高二数学教案:第三章 空间向量与立体几何 3.1~01《空间向量及其运算》(1)(人教A版选修2-1)
高中数学 第三章 空间向量与立体几何 3.1 空间向量基本定理教案 新人教B版选修2-1-新人教B版
1.以下命题中正确的个数是 ( )①假设a与b共线,b与c共线,那么a与c共线.②向量a、b、c共面,即它们所在的直线共面.③如果三个向量a,b,c不共面,那么对于空间任意一个向量p存在有序实数组{x,y,z},使得p=x a+y b+z c.④假设a、b是两个不共线的向量,而c=λa+μb(λ、μ∈R且λμ≠0),那么{a,b,,c}构成空间的一个基底.A.0 B.1 C.2 D.3B[①中当b=0时,a与c不一定共线,故①错误;②中a,b,c共面时,它们所在的直线平行于同一平面不一定在同一平面内,故②错误;③正确;④不对,a,b不共线.当c=λa+μb时,a、b、c共面.]2.向量{a,b,c}是空间的一个基底,p=a+b,q=a-b,一定可以与向量p,q构成空间的另一个基底的是( )A.a B.bC .cD .无法确定C [∵a =12p +12q ,∴a 与p 、q 共面,∵b =12p -12q ,∴b 与p 、q 共面,∵不存在λ、μ,使c =λp +μq ,∴c 与p 、q 不共面,故{c ,p ,q }可作为空间的一个基底,应选C.]3.如图3117所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,那么MN →等于( )图3117A.12a -23b +12cB.-23a +12b +12cC.12a +12b -23cD.23a +23b -12c B [MN →=ON →-OM →=12(OB →+OC →)-23OA →=12(b +c )-23a =-23a +12b +12c .所以应选B.] 4.设O ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,假设OG →=xOA →+yOB →+zOC →,那么(x ,y ,z )为( )A.⎝ ⎛⎭⎪⎫14,14,14 B .⎝ ⎛⎭⎪⎫34,34,34 C.⎝ ⎛⎭⎪⎫13,13,13 D .⎝ ⎛⎭⎪⎫23,23,23A [连接AG 1交BC 于E ,那么E 为BC 中点, AE →=12(AB →+AC →)=12(OB →-2OA →+OC →), AG 1→=23AE →=13(OB →-2OA →+OC →), ∵OG →=3GG 1→=3(OG 1→-OG →), ∴OG =34OG 1,∴OG →=34OG 1→=34(OA →+AG 1→)=34(OA →+13OB →-23OA →+13OC →) =14OA →+14OB →+14OC →,应选A.] 5.在正方体ABCD A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→.其中能够化简为向量BD 1→的是( )A .①②B .②③C .③④D .①④[答案] A6.以下命题是真命题的是________(填序号).①假设A ,B ,C ,D 在一条直线上,那么AB →与CD →是共线向量; ②假设A ,B ,C ,D 不在一直线上,那么AB →与CD →不是共线向量; ③假设向量AB →与CD →是共线向量,那么A ,B ,C ,D 四点必在一条直线上; ④假设向量AB →与AC →是共线向量,那么A ,B ,C 三点必在一条直线上.①④[①为真命题,A ,B ,C ,D 在一条直线上,向量AB →,CD →的方向相同或相反,因此AB→与CD →是共线向量;②为假命题,A ,B ,C ,D 不在一条直线上,那么AB →,CD →的方向不确定,不能判断AB →与CD →是否为共线向量;③为假命题,因为AB →,CD →两个向量所在的直线可能没有公共点,所以A ,B ,C ,D 四点不一定在一条直线上;④为真命题,因为AB →,AC →两个向量所在的直线有公共点A ,且AB →与AC →是共线向量,所以A ,B ,C 三点共线.故填①④.]7.空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,假设m 与n 共线,那么x =________,y =________.1 -1 [因为m 与n 共线,所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎪⎨⎪⎧1=λx ,-1=λy ,1=λ,解得⎩⎪⎨⎪⎧x =1,y =-1.]8.如图3118,点M 为OA 的中点,{OA →,OC →,OD →}为空间的一个基底,DM →=xOA →+yOC →+zOD →,那么有序实数组(x ,y ,z )=________.图3118⎝ ⎛⎭⎪⎫12,0,-1 [DM →=OM →-OD →=12OA →-OD →, 所以有序实数组(x ,y ,z )=⎝ ⎛⎭⎪⎫12,0,-1.] 9.{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.[解] 假设OA →,OB →,OC →共面,由向量共面的充要条件知,存在实数x ,y ,使得OA →=xOB →+yOC →成立, 即e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3) =(-3x +y )e 1+(x +y )e 2+(2x -y )e 3. 因为{e 1,e 2,e 3}是空间的一个基底,所以e 1,e 2,e 3不共面, 所以⎩⎪⎨⎪⎧-3x +y =1,x +y =2,2x -y =-1,此方程组无解.即不存在实数x ,y ,使得OA →=xOB →+yOC →成立, 所以OA →,OB →,OC →不共面.故{OA →,OB →,OC →}能作为空间的一个基底.10.如图3119所示,在平行六面体ABCD A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′→=c ,P 是CA ′的中点,M 是CD ′的中点,N 是C ′D ′的中点,点Q 在CA ′上,且CQ ∶QA ′=4∶1,用基底{a ,b ,c }表示以下向量:图3119(1)AP →;(2)AM →;(3)AN →;(4)AQ →. [解] 连接AC ,AD ′,AC ′(图略). (1)AP →=12(AC →+AA ′→)=12(AB →+AD →+AA ′→) =12(a +b +c ). (2)AM →=12(AC →+AD ′→)=12(AB →+2AD →+AA ′→) =12a +b +12c . (3)AN →=12(AC ′→+AD ′→)=12[(AB →+AD →+AA ′→)+(AD →+AA ′→)]=12(AB →+2AD →+2AA ′→) =12a +b +c . (4)AQ →=AC →+CQ → =AC →+45(AA ′→-AC →)=15AC →+45AA ′→ =15AB →+15AD →+45AA ′→ =15a +15b +45c . [能力提升练]1.如图3120,空间四边形ABCD 中,点G 为△BCD 的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,那么AG →+13BE →+12CA →的化简结果为( )图3120A.AF →B .AH →C.AE →D .CF →A [∵G 是△BCD 的重心, ∴|GE →|=13|BE →|,∴GE →=13BE →.又EF →=12CA →,∴AG →+13BE →=AG →+GE →=AE →,AE →+EF →=AF →,从而AG →+13BE →+12CA →=AF →.]2.A 、B 、C 不共线,对空间任意一点O ,假设OP →=34OA →+18OB →+18OC →,那么P 、A 、B 、C四点( )A .不共面B .共面C .不一定共面D .无法判断B [OP →=34OA →+18OB →+18OC →=34OA →+18(OA →+AB →)+18(OA →+AC →) =OA →+18AB →+18AC →,∴OP →-OA →=18AB →+18AC →,∴AP →=18AB →+18AC →,由共面的充要条件知P 、A 、B 、C 四点共面.]3.A ,B ,C 三点共线,那么对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.0 [∵A 、B 、C 三点共线. ∴存在唯一实数k 使AB →=kAC →, 即OB →-OA →=k (OC →-OA →), ∴(k -1)OA →+OB →-kOC →=0. 又λOA →+mOB →+nOC →=0,那么λ=k -1,m =1,n =-k ,所以λ+m +n =0.]4.在平行六面体ABCD A 1B 1C 1D 1中,AM →=12MC →,A 1N →=2ND →.设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →为________.-13a +13b +13c [如下图,连接AN , 那么MN →=AN →-AM → =AA 1→+A 1N →-13AC →=AA 1→+23A 1D →-13(AB →+BC →)=AA 1→+23(AD →-AA 1→)-13(AB →+AD →)=c +23(b -c )-13(a +b )=-13a +13b +13c .]5.如图3121所示,在平行六面体ABCD A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1. (1)证明:A ,E ,C 1,F 四点共面;(2)假设EF →=xAB →+yAD →+zAA 1→,求x +y +z 的值.图3121[解] (1)证明:因为AC 1→=AB →+AD →+AA 1→=AB →+AD →+13AA 1→+23AA 1→=⎝⎛⎭⎪⎫AB →+13AA 1→+⎝ ⎛⎭⎪⎫AD →+23AA 1→word11 / 11 =AB →+BE →+AD →+DF →=AE →+AF →, 所以A 、E 、C 1、F 四点共面.(2)因为EF →=AF →-AE → =AD →+DF →-(AB →+BE →) =AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→.所以x =-1,y =1,z =13.所以x +y +z =13.。
空间向量1(教师)
第三章 空间向量与立体几何3.1 空间向量及其运算 3.1.1 空间向量及其加减法【考点同步解读】1.理解空间向量概念及其运算性质,掌握空间向量的几何表示法和字母表示法. 2.能够结合图形说明空间向量加减法及其运算律. 考点1:空间向量基本概念及理解例1:给出下列命题:①若空间向量a ,b 满足|a |=|b |,则a =b ;②若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ③零向量没有方向;④若两个空间向量相等,则它们的起点相同,终点也相同. 其中假命题的个数是( ).A .1B .2C .3D .4正解:模相等的两个向量不一定相等,①错;|m |=|n |,|n |=|p |,所以|m |=|p |,又m 与n 同向,n 与p 同向,从而m 与p 同向,所以m =p ,②对;零向量方向任意,但并不是没有方向,③错;④错.C正解依据:(1)空间中的单位向量、向量的模、相等向量、相反向量等概念和平面向量中对应的概念完全一样.(2)两个向量的模相等,只是它们的长度相等,但它们的方向不一定相同. 考点2:空间向量加减法及运算律例2.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、B 1C的中点.用AB →、AD →、AA 1→表示向量MN →,则MN →=________. 正解:解析 MN →=MB →+BC →+CN →=12AB →+AD →+12(CB →+BB 1→) =12AB →+AD →+12(-AD →+AA 1→) =12AB →+12AD →+12AA 1→. 正解依据:(1)掌握好向量加、减法的三角形法则是解决这类问题的关键,灵活应用相反向量及两向量的和、差,可使这类题迅速获解,另外需注意零向量的书写要规范.(2)利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果. 考点3:对数函数的性质例4.已知点G 是△ABC 的重心,O 是空间任意一点,若OA →+OB →+OC →=λOG →,求λ的值. 正解:解 连结CG 并延长交AB 于D , 则D 为AB 中点,且CG =2GD ,∴OA →+OB →+OC →=OG →+GA →+OG →+GB →+OG →+GC →=3OG →+GA →+GB →+GC → =3OG →+2GD →+GC →=3OG →(→)-GC →+GC →=3OG →. ∴λ=3.正解依据:(1)根据向量加减运算的法则进行化简,注意向量的起点、终点;(2)几何与向量结合及数形结合是常见的数学方法. 【易错题纠正案】(不少于3道例题)例1 下列说法正确的是( A ).A .向量AB 与BA的长度相等B .将空间中所有的单位向量平移到同一起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等例2 在空间四边形ABCD 中,2AB +CA +BC -AD +BD=__________.答案:0例3 已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++ ;(3)1()2AG AB AC -+ .正解:解:如图,(1)AB BC CD AC CD AD ++=+=;(2)111()222AB BD BC AB BC BD ++=++AB BM MG AG =++= ; (3)1()2AG AB AC AG AM MG -+=-= .【高考试题链接】例1 (2011·上海高考理科·T17) 设12345,,,,A A A A A 是平面上给定的5个不同点,则使12345MA MA MA MA MA ++++ 0=成立的点M 的个数为( )(A )0. (B )1. (C )5. (D )10.正解:在平面中我们知道“三角形ABC 的重心G 满足:0GA GB GC ++=”则此题就能很快的答出,点M 即为这5个点的重心,即点M 只有一个点。
数学:第三章《空间向量与立体几何》教案(人教版选修2-1)
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修
表 示
字母表 法
示法
用一个字母表示,如图,此向量的起点是 A,终点
→
→
是 B,可记作 a,也可记作 A B ,其模记为|a|或|AB|
特殊向量
理解特殊向量应注意的几个问题 (1)零向量和单位向量均是从向量模的角度进行定义的,|0| =0,单位向量e的模|e|=1. (2)零向量不是没有方向,它的方向是任意的. (3)注意零向量的书写,必须是0这种形式. (4)两个向量不能比较大小.
第 三 章 空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算
自主学习 新知突破
1.经历向量及其运算由平面向空间推广的过程,了解空 间向量的概念.
2.掌握空间向量的加法、减法运算法则及其表示. 3.理解并掌握空间向量的加、减法的运算律.
李老师下班回家,先从学校大门口骑自行车向北行驶1 000 m,再向东行驶1 500 m,最后乘电梯上升15 m到5楼的住 处,在这个过程中,李老师从学校大门口回到住处所发生的总 位移就是三个位移的合成(如右图所示),它们是不在同一平面 内的位移,如何刻画这样的位移呢?
D.4个
解析: 共四个:AB,A1B1,CD,C1D1. 答案: D
3.两向量共线是两向量相等的________条件. 解析: 两向量共线就是两向量同向或反向,包含相等的 情况. 答案: 必要不充分
4.已知平行六面体 ABCD-A′B′C′D′,化简下列 表达式:
(1)A→B+BB→′-D→A′+D′ →D-B→C; (2)AC→′-A→C+A→D-AA→′. 解析: 根据平行六面体的性质. (1)原式=A→B+A′→D′+D′ →D+C→B=A→B+A′→D+C→B =D→C+D→A+A′→D=D→B+A′→D=A→′B; (2)原式=CC→′+A′→D=AA→′+A′→D=A→D.
高中数学 第3章 空间向量与立体几何 3.1 空间中向量的概念和运算学案 湘教版选修2-1-湘教版高
3.1 空间中向量的概念和运算1.理解空间向量的概念,掌握空间向量的几何表示方法和字母表示方法.2.掌握空间向量的线性运算,数量积.3.能运用运算法则及运算律解决一些简单几何问题.1.空间向量 (1)空间向量的定义在空间,把具有大小和方向的量叫作空间向量,向量的大小叫作向量的长度或模. (2)空间向量及其模的表示方法空间向量用有向线段表示,有向线段的长度表示向量的模.如图,a 的起点是A ,终点是B ,则a 也可记作AB →,其模记作|AB →|或|a |.2.空间向量的加减法如图,从任意一点O 出发作OA →=a ,OB →=b .并且从A 出发作AC →=b ,则a +b =OC →,a -b =BA →.3.空间向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ). 4.空间向量与实数相乘(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个向量. (2)向量a 与λa 的关系λ的范围 方向关系 模的关系λ>0 方向相同λa 的模是a 的模的|λ|倍λ=0λa =0,其方向是任意的λ<0方向相反(3)空间向量与实数的乘法运算律①λ(a +b )=λa +λb (对向量加法的分配律). ②(λ1+λ2)a =λ1a +λ2a (对实数加法的分配律).5.空间向量的数量积(1)定义:从空间任意一点O 出发作OA →=a ,OB →=b ,则θ=∠AOB 就是a ,b 所成的角,a ,b 的数量积a ·b =|a ||b |·cos__θ.(2)空间向量数量积的运算律 向量与实数相乘和向量 数量积的结合律(λa )·b =λ(a·b )交换律 a·b =b·a 分配律a·(b +c )=a·b +a·c1.下列命题错误的是( )A .空间向量AB →的长度与向量BA →的长度相等 B .零向量没有长度,所以它不是空间向量C .同向且等长的有向线段表示同一向量或相等的向量D .若a =b ,b =c ,则a =c解析:选B.A 中的两个向量互为相反向量,所以它们长度相等;空间向量并不是一个立体图形,只要是存在于立体空间内的向量都是空间向量,所以B 错误;C 是相等向量定义的另外一个说法;我们研究的向量是自由向量,只要向量相等都可以移动到同一起点,所以D 正确.2.在棱长为1的正方体ABCD A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,则a·(b +c )的值为( )A .1B .0C .-1D .-2解析:选B.a·(b +c )=a·b +a·c =0.3.在正方体ABCD A 1B 1C 1D 1中,向量AA 1→与CC 1→是______向量,向量AC →与C 1A 1→是________向量.答案:相等 相反空间向量的加减运算如图所示,已知长方体ABCD A ′B ′C ′D ′.化简下列向量表达式,并在图中标出化简结果.(1)AA ′→-CB →;(2)AA ′→+AB →+B ′C ′→.【解】 (1)AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AA ′→+A ′D ′→=AD ′→. (2)AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→ =AB ′→+B ′C ′→=AC ′→. 向量AD ′→,AC ′→如图所示.试把本例(2)中长方体中的体对角线所对应向量AC ′→用向量AA ′→,AB →,AD→表示.解:在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′→=AC →+AA ′→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →, 故AC ′→=AB →+AD →+AA ′→.空间向量加法、减法运算的两个技巧(1)向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.1.化简(AB →-CD →)-(AC →-BD →)=________.解析:法一:(利用相反向量的关系转化为加法运算) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD →=AB →+BD →+DC →+CA →=0. 法二:(利用向量的减法运算法则求解) (AB →-CD →)-(AC →-BD →)=(AB →-AC →)+BD →-CD →=CB →+BD →-CD →=CD →-CD →=0. 答案:02.如图,在四棱锥V ABCD 中,化简VA →-VC →+AB →+BC →.解:VA →-VC →+AB →+BC →=CA →+AC →=0.空间向量的线性运算如图所示,已知空间四边形ABCD 中,向量AB →=a ,AC →=b ,AD →=c ,若M 为BC 中点,G 为△BCD 的重心,试用a 、b 、c 表示下列向量:(1)DM →;(2)GM →;(3)AG →.【解】 (1)连接AM ,在△ADM 中,DM →=DA →+AM →, 由线段中点的向量表示知 AM →=12(AB →+AC →)=12(a +b ),由相反向量的概念知DA →=-AD →=-c ,所以DM →=DA →+AM → =12(a +b )-c =12(a +b -2c ). (2)在△BCD 中,GM →=13DM →=13·12(a +b -2c ) =16a +16b -13c .(3)在△ADG 中,由三角形重心的性质,得 AG →=AD →+DG →=c +23DM →=c +13(a +b -2c )=13(a +b +c ).(1)有限多个空间向量a 1,a 2,a 3,…,a n 相加,可以从某点O 出发,逐一引向量OA 1→=a 1,A 1A 2→=a 2,…,A n -1A n =a n .如图,于是以所得折线OA 1A 2…A n 的起点O 为起点,终点A n 为终点的向量OA n →就是a 1,a 2,…,a n 的和,即OA n→=OA 1→+A 1A 2→+…+A n -1A n ――→=a 1+a 2+…+a n .此即为空间向量的多边形法则.(2)用折线作向量的和时,若折线的终点与起点重合,则和向量为零向量.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O .Q 是CD 的中点,求下列各式中x 、y 的值:(1)OQ →=PQ →+xPC →+yPA →; (2)PA →=xPO →+yPQ →+PD →. 解:如图, (1)因为OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PA →-12PC →,所以x =y =-12.(2)因为PA →+PC →=2PO →, 所以PA →=2PO →-PC →. 又因为PC →+PD →=2PQ →, 所以PC →=2PQ →-PD →.从而有PA →=2PO →-(2PQ →-PD →)=2PO →-2PQ →+PD →. 所以x =2,y =-2.向量的数量积及应用已知长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F为A 1D 1的中点.求下列向量的数量积. (1)BC →·ED 1→;(2)BF →·AB 1→.【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→) =⎝⎛⎭⎪⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.若本例的条件不变,计算EF →·FC 1→.解:EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB →=⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a=-12|a |2+14|b |2=2.(1)空间向量运算的两种方法①利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.②利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.(2)在几何体中求空间向量数量积的步骤①首先将各向量分解成已知模和夹角的向量的组合形式.②利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. ③代入a ·b =|a ||b |cos 〈a ,b 〉求解.已知|a |=3,|b |=4,〈a ,b 〉=120°,则(3a -2b )·(a +2b )=________.解析:(3a -2b )·(a +2b )=3|a |2+4a ·b -4|b |2=3|a |2+4|a ||b |cos 120°-4|b |2=3×9+4×3×4×⎝ ⎛⎭⎪⎫-12-4×16=27-24-64=-61. 答案:-611.在运用空间向量的运算法则化简向量表达式时,要结合空间图形,观察分析各向量在图形中的表示,运用运算法则,化简到最简为止.2.证明两向量共线的方法为:首先判断两向量中是否有零向量.若有,则两向量共线;若两向量a ,b 中,b ≠0,且有a =λb (λ∈R ),则a ,b 共线.3.两向量的数量积,其结果是实数,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定.4.当a ≠0时,由a ·b =0不能推出b 一定是零向量,这是因为任一个与a 垂直的非零向量b ,都有a ·b =0,这由向量的几何意义就可以理解.1.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,AA 1→+D 1C 1→-BB 1→=( )A.AB 1→B.DC →C.AD →D.BA →解析:选B.因为D 1C 1→=A 1B 1→, 所以AA 1→+D 1C 1→-BB 1→=AA 1→+A 1B 1→-BB 1→=AB 1→+B 1B →=AB →. 又AB →=DC →,所以AA 1→+D 1C 1→-BB 1→=DC →.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.解析:因为AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC →=AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →,因为AP ⊥BD ,所以AP →·BD →=0.因为AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2, 所以AP →·AC →=2|AP →|2=2×9=18. 答案:183.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,M 为A 1C 1与B 1D 1的交点,化简下列向量表达式.(1)AA 1→+A 1B 1→; (2)AA 1→+A 1M →-MB 1→; (3)AA 1→+A 1B 1→+A 1D 1→; (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →. 解:(1)AA 1→+A 1B 1→=AB 1→.(2)AA 1→+A 1M →-MB 1→=AA 1→+A 1M →+MD 1→=AD 1→. (3)AA 1→+A 1B 1→+A 1D 1→=AA 1→+A 1C 1→=AC 1→. (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →=0.[A 基础达标]1.若向量a 、b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c·a =0且b·c =0”是“l ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.当a ∥b 时,由c·a =0且c·b =0得不出l ⊥α;反之,l ⊥α一定有c·a =0且c·b =0.故选B.2.如图,在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13C .-13D .-23解析:选A.因为CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.3.如图,已知空间四边形ABCD 的对角线为AC 、BD ,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B.CG →C.BC →D.12BC → 解析:选A.AB →+12(BD →+BC →)=AB →+BG →=AG →.4.在正方体ABCD A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1→+C 1A 1→ B.AB →-AC →+BB 1→ C.AB →+AD →+AA 1→D.AC →+CB 1→ 解析:选A.在A 选项中,AB →+A 1D 1→+C 1A 1→=(AB →+AD →)+CA →=AC →+CA →=0. 5.如图,在平行六面体ABCD A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:选A.注意到AM →=12AC →=12A 1C 1→=12(A 1B 1→+A 1D 1→)=12(a +b ),B 1M →=B 1A 1→+A 1A →+AM →=-a+c +12(a +b )=-12a +12b +c .6.如图,已知正三棱柱ABCA 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则直线AB 1和BM 的位置关系是________.解析:因为AB 1→=AA 1→+AB →,BM →=BC →+12CC 1→=BC →+12AA 1→,设三棱柱的各棱长均为a , 则AB 1→·BM →=(AA 1→+AB →)·(BC →+12AA 1→)=AA 1→·BC →+12AA 1→2+AB →·BC →+12AB →·AA 1→=0+12a 2+a 2cos 120°+0=0.所以AB 1→⊥BM →. 答案:垂直7.如图,已知四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3,∠BAA 1=60°,E 为棱C 1D 1的中点,则AB →·AE →=________.解析:AE →=AA 1→+AD →+12AB →,AB →·AE →=AB →·AA 1→+AB →·AD →+12AB →2=4×3×cos 60°+0+12×42=14.答案:148.命题:①向量a 、b 、c 共面,则它们所在的直线也共面;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM →=13OA →+13OB→+13OC →,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是________.解析:①中a 所在的直线其实不确定,故①是假命题;②中当a =0,而b ≠0时,则找不到实数λ,使b =λa ,故②是假命题;③中M 是△ABC 的重心,故M 在平面ABC 上且在△ABC 内,故③是真命题.答案:③9.已知正四面体O ABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →);(3)|OA →+OB →+OC →|.解:(1)OA →·OB →=|OA →|·|OB →|·cos ∠AOB=1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.(3)|OA →+OB →+OC →|=(OA →+OB →+OC →)2 =12+12+12+2(1×1×cos 60°)×3= 6.10.如图所示,已知空间四边形ABCD ,连接AC 、BD ,E 、F 、G 分别是BC 、CD 、DB 的中点,请化简(1)AB →+BC →+CD →;(2)AB →+GD →+EC →.并在图中标出化简结果的向量.解:(1)AB →+BC →+CD →=AC →+CD →=AD →.(2)因为E 、F 、G 分别为BC 、CD 、DB 的中点,所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+BE →+EF →=AF →.故所求向量AD →,AF →,如图所示.[B 能力提升]11.正四面体A BCD 的棱长为a ,点E 、F 、G 分别为棱AB 、AD 、DC 的中点,则四个数量积:①2BA →·AC →;②2AD → ·BD →;③2FG →·AC →;④2EF →·CB→中结果为a 2的个数为( )A .1B .2C .3D .4 解析:选B.①2BA →·AC →=2·a ·a cos 120°=-a 2.②2AD →·BD →=2·a ·a ·cos 60°=a 2.③2FG →·AC →=2·a 2·a ·cos 0°=a 2. ④2EF →·CB →=2·a 2·a ·cos 120°=-a 22. 12.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:因为A ,B ,C 三点共线,所以存在唯一实数k 使AB →=kAC →,即OB →-OA →=k (OC →-OA →),所以(k -1)OA →+OB →-kOC →=0.又λOA →+mOB →+nOC →=0,令λ=k -1,m =1,n =-k ,则λ+m +n =0.答案:013.已知平行六面体ABCD A ′B ′C ′D ′,化简下列向量表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′→;(3)AB →+AD →+12CC ′→; (4)13(AB →+AD →+DD ′→).解:如图所示,(1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+CC ′→=AC ′→.(3)设M 是线段CC ′的中点,则 AB →+AD →+12CC ′→=AC →+CM →=AM →.(4)设G 是线段AC ′的三等分点,则 13(AB →+AD →+DD ′→)=13(AC →+CC ′→)=13AC ′→=AG →.14.(选做题)在正方体ABCD A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c , 则a·b =0,b·c =0,a·c =0. 而A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12(a +b ), BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12(a +b )-12c .所以A 1O →·BD →=(c +12a +12b )·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=12(|b |2-|a |2)=0.所以A 1O →⊥BD →,所以A 1O ⊥BD .同理可证:A 1O →⊥OG →,所以A 1O ⊥OG .又因为OG ∩BD =O ,且A 1O ⊄平面BDG ,所以A1O⊥平面GBD.。
选修2-1第三章空间向量与立体几何教案
第三章空间向量与立体几何空间向量及其运算(一)教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量向量是怎样表示的呢[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢相等的向量又是怎样表示的呢[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.[师]空间向量的加法、减法、数乘向量各是怎样定义的呢[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:AB OA OB +==a +b , OA OB AB -=(指向被减向量),=OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b ) + c =a + (b + c );(课件验证) ⑶数乘分配律:λ(a + b ) =λa +λb .[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. ⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P92练习Ⅳ.教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈课本P106 1、2、⒉预习课本P92~P96,预习提纲:⑴怎样的向量叫做共线向量⑵两个向量共线的充要条件是什么⑶空间中点在直线上的充要条件是什么⑷什么叫做空间直线的向量参数表示式⑸怎样的向量叫做共面向量⑹向量p与不共线向量a、b共面的充要条件是什么⑺空间一点P在平面MAB内的充要条件是什么板书设计:教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 理解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的表示方法,能够熟练地在坐标系中表示和计算空间向量。
3. 理解空间向量的运算规则,包括加法、减法、数乘和点乘。
4. 能够运用空间向量的运算解决实际问题。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向。
2. 空间向量的表示方法:坐标表示、图形表示。
3. 空间向量的运算规则:a. 加法:三角形法则、平行四边形法则。
b. 减法:向量的减法等于加法的相反向量。
c. 数乘:数乘向量的概念、运算规则。
d. 点乘:点乘的定义、运算规则、几何意义。
三、教学重点与难点1. 教学重点:a. 空间向量的概念及其基本性质。
b. 空间向量的表示方法。
c. 空间向量的运算规则。
2. 教学难点:a. 空间向量的运算规则的理解与应用。
b. 空间向量在实际问题中的应用。
四、教学方法与手段1. 教学方法:a. 采用讲授法,讲解空间向量的概念、性质和运算规则。
b. 采用示例法,展示空间向量的运算过程和应用实例。
c. 采用练习法,让学生通过练习巩固空间向量的知识。
2. 教学手段:a. 使用多媒体课件,展示空间向量的图形和运算过程。
b. 使用黑板和粉笔,绘图和演算空间向量的运算。
五、教学安排1课时教案)空间向量及其运算六、教学过程1. 导入:通过简单的二维向量例子,引导学生思考空间向量的概念。
2. 新课:讲解空间向量的定义、性质,以及各种表示方法。
3. 示范:展示空间向量的加法、减法、数乘和点乘运算,并用多媒体课件演示运算过程。
4. 练习:让学生在多媒体课件上进行空间向量的运算练习,巩固所学知识。
5. 应用:举例说明空间向量在实际问题中的应用,如物体运动、空间几何等。
七、教学反思课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、教学内容的掌握程度等。
针对存在的问题,调整教学方法,为下一节课的教学做好准备。
八、课后作业1. 复习空间向量的概念、性质和运算规则。
第3章空间向量与立体几何3.1空间向量及其运算教案新人教A版选修2_1
3.1 空间向量及其运算3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量.(2)长度或模:向量的大小.(3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB→,其模记为|a|或|AB→|.2.几类常见的空间向量名称方向模记法零向量任意00单位向量任意1相反向量相反相等a的相反向量:-aAB→的相反向量:BA→相等向量相同相等a=b3空间向量的运算加法OB→=OA→+OC→=a+b减法CA→=OA→-OC→=a-b加法运算律(1)交换律:a+b=b+a(2)结合律:(a+b)+c=a+(b+c)思考1:(1)空间中,a,b,c为不共面向量,则a+b+c的几何意义是什么?(2)平面向量的加减运算和空间向量的加减运算有什么联系? [提示] (1)以a ,b ,c 为相邻棱的平行六面体的体对角线.(2)任意两个向量都可平移到同一平面,故空间向量的加减运算与平面向量的加减运算类似.4.空间向量的数乘运算(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.(2)运算律:①λ(a +b )=λa +λb ;②λ(μa )=(λμ)a . 5.共线向量和共面向量 (1)共线向量①定义:表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.②共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .③点P 在直线AB 上的充要条件:存在实数t ,使OP →=OA →+tAB →. (2)共面向量①定义:平行于同一个平面的向量叫做共面向量.②共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .③空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考2:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条:AB ,A 1B 1,CD ,C 1D 1.]2.已知空间四边形ABCD 中,AB →=a ,CB →=b ,AD →=c ,则CD →=( ) A .a +b -c B .-a -b +c C .-a +b +cD .-a +b -c C [CD →=CB →+BA →+AD →=CB →-AB →+AD →=-a +b +c .]3.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]4.在三棱锥A -BCD 中,E ,F 分别是BC ,CD 的中点,则AF →-12(AB →+AC →)的化简结果为________.EF → [12(AB →+AC →)=AE →,AF →-12(AB →+AC →)=AF →-AE →=EF →.]空间向量的有关概念【例①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确; 对于④,根据相等向量的定义知正确.](2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点 (1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.如图所示,以长方体ABCD -A 1B 1C 1D 1的八个顶点的两点为始点和终点的向量中,(1)试写出与AB →相等的所有向量; (2)试写出AA 1→的相反向量;(3)若AB =AD =2,AA 1=1,求向量AC 1→的模.[解] (1)与向量AB →相等的向量有A 1B 1→,DC →,,D 1C 1→,共3个; (2)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →,共4个; (3)|AC 1→|2=22+22+12=9,所以|AC 1→|=3.空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个D .4个(2)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:①AP →; ②A 1N →; ③MP →+NC 1→.思路探究:(1)根据向量的三角形法则和平行四边形法则求解. (2)根据数乘向量及三角形法则,平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→, 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→, 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→, 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)解:①∵点P 是C 1D 1的中点,∴AP →=AA 1→+A 1D 1→+D 1P →=AA 1→+AD →+12AB →=a +c +12b ,②∵点N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-AA 1→+AB →+12AD →=-a +b +12c ,③∵点M 是AA 1的中点,∴MP →+NC 1→=MA 1→+A 1D 1→+D 1P →+NC →+CC 1→=12a +c +12b +12c +a =32a +12b +32c .1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知ABCD 为正方形,P 是ABCD 所在平面外的一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中点O ,Q 是CD 的中点,求下列各式中x ,y 的值.(1)OQ →=PQ →+xPC →+yP A →; (2)P A →=xPO →+yPQ →+PD →.[解] (1)如图所示,OQ →=PQ →+OP →,由向量加法的平行四边形法则可得PO →=12(PC →+P A →),∴OP →=-12PC →-12P A →,∴OQ →=PQ →+OP →=PQ →-12PC →-12P A →,∴x =-12,y =-12.(2)∵P A →=PD →+DA →=PD →+2QO →=PD →+2(PO →-PQ →)=PD →+2PO →-2PQ →, ∴x =2,y =-2.共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图正方体ABCD -A 1B 1C 1D 1中,O 为A 1C 上一点,且A 1O =23A 1C →,BD 与AC 交于点M .求证:C 1,O ,M 三点共线.思路探究:(1)根据向量共线的充要条件求解. (2)用向量AB →,AD →,AA 1→分别表示MO →和MC 1→.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)解:设AB →=a ,AD →=b ,AA 1→=c ,则MO →=MC →+CO →=12AC →+13CA 1→=12(AB →+AD →)+13(CA →+AA 1→) =12AB →+12AD →+13(CB →+CD →+AA 1→) =12AB →+12AD →-13AD →-13AB →+13AA 1→ =16AB →+16AD →+13AA 1→=16a +16b +13c , MC 1→=MC →+CC 1→=12AC →+AA 1→=12(AB →+AD →)+AA 1→,=12a +12b +c ,∴MC 1→=3MO →,又直线MC 1与直线MO 有公共点M , ∴C 1,O ,M 三点共线.1.判断向量共线的策略(1)熟记共线向量的充要条件:①若a ∥b ,b ≠0,则存在唯一实数λ使a =λb ;②若存在唯一实数λ,使a =λb ,b ≠0,则a ∥b .(2)判断向量共线的关键:找到实数λ. 2.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.(1)已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,DA [因为AD →=AB →+BC →+CD →=(a +2b )+(-5a +6b )+(7a -2b )=3a +6b 所以AD →=3AB →.又直线AB ,AD 有公共点A ,故A ,B ,D 三点共线.](2)如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c=25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题[1.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)P A →∥BC →.2.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.思路探究:可通过证明MN →=xCD →+yDE →求证.[证明] 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →. 所以MN →=MB →+BA →+AN →=⎝⎛⎭⎫13DA →+13AB →+BA →+⎝⎛⎭⎫13AD →+13DE → =23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.1.利用四点共面求参数向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值.2.证明空间向量共面或四点共面的方法(1)向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p =x a +y b ,则向量p ,a ,b 共面.(2)若存在有序实数组(x ,y ,z )使得对于空间任一点O ,有OP →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P ,A ,B ,C 四点共面.(3)用平面:寻找一个平面,设法证明这些向量与该平面平行.[跟进训练]4.已知A ,B ,C 三点不共线,平面ABC 外的一点M 满足OM →=12OA →+13OB →+16OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解] (1)因为OM →=12OA →+13OB →+16OC →,所以6OM →=3OA →+2OB →+OC →,所以3OA →-3OM →=(2OM →-2OB →)+(OM →-OC →), 因此3MA →=2BM →+CM →=-2MB →-MC →. 故向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,三个向量又有公共点M ,故M ,A ,B ,C 共面,即点M 在平面ABC 内.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.四点P ,A ,B ,C 共面⇔对空间任意一点O ,都有OP →=xOA →+yOB →+zOC →,且x +y +z =1.3.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.4.证明(或判断)三点A ,B ,C 共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明三点A ,B ,C 共线.5.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.1.下列说法正确的是( )A .若|a |=|b |,则a ,b 的长度相同,方向相同或相反B .若向量a 是向量b 的相反向量,则|a |=|b |C .两个向量相等,若它们的起点相同,则其终点不一定相同D .若|a |>|b |,|b |>|c |,则a >cB [对于A ,由|a |=|b |可得a 与b 的长度相同,但方向不确定;对于B ,a 与b 是相反向量,则它们的模相等,故B 正确;对于C ,两向量相等,若它们的起点相同,则它们的终点一定相同,故C 错;对于D ,向量不能比较大小,故D 错.]2.如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式运算结果为BD 1→的是( )①A 1D 1→-A 1A →-AB →; ②BC →+BB 1→-D 1C 1→; ③AD →-AB →-DD 1→; ④B 1D 1→-A 1A →+DD 1→.A .①②B .②③C .③④D .①④ A [①A 1D 1→-A 1A →-AB →=AD 1→-AB →=BD 1→; ②BC →+BB 1→-D 1C 1→=BC 1→+C 1D 1→=BD 1→;③AD →-AB →-DD 1→=BD →-DD 1→=BD →-BB 1→=B 1D →≠BD 1→;④B 1D 1→-A 1A →+DD 1→=BD →+AA 1→+DD 1→=BD 1→+AA 1→≠BD 1→,故选A .] 3.化简:12(a +2b -3c )+5⎝⎛⎭⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝⎛⎭⎫12+103-3a +⎝⎛⎭⎫1-52+6b +⎝⎛⎭⎫-32+103-3c =56a +92b -76c .] 4.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c .试用a ,b ,c 表示B 1M →,C 1M →.[解] B 1M →=B 1A 1→+A 1A →+AM →=-a +c +12AC →=-a +c +12(a +b )=-12a +12b +c ,C 1M →=C 1B 1→+B 1M →=D 1A 1→+B 1M → =-b -12a +12b +c=-12a -12b +c .。
高二数学选修第三章空间向量与立体几何学案
第三章《空间向量与立体几何》学案设计人:杨光明3.1.1空间向量及其运算学习目标1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 重点:空间向量的加法、减法和数乘运算及运算律。
难点:应用向量解决立体几何中的问题。
学习过程 一、课前准备复习 1:平面向量基本概念; 加法交换律:a +b =b +a2:平面向量有加减以及数乘向量运算; 加法结合律:(a +b )+c =a +(b +c ) 3. 向量加法和数乘向量,以下运算律成立吗? 数乘分配律:λ(a +b )=λa +λb 二、新课导学 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算。
反思:空间向量加法与数乘向量有如下运算律吗? ⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c ); ⑶数乘分配律:λ(A. + b ) =λA. +λb . 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量:AB BC +⑴;'AB AD AA ++⑵; 1'2AB AD CC ++⑶; 1(')2AB AD AA ++⑷. 变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB . 例2 化简下列各式:⑴ AB BC CA ++; ⑵;AB MB BO OM +++⑶;AB AC BD CD -+- ⑷ OA OD DC --.练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式:⑴ 111AA A B +;⑵ 11111122A B A D +; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++.三、总结提升学习小结 1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律 四、课后反思3.1.2 空间向量的数乘运算(一)学习目标1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 重点:空间向量的共线 难点:空间向量的共线 学习过程 一、课前准备复习1:化简:⑴ 5(32a b -)+4(23b a -); ⑵ ()()63a b c a b c -+--+-. 复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量,a b , 若b 是非零向量,则a 与b 平行的充要条件是 二、新课导学 学习探究探究任务一:空间向量的共线问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系? 新知:空间向量的共线:1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量.2. 空间向量共线:定理:对空间任意两个向量,a b (0b ≠), //a b 的充要条件是存在唯一实数λ,使得 试试:已知5,28,AB a b BC a b =+=-+()3CD a b =- ,求证: A,B,C 三点共线. 典型例题例1 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+,且x +y =1,试判断A,B,P 三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+,那么t =例2 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试用向量,,a b c 表示向量',,,CA CA CM CG . 练1. 下列说法正确的是( )A. 向量a 与非零向量b 共线,b 与c 共线,则a 与c 共线;B. 任意两个共线向量不一定是共线向量;C. 任意两个共线向量相等;D. 若向量a 与b 共线,则a b λ=. 2. 已知32,(1)8a m n b x m n =-=++,0a ≠,若//a b ,求实数.x 三、总结提升学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论. 课后反思:3.1.2 空间向量的数乘运算(二)学习目标1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 重点:空间向量的共面 难点:空间向量的共面 学习过程 一、课前准备复习1:什么叫空间向量共线?空间两个向量,a b , 若b 是非零向量,则a 与b 平行的充要条件是2:已知直线AB ,点O 是直线AB 外一点,若1233OP OA OB =+,试判断A,B,P 三点是否共线?二、新课导学学习探究探究任务一:空间向量的共面问题:空间任意两个向量不共线的两个向量,a b 有怎样的位置关系?空间三个向量又有怎样的位置关系? 1.新知:共面向量: 同一平面的向量. 2. 空间向量共面:定理:对空间两个不共线向量,a b ,向量p 与向量,a b 共面的充要条件是存在 , 使得 .推论:空间一点P 与不在同一直线上的三点A,B,C 共面的充要条件是:⑴ 存在 ,使 ⑵ 对空间任意一点O ,有试试:若空间任意一点O 和不共线的三点A,B,C 满足关系式111236OP OA OB OC =++,则点P 与 A,B,C 共面吗?反思:若空间任意一点O 和不共线的三点A,B,C 满足关系式OP xOA yOB zOC =++,且点P 与 A,B,C 共面,则x y z ++= . 典型例题例1 下列等式中,使M ,A ,B ,C 四点共面的个数是( )①;OM OA OB OC =-- ②111;532OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++=. A. 1 B. 2 C. 3 D. 4变式:已知A,B,C 三点不共线,O 为平面ABC 外一点,若向量()17,53OP OA OB OC R λλ=++∈则P,A,B,C 四点共面的条件是λ= 例2 P88例一变式1:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是 AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面. 2. 已知32,(1)8a m n b x m n =-=++,0a ≠,若//a b ,求实数.x三、总结提升学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论. 课后反思3.1.3.空间向量的数量积学习目标1. 掌握空间向量夹角和模的概念及表示方法;2. 掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题. 重点:空间向量的数量积定义和性质 难点:空间向量的数量积性质与运算 学习过程 一、课前准备复习1:什么是平面向量a 与b 的数量积?2:在边长为1的正三角形⊿ABC 中,求AB BC ∙. 二、新课导学 学习探究探究任务一:空间向量的数量积定义和性质问题:在几何中,夹角与长度是两个最基本的几何量,能否用向量的知识解决空间两条直线的夹角和空间线段的长度问题?新知:1) 两个向量的夹角的定义:已知两非零向量,a b ,在空间 一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作 . 试试:⑴ 范围: ,a b ≤<>≤ ,a b 〈〉=0时,a b 与 ;,a b 〈〉=π时,a b 与 ⑵ ,,a b b a <>=<>成立吗? ⑶,a b <>= ,则称a 与b 互相垂直,记作 . 2) 向量的数量积:已知向量,a b ,则 叫做,a b 的数量积,记作a b ⋅,即a b ⋅= . 规定:零向量与任意向量的数量积等于零.A B CD FE G H反思:⑴ 两个向量的数量积是数量还是向量? 4) 空间向量数量积运算律: ⑵ 0a ∙= (选0还是0) (1)()()()a b a b a b λλλ⋅=⋅=⋅. ⑶ 你能说出a b ⋅的几何意义吗? (2)a b b a ⋅=⋅(交换律).3) 空间向量数量积的性质: (3)()a b c a b a c ⋅+=⋅+⋅(分配律) (1)设单位向量e ,则||cos ,a e a a e ⋅=<>.(2)a b a b ⊥⇔⋅= .(3)a a ⋅= = .5)⑴ )()a b c a b c ⋅⋅=⋅⋅(吗?⑵ 若a b a c ⋅=⋅,则b c =吗?⑶ 若0a b ⋅=,则00a b ==或吗? 典型例题例 1 用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.例2 如图,在空间四边形ABCD 中,2AB =,3BC =,23BD =,3CD =, 30ABD ∠=,60ABC ∠=,求AB 与CD 的夹角的余弦值变式:如图,在正三棱柱ABC-A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角为( )A. 60°B. 90°C. 105°D. 75°三、总结提升学习小结1..向量的数量积的定义和几何意义.2. 向量的数量积的性质和运算律的运用. 课后反思: 知识拓展向量给出了一种解决立体几何中证明垂直问题,求两条直线的夹角和线段长度的新方法.3.1.4 空间向量的正交分解及其坐标表示学习目标1. 掌握空间向量的正交分解及空间向量基本定理和坐标表示;2. 掌握空间向量的坐标运算的规律;重点:空间向量基本定理、向量的直角坐标运算 难点:空间向量的正交分解、空间向量的坐标表示 学习过程 一、课前准备复习1:平面向量基本定理: 复习2:平面向量的坐标表示: 二、新课导学 学习探究探究任务一:空间向量的正交分解问题:对空间的任意向量a ,能否用空间的几个向量唯一表示?如果能,那需要几个向量?这几个向量有何位置关系?新知:(1)空间向量的正交分解:空间的任意向量a ,均可分解为不共面的三个向量11a λ、22a λ、33a λ,使112233a a a a λλλ=++. 如果123,,a a a 两两 ,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量,,a b c ,对空间任一向量p ,存在有序实数组{,,}x y z ,使得p xa yb zc =++. 把 的一个基底,,,a b c 都叫做基向量. 反思:空间任意一个向量的基底有 个.⑶单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用{i,j,k }表示.⑷空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++,则称有序实数组{,,}x y z 为向量a 的坐标,记着p = .⑸设A 111(,,)x y z ,B 222(,,)x y z ,则AB = . ⑹向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b ,则DA B C⑴a +b =112233(,,)a b a b a b +++; ⑵a -b =112233(,,)a b a b a b ---; ⑶λa =123(,,)a a a λλλ()R λ∈; ⑷a ·b =112233a b a b a b ++. 试试:1. 设23a i j k =-+,则向量a 的坐标为 .2. 若A (1,0,2),B (3,1,1)-,则AB = .3. 已知a =(2,3,5)-,b =(3,1,4)--,求a +b ,a -b ,8a ,a ·b 练1. 已知()()()2,3,1,2,0,3,0,0,2a b c =-==,求: ⑴()a b c ∙+; ⑵68a b c +-.练2. 正方体''''ABCD A B C D -的棱长为2,以A 为坐标原点,以'AB,AD,AA 为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则点1D ,',AC AC 的坐标分别是 , , .三、总结提升 学习小结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表示及其运算 课后反思: 知识拓展建立空间直角坐标系前,一定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,通过作辅助线来创造建系的图形.3.1.5 空间向量运算的坐标表示学习目标1. 掌握空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式;2. 会用这些公式解决有关问题.重点:空间向量坐标表示夹角和距离公式 难点:空间向量坐标表示夹角和距离公式 学习过程 一、课前准备复习1:设在平面直角坐标系中,A (1,3),B (1,2)-,则线段︱AB ︱= . 复习2:已知()()3,2,5,1,5,1a b =-=-,求:⑴a +B. ⑵3a -b ; ⑶6A. ; ⑷a ·b . 二、新课导学 学习探究探究任务一:空间向量坐标表示夹角和距离公式问题:在空间直角坐标系中,如何用坐标求线段的长度和两个向量之间的夹角? 新知:1. 向量的模:设a =123(,,)a a a ,则|a |=2. 两个向量的夹角公式:设a =123(,,)a a a ,b =123(,,)b b b ,由向量数量积定义:a ·b =|a ||b |cos <a ,b >, 又由向量数量积坐标运算公式:a ·b = ,由此可以得出:cos <a ,b >= 试试:① 当cos <a 、b >=1时,a 与b 所成角是 ; ② 当cos <a 、b >=-1时,a 与b 所成角是 ;③ 当cos <a 、b >=0时,a 与b 所成角是 ,即a 与b 的位置关系是 ,用符合表示为 . 反思:设a =123(,,)a a a ,b =123(,,)b b b ,则⑴ a //b. ⇔ a 与b 所成角是 ⇔ a 与b 的坐标关系为 ; ⑵ a ⊥b ⇔a 与b 的坐标关系为 ; 3. 两点间的距离公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x y z ,则线段AB 的长度为:222211212()()()AB x x y y z z =-+-+-.4. 线段中点的坐标公式:在空间直角坐标系中,已知点111(,,)A x y z ,222(,,)B x y z ,则线段AB 的中点坐标为: .典型例题例 1. 如图,在正方体1111ABCD A B C D -中,点11,E F 分别是1111,A B C D 的一个四等分点,求1BE 与1DF 所成的角的余弦值.变式:如上图,在正方体1111ABCD A B C D -中,1111113A BB E D F ==,求1BE 与1DF 所成角的余弦值.例2. 如图,正方体1111ABCD A B C D -中,点E,F 分别是111,BB D B 的中点,求证:1EF DA ⊥.变式:如图,正方体1111ABCD A B C D -中,点M 是AB 的中点,求1DB 与CM 所成角的余弦值. 三、总结提升学习小结1. 空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式;2. 解决立体几何中有关向量问题的关键是如何建立合适的空间直角坐标系,写出向量的坐标,然后再代入公式进行计算. 课后反思:3.2立体几何中的向量方法(1)设计人:韩爱芳学习目标1. 掌握直线的方向向量及平面的法向量的概念;2. 掌握利用直线的方向向量及平面的法向量解决平行、垂直、夹角等立体几何问题. 重点:向量表示空间的点、直线、平面、平面的法向量 难点:直线的方向向量、平面的法向量 学习过程 一、课前准备复习1: 可以确定一条直线;确定一个平面的方法有哪些? 复习2:如何判定空间A ,B ,C 三点在一条直线上?复习3:设a =123(,,)a a a ,b =123(,,)b b b ,a ·b =二、新课导学学习探究探究任务一: 向量表示空间的点、直线、平面问题:怎样用向量来表示点、直线、平面在空间中的位置?新知: ⑴ 点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP 来表示,我们把向量OP 称为点P 的位置向量.⑵ 直线:① 直线的方向向量:和这条直线平行或共线的非零向量.② 对于直线l 上的任一点P ,存在实数t ,使得AP t AB =,此方程称为直线的向量参数方程. ⑶ 平面:① 空间中平面α的位置可以由α内两个不共线向量确定.对于平面α上的任一点P ,,a b 是平面α内两个不共线向量,则存在有序实数对(,)x y ,使得OP xa yb =+.② 空间中平面α的位置还可以用垂直于平面的直线的方向向量表示空间中平面的位置.⑷ 平面的法向量:如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量n 垂直于平面α,记作n ⊥α,那 么向量n 叫做平面α的法向量. 试试:1.如果,a b 都是平面α的法向量,则,a b 的关系 .2.向量n 是平面α的法向量,向量a 是与平面α平行或在平面内,则n 与a 的关系是 . ⑸ 向量表示平行、垂直关系:设直线,l m 的方向向量分别为,a b ,平面,αβ 的法向量分别为,u v ,则 ① l ∥m ⇔a ∥b a kb ⇔= ② l ∥α⇔a u ⊥0a u ⇔⋅= ③ α∥β⇔u ∥v .u kv ⇔= 典型例题例1 已知两点()()1,2,3,2,1,3A B --,求直线AB 与坐标平面YOZ 的交点.变式:已知三点()()1,2,3,2,1,2,A B ()1,1,2P ,点Q 在OP 上运动(O 为坐标原点),求当QA QB ∙取得最小值时,点Q 的坐标.例2 在空间直角坐标系中,已知()()()3,0,0,0,4,0,0,0,2A B C ,试求平面ABC 的一个法向量. 练1. 设,a b 分别是直线12,l l 的方向向量,判断直线12,l l 的位置关系:⑴ ()()1,2,2,2,3,2a b =-=-;⑵ ()()0,0,1,0,0,3a b ==.练2. 设,u v 分别是平面,αβ的法向量,判断平面,αβ的位置关系: ⑴ ()()1,2,2,2,4,4u v =-=--;⑵ ()()2,3,5,3,1,4u v =-=--.三、总结提升 学习小结1. 空间点,直线和平面的向量表示方法2. 平面的法向量求法和性质. 知识拓展:求平面的法向量步骤:⑴设平面的法向量为(,,)n x y z =;⑵找出(求出)平面内的两个不共线的向量的坐标;⑶根据法向量的定义建立关于,,x y z 的方程组;⑷解方程组,取其中的一个解,即得法向量.3.2立体几何中的向量方法(2)学习目标1. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题;2. 掌握向量运算在几何中求两点间距离和求空间图形中的角度的计算方法. 重点:用向量求空间线段的长度、用向量求空间图形中的角度 难点:用向量求空间线段的长度、用向量求空间图形中的角度 学习过程 一、课前准备复习1:已知1a b ∙=,1,2a b ==,且2m a b =+,求m .复习2:什么叫二面角?二面角的大小如何度量?二面角的范围是什么? 二、新课导学 学习探究探究任务一:用向量求空间线段的长度 问题:如何用向量方法求空间线段的长度? 新知:用空间向量表示空间线段,然后利用公式2a a =求出线段长度.试试:在长方体''''ABCD A B C D -中,已知'1,2,1AB BC CC ===,求'AC 的长.典型例题例1 如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?变式:如果一个平行六面体的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于α, 那么由这个平行六面体的对角线的长可以确定棱长吗? 探究任务二:用向量求空间图形中的角度例2 如图,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从A ,B 到直线l (库底与水坝的交线)的距离,AC BD 分别为,a b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值.变式:如图,60︒的二面角的棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于,AB 已知4,6,8AB AC BD ===,求CD 的长.变式2. 如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角. 三、总结提升 学习小结1. 求出空间线段的长度:用空间向量表示空间线段,然后利用公式2a a =; 2. 空间的二面角或异面直线的夹角,都可以转化为利用公式cos ,ab a b a b⋅=⋅求解.知识拓展解空间图形问题时,可以分为三步完成:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题(还常建立坐标系来辅助);(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (3)把向量的运算结果“翻译”成相应的几何意义.3.2立体几何中的向量方法(3)学习目标1. 进一步熟练求平面法向量的方法;2. 掌握向量运算在几何中如何求点到平面的距离和两异面直线间距离的计算方法;3. 熟练掌握向量方法在实际问题中的作用.重点:点到平面的距离的求法、两条异面直线间的距离的求法 难点:点到平面的距离的求法、两条异面直线间的距离的求法 学习过程 一、课前准备复习1:已知()()1,2,0,0,1,1,A B ()1,1,2C ,试求平面ABC 的一个法向量.复习2:什么是点到平面的距离?什么是两个平面间距离? 二、新课导学学习探究探究任务一:点到平面的距离的求法 问题:如图A ,α∈空间一点P 到平面α的距离为d ,已知平面α的一个法向量为n ,且AP 与n 不共线,能否用AP 与n 表示d ?分析:过P 作PO ⊥α于O ,连结OA ,则d =|PO |=||cos .PA APO ⋅∠ ∵PO ⊥α,,n α⊥ ∴PO ∥n . ∴cos ∠APO=|cos ,PA n 〈〉| ∴D. =|PA ||cos ,PA n 〈〉|=|||||cos ,|||PA n PA n n ⋅⋅〈〉=||||PA n n ⋅新知:用向量求点到平面的距离的方法:设A ,α∈空间一点P 到平面α的距离为d ,平面α的一个法向量为n ,则D. =||||PA n n ∙ 典型例题例1 已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离.小结:求点到平面的距离的步骤:⑴ 建立空间直角坐标系,写出平面内两个不共线向量的坐标;⑵ 求平面的一个法向量的坐标; ⑶ 找出平面外的点与平面内任意一点连接向量的坐标;⑷ 代入公式求出距离. 探究任务二:两条异面直线间的距离的求法 例2 如图,两条异面直线,a b 所成的角为θ,在直线,a b 上分别取点',A E 和,A F ,使得'AA a ⊥,且'AA b ⊥.已知',,A E m AF n EF l ===,求公垂线'AA 的长. 变式:已知直三棱柱111ABC A B C ─的侧棱14AA =,底面ABC △中, 2AC BC ==,且90BCA ∠=,E 是AB 的中点,求异面直线CE 与1AB 的距离小结:用向量方法求两条异面直线间的距离,可以先找到它们的公垂线方向的一个向量n ,再在两条直线上分别取一点,A B ,则两条异面直线间距离n AB d n∙=求解.三、总结提升学习小结1.空间点到直线的距离公式2.两条异面直线间的距离公式 课后反思:1、正方体1111D C B A ABCD -的棱长为2,N M ,分别为1AA 、1BB 的中点。
数学选修2-1--3.1空间向量及其运算教案
数学选修2-1--3.1空间向量及其运算教案第三章 空间向量与立体几何 课标要求1、了解空间向量的概念,掌握空间向量的线性运算及坐标表示2、掌握空间向量的数量积及其坐标运算,会判断向量的共线(平行)与垂直3、能用向量方法证明线面位置关系的一些定理,能用向量方法解决线线、线面、面面夹角的计算问题。
4、体会向量方法在研究几何问题中的作用。
§3.1空间向量及其运算 3.1.1 空间向量及其加减运算师:这节课我们学习空间向量及其加减运算,请看学习目标。
学习目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。
(不要翻书)(在黑板或背投上呈现或边说边写)1、 在平面中,我们把具有__________________的量叫做平面向量;2、 平面向量的表示方法: 课标要求1、经历向量及其运算由平面向空间推广的过程。
层次:2.12、了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
层次:1.1 1.1 1.33、掌握空间向量的线性运算及其坐标表示。
层次:1.34、掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
层次:1.3 1.2 学习目标1、类比平面向量掌握空间向量的线性运算及坐标运算 层次:1.2 1.32、掌握空间向量的数量积及坐标形式,并能运用它判断向量的共线与垂直 层次:1.3 1.2重点空间向量的线性运算及坐标运算 难点空间向量的数量积,并用其判断向量的共线与垂直 课时5课时 教具 背投、电脑①几何表示法:_________________________②字母表示法:_________________________(注意:向量手写体一定要带箭头)3、平面向量的模表示_________________,记作____________4、一些特殊的平面向量:①零向量:__________________________,记作___(零向量的方向具有任意性)②单位向量:______________________________(强调:都只限制了大小,不确定方向)③相等向量:____________________________④相反向量:____________________________5、平面向量的加法:6、平面向量的减法:7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.8、向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb数乘结合律:λ(aμ)=a)(λμ[师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟)[师]:对比平面向量,我们得到空间向量的相关概念。
高中数学2-1学案:第三章 空间向量与立体几何3
3.1。
1空间向量及其线性运算[学习目标]1。
了解空间向量的概念,掌握空间向量的几何表示和字母表示.2。
掌握空间向量的线性运算及运算律,理解空间向量线性运算及其运算律的几何意义.知识点一空间向量的概念在空间中,我们把像位移、力、速度、加速度这样既有大小又有方向的量叫做空间向量,向量的大小叫向量的长度或模.知识点二空间向量的加减法(1)加减法定义空间中任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.(如图)错误!=错误!+错误!=a+b;错误!=错误!-错误!=a-b.(2)运算律交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).知识点三空间向量的数乘运算(1)定义实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.当λ>0时,λa与a方向相同;当λ〈0时,λa与a方向相反;当λ=0时,λa=0。
λa的长度是a的长度的|λ|倍.如图所示.(2)运算律分配律:λ(a+b)=λa+λb;结合律:λ(μa)=(λμ)a。
知识点四共线向量定理(1)共线向量的定义与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∥b。
(2)充要条件对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.思考(1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同.对吗?(2)零向量没有方向.对吗?(3)空间两个向量的加减法与平面内两向量的加减法完全一致.对吗?答案(1)正确.起点相同,终点也相同的两个向量相等.(2)错误.不是没有方向,而是方向任意.(3)正确.题型一空间向量的概念例1判断下列命题的真假.(1)空间中任意两个单位向量必相等;(2)方向相反的两个向量是相反向量;(3)若|a|=|b|,则a=b或a=-b;(4)向量错误!与错误!的长度相等.解(1)假命题.因为两个单位向量,只有模相等,但方向不一定相同.(2)假命题.因为方向相反的两个向量模不一定相等.(3)假命题.因为两个向量模相等时,方向不一定相同或相反,也可以是任意的.(4)真命题.因为错误!与错误!仅是方向相反,但长度是相等的.反思与感悟空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念.跟踪训练1如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)试写出与错误!相等的所有向量;(2)试写出错误!的相反向量;(3)若AB=AD=2,AA1=1,求向量错误!的模.解(1)与向量AB,→相等的所有向量(除它自身之外)有错误!,错误!及错误!共3个.(2)向量错误!的相反向量为错误!,错误!,错误!,错误!。
高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2 空间向量的数乘运算学案(
3.1.2 空间向量的数乘运算[目标] 1.掌握空间向量的数乘运算的定义和运算律,了解共线(平行)向量的意义.2.理解共线向量定理和共面向量定理及其推论,会证明空间三点共线与四点共面问题.[重点] 应用共线定理与共面定理解决共线问题与共面问题.[难点] 证明线面平行与面面平行.知识点一空间向量的数乘运算[填一填][答一答]1.空间向量的数乘运算与平面向量的数乘运算有什么关系?提示:相同.2.类比平面向量,空间向量的数乘运算满足(λ+μ)a=λa+μa(λ,μ∈R),对吗?提示:正确.类比平面向量的运算律可知.知识点二共线、共面定理[填一填][答一答]3.a =λb 是向量a 与b 共线的充要条件吗?提示:不是.由a =λb 可得出a ,b 共线,而由a ,b 共线不一定能得出a =λb ,如当b =0,a ≠0时.4.空间中任意两个向量一定共面吗?任意三个向量呢?提示:空间任意两个向量一定共面,但空间任意三个向量不一定共面. 5.共面向量定理中为什么要求a ,b 不共线?提示:如果a ,b 共线,则p 一定与向量a ,b 共面,却不一定存在实数组(x ,y ),使p =x a +y b ,所以共面向量基本定理的充要条件要去掉a ,b 共线的情况.6.已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1)的点P 与点A ,B ,C 是否共面?提示:四点共面.∵x +y +z =1,∴x =1-y -z ,又∵OP →=xOA →+yOB →+zOC →∴OP →=(1-y -z )OA →+yOB →+zOC →∴OP →-OA →=y (OB →-OA →)+z (OC →-OA →) ∴AP →=yAB →+zAC →, ∴点P 与点A ,B ,C 共面.1.共线向量、共面向量不具有传递性.2.共线向量定理及其推论是证明共线(平行)问题的重要依据.定理中的条件a ≠0不可遗漏.3.直线的方向向量是指与直线平行或共线的向量.一条直线的方向向量有无限多个,它们的方向相同或相反.4.空间任意两个向量总是共面的,空间任意三个向量可能共面,也可能不共面. 5.向量p 与a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.类型一 空间向量的数乘运算【例1】 设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,试用向量OA →,OB →,OD →表示AE →.【分析】 将向量AE →分解成OA →,OB →,OD →的线性组合的形式. 【解】 由题意,可以作出如下图所示的几何图形.在封闭图形ADOE 中,有:AE →=AD →+DO →+OE →, ①在△AOD 中,AD →=OD →-OA →. ②在△BOC 中,OC →=BC →-BO →,∵AD →=BC →,∴OC →=AD →+OB →=OD →-OA →+OB →. 又∵OE →=12OC →,∴OE →=12(OD →-OA →+OB →)=-12OA →+12OB →+12OD →. ③又DO →=-OD →, ④ 将②、③、④代入①可得: AE →=(OD →-OA →)-OD →+⎝ ⎛⎭⎪⎫-12OA →+12OB →+12OD →=-32OA →+12OB →+12OD →,∴AE →=-32OA →+12OB →+12OD →.寻找到以欲表示的向量所对应的线段为其一边的一个封闭图形,利用这一图形中欲求向量与已知向量所在线段的联系进行相应的向量运算是处理此类问题的基本技巧,一般地,可以找到的封闭图形不是唯一的.但需知,无论哪一种途径,结果应是唯一的.如下图所示,在平行六面体ABCD A ′B ′C ′D ′中,设AB →=a ,AD →=b, AA ′→=c ,E 和F分别是AD ′和BD 的中点,用向量a ,b ,c 表示D ′B →,EF →.解:D ′B →=D ′A ′→+A ′B ′→+B ′B →=-b +a -c .EF →=EA →+AB →+BF →=12D ′A →+a +12BD →=12(-b -c )+a +12(-a +b )=12(a -c ).类型二 空间向量的共线问题【例2】 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.【解】 因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.判断向量共线就是充分利用已知条件找到实数λ,使a =λb 成立,同时要充分运用空间向量的运算法则,结合空间图形,化简得出a =λb ,从而得出a ∥b .如图所示,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.证明:设AB →=a ,AD →=b ,AA 1→=c . ∵A 1E →=2ED 1→,A 1F →=23FC →,∴A 1E →=23A 1D 1→,A 1F →=25A 1C →.∴A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c . ∴EF →=A 1F →-A 1E →=25a -415b -25c =25(a -23b -c ).又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,∴EF →=25EB →,所以E ,F ,B 三点共线.类型三 空间向量的共面问题【例3】 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.【解】 (1)∵OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →)=BM →+CM →,∴MA →=BM →+CM →=-MB →-MC →,∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1证明向量共面,可以利用共面向量的充要条件,也可直接利用定义,通过线面平行或直线在平面内进行证明.2向量共面向量所在的直线不一定共面,只有这些向量都过同一点时向量所在的直线才共面向量的起点、终点共面.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: (1)E ,F ,G ,H 四点共面. (2)BD ∥平面EFGH .证明:如下图,连接EG ,BG .(1)因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知:E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .1.下列命题中正确的是( C )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量a ,b ,c 共面,即它们所在的直线共面C .零向量没有确定的方向D .若a ∥b ,则存在唯一的实数λ,使a =λb解析:A 中,若b =0,则a 与c 不一定共线;B 中,共面向量的定义是平行于同一平面的向量,表示这些向量的有向线段所在的直线不一定共面;D 中,若b =0,a ≠0,则不存在λ.2.当|a |=|b |≠0,且a 、b 不共线时,a +b 与a -b 的关系是( A ) A .共面 B .不共面 C .共线D .无法确定解析:a +b 与a -b 不共线,则它们共面.3.设O ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG =3GG 1,若OG →=xOA →+yOB →+zOC →,则(x ,y ,z )为( A )A .(14,14,14)B .(34,34,34)C .(13,13,13)D .(23,23,23)解析:因为OG →=34OG 1→=34(OA →+AG 1→)=34OA →+34×23[12(AB →+AC →)]=34OA →+14[(OB →-OA →)+(OC →-OA →)]=14OA →+14OB →+14OC →,而OG →=xOA →+yOB →+zOC →,所以x =14,y =14,z =14.4.已知A 、B 、C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A 、B 、C 共面,则λ=2.解析:M 与A 、B 、C 共面,则OM →=xOA →+yOB →+zOC →,其中x +y +z =1,结合题目有-2+1+λ=1,即λ=2.5.如下图,正方体ABCD A 1B 1C 1D 1中,E 、F 分别为BB 1和A 1D 1的中点.证明:向量A 1B →,B 1C →,EF →是共面向量.证明:EF →=EB →+BA 1→+A 1F →=12B 1B →-A 1B →+12A 1D 1→=12(B 1B →+BC →)-A 1B →=12B 1C →-A 1B →.由向量共面的充要条件知,A 1B →,B 1C →,EF →是共面向量.。
选修2-1第三章 空间向量与立体几何全章教案
§3.1 空间向量及其运算§3.1.1空间向量及其加减运算【学情分析】:向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。
在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。
【教学目标】:(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。
【教学重点】:空间向量的概念和加减运算【教学难点】:空间向量的应用【课前准备】:Powerpoint课件【教学过程设计】:练习1-3.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点,化简下列各式,并在图中标出化简得到的向量:GC BD AB ++;练习与测试:(基础题)1.举出一些实例,表示三个不在同一平面的向量。
2.说明数字0与空间向量0的区别与联系。
答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。
3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。
4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA +; (2)121AA CB AC ++; (3)AA --1解:(1)11CA BA CB =+ (2)AM AA CB AC =++121(3)11BA AA =--(中等题)5.如图,在长方体///B D CA OADB -中,3,4,2,OA i OB j OC k ===,点E,F 分别是//,B D DB 的中点,试用向量,,表示和解:j i OE 423+=2423++=。
高中数学第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算1数学教案
3.1.1 空间向量及其加减运算1.空间向量 (1)定义□01在空间,把具有大小和方向的量叫做空间向量. (2)长度□02向量的大小叫做向量的长度或□03模. (3)表示方法(4)几类特殊的空间向量①零向量:□08规定长度为0的向量叫做零向量,记为□090. ②单位向量:□10模为1的向量称为单位向量. ③相反向量:□11与向量a 长度相等而方向相反的向量称为a 的相反向量,记为□12-a . ④相等向量:□13方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示□14同一向量或□15相等向量. 2.空间向量的加减法 (1)定义类似平面向量,定义空间向量的加、减法运算(如图): OB →=OA →+AB →=□16a +b ; CA →=OA →-OC →=□17a -b . (2)加法运算律①交换律:a +b =□18b +a ;②结合律:(a +b )+c =□19a +(b +c ). 1.判一判(正确的打“√”,错误的打“×”)(1)有向线段可用来表示空间向量,有向线段长度越长,其所表示的向量的模就越大.( )(2)空间两非零向量相加时,一定可用平行四边形法则运算.( )(3)0向量是长度为0,没有方向的向量.( ) (4)若|a |=|b |,则a =b 或a =-b .( ) 答案 (1)√ (2)× (3)× (4)× 2.做一做(请把正确的答案写在横线上)(1)把所有单位向量的起点移到一点,则这些向量的终点组成的图形是________.(2)在正方体ABCD -A 1B 1C 1D 1中,DD 1→-AB →+BC →化简后的结果是________.(3)如图所示,已知长方体ABCD -A 1B 1C 1D 1,化简下列向量的表达式:①AA 1→-CB →=________.②AB 1→+B 1C 1→+C 1D 1→=________. ③12AD →+12AB →-12A 1A →=________. (4)(教材改编P 86T 3)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AB ,B 1C 的中点.用AB →,AD →,AA 1→表示向量MN →,则MN →=________.答案 (1)球面 (2)BD 1→ (3)①AD 1→ ②AD 1→ ③12AC 1→ (4)12AB →+12AD →+12AA 1→解析 (4)MN →=MB →+BC →+CN →=12AB →+AD →+12(CB →+BB 1→)=12AB →+AD→+12(-AD →+AA 1→)=12AB →+12AD →+12AA 1→.探究1 空间向量的概念 例1 给出下列命题:①两个相等的向量,若它们的起点相同,则终点必相同; ②在正方体ABCD -A 1B 1C 1D 1中,必有AC →=A 1C 1→; ③若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ; ④空间中任意两个单位向量必相等; ⑤只有零向量的模为0.其中假命题的个数是 ( ) A .1 B .2 C .3 D .4[解析] ①真命题.根据向量相等的定义,两个相等的向量若起点相同,终点必相同,只有这样才能保证它们的方向和大小都相同.②真命题.根据正方体的性质,在正方体ABCD -A 1B 1C 1D 1中,向量AC →与A 1C 1→的方向相同,模长也相等,应有AC →=A 1C 1→.③真命题.向量的相等满足传递规律.④假命题.空间中任意两个单位向量模长均为1,但方向不一定相同,故不一定相等.⑤真命题.根据零向量的定义可知.[答案] A拓展提升处理向量概念问题要关注的两个要素和两个关系(1)两个要素判断与向量有关的命题时,要抓住向量的两个主要要素,即大小与方向,两者缺一不可.(2)两个关系①模相等与向量相等的关系:两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件.②向量的模与向量大小的关系:由于方向不能比较大小,因此“大于”“小于”对向量来说是没有意义的.但向量的模是可以比较大小的.【跟踪训练1】(1)给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④向量BA→与向量AB→的长度相等.其中正确命题的序号为________.答案④解析 ①错误,方向相反且长度相等的两个向量是相反向量;②错误,向量不能比较大小;③错误,如BA →≠AB →但|BA →|=|AB →|,④正确.(2)给出下列命题:①若|a |=0,则a =0;②若a =0,则-a =0;③|-a |=|a |,其中正确命题的序号是________.答案 ②③解析 ①错误,若|a |=0,则a =0;②正确.③正确. 探究2 空间向量的加减运算例2 如图,在长方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量BD1→的是( ) ①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-DD 1→;④(B 1D 1→-A 1A →)+DD 1→.A .①②B .②③C .③④D .①④[解析] ①(A 1D 1→-A 1A →)-AB →=A 1D 1→+AA 1→+BA →=BD 1→; ②(BC →+BB 1→)-D 1C 1→=BC →+BB 1→+C 1D 1→=BC 1→+C 1D 1→=BD 1→;③(AD →-AB →)-DD 1→=BD →+D 1D →=BD →-DD 1→=BD →-BB 1→=B 1D →≠BD 1→; ④(B 1D 1→-A 1A →)+DD 1→=B 1D 1→+AA 1→+DD 1→=B 1D 1→+BB 1→+DD 1→=BD 1→+DD 1→≠BD1→.因此,①②两式的运算结果为向量BD 1→,而③④两式的运算结果不为向量BD1→.故选A.[答案] A[结论探究] 例2条件下,判断下列各式中运算结果为向量AC 1→的有哪些?①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→-B 1A 1→)+B 1C 1→.解 ①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;④(AA 1→-B 1A 1→)+B 1C 1→=(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→. 故①②③④式运算结果都是向量AC 1→. 拓展提升1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.2.化简空间向量的常用思路(1)分组:合理分组,以便灵活利用三角形法则、平行四边形法则进行化简.(2)多边形法则:在空间向量的加法运算中,若是多个向量求和,还可利用多边形法则.若干个向量的和可以将其转化为首尾相接的向量求和.(3)走边路:灵活运用空间向量的加法、减法法则,尽量走边路(即沿几何体的边选择途径).【跟踪训练2】 在平行六面体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B.EF →-GH →-PQ →=0C.EF →+GH →-PQ →=0D.EF →-GH →+PQ →=0 答案 A解析 EF →+GH →+PQ →=AF →-AE →+CH →-CG →+D 1Q →-D 1P →=0. 探究3 空间向量证明题例3 在如图所示的平行六面体中. 求证:AC →+AB ′→+AD ′→=2AC ′→.[证明] ∵平行六面体的六个面均为平行四边形, ∴AC →=AB →+AD →,AB ′→=AB →+AA ′→,AD ′→=AD →+AA ′→.∴AC →+AB ′→+AD ′→=(AB →+AD →)+(AB →+AA ′→)+(AD →+AA ′→)=2(AB →+AD →+AA ′→),又∵AA ′→=CC ′→,AD →=BC →,∴AB →+AD →+AA ′→=AB →+BC →+CC ′→=AC →+CC ′→=AC ′→, ∴AC →+AB ′→+AD ′→=2AC ′→.拓展提升空间向量证明题的注意点利用三角形法则或平行四边形法则进行证明,一定要注意和(差)向量的方向.必要时利用空间向量可自由平移,使作图容易.【跟踪训练3】 借助平行六面体,证明:(a +b )+c =a +(b +c ).证明 作平行六面体ABCD -A ′B ′C ′D ′使AB →=a ,AD →=b ,AA ′→=c ,如图,则:(a +b )+c =(AB →+AD →)+AA ′→=AC →+CC ′→=AC ′→,a +(b +c )=AB →+(AD →+AA ′→)=AB →+(BC →+CC ′→)=AB →+BC ′→=AC ′→,所以(a +b )+c =a +(b +c ).1.在空间,向量、向量的模、相等向量的概念和平面向量完全一致,两向量相等的充要条件是两个向量的方向相同、模相等.两向量互为相反向量的充要条件是大小相等,方向相反.2.向量可以平移,任意两个向量都是共面向量.因此空间两个向量的加、减法运算和平面向量完全相同,可以利用平行四边形法则和三角形法则来进行.3.空间向量进行减法运算时,一定要抓住向量的起点与终点,否则容易导致结果计算错误.如AB →-AD →,误写成BD →,应为DB →.1.向量a ,b 互为相反向量,已知|b |=3,则下列结论正确的是( )A.a=b B.a+b为实数0C.a与b方向相同D.|a|=3答案D解析因为a,b互为相反向量,所以a=-b,a+b=0,a与b方向相反,|a|=|b|=3.2.已知空间向量AB→,BC→,CD→,AD→,则下列结论正确的是( )A.AB→=BC→+CD→B.AB→-DC→+BC→=AD→C.AD→=AB→+BC→+DC→D.BC→=BD→-DC→答案B解析AB→-DC→+BC→=AB→+BC→+CD→=AC→+CD→=AD→.3.设有四边形ABCD,O为空间任意一点,且AO→+OB→=DO→+OC→,则四边形ABCD是( )A.空间四边形B.平行四边形C.等腰梯形D.矩形答案B解析∵AO→+OB→=AB→,DO→+OC→=DC→,∴AB→=DC→,∴线段AB ,DC 平行且相等, ∴四边形ABCD 是平行四边形.4.已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则在下列各结论中正确结论的序号为________.①OA →+OD →与OB 1→+OC 1→是一对相反向量; ②OB →-OC →与OA1→-OD 1→是一对相反向量; ③OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量; ④OA 1→-OA →与OC →-OC 1→是一对相反向量. 答案 ①③④解析 下图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为AD ,B 1C 1的中点,则由向量运算的平行四边形法则,知OA →+OD →=2OE →,OB 1→+OC 1→=2OF →,又OE →=-OF →,所以命题①正确.由于OB →-OC →=CB →,OA 1→-OD 1→=D 1A 1→,所以OB →-OC →与OA 1→-OD 1→是两个相等的向量,所以命题②是不正确的.同理可得命题③④是正确的.5.下图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,AA 1=1,以该长方体的八个顶点中的两点为起点和终点的所有向量中,(1)单位向量共有多少个? (2)试写出模为5的所有向量;(3)试写出与AB →相等的所有向量;(4)试写出AA1→的相反向量. 解 (1)由于AA 1=1,所以AA 1→,A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,DD 1→,D 1D → 这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左、右两侧的对角线长均为5,所以模为5的向量为AD 1→,D 1A →,A 1D →,DA 1→,BC 1→,C 1B →,B 1C →,CB 1→.(3)与向量AB →相等的所有向量(除它自身之外)为A 1B 1→,DC →,D 1C 1→.(4)向量AA 1→的相反向量为A 1A →,B 1B →,C 1C →,D 1D →.。
空间向量与立体几何教案
空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。
2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。
3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。
二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。
2.教学难点:如何灵活应用空间向量解决立体几何问题。
三、教学方法:1.教师讲授与学生合作探究相结合的方法。
2.案例分析和综合运用的方法。
四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。
2.解释向量的性质,如向量的加法、数乘、共线和共面性质。
3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。
第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。
2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。
第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。
2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。
3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。
第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。
2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。
五、教学资源准备:1.多媒体教学设备和教学课件。
2.各类立体几何教具和实物模型。
3.教科书及参考资料。
六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。
高二数学教案:第三章 空间向量与立体几何 3.1~02《空间向量及其运算》(2)(人教A版选修2-1)
上面①式叫做平面 的向量表达式.
(三)例题分析:
例1.已知 三点不共线,对平面外任一点,满足条件 ,
试判断:点与 是否一定共面?
解:由题意: ,
∴ ,
∴ ,即 ,
所以,点与 共面.
说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.
【练习】:对空间任一点 和不共线的三点 ,问满足向量式 (其中 )的四点 是否共面?
解:∵ ,
∴ ,
∴ ,∴点与点 共面.
例2.已知 ,从平面 外一点 引向量
,
(1)求证:四点 共面;
(2)平面 平面 .
解:(1)∵四边形 是平行四边形,∴ ,
∵ ,
∴ 共面;
(2)∵ ,又∵ ,
∴
所以,平面 平面 .
当 时,点是线段 的中点,此时 ③
①和②都叫空间直线的向量参数方程,③是线段 的中点公式.
3.向量与平面平行:
已知平面和向量 ,作 ,如果直线 平行于或在内,那么我们说向量 平行于平面,记作: .
通常我们把平行于同一平面的向量,叫做共面向量.
说明:空间任意的两向量都是共面的.
4.共面向量定理:
如果两个向量 不共线, 与向量 共面的充要条件是存在实数 使 .
4.已知 分别是空间四边形 边 的中点,
(1)用向量法证明: 四点共面;
(2)用向量法证明: 平面 .
五、课堂练习:课本第96页练习第1、2、3题.
六、课堂小结:1.共线向量定理和共面向量定理及其推论;
2.空间直线、平面的向量参数方程和线段中点向量公式.
438.高二数学教案:第三章 空间向量与立体几何 3.1~01《空间向量及其运算》
第三章空间向量与立体几何课题:空间向量及其运算(1)课时:01课型:新授课教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四的第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?[生]向量加法和数乘向量满足以下运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)数乘分配律:λ(a+b)=λa+λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P26~P27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的. [师]空间向量的加法、减法、数乘向量各是怎样定义的呢? [生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样: AB OA OB +==a+b ,OAOB AB -=(指向被减向量), =OP λa )(R ∈λ[师]空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律.[生]空间向量加法与数乘向量有如下运算律:⑴加法交换律:a + b = b + a ;⑵加法结合律:(a + b) + c =a + (b + c);(课件验证)⑶数乘分配律:λ(a + b) =λa +λb.[师]空间向量加法的运算律要注意以下几点:⑴首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量.即:n n n A A A A A A A A A A 11433221=++++-因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:011433221=+++++-A A A A A A A A A A n n n .⑶两个向量相加的平行四边形法则在空间仍然成立.因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则.例1已知平行六面体''''D C B A ABCD -(如图),化简下列向量表达式,并标出化简结果的向量:;⑴BC AB + ;⑵'AA AD AB ++'21CC AD AB ++⑶.⑷)'(31AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.解:(见课本P 27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.Ⅲ.巩固练习课本P 92 练习Ⅳ. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.关于向量算式的化简,要注意解题格式、步骤和方法.Ⅴ.课后作业⒈ 本P 107 1、2、⒉预习课本P 92~P 96,预习提纲:⑴怎样的向量叫做共线向量?⑵两个向量共线的充要条件是什么?⑶空间中点在直线上的充要条件是什么?⑷什么叫做空间直线的向量参数表示式?⑸怎样的向量叫做共面向量?⑹向量p 与不共线向量a 、b 共面的充要条件是什么?⑺空间一点P 在平面MAB 内的充要条件是什么?板书设计:教学后记:〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。
数学:第三章《空间向量与立体几何》教案(新人教B版选修2-1)
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:,是空间两个非零向量,过空间任意一点O ,作==,,则AOB ∠叫做向量与向量的夹角,记作><, 规定:π>≤≤<,0特别地,如果0,>=<,那么与同向;如果π>=<,,那么与反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章空间向量与立体几何
课题:空间向量及其运算(1)
课时:01
课型:新授课
教学目标:
㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;
㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;
⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.
教学重点:空间向量的加减与数乘运算及运算律.
教学难点:应用向量解决立体几何问题.
教学方法:讨论式.
教学过程:
Ⅰ.复习引入
[师]在必修四的第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?
[生]既有大小又有方向的量叫向量.向量的表示方法有:
①用有向线段表示;
②用字母a、b等表示;
③用有向线段的起点与终点字母:AB.
[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.
[生]长度相等且方向相同的向量叫相等向量.
[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:
⒈向量的加法:
⒉向量的减法:
⒊实数与向量的积:
实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:
(1)|λa|=|λ||a|
(2)当λ>0时,λa与a同向;
当λ<0时,λa与a反向;
当λ=0时,λa=0.
[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?
[生]向量加法和数乘向量满足以下运算律
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
数乘分配律:λ(a+b)=λa+λ b
[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种
运算的运算率,并进行一些简单的应用.请同学们阅读课本P
26~P
27
.
Ⅱ.新课讲授
[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?
[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.
[师]由以上知识可知,向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.
[师]空间向量的加法、减法、数乘向量各是怎样定义的呢?
[生]空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:
AB OA OB +==a+b ,
OA
OB AB -=(指向被减向量), =OP λa )(R ∈λ
[师]空间向量的加法与数乘向量有哪些运算律呢?请大
家验证这些运算律.
[生]空间向量加法与数乘向量有如下运算律:
⑴加法交换律:a + b = b + a ;
⑵加法结合律:(a + b) + c =a + (b + c);(课件验证)
⑶数乘分配律:λ(a + b) =λ a +λb .
[师]空间向量加法的运算律要注意以下几点:
⑴首尾相接的若干向量之和,等于由起始向量的起点指向
末尾向量的终点的向量.即:
n n n A A A A A A A A A A 11433221=++++-
因此,求空间若干向量之和时,可通过平移使它们转化为
首尾相接的向量.
⑵首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量.即:
011433221=+++++-A A A A A A A A A A n n n .
⑶两个向量相加的平行四边形法则在空间仍然成
立.
因此,求始点相同的两个向量之和时,可以考虑用
平行四边形法则.
例1已知平行六面体''''D C B A ABCD -(如图),
化简下列向量表达式,并标出化简结果的向量:
;⑴BC AB +
;⑵'AA AD AB ++
AD AB ++⑶
.⑷)'(3
1AA AD AB ++ 说明:平行四边形ABCD 平移向量 a 到A’B’C’D’的轨迹所形成的几何体,叫做平行六面体.记作ABCD —A’B’C’D’.
平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱.
解:(见课本P 27)
说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.
Ⅲ.巩固练习
课本P 92 练习
Ⅳ. 教学反思
平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.
关于向量算式的化简,要注意解题格式、步骤和方法.
Ⅴ.课后作业
⒈ 本P 107 1、2、
⒉预习课本P 92~P 96,预习提纲:
⑴怎样的向量叫做共线向量?
⑵两个向量共线的充要条件是什么?
⑶空间中点在直线上的充要条件是什么?
⑷什么叫做空间直线的向量参数表示式?
⑸怎样的向量叫做共面向量?
⑹向量p 与不共线向量a 、b 共面的充要条件是什么?
⑺空间一点P在平面MAB内的充要条件是什么?板书设计:
教学后记:。