD,故①正确,∴S△OEB设点B(m,n),D(m,n′)则M(m,n,),∵点M,点D在反比例函数y=(x>0)的图象上,∴m•n=m•n′, ∴n′=n , ∴AD=AB ,∴BD=3AD ,故②错误,连接DM ,∵S △ODM =S △OBD ﹣S △BDM =•b•a ﹣•b•a=ab ,∵S △CEO =S △OAD =•a•b=ab ,∴S △ODM :S △OCE =ab : ab=3:2,故③错误,连接DE ,同法可证CE=BC , ∴BE=3EC ,∴==3,∴DE ∥AC ,∴△BED ∽△BCA ,故④正确. 故答案为①④三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中a=﹣2.【考点】分式的化简求值.【分析】首先把括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入数值计算即可.【解答】解:原式=•(1﹣a )(1+a )=1﹣a .当a=﹣2时,原式=1+2=3.16.求不等式x﹣1>3x的解集,并判断x=﹣是否为此不等式的解.【考点】不等式的解集.【分析】先解出不等式的解,再判断即可.【解答】解:解不等式x﹣1>3x,可得:x<﹣2,所以x=﹣不是此不等式的解.四、(本大题共2小题,每小题8分,满分16分)17.现有一个“Z”型的工件(工件厚度忽略不计),如图示,其中AB为20cm,BC 为60cm,∠ABC=90°,∠BCD=50°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)【考点】解直角三角形的应用.【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C=50°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ 的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【解答】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=50°,在△ABQ中,∵AQ==≈31.10,BQ=ABtanA=20tan50°≈23.84,∴CQ=BC﹣BQ=60﹣23.84=36.16,在△CPQ中,∵PQ=CQsinC=36.16sin50°≈27.70,∴AP=AQ+PQ=27.70+31.10≈58.8,答:工件如图摆放时的高度约为58.8cm.18.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.【考点】作图﹣位似变换;作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,0);(2)如图,△A1E1F1为所作.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;矩形的性质;坐标与图形变化﹣平移.【分析】(1)由四边形ABCD是矩形,得到AB=CD=2,BC=AD=3,根据A(﹣,3 ),AD∥x轴,即可得到B(﹣,1),C(﹣,1),D(﹣,3);(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(﹣+m,3),C(﹣+m,1),由点A′,C′在反比例函数y=(x>0)的图象上,得到方程3×(﹣+m)=1×(﹣+m),即可求得结果.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∵A(﹣,3 ),AD∥x轴,∴B(﹣,1),C(﹣,1),D(﹣,3);(2)∵将矩形ABCD向右平移m个单位,∴A′(﹣+m,3),C(﹣+m,1),∵点A′,C′在反比例函数y=(x>0)的图象上,∴3×(﹣+m)=1×(﹣+m),解得:m=6,∴B′(,1),∴k=×1=,∴矩形ABCD的平移距离m=6,反比例函数的解析式为:y=.20.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求⊙O的半径.【考点】切线的性质;解直角三角形.【分析】(1)连接OD,根据切线的性质得到OD⊥BC,根据平行线的性质和等腰三角形的性质证明;(2)连接CE,根据正切的定义和勾股定理求出AD,根据正切的定义计算即可.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∠C=90°,∴OD∥AC,∴∠ODA=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:连接CE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠CAD,tan∠DAC=,∴tan∠EAD=,∵tan∠DAC=,AC=8,∴CD=6,由勾股定理得,AD==10,∴=,解得,DE=,∴AE==,∴⊙O的半径为.六、(本题满分12分)21.某省是劳务输出大省,农民外出务工增长家庭收入的同时,也一定程度影响了子女的管理和教育,缺少管理和教育的留守儿童的学习和心理健康状况等问题日趋显现,成为社会关注的焦点.该省相关部门就留守儿童学习和心理健康状况等问题进行调查,本次抽样调查了该省某县部分留守儿童,将调查出现的情况分四类,即A类:基本情况正常;B类;有轻度问题;C类:有较为严重问题;D 类:有特别严重问题.通过调查,得到下面两幅不完整的统计图,请根据图中的信息解决下面的问题.(1)在这次随机抽样调查中,共抽查了多少名学生留守儿童?(2)扇形统计图中C类所占的圆心角是144°;这次调查中为D类的留守儿童有20人;(3)请你估计该县20000名留守儿童中,出现较为严重问题及以上的人数.【考点】条形统计图;全面调查与抽样调查;用样本估计总体;扇形统计图.【分析】(1)根据A类人数是10,所占的百分比是10%,据此即可求得总人数;(2)利用360°乘以对应的百分比即可求得C类圆心角的度数;利用总人数乘以对应的百分比求得D类的人数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)抽查的人数是10÷10%=100(人);(2)C类所占的圆心角是360°×=144°,D类的留守儿童人数所占的百分比是:=40%,则D类的人数是100×(1﹣10%﹣30%﹣40%)=20(人),故答案是:144;20;(3)出现较为严重问题及以上的人数是:20000×(40%+20%)=12000.七、(本题满分12分)22.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意可以设出y2与x之间的函数关系式,然后根据图象中的数据即可求得函数的解析式;(2)根据题意可以列出相应的不等式组,从而可以求得x的取值范围;(3)根据题意可以得到W与x函数关系式,然后化为顶点式,再根据x的取值范围,即可求得W的最大值.【解答】解:(1)设y2与x的函数关系式为y2=kx+b,,得,∴y2与x之间的函数关系式是y2=30x+500;(2)由题意可得,,解得,25≤x≤35,即月产量x的取值范围是25≤x≤35;(3)由题意可得,W=x[190﹣2x﹣]=﹣2(x﹣40)2+2700,∵25≤x≤35,∴x=35时,W取得最大值,此时W=2650,即当月产量x(套)为35套时,这种产品的利润W(万元)最大,最大利润是2650万元.八、(本题满分14分)23.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB 的最大面积等于8.【考点】相似形综合题.【分析】(1)由已知得出∠DAC=∠CAB=30°,由三角形内角和定理得出∠D+∠ACD=150°,由∠BCD=∠ACD+∠ACB=150°,得出∠D=∠ACB,证明△ADC∽△ACB.得出对应边成比例,得出AC2=AB•AD,即可得出结论;(2)由已知条件可证得△ADC∽△ACB,得出D=∠ACB,再由已知条件和三角形内角和定理得出∠DAC+2∠DAC=180°,求出∠DA=60°,即可得出∠DAB的度数;(3)根据“可分四边形”的定义求出AB•AD,计算即可.【解答】(1)证明:∵∠DAB=60°,AC平分∠DAB,∴∠DAC=∠CAB=30°,∴∠D+∠ACD=180°﹣30°=150°,∵∠BCD=∠ACD+∠ACB=150°,∴∠D=∠ACB,∴△ADC∽△ACB.∴AD:AC=AC:AB,∴AC2=AB•AD,∴四边形ABCD为“可分四边形”;(2)解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵AC2=AB•AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB,∵∠DCB=∠DAB,∴∠DCB=∠DCA+∠ACB=2∠DAC,∵∠DAC+∠D+∠ACB=180°,∴∠DAC+2∠DAC=180°,解得:∠DAC=60°,∴∠DAB=120°;(3)∵四边形ABCD为“可分四边形”,AC=4,∴AB•AD=AC2=16,当DA⊥DB时,△DAB的最大,最大面积为8,故答案为:8.。
安徽省2017年中考数学总复习 第二轮 中考题型专题复习一 选填题重难点题型突破 重难点题型(二)多
类型2 几何问题的多结论判断题10.(2016·临沂)如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC,连接AD ,BD ,则下列结论: ①AC =AD ;②BD⊥AC;③四边形ACED 是菱形.其中正确的个数是(D )A .0B .1C .2D .311.(2016·南充)如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME=108°;②AN 2=AM·AD;③MN=3-5;④S △EBC =25-1.其中正确结论的个数是(C ) A .1 B .2 C .3 D .4提示:根据正五边形的性质得到∠ABE=∠AEB=∠EAD=36°,根据三角形的内角和即可得到结论;由于∠AEN =108°-36°=72°,∠ANE =36°+36°=72°得到∠AEN=∠ANE,根据等腰三角形的判定定理得到AE =AN ,同理DE =DM ,根据相似三角形的性质得到AE AD =AM AE ,等量代换得到AN 2=AM·AD;根据AE 2=AM·AD,列方程得到MN =3-5;过E 作EH⊥BC 于点H ,在正五边形ABCDE 中,由于BE =CE =AD =1+5,得到BH =12BC =1,根据勾股定理得到EH =(1+5)2-12=5+25,根据三角形的面积得到结论.12.(2016·德州)在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC(或它们的延长线)于点M ,N ,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN ;②∠AME=∠BNE;③BN -AM =2;④S △EMN =2cos 2α.上述结论中正确的个数是(C )A .1B .2C .3D .4提示:①作辅助线EF⊥BC 于点F ,然后证明Rt △AME ≌Rt △FNE ,从而求出AM =FN ,所以BM 与CN 的长度相等; ②由①Rt △AME ≌Rt △FNE ,即可得到结论正确;③经过简单的计算得到BN -AM =BC -CN -AM =BC -BM -AM =BC -(BM +AM)=BC -AB =4-2=2;④根据S △EMN =S 四边形ABNE -S △AME -S △MBN ,再利用线段间的转换即可得证.13.(2016·合肥蜀山区二模)如图,D ,E 分别是△ABC 的边BC ,AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等.设BC =a ,AC =b ,AB =c.给出以下几个结论:①如果AD 是BC 边中线,那么CE 是AB 边中线;②AE 的长度为c +a -b 2;③BD 的长度为b +a -c 2; ④若∠BAC=90°,△ABC 的面积为S ,则S =AE·BD ,其中正确的结论是②③④.(将正确结论的序号都填上)提示:由中线的定义,可得到AB =AC ,但AB =AC 时未必有AC =BC ,可判断①;△ABD 与△ACD 的周长相等,我们2 可得出:AB +BD =AC +CD ,等式的左右边正好是三角形ABC 周长的一半,有AB ,AC 的值,那么就能求出BD 的长了,同理可求出AE 的长,可判断②③;把AE 和BD 代入计算,结合勾股定理可求得S ,可判断④;则可得出答案.14.(2016·安徽十校联考四模)如图,在正方形ABCD 中,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ 与半圆O 相切;②PQ BQ =43; ③∠ADQ =2∠CBP;④cos ∠CDQ =35. 其中正确的是__①③__(请将正确结论的序号填在横线上).提示:①连接OD ,OQ ,证明△AOD 与△QOD 全等即可;②连接AQ ,借助三角函数和勾股定理求出PQ ,BQ 的长度即可求解;③借助①②的相关结论,结合三角形外角的性质和同角的余角(补角)相等即可求解;④过点Q 作QH⊥CD,垂足为H ,求出三角形DQH 的三边长度即可确定相关的三角函数.15.(2016·濉溪一模)如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E ,G.连接GF ,下列结论:①∠AGD =112.5°;②tan ∠AED =2+1;③S △AGD =2S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG. 其中正确结论的序号是①②③④⑤(在横线上填上你认为所有正确结论的序号).提示:①根据折叠的性质得出∠ADG=∠ODG,再在△AGD 中用三角形的内角和即可求出∠AGD 的度数;②设AE =x ,则BE =2x ,∴AD =AB =x +2x =(1+2)x ,∴tan ∠AED =AD AE =2+1; ③设GF =AE =1,由②可知AD =2+1,根据等腰直角三角形的性质求得OD 和OF ,由△OGD 与△FGD 同高,根据同高三角形面积的比等于对应底的比,即可求得S △FGD =2S △OGD ,根据△FGD≌△AGD,得出S △AGD =2S △OGD ; ④根据同位角相等得到EF∥AC,GF ∥AB ,由折叠的性质得出AE =EF ,即可判定四边形AEFG 是菱形;⑤通过△DEF∽△DOG 得出EF 和OG 的比例关系,再在Rt △BEF 中求出BE 和EF 的关系,进而求出BE 和OG 的关系.。
(完整版)2017安徽省中考数学试题及解答
2017年安徽省初中学业水平考试数 学(试 题 卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( )A .12;B .12-; C .2; D .-22.计算()23a-的结果是( )A .6a ; B .6a -; C .5a -; D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为( )4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为( ) A .101610⨯; B .101.610⨯; C .111.610⨯; D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为( )6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为( ) A .60︒; B .50︒; C .40︒; D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( ) A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足( )A .()161225x +=;B .()251216x -=;C .()216125x +=;D .()225116x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是( )10.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足13PABABCD S S =矩形,则点P 到A ,B 两点距离之和PA+PB 的最小值为( ) A 29;B 34C .52D 41二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边ABC 的边长为6,以AB 为直径的O 与边AC ,BC 分别交于D ,E两点,则劣弧DE 的长为___________.14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE 后得到双层BDE (如图2),再沿着过BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。
2017安徽省中考数学习题及答案
精心整理2017年安徽省初中学业水平考试数学 (试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页. 3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.12341600亿567.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .260【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=)第7题图【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又得0a c +=,故0ac <,从而y a b c =++选B .【考查目的】考查初等函数性质及图象,中等题. 10.如图,矩形ABCD 中,D ,P 在且到2直点到点距离 中等题.二、11.1213的长为14.BC 上.三、15.计算:11|2|cos60()3--⨯︒-.【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
问人数。
中考数学二轮复习 第5讲 实际应用问题对策
2021/12/10
第二十一页,共四十四页。
(2)设汽车销售商店至少购进A型轿车(jiàochē)x辆,则B型轿车为(60-x)辆,
由题意,得10x+15(60-x)≤700.
解得x≥40. 答:该汽车销售商店至少购进A型轿车40辆.
经过(jīngguò)50 min相遇,甲车比乙车每小时多行驶10 km.求甲、乙两车的速度.
解:设乙车的速度(sùdù)为x h,则甲车的速度为 (x+10) km/h,
依题意,得 (x+x+10)=170.解得x=97. ∴甲车的速度为x+10=97+10=107(km/h).
答:甲车的速度为107 km/h,乙车的速度为97 km/h.
第十六页,共四十四页。
解:设大队的速度为x km/h,则先遣队的速度是1.2x km/h,
依题意,得 =
+0.5.
解得x=5. 经检验x=5是原方程的解,
则1.2x=1.2×5=6.
答:先遣队的速度是6 km/h,大队的速度是5 km/h.
2021/12/10
第十七页,共四十四页。
【训练1】. (2016·眉山)“世界(shìjiè)那么大,我想去看看”一句话红遍网络,骑自行车旅行越 来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年 6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月 份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加 25%.求今年6月份A型车每辆销售价多少元(用列方程的方法解答);
2017安徽省中考数学试题及解答
2017年安徽省初中学业水平考试数 学(试 题 卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题(本大题共10小题,每小题4分,共40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.12的相反数是( )A .12;B .12-; C .2; D .-22.计算()23a-的结果是( )A .6a ; B .6a -; C .5a -; D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为( )4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为( ) A .101610⨯; B .101.610⨯; C .111.610⨯; D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为( )6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为( ) A .60︒; B .50︒; C .40︒; D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( ) A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足( )A .()161225x +=;B .()251216x -=;C .()216125x +=;D .()225116x -= 9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是( )10.如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足13PAB ABCDS S=V 矩形,则点P 到A ,B 两点距离之和PA+PB 的最小值为( )A ;BC .D二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________.13.如图,已知等边ABC V 的边长为6,以AB 为直径的O e 与边AC ,BC 分别交于D ,E两点,则劣弧DE 的长为___________.14.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC=30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE V 后得到双层BDE V (如图2),再沿着过BDE V 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习(五) 解直角三角形及其实际应用
类型1 解直角三角形
1.如图,在△ABC 中,∠B =135°,tan A =25,BC =6 2.
(1)求AC 长;
(2)求△ABC 的面积.
解:(1)过点C 作CD⊥AB 交AB 的延长线于点D.
∵在△ABC 中,∠B =135°,
∴∠CBD =45°.
∴BD =CD.
∵BC =62,
∴BD =CD =6.
∵tan A =25,
∴AD =CD
tan A =15,AB =AD -BD =9. ∴AC =152+62=329.
(2)S △ABC 的面积=12·AB·CD=12×9×6=27.
2.如图,在Rt △ABC 中,∠C =90°,sin B =35,点D 在BC 边上,DC =AC =6.
(1)求AB 的值;
(2)求tan ∠BAD 的值.
解:(1)∵∠C=90°,sin B =35,
sin B =AC AB ,AC =6,
∴AB =10,即AB 的值是10.
(2)过点B 作BE⊥AD 交AD 的延长线于点E.
∵∠C =90°,AC =6,AB =10,
∴BC =AB 2-AC 2=8.
又∵CD=6,
∴BD =BC -CD =2.
∵∠C =90°,DC =AC =6,
∴tan ∠ADC =AC CD =1,AD =6 2.
∴∠ADC =45°.
∴∠BDE =∠ADC=45°.
又∵BD=2,BE ⊥AD ,即∠E=90°,
∴BE =DE =BD·cos 45°= 2.
∴AE =AD +DE =7 2.
∴tan ∠BAD =BE AE =272=17
, 即tan ∠BAD =17
. 3.(2016·广东)如图,Rt △ABC 中,∠B =30°,∠ACB =90°,CD ⊥AB 交AB 于点D ,以CD 为较短的直角边向△CDB 的同侧作Rt △DEC ,满足∠E =30°,∠DCE =90°,再用同样的方法作Rt △FGC ,∠FCG =90°,继续用同样的方法作Rt △HCI ,∠HCI =90°,若AC =a ,求CI 的长. 解:由题意,知∠A=∠E DC =∠GFC=∠IHC=60°.
∵AC =a ,
故DC =AC·sin 60°=32
a. 同理,CF =DC·sin 60°=34
a , CH =CF·sin 60°=338
a. 在Rt △HIC 中,∠IHC =60°,
则CI =CH·tan 60°=98
a. 类型2 解直角三角形的实际应用
4.五一期间,小明同学到滨湖湿地公园参加校无线电测向科技社团组织的实践活动,目标点B 在观测点A 北偏西30°方向,距观测点A 直线距离600米.由于观测点A 和目标点B 之间被一片湿地分隔,无法直接通行,小明根据地形决定从观测点A 出发,沿东北方向走一段距离后,到达位于目标点B 南偏东75°方向的C 处,求小明还要走多远才能到达目标点B ?(结果保留根号)
解:过点A 作AD⊥BC 于点D.
∵∠EAB =30°,AE ∥BF ,
∴∠FBA =30°.
又∠FBC=75°,
∴∠ABD =45°.
又AB =600米,
∴AD =DB =3002米.
∵∠BAC =∠BAE+∠CAE=75°,∠ABC =45°,
∴∠C =60°,tan ∠C =AD CD
.
∴CD =AD tan ∠C
=1006米. ∴BC =BD +CD =(3002+1006)米.
答:小明还要走(3002+1006)米才能到达目标点B.
5.(2016·合肥十校联考)现有一个“Z”型的工件(工件厚度忽略不计),如图所示,其中AB 为20 cm ,BC 为60 cm ,∠ABC =90°,∠BCD =50°,求该工件如图摆放时的高度(即A 到CD 的距离).
(结果精确到0.1 cm ,参考数据:sin 50°≈0.766,
cos 50°≈0.643,tan 50°≈1.192)
解:过点B 作BE⊥CD 于点E ,过点A 作AF⊥BE 于点F. 在Rt △BCE 中,∵sin ∠BCE =BE BC
, ∴BE =BC·sin ∠BCE ≈45.96 .
又∵∠ABC=90°,∴∠ABF =50°.
在Rt △ABF 中,cos ∠ABF =BF AB
, ∴BF =AB·cos ∠ABF ≈12.86.
∴EF = BE +BF
=45.96+12.86
=58.82≈58.8.
答:工件摆放时的高度约为58.8 cm .
6.(2016·舟山)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC =10米,∠ABC =∠ACB =36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)
(参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.32,sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)
解:∵∠BDC=90°,BC =10,sin B =CD BC
, ∴CD =BC·sin B ≈10×0.59=5.9.
在Rt △BCD 中,∠BCD =90°-∠B=90°-36°=54°,
∴∠ACD =∠BCD-∠ACB=54°-36°=18°.
在Rt △ACD 中,tan ∠ACD =AD CD
, ∴AD =CD·tan ∠ACD
≈5.9×0.32=1.888≈1.9(米).
答:改建后南屋面边沿增加部分AD 的长约为1.9米.
7.(2016·阜阳校级二模)如图,小华站在河岸上的G 点,看见河里有一小船沿垂直于岸边的方向划过来.此时测得小船C 的俯角是∠FDC=30°.若小华的眼睛与地面的距离是3米,BG =1.5米,BG 平行于AC 所在的直线,迎水坡i =4∶3,坡长AB =10米,点A ,B ,C ,D ,F ,G 在同一平面内,则此时小船C 到岸边的距离CA 的长是多少?(结果保留根号)
解:过点B 作BE⊥AC 于点E ,延长DG 交CA 延长线于点H ,得Rt △ABE 和矩形BEHG.
∵i =BE AE =43
,AB =10, ∴BE =8, AE =6.
∵DG =3,BG =1.5,
∴DH =DG +GH =3+8,
AH =AE +EH =6+1.5=7.5.
在Rt △CD H 中,
∵∠C =∠FDC=30°,DH =8+3,tan 30°=DH CH =8+3CH =33, ∴CH =83+3.
又∵CH=CA +7.5,
即83+3=CA +AH ,
∴CA =(83-4.5)米.
答:CA 的长是(83-4.5)米.。