如何提高数控机床的精度

合集下载

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法

数控机床的精度检测与调整方法数控机床是现代制造业中不可或缺的一种设备,它的精度对于产品的质量和性能起着至关重要的作用。

本文将介绍数控机床的精度检测与调整方法,帮助读者更好地了解和应用这些技术。

一、精度检测方法1. 几何误差检测几何误差是数控机床精度的重要指标,包括直线度、平行度、垂直度、圆度等。

常用的几何误差检测方法有激光干涉仪、三坐标测量仪等。

通过这些设备,可以精确测量机床各个轴向的几何误差,并得出相应的数据。

2. 理论切削路径与实际切削路径对比在数控机床的加工过程中,理论切削路径与实际切削路径之间可能存在偏差。

通过对比理论切削路径与实际切削路径,可以判断数控机床的精度是否达标。

常用的方法是使用光学测量仪器,对切削路径进行高精度的测量和分析。

二、精度调整方法1. 机床结构调整数控机床的结构调整是提高其精度的重要手段。

首先,需要检查机床各个部件的紧固情况,确保机床的刚性和稳定性。

其次,根据几何误差的检测结果,对机床的导轨、滑块等部件进行调整,以减小误差。

2. 控制系统调整数控机床的控制系统对于其加工精度起着至关重要的作用。

通过调整控制系统的参数,可以改善机床的运动精度和定位精度。

常用的调整方法包括增加控制系统的采样频率、优化控制算法等。

3. 刀具与工件的匹配调整刀具与工件的匹配对于加工精度有很大影响。

在数控机床的加工过程中,需要根据工件的要求选择合适的刀具,并对刀具进行调整和校准。

同时,还需要对工件进行检测,确保其尺寸和形状与设计要求一致。

三、精度检测与调整的重要性数控机床的精度检测与调整是保证产品质量和性能的关键环节。

只有通过科学的检测方法,准确地了解机床的精度情况,才能及时采取相应的调整措施,提高机床的加工精度。

这对于提高生产效率、降低成本、提升产品竞争力具有重要意义。

四、未来发展趋势随着制造业的不断发展,数控机床的精度要求也越来越高。

未来,数控机床的精度检测与调整方法将更加精细化和智能化。

制约CNC机床加工精度的因素及解决方法

制约CNC机床加工精度的因素及解决方法

制约CNC机床加工精度的因素及解决方法1. 引言CNC(计算机数控)机床是现代制造业中广泛应用的一种高精度加工设备。

然而,即使在CNC机床的运行过程中,仍然会遇到一些制约其加工精度的因素。

本文将探讨这些因素,并提出相应的解决方法。

2. 机床结构相关因素2.1 机床刚度机床刚度是影响CNC机床加工精度的关键因素之一。

刚度不足会导致机床在切削压力下发生振动,从而影响零件的加工精度。

解决该问题可通过加强机床的结构刚性、优化床身材料、提升切削力耐力等措施。

2.2 传动系统CNC机床的传动系统包括伺服电机、传动装置等。

传动系统的精度直接影响着CNC机床的定位精度和重复定位精度。

因此,提升传动系统的精度是解决影响CNC机床加工精度的重要手段。

可采取的方法包括增加传动系统的强度、选择合适的传动装置、提高伺服电机的响应速度等。

3. 控制系统相关因素3.1 数控系统精度数控系统是CNC机床的核心控制部分,其精度的高低直接决定了机床的加工精度。

因此,提升数控系统的精度是解决CNC机床加工精度的关键。

可以通过改进控制算法、增强编码器的分辨率、提高伺服控制的稳定性等来实现这一目标。

3.2 环境温度和湿度CNC机床对环境温度和湿度的要求较高,因为温度和湿度的变化会导致机床的热膨胀和热变形,进而影响机床的加工精度。

为解决这一问题,可以在机床周围设置温湿度恒定的控制设备,以确保机床在稳定的环境条件下运行。

4. 刀具与切削工艺相关因素4.1 刀具质量刀具的质量是影响CNC机床加工精度的重要因素之一。

使用质量较差的刀具可能导致切削力不均匀、切削振动等问题,从而影响加工精度。

因此,选择高品质的刀具、合理刀具的使用寿命以及切削参数的选择是提高加工精度的重要手段。

4.2 切削参数的选择切削参数的选择直接影响CNC机床的加工精度。

合理选择切削速度、进给量、切削深度等参数,可以减少机床振动、提高表面质量,从而提高加工精度。

5. 结论CNC机床的加工精度受多种因素的制约,包括机床结构、传动系统、控制系统、刀具与切削工艺等。

确保数控车床精度的日常调整方法

确保数控车床精度的日常调整方法

确保数控车床精度的日常调整方法随着工业技术的不断进步,数控车床在加工领域中扮演着越来越重要的角色。

为了确保数控车床的加工精度,日常的调整方法至关重要。

本文将介绍一些常见的调整方法,以确保数控车床的精度。

一、检查和保养刀具刀具是数控车床加工中最关键的部件之一,保持刀具的良好状态对于保证加工精度至关重要。

首先,需要定期检查刀具的尺寸和磨损情况。

如果刀具已经磨损过度,需要及时更换或修复。

此外,还要保持刀具的干净和润滑,定期清洁刀具表面和刀柄,并对刀具进行适当的润滑。

二、调整机床的机械部分机床的机械部分也是决定数控车床加工精度的重要因素之一。

首先,要确保机床的床身和导轨清洁,并进行适当的润滑。

同时,需要检查各个部件是否紧固,如螺丝和螺母等。

如果发现松动或损坏的部件,应及时进行修复或更换。

另外,可以通过调整机床的级数和滑块间隙来提高加工精度。

三、调整数控系统参数数控系统是数控车床的核心部分,调整系统参数可以显著提高加工精度。

首先,需要检查数控系统的软件版本和固件版本,确保其处于最新状态。

然后,根据加工要求调整各个参数,如进给速度、切削速度和回转精度等。

调整参数时,要谨慎操作,避免过于激进的调整导致加工精度下降。

四、定期校准设备定期校准数控车床是确保加工精度的重要手段之一。

校准可以包括对机床几何误差的测量和调整,对数控系统的测试和调整,以及对刀具的测量和校准等。

定期校准可以帮助发现和修复潜在的问题,提高机床的稳定性和精度。

五、培训操作人员最后,为了确保数控车床的精度,培训操作人员是必不可少的。

操作人员应接受专业的培训,了解数控车床的工作原理、操作方法和常见故障处理方法。

他们还应具备良好的操作习惯,如正确安装刀具、合理设置加工参数和保持机床的清洁。

结论确保数控车床的精度是一项复杂而重要的任务。

通过检查和保养刀具,调整机床的机械部分,调整数控系统参数,定期校准设备以及培训操作人员等方法,可以有效地提高数控车床的加工精度。

(数控加工)如何提高数控机床的精度

(数控加工)如何提高数控机床的精度

(数控加工)如何提高数控机床的精度数控机床精度问题一直是制造业领域的头等大事,对于国家经济发展的影响非常大。

数控机床的精度包括位置精度、直线度、角度精度、尺寸精度等等。

如何提高数控机床的精度是一个非常重要的问题。

本文就围绕这个问题进行探讨。

一、材料选择数控机床的零件材料对机床的精度起着非常重要的作用。

选择高强度、高稳定性、高耐温、高耐磨损的材料会更有利于提高数控机床的精度。

同时,还要注重材料的稳定性,特别是温度稳定性,因为数控机床在加工工作时会受到热膨胀、收缩等因素的影响。

所以在零件加工和装配时应该严格控制温度,以确保材料的稳定性。

二、加工工艺数控机床的精度与加工工艺密不可分。

数控机床加工需要很高的自动化,不仅需要高精度的加工设备,同时还需要科学合理的加工工艺。

可以采用刀具半径补偿技术等高端技术实现高精度加工,此外还可以通过改变加工路线,优化进给速度、进给量等参数,严格控制工件表面的粗糙度,提高加工精度。

三、装配工艺除了加工工艺外,装配工艺对于数控机床的精度也非常重要。

在安装和装配过程中,需要注意对各个配件的精度和尺寸进行控制,以确保每个部件的配合精度达到最佳状态。

同时,还需要重视每个配件的松紧度和摩擦力,使用精密测量及调整手段,确保机床的各项参数都达到要求,确保机床整体的精度。

四、检测手段检测手段是保证数控机床精度的关键。

可以通过精度检测仪等测试设备进行精度检测,并通过测试结果来了解机床的精度情况,针对性地进行校准及维护。

一个优秀的检测手段可以有效地检测机床的精度问题,在最短的时间内发现可能存在的问题,并有效地进行解决。

五、维护保养维护保养对于保证数控机床的长期稳定运行非常重要。

及时对机床进行各项维护和保养,保证机床各部件的稳定运行,如定期清理机床各个部件的灰尘、切屑,并对机床进行润滑、调整,及时更换磨损的配件等。

这些维护和保养措施可以保证机床的精度和性能得到长期保持。

总体而言,提高数控机床精度需要的是多方面的配合,需要从材料、加工工艺、装配工艺、检测手段以及维护等方面加强管理和改进,从而逐步提高数控机床的精度,确保机床在加工过程中取得最佳的加工效果。

数控机床定位精度的调整方法

数控机床定位精度的调整方法

数控机床定位精度的调整方法随着科技的不断发展,数控机床已经成为现代工业中不可或缺的设备。

数控机床的定位精度对于加工质量和产品性能有着重要的影响。

因此,正确调整数控机床的定位精度至关重要。

本文将介绍数控机床定位精度的调整方法,以帮助读者有效提高机床的加工精度。

首先,在调整数控机床定位精度之前,我们需要了解什么是定位精度。

定位精度是指数控机床在已经规定的参考点或基准点上的定位误差。

提高定位精度的方法包括机床的结构设计、传动系统和控制系统等多个方面。

在调整数控机床定位精度之前,我们先来了解一下机床的机械结构和控制系统。

机床的机械结构是影响数控机床定位精度的重要因素。

调整机床的结构对于提高定位精度至关重要。

通常,我们可以通过调整滚珠螺杆的预紧力、调整导轨的轮廓形状和尺寸、减少机床的振动等方式来改善机床的结构。

其次,机床的传动系统也会对定位精度产生影响。

传动系统常见的问题包括传动链的弹性变形、传动副的摩擦和间隙以及传动装置的精度等。

为了提高定位精度,我们应该选择传动系统的各个部件时要注意其刚度和精度,并在使用过程中进行定期的维护和保养。

最后,调整数控机床的控制系统是提高定位精度的关键。

数控机床的控制系统通常包括硬件和软件两个方面。

在硬件方面,我们可以通过更换更精密的传感器和控制器等设备来提高数控机床的定位精度。

同时,在软件方面,我们可以通过优化算法和调整控制参数来提高数控机床的定位精度。

在实际调整数控机床的定位精度时,下面是一些常用的方法和步骤:1. 检查机床的结构:检查滚珠螺杆的预紧力是否适当,检查导轨的轮廓形状和尺寸是否符合要求,检查机床的振动情况等。

2. 检查传动系统:检查传动链的弹性变形,检查传动副的摩擦和间隙,检查传动装置的精度等。

3. 优化控制系统:通过更换更精密的传感器和控制器来提高机床的定位精度,通过优化算法和调整控制参数来提高数控机床的定位精度。

4. 进行定位误差测试和分析:使用精密测量仪器对机床进行定位误差测试,分析定位误差的来源和原因。

五轴数控机床空间定位精度改善方法研究现状

五轴数控机床空间定位精度改善方法研究现状

五轴数控机床空间定位精度改善方法研究现状五轴数控机床是一种具有多种加工功能的高精度加工设备,其精度和稳定性对加工质量和效率有着至关重要的影响。

而机床空间定位精度是影响五轴数控机床加工精度的重要因素之一,因此对五轴数控机床空间定位精度的改善方法进行研究具有重要意义。

本文将围绕五轴数控机床空间定位精度改善方法的研究现状展开讨论。

一、五轴数控机床空间定位精度问题分析1.机床刚度不足五轴机床的结构比较复杂,同时在进行加工过程中会产生不同方向的受力,如果机床的刚度不足,就会导致机床在加工过程中出现变形,进而影响了空间定位精度。

2.运动链条误差五轴数控机床的运动链条包括了伺服电机、联轴器、传动装置等部件,如果这些部件之间的配合不够精准,就会导致运动链条误差,进而影响了机床的空间定位精度。

3.热变形五轴数控机床在进行高速加工时,由于摩擦产生热,导致机床产生热变形,使得机床的空间定位精度受到了影响。

以上问题都会对五轴数控机床的空间定位精度产生负面影响,因此有必要对五轴数控机床的空间定位精度改善方法进行研究。

二、空间定位精度改善方法研究现状1.提高机床刚度提高机床结构的刚度是改善五轴数控机床空间定位精度的关键。

通过优化机床结构设计、采用高强度材料、增加机床纵横梁的截面积和减小横梁跨距等方法,可以有效地提高机床的刚度,从而降低机床在加工过程中的变形,提高空间定位精度。

3.热变形补偿技术针对五轴数控机床在高速加工时产生的热变形问题,可以采用热变形补偿技术来提高机床的空间定位精度。

通过在机床结构中加入温度传感器和变形传感器,控制系统可以根据实时的温度和变形数据对机床进行补偿调整,从而降低热变形对机床空间定位精度的影响。

4.高精度测量技术采用高精度的测量技术对五轴数控机床的空间定位精度进行实时监测和调整,可以有效提高机床的加工精度。

通过采用激光干涉仪、摄像测量技术等高精度测量设备,可以对机床的空间定位精度进行实时检测,并及时进行调整,从而保证机床在加工过程中的精度稳定性。

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法数控机床加工精度是指机床在进行加工过程中所能达到的准确度和稳定性。

影响机床加工精度的因素非常多,下面将对影响因素和提高方法进行一些阐述。

1. 机床自身的优劣:机床的设计、制造和装配技术对加工精度有直接影响。

优质的机床在设计和制造过程中会注重减小传动误差、提高定位精度和重复定位精度等。

2. 机床的刚性和稳定性:机床的刚性和稳定性对加工精度起着决定性的作用。

刚性不足会导致机床在加工过程中出现振动和变形,从而影响加工精度。

3. 传动装置的精度和可靠性:传动装置的传动误差、反向间隙等都会影响加工精度。

传动装置的精度和可靠性越高,加工精度也越高。

4. 控制系统的精度:数控机床的控制系统对加工精度有直接影响。

控制系统的精度主要包括伺服系统的控制精度、编码器的精度以及数控系统的实时性等。

5. 刀具和夹具的精度:刀具和夹具的精度直接影响加工质量。

刀具和夹具的选择和安装都需要考虑其精度和稳定性。

1. 选用优质的机床:选择优质的机床是提高加工精度的基础。

优质的机床具有高精度、高刚性和高稳定性,能够更好地满足加工要求。

2. 优化加工工艺:通过优化加工工艺,合理设置切削参数和进给速度等,可以减小加工误差,提高加工精度。

4. 优化编程和加工过程:合理优化数控程序和加工过程,减小加工误差。

尽量避免急停和急转等情况,保证加工过程的平稳性和稳定性。

5. 定期进行机床维护和保养:定期进行机床的维护和保养,保证机床的正常运行和精度稳定性。

包括清洁、润滑和紧固等工作。

数控机床加工精度的提高需要从机床自身的优劣、刚性和稳定性、传动装置的精度和可靠性、控制系统的精度以及刀具和夹具的精度等方面进行综合考虑。

通过优化加工工艺、合理选择刀具和夹具、加强编程和加工过程的管理以及定期进行机床维护和保养等措施,可以有效提高数控机床的加工精度。

数控机床加工误差原因及对策分析

数控机床加工误差原因及对策分析

数控机床加工误差原因及对策分析数控机床是当今制造业的主要设备之一。

数控机床生产效率高,运行速度快,加工精度高,成品质量好,成本相对较低。

但是,在实际生产过程中,经常会出现加工误差,影响生产效率和成品质量。

因此,分析数控机床加工误差原因并寻找对策是很必要的。

本文将探讨数控机床加工误差的原因,以及如何通过改进措施来减少误差的发生。

一、误差的种类数控机床加工误差通常包括以下几种:1.轨迹误差。

轨迹误差是指数控机床加工时导致实际加工轨迹与期望轨迹之间的误差。

2.定位误差。

定位误差是指数控机床在加工中出现的位置偏差。

定位误差可能由机床本身、工件、刀具等方面的原因引起。

3.回转误差。

回转误差是指数控机床在进行旋转加工时出现的偏差。

回转误差通常由转台本身、传动系统和工件等原因引起。

4.表面误差。

表面误差是指数控机床加工表面的粗糙度、平整度、垂直度和平行度等参数上的误差。

二、误差产生的原因1.机床本身的精度。

数控机床的精度与质量直接相关,是影响加工质量的最重要因素。

如果机床本身的精度不高,则会直接导致加工误差的发生。

2.工具刃磨质量。

如果刀具的刃磨质量不好,切屑排出不畅等问题,也容易引起加工误差。

3.刀具稳定性。

刀具的稳定性是指在加工过程中刀具的稳定性,如果刀具不稳定,则极易引起加工误差的发生。

4.机床几何精度调整。

机床几何精度调整直接影响加工误差发生的概率,如果机床几何精度调整不当,则会引起加工误差的出现。

5.机床零部件磨损。

随着机床的使用,部件常会出现磨损,进而影响加工精度。

三、解决方案1.提高加工前的加工过程控制。

在加工前加强对加工过程的控制,可通过模具设计等预处理阶段减少误差出现的可能性。

2.注意刀具选择。

选择质量高的刀具,并保持刀具在加工过程中的稳定性。

3.指导及培训操作人员。

操作人员要具备相应的知识和技能,遵循正确的加工流程,熟练使用数控机床,能够及时发现和解决数控机床加工过程中的问题。

4.定期机床保养。

数控加工产生误差的根源及解决方案

数控加工产生误差的根源及解决方案

数控加工产生误差的根源及解决方案数控加工是利用数控技术通过控制机床和刀具相对运动的方式,对工件进行加工的一种工艺。

虽然数控加工相对手工加工来说具有高精度、高效率、高一致性等优点,但是由于一些原因还是会在实际应用中产生一些误差,下面我们对数控加工误差的根源及解决方案进行详细介绍。

一、误差产生的根源1.机床本身问题机床是数控加工的基础,如果机床本身精度不高,则会直接影响到加工的精度。

例如机床的重复定位精度、圆度等问题都会导致数控加工中的误差。

2.编程和操作问题编程和操作的问题也是数控加工中产生误差的重要原因。

编写的程序是否符合实际加工的要求、操作人员能否正确的操作数控设备、调整数控设备的参数等都会影响加工的精度。

3.工件材料和加工工艺工件的材料和加工工艺也是数控加工中产生误差的原因之一。

因为不同的材料及加工工艺的选用,需要有不同的加工参数设置,否则加工出来的零件尺寸不稳定,而且不同的材料具有不同的热膨胀系数,会使得加工出来的工件产生偏差。

二、误差的解决方案1.提高机床精度如何提高机床精度呢?首先我们要选用性能稳定、精度高的数控机床。

同时,在加工过程中要注意定期检查机床的重复定位精度、圆形度等指标,及时进行维护和保养。

2.优化编程和操作流程软件程序的编写和操作过程是决定加工精度的重要环节之一,因此编写程序时要结合实际加工要求,同时要对操作流程进行规范化和标准化,让操作流程尽量简单,便于操作人员进行操作。

3.优化材料和加工工艺合理选用材料及加工工艺,是提高精度的重要环节之一,因此选择合适的加工工艺的同时,要注意材料的热膨胀系数等性质,以此来保证加工出来的工件符合设计要求。

总之,数控加工误差的根源较多,但只要我们能够从机器、人员和程序三个方面入手,针对性的进行优化,加工精度是能够得到不断提高的。

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法数控机床在生产加工中,对于加工精度的要求非常高,因为加工精度直接关系到产品的质量和使用寿命。

因此,提高数控机床的加工精度是非常重要的。

1.机床结构和精度:数控机床的机床结构和精度是影响加工精度的关键因素。

机床结构的优劣直接决定了加工精度的上限,机床的精度则是决定加工精度的主要因素之一。

2.加工工件材料:不同材料对机床加工精度的影响程度不同。

硬度大,弹性模量小的工件会影响机床的振动和变形。

而硬度小、弹性模量大的工件对机床加工精度的影响就小。

3.切削工具:刀具的质量、刃口的状况、刀具的刃磨加工等,都会对数控机床的加工精度产生影响。

4.加工工艺:加工工艺的好坏也会直接影响加工精度。

包括加工速度、进给量、深度和切削液等各工艺参数的选取和控制情况。

1.加强机床结构的刚性和稳定性:提高机床自身的刚性和稳定性,能够有效地避免振动和变形现象,从而提高加工精度。

2.选用高精度的切削工具:刀具的质量对加工精度的影响很大。

选用质量好的高精度刀具能够更好地保证加工精度。

3.优化加工工艺:制定合理的加工工艺流程和工艺参数,可以有效降低加工误差。

4.强化加工质量控制:通过完善的检测手段和方法,改善和控制加工质量的各个环节,从根本上提高加工精度。

5.提高利用率和维护保养:维护机床的良好状态,保持设备稳定运行,能够避免由于机床运行不平稳等情况导致的加工精度下降,提高机床的利用率和寿命。

总之,在数控机床的加工过程中,加工精度是至关重要的。

应注意从机床结构、切削工具、加工工艺以及加工质量控制等各方面加强管理和提高水平,才能够更好地满足产业的需求。

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法

数控机床加工精度的影响因素及提高方法数控机床加工精度是衡量机床性能和加工质量的重要指标之一。

机床加工精度的高低直接影响到加工零件的尺寸精度和表面质量。

正确理解数控机床加工精度的影响因素及提高方法,可以有效提高机床加工精度,满足不同的加工要求。

一、影响因素1. 机床本身的精度:机床加工精度的高低取决于机床本身精度的高低。

包括机床的机械结构精度、控制系统精度以及加工刀具等。

2. 工件加工材料的性质:工件的材料的硬度、韧性、温度等都会影响加工时的切削力、振动、温度变化等,从而影响机床加工精度。

3. 切削工艺参数:如切削速度、进给量、切削深度和切削方向等,都会对零件的尺寸和形状精度产生影响。

4. 加工环境:加工环境的湿度、温度、气压等也会对机床加工精度产生影响。

特别是在高温、潮湿的环境中长时间工作,会导致机床部件热膨胀和受潮,进而影响机床加工精度。

二、提高方法1. 优化机床结构:通过提高机床的机械结构精度,例如采用高刚性材料,优化结构设计,优化装配工艺等,以提高机床加工精度和稳定性。

2. 提高控制系统精度:控制系统是数控机床的重要组成部分。

通过对机床控制系统进行优化,提高控制精度、数据传输速率和控制方式等。

例如采用高精度伺服电机、编码器、传感器等辅助检测设备,提高机床的动态响应能力和精度。

3. 优化加工工艺:根据工件材料的特性,优化加工刀具的选型、切削工艺参数等,以确保加工过程中的稳定性和精度。

4. 控制加工环境:通过控制加工环境的温度、湿度、气压等条件,提高机床加工精度和稳定性。

综上所述,数控机床加工精度的影响因素和提高方法是相互关联的。

只有综合考虑机床结构、控制系统、加工工艺和加工环境等各个方面因素,才能最大限度的提高机床加工精度和稳定性,从而满足不同的加工要求。

如何提高数控机床各轴的定位精度和重复定位精度

如何提高数控机床各轴的定位精度和重复定位精度

如何提高数控机床各轴的定位精度和重复定位精度如何提高数控机床各轴的定位精度和重复定位精度对机床工作状态进行监控和对机床精度进行经常的测试是非常必要的,以便及时发现和解决问题,提高零件加工精度,那么如何提高机床各轴的定位精度和重复定位精度呢?同一台机床,由于采用的标准不同,所得到的位置精度也不相同, 因此在选择数控机床的精度指标时,也要注意它所采用的标准。

数控机床的位置标准通常指各数控轴的反向偏差和定位精度。

对于这二者的测定和补偿是提高加工精度的必要途径。

反向偏差在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。

对于采用半闭环伺服系统的数控机床,反向偏差的存在就会影响到机床的定位精度和重复定位精度,从而影响产品的加工精度。

在G01切削运动时,反向偏差会影响插补运动的精度,若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镇孔等孔加工时各孔间的位置精度降低。

同时,随着设备投入运行时间的增长,反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加,因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。

【反向偏差的测定】反向偏差的测定方法:在所测量坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。

在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值, 以所得平均值中的最大值为反向偏差测量值。

在测量时一定要先移动一段距离,否则不能得到正确的反向偏差值。

测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。

解析数控车床加工精度的影响因素及提高措施

解析数控车床加工精度的影响因素及提高措施

1 、数控车床加工精度的影响因素数控车床实际工作的过程中,往往会承受着多种因素的影响,这就使其加工精度受到了严重的影响,因此需要积极的关注相关因素的处理,为加工效果提供相对于可靠的保障。

数控车床作为重要的设备,应该得到相对于可靠的维护,在具体的维护过程中,应该重视一些细节问题的存在,保证其可以发挥出正常的利用价值。

1.1 伺服驱动系统在基本的数控车床之中,伺服驱动系统扮演着非常重要的角色,其能够保证零件加工工作更为顺畅的开展。

主要是借助于滚珠丝杠完成有效的定位,之后借助于伺服电机进行合理的驱动控制,这样能够保证滚珠丝杠的基本精确度。

一般来说,在数控车床中,应用较为广泛的是半闭环型伺服系统,在开展相应的加工活动时,电机呈现出反方向的运行状态时,会产生较为明显的空隙空运转情况,这样便会导致相应的间隙类型存在着较为明显的误差。

在数控车床转动机构和运动机构的综合外力作用下,会表现出极为明显的弹性变形情况,加工的位置以及其他的区域位置则会彰显出基本的差异,这就使得一些弹性间隙产生,直接的威胁到加工的精度。

在进行误差分析的过程中,需要重视方向间隙的存在,同时还需要考虑正向运转中存在的误差叠加情况。

上述提及的问题都会导致相应的精度呈现出降低的趋势,无法达到较为理想的管理控制标准,难以迎合基本的控制要求。

1.2 车刀参数的影响通常来讲,在数控车床的加工实践中,往往是借助于编程控制的基本手段落实车刀的调整,保证可以更加顺畅的开展零部件的切削工作,由此让其基本的形状符合相应的要求。

在车削加工的基本环节之中,车刀一般会反映出主偏角以及刀尖圆弧半径的基本数值,在对棒料进行适当的加工时,轴向的尺寸还是很容易产生一些误差问题,面对这样的情况应该做出合理的分析,判断这类误差和主偏角往往是呈现出一种反比的关系,当不断地增加相应的主偏角之后,相应的误差可以适当的降低,但是对比于刀尖圆弧半径来看,两者之间还是存在着正比的关联。

如果在具体加工的过程中车刀的参数发生了较为显著的变化,会使得相应的精度受到较为直接的影响。

提高数控机床加工精度的方法及其存在的问题

提高数控机床加工精度的方法及其存在的问题

提高数控机床加工精度的方法及其存在的问题作者:张恒来源:《科教导刊·电子版》2017年第35期摘要加工精度是影响数控机床生产质量的重要因素,也是影响机械制造质量的重要内容。

为了提高机械零部件加工生产的质量和精度,有关制造企业需要根据影响因素提出有效的方法来提高加工精度,从而促进数控机床的良好发展,为机械制造高精度、高效率、高质量的实现添助力。

关键词数控机床加工精度方法问题中图分类号:TG518 文献标识码:A1数控机床加工精度提高方法1.1从机械调整方面来提高数控车床加工的精度在机床调整方面主要包括这几个部分,主轴、床身还有镶条等等方面,对其进行有效调整才能使车床满足要求,提高数控车床加工的精度,在工作过程中工作人员也要定时监控,并且要不断优化车床方面的不足,以便及时调整生产出更好的产品。

这是提高数控车床加工精度中最简单便利的方式,这种调整方式不需要很好的技术,但是需要员工不时的进行检查和调整。

1.2从电气调整方面来提高数控车床加工的精度这个方面的调整主要是包括两个方面,一个是对机床参数的调整,在这个角度中又有两个方面是影响加工精度的,即系统增益以及定位死区,在系统增益方面我们要关注车床受机械阻尼的方面还有转动的惯量,这些都影响着车床的加工方面的精度。

还有就是尽量减少定位的死区,这样也可以提高车床运作时的精确度。

这两方面是相辅相成的要同时进行调整。

另一个方面就是可以通过一些系统的应用来进行调整,由于现在自动化程度不断的提高,数控车床就是在运行过程中运用了自动来远程控制,所以我们要在远程控制时要引进一系列监控的程序,这样就不需要人工的过多干预,这样可以更加有效地进行监管,可以通过程序来监管设置控制然后可以提高车床加工时的精度。

1.3从车间环境控制方面来提高数控车床加工的精度在对车间环境的控制方面,需要尽可能地减少热源,其重点放在主轴轴承的转速、间隙调整及合理的预紧。

对于推力轴承和圆锥滚子轴承,因其工作条件差发热较大,必要时可以改用推力角接触球轴承代替,以尽量减少某些零部件的摩擦发热。

数控机床加工中的瑕疵分析与解决方法

数控机床加工中的瑕疵分析与解决方法

数控机床加工中的瑕疵分析与解决方法随着科技的不断进步和发展,数控机床作为一种先进的加工设备,在各个行业中得到了广泛的应用。

然而,在数控机床加工过程中,瑕疵问题不可避免地出现。

本文将对数控机床加工中常见的瑕疵进行分析,并提供解决方法,以帮助读者更好地应对这些问题。

一、瑕疵分析1. 加工精度不高:数控机床的加工精度是影响产品质量的重要因素。

加工精度不高可能导致尺寸偏差、表面粗糙度不达标等问题。

2. 加工失真:加工失真主要是指加工过程中由于热变形、应力集中等原因导致加工形状与设计要求不符合。

3. 加工热损伤:由于数控机床加工过程中涉及高速切削、高温摩擦等因素,可能会导致零件表面出现热损伤,如烧伤、氧化等。

4. 加工表面质量不佳:数控机床加工表面质量是考验产品外观质量的重要指标,表面存在凹凸不平、毛刺、划痕等问题,会影响产品的档次和使用寿命。

二、解决方法1. 提高加工精度:首先应对数控机床进行维护保养,保证设备的正常工作状态。

其次,选择合适的刀具和切削参数,并按照加工标准进行程序的编写和调试,以确保加工精度的达标。

2. 预防加工失真:加工失真问题主要与材料的热变形和应力有关。

因此,在选择材料时要根据产品的要求选择合适的材料,避免出现热变形和应力集中的情况。

另外,在加工过程中,要控制加工温度,避免过高的温度对材料的影响。

3. 预防加工热损伤:数控机床在加工时会产生大量热量,主要集中在刀具和工件之间的切削区域。

为了预防加工热损伤,可以采用切削液冷却的方法,及时将热量带走,保持切削区域的温度在适宜范围内。

4. 改善加工表面质量:为了改善加工表面质量,可以采用一些方法,如切削参数的调整、切削工艺的优化、使用合适的刀具和刀具涂层等。

此外,还可以采用表面处理技术,如砂光、抛光、氮化等,来改善加工表面质量。

总结:数控机床加工中的瑕疵是无法避免的,但通过合理的分析和解决方法,可以有效地减少瑕疵的发生率,提高产品质量。

在实际应用中,需要根据具体情况选择相应的措施,并进行合理的调试和优化。

提升数控机床定位精度的常用方法

提升数控机床定位精度的常用方法

提升数控机床定位精度的常用方法数控机床是一种能够自动化、高效率加工工件的机械设备,其加工精度直接影响到产品的质量。

为了提升数控机床的定位精度,可以采用以下常用方法:1.加强机床的刚性:刚性是机床保证运动精度和稳定性的重要指标。

可以通过增加机床的重量、增加机床的截面尺寸、采用高刚性材料等方式来提高机床的刚性。

此外,还可以采用合理的布局和优化结构设计来减小振动和变形,提高机床的稳定性。

2.优化机床传动系统:机床的传动系统直接影响数控机床的定位精度。

可以采用精密齿轮传动、精密球螺杆传动、精密直线导轨传动等方式来提高传动系统的精度。

此外,还可以采用伺服电机驱动和闭环控制,提高传动系统的动态性能和稳定性。

3.改善机床的工作环境:机床的工作环境对数控机床的定位精度也有一定影响。

机床应该放置在空气流通、湿度稳定、恒温的工作环境中,避免机床受到温度、湿度等外界因素的影响。

另外,机床工作时,应尽量避免产生振动和冲击,以减小机床的振动影响。

4.优化数控系统:数控系统是数控机床的核心部件,直接影响机床的精度和稳定性。

优化数控系统可以提高数控机床的定位精度。

可以采用高精度的位置反馈装置,如光栅尺、编码器等,提供更精确的位置反馈信号。

另外,可以采用高性能的数控控制器,提供更稳定、更精确的控制信号。

5.加强机床的维护和保养:机床的定位精度会受到磨损、松动等因素的影响,因此定期的维护和保养是必不可少的。

可以定期进行机床的清洁、润滑和紧固,检查机床各部位的磨损情况,及时更换损坏的零部件。

此外,还可以定期校准机床的精度,确保机床的定位精度符合要求。

6.合理选择切削参数:切削参数的选择对机床的定位精度也有一定影响。

合理选择切削速度、进给量和切削深度,可以减小切削力和热变形,提高机床的加工精度。

7.采用补偿技术:补偿技术是提高机床定位精度的一种重要方法。

根据机床运动过程中产生的误差特点,可以通过运动轨迹的补偿来改善机床的定位精度。

补偿技术主要包括误差补偿、刀具半径补偿、刀具长度补偿、热变形补偿等。

提高数控机床机械加工效率的有效措施

提高数控机床机械加工效率的有效措施

提高数控机床机械加工效率的有效措施随着工业的不断发展,数控技术逐渐成为了一种发展趋势。

数控机床具有高精度、高效率、高质量等优点,因此广泛应用于机械加工中。

但是在实际的加工过程中,一些问题也会出现,如加工效率低、加工成本高等问题。

为了提高数控机床的机械加工效率,本文提出了以下几点建议。

(一)优化机床加工过程数控机床的加工效率受到很多因素的影响,如切削力、表面粗糙度、铣削量等。

因此,在加工过程中要注意一些细节,以提高加工效率。

具体可以从以下几个方面入手:1、合理选择加工刀具:刀具的选择直接影响加工的效率。

在选择刀具时应根据所加工的材料、工件表面情况、切削深度、进给速度等因素综合考虑,选择最合适的刀具。

2、优化切削参数:切削参数的控制对加工效率也有很大影响。

在加工过程中应根据工件材料和形状以及刀具的特性和磨损情况等因素进行合理的切削参数设置,以达到最佳的加工效果。

3、降低空行移动:空行移动是指在切削运动之间机床进行的移动。

空行移动时,机床并不进行切削,只是浪费了时间,影响了加工效率。

因此,在加工过程中应尽可能减少空行移动的次数和距离。

4、减少工艺调整:工艺调整是指在加工过程中对加工参数的不断调整。

过多的工艺调整不仅会降低加工效率,还可能造成加工品质不稳定,增加了加工成本。

(二)提高机床的稳定性和精度数控机床的稳定性和精度决定了机床的加工效率和品质。

要提高机床的稳定性和精度,可以从以下几个方面入手:1、保持机床结构稳定:机床的结构稳定对加工精度和效率至关重要。

在使用期间应定期检查机床的各部位,如导轨、丝杠、轴承等,确保其稳定性和精度。

2、提高机床的自动化水平:数控机床的自动化水平越高,加工效率也就越高。

可以通过进一步提高自动化技术水平,如自动换刀、自动补偿、自动调整等来提高加工效率和品质。

3、优化数控系统:数控系统直接决定了机床的加工精度和稳定性。

可以通过升级数控系统、加强参数调整等方式进行优化,以提高数控机床的加工效率和稳定性。

数控机床加工过程中的常见问题及解决方法

数控机床加工过程中的常见问题及解决方法

数控机床加工过程中的常见问题及解决方法数控机床作为现代制造业中重要的加工设备,使用广泛,但在其加工过程中常会遇到一些问题,这些问题不仅会影响加工质量和效率,还可能导致机床损坏。

本文将介绍数控机床加工过程中常见的问题以及相应的解决方法。

1. 加工精度不稳定在数控机床加工过程中,加工精度的稳定性是一个很重要的指标。

如果加工精度不稳定,会导致产品质量不合格。

常见的原因包括机床本身的精度不稳定、刀具磨损、加工参数设置错误等。

解决方法可以从以下几个方面着手:- 检查机床的精度,确保其工作状态良好。

- 定期更换刀具,避免使用磨损严重的刀具。

- 优化加工参数,确保其与加工零件要求相匹配,如切削速度、进给速度等。

2. 切削过程中的振动振动是数控机床加工中常见的问题,它不仅会影响加工质量,还会对机床和刀具造成损坏。

振动的原因很多,如刀具不平衡、工件刚度不足等。

下面是一些解决方法:- 选择平衡良好的刀具,并进行定期平衡检查。

- 提高工件的刚度,如采用合适的夹紧方式、增加刚性支撑等。

- 优化切削参数,避免过大的切削力。

3. 刀具寿命短刀具寿命的长短直接影响到加工效率和成本。

在数控机床加工过程中,刀具寿命过短的原因主要包括切削温度过高、刀具材料选择不合理等。

以下是一些解决方法:- 使用合适的刀具材料,以满足具体的加工要求。

- 控制切削温度,如采用切削液进行冷却、降低切削速度等。

- 利用先进的刀具涂层技术,提高刀具耐磨性。

4. 数控编程错误数控编程是数控机床加工的核心,但在编程过程中常会出现一些错误,如坐标定位错误、刀具路径错误等。

这些错误会导致加工不准确,甚至会损坏工件和机床。

以下是一些建议:- 给程序编写提供足够的时间,避免匆忙操作。

- 使用先进的CAD/CAM系统进行程序编写,以减少编程错误的发生。

- 进行严格的程序验证和模拟,以保证加工的准确性。

5. 加工材料选择不当数控机床可以加工多种材料,但不同材料的加工特性有所不同,如果选择不当会导致加工问题。

提高数控机床机械加工效率的有效途径探讨

提高数控机床机械加工效率的有效途径探讨

提高数控机床机械加工效率的有效途径探讨数控机床是当今机械加工行业中的革命性进步,其通过数字控制系统实现对机床运动轨迹的精确控制,从而取代传统机床的手动操作和力学控制,提高了加工精度、生产效率和产品质量。

但是,在具体生产实践中,数控机床机械加工效率并未达到设计要求,影响了企业的生产效益。

本文将从机床本身结构、工艺参数、操作技能等多个方面探讨如何提高数控机床机械加工效率的有效途径。

一、机床本身改进1.提高机床性能机床性能直接决定着机床的加工能力和加工效率。

因此,提高机床性能可以使机床更适应加工要求,使得加工效率和效益更高。

机床性能包括机械刚性、精度、速度和可靠性等方面。

通过提高机床结构和附件质量、缩短切削工具和工件的配合时间、降低涂层摩擦系数等方式,可以达到提高机床性能的目的。

2.开发适用的加工刀具在数控机床机械加工中,加工刀具质量直接影响加工表面是否平整、加工效率是否高、工件的内部应力等问题。

因此,提高加工刀具质量、开发适用的新型刀具、优化刀具的尺寸、刃角、材料和工艺参数等方面,可以有效地提高机床的机械加工效率。

3.提高数控系统精度数控系统是控制机床作业的核心。

数控系统的精度直接影响机床的加工精度和效率。

提高数控系统精度需要从以下几个方面入手:(1)提高数控系统中的数模转换精度和数据传输速度。

(2)提高伺服控制系统的响应速度和运算速度。

(3)优化控制算法和控制参数,减少过程中的数据交换和处理时间。

二、工艺参数优化工艺参数的设置直接影响数控机床的加工效率和生产质量。

合理优化工艺参数可以使数控机床满足高效、高精度、高质量的加工要求。

优化工艺参数需要注意以下几个方面:1. 选择合适的切削参数切削速度、进给速度和切削深度是影响加工效率的重要参数。

合适的切削参数可以提高切削效率,缩短加工时间,同时保证加工质量,降低加工误差。

2. 选择最佳的切削界面切削界面是切削过程中工具和工件之间的接触面。

选择最佳的切削界面有助于提高加工效率。

如何提高数控机床的精度_

如何提高数控机床的精度_

如何提高数控机床的精度_数控机床是一种高精密加工设备,其精度直接影响着加工产品的质量。

提高数控机床的精度可以通过以下几个方面来实现:1.加强设备的维护保养:定期检查、清洁和润滑数控机床的各个部件,避免因零件磨损或杂质堆积导致的误差。

同时,注意检查机床坐标系、传动系统、控制系统等关键部件的工作状态,及时调整和校准,确保其精度和稳定性。

2.选用高精度的工具和刀具:选择优质的切削刀具和工件夹具,确保其几何精度和刚性,并且定期检查、磨损及时更换,避免使用磨损严重或失效的工具。

3.提高机床本体的刚性:合理设计和布局机床的结构,采用高刚性的材料和加工工艺,提高机床的整体刚性和稳定性。

同时,加强机床各个部件的安装和调整,确保其相互配合精度,减小机床本体的变形和振动。

4.更新和升级控制系统:采用先进的数控系统和控制算法,提高控制系统的动态响应性和稳定性。

可以考虑增加闭环反馈控制技术、优化控制参数等手段,进一步提高数控机床的定位精度和运动平滑性。

5.优化加工工艺和刀具路径:通过优化工艺参数和刀具路径,减小切削力和机床振动,避免因过载和冲击造成的加工误差。

合理选择切削速度、进给速度和切削深度,保证加工过程中的稳定性,提高加工精度。

6.引进智能监测和补偿技术:包括刀具磨损监测、传感器监测、机床自动补偿等技术手段,可以实时监测加工过程中的各种参数,并根据监测结果进行自动调整和补偿,提高加工精度和稳定性。

7.培训操作人员和加工人员:提高操作人员的技术水平和操作规范,让其能够灵活运用数控机床的各项功能和操作要点。

加工人员应熟悉产品的加工要求和机床的性能特点,合理安排加工顺序和工艺参数,提高加工精度和质量。

总结起来,提高数控机床的精度需要从设备的维护保养、工具的选择和使用、机床结构和控制系统的优化、加工工艺和刀具路径的优化、智能监测和补偿技术的引进以及人员的培训等多个方面综合考虑。

只有在这些方面同时努力,才能有效提高数控机床的精度,提高产品加工的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何提高数控机床的精度
目前数控机床位置精度的检验通常采用国际标准ISO230-2或国家标准
B10931-89等。

同一台机床,由于采用的标准不同,所得到的位置精度也不相同,因此在选择数控机床的精度指标时,也要注意它所采用的标准。

数控机床的位置标准通常指各数控轴的反向偏差和定位精度。

对于这二者的测定和补偿是提高加
工精度的必要途径。

一、反向偏差
在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。

对于采用半闭环伺服系统的数控机床,反向偏差的存在就会影响到机床的定位精度和重复定位精度,从而影响产品的加工精度。

如在G01切削运动时,反向偏差会影响插补运动的精度,若偏差过大就会造成“圆不够圆,方不够方”的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。

同时,随着设备投入运行时间的增长,反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加,因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。

反向偏差的测定
反向偏差的测定方法:在所测量坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。

在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值,以所得平均值中的最大值为反向偏差测量值。

在测量时一定要先移动一段距离,否则不能得到正确的反向偏差值。

测量直线运动轴的反向偏差时,测量工具通常采有千分表或百分表,若条件允许,可使用双频激光干涉仪进行测量。

当采用千分表或百分表进行测量时,需要注意的是表座和表杆不要伸出过高过长,因为测量时由于悬臂较长,表座易受力移动,造成计数不准,补偿值也就不真实了。

若采用编程法实现测量,则能使
测量过程变得更便捷更精确。

例如,在三坐标立式机床上测量X轴的反向偏差,可先将表压住主轴的圆
柱表面,然后运行如下程序进行测量:
N10 G91 G01 X50 F1000;工作台右移
N20 X-50;工作台左移,消除传动间隙
N30 G04 X5;暂停以便观察
N40 Z50;Z轴抬高让开
N50 X-50:工作台左移
N60 X50:工作台右移复位
N70 Z-50:Z轴复位
N80 G04 X5:暂停以便观察
N90 M99;
需要注意的是,在工作台不同的运行速度下所测出的结果会有所不同。

一般情况下,低速的测出值要比高速的大,特别是在机床轴负荷和运动阻力较大时。

低速运动时工作台运动速度较低,不易发生过冲超程(相对“反向间隙”),因此测出值较大;在高速时,由于工作台速度较高,容易发生过冲超程,测得值偏小。

回转运动轴反向偏差量的测量方法与直线轴相同,只是用于检测的仪器不同
而已。

反向偏差的补偿
国产数控机床,定位精度有不少>0.02mm,但没有补偿功能。

对这类机床,在某些场合下,可用编程法实现单向定位,清除反向间隙,在机械部分不变的情况下,只要低速单向定位到达插补起始点,然后再开始插补加工。

插补进给中遇反向时,给反向间隙值再正式插补,即可提高插补加工的精度,基本上可以保证
零件的公差要求。

对于其他类别的数控机床,通常数控装置内存中设有若干个地址,专供存储各轴的反向间隙值。

当机床的某个轴被指令改变运动方向时,数控装置会自动读取该轴的反向间隙值,对坐标位移指令值进行补偿、修正,使机床准确地定位在指令位置上,消除或减小反向偏差对机床精度的不利影响。

一般数控系统只有单一的反向间隙补偿值可供使用,为了兼顾高、低速的运动精度,除了要在机械上做得更好以外,只能将在快速运动时测得的反向偏差值作为补偿值输入,因此难以做到平衡、兼顾快速定位精度和切削时的插补精度。

对于FANUC0i、FANUC18i等数控系统,有用于快速运动(G00)和低速切削进给运动(G01)的两种反向间隙补偿可供选用。

根据进给方式的不同,数控系统自动选择使用不同的补偿值,完成较高精度的加工。

将G01切削进给运动测得的反向间隙值A 输入参数NO11851(G01的测试速度可根据常用的切削进给速度及机床特性来决定),将G00测得的反向间隙值B 输入参数NO11852。

需要注意的是,若要数控系统执行分别指定的反向间隙补偿,应将参数号码1800的第四位(RBK)设定为1;若RBK设定为0,则不执行分别指定的反向间隙补偿。

G02、G03、JOG与G01使用相同的补偿值。

二、定位精度
数控机床的定位精度是指所测量的机床运动部件在数控系统控制下运动所能达到的位置精度,是数控机床有别于普通机床的一项重要精度,它与机床的几何精度共同对机床切削精度产生重要的影响,尤其对孔隙加工中的孔距误差具有决定性的影响。

一台数控机床可以从它所能达到的定位精度判出它的加工精度,所以对数控机床的定位精度进行检测和补偿是保证加工质量的必要途径。

定位精度的测定
目前多采用双频激光干涉仪对机床检测和处理分析,利用激光干涉测量原理,以激光实时波长为测量基准,所以提高了测试精度及增强了适用范围。

检测
方法如下:
a. 安装双频激光干涉仪;
b. 在需要测量的机床坐标轴方向上安装光学测量装置;
c. 调整激光头,使测量轴线与机床移动轴线共线或平行,即将光路预调准
直;
d. 待激光预热后输入测量参数;
e. 按规定的测量程序运动机床进行测量;
f. 数据处理及结果输出。

定位精度的补偿
若测得数控机床的定位误差超出误差允许范围,则必须对机床进行误差补偿。

常用方法是计算出螺距误差补偿表,手动输入机床CNC系统,从而消除定位误差,由于数控机床三轴或四轴补偿点可能有几百上千点,所以手动补偿需要
花费较多时间,并且容易出错。

现在通过RS232接口将计算机与机床CNC控制器联接起来,用VB编写的自动校准软件控制激光干涉仪与数控机床同步工作,实现对数控机床定位精度的
自动检测及自动螺距误差补偿,其补偿方法如下:
g. 备份CNC控制系统中的已有补偿参数;
h. 由计算机产生进行逐点定位精度测量的机床CNC程序,并传送给CNC
系统;
i. 自动测量各点的定位误差;
j. 根据指定的补偿点产生一组新的补偿参数,并传送给CNC系统,螺距自
动补偿完成;
k. 重复c.进行精度验证。

根据数控机床各轴的精度状况,利用螺距误差自动补偿功能和反向间隙补偿功能,合理地选择分配各轴补偿点,使数控机床达到最佳精度状态,并大大提高
了检测机床定位精度的效率。

定位精度是数控机床的一个重要指标。

尽管在用户购选时可以尽量挑选精度高误差小的机床,但是随着设备投入使用时间越长,设备磨损越厉害,造成机床的定位误差越来越大,这对加工和生产的零件有着致命的影响。

采用以上方法对机床各坐标轴的反向偏差、定位精度进行准确测量和补偿,可以很好地减小或消除反向偏差对机床精度的不利影响,提高机床的定位精度,使机床处于最佳精度
状态,从而保证零件的加工质量。

相关文档
最新文档