9重积分

合集下载

重积分

重积分

第九章 重积分一、教学要点1. 了解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的积分中值定理. 2. 掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标). 3. 会用重积分求一些几何量与物理量(平面图形的面积、体积、质量、重心、转动惯量、引力).二、重点、难点1.二重积分的计算方法.2.用重积分求几何量与物理量(图形面积、体积、质量、重心、转动惯量、引力).三、典型问题解析例1.求二次积分dx xxdy y⎰⎰202sin ππ的值. -------1 解:dx x xdy y ⎰⎰202sin ππdy xx dx x ⎰⎰=200sin π⎰⎰=-=2020sin )0(sin ππxdx dx x xx1)10(cos 2=--=-=πx例2.求二次积分⎰⎰--21312x y dy e dx 的值. ------()1(214--e ) 解:⎰⎰--21312x y dy edx ⎰⎰+-=1122y y dx edy⎰-=202ydy e y)1(21214202---=-=e e y例3.求⎰⎰D zdxdy , 22(,)14,D x y x y x y ⎧⎫⎪⎪=≤+≤≤≤⎨⎬⎪⎪⎩⎭.解:21≤≤r ,⎩⎨⎧==θθsin cos r y r x , 36πθπ≤≤⎰⎰Dzdxdy θθππd rdr ⎰⎰=2136tan arctan⎰=3621221ππθθd r⎥⎦⎤⎢⎣⎡--=22)6()3(21)212(ππ)369(4322ππ-= 例4.若{}(,)01,01D x y x y =≤≤≤≤,求Dx ydxdy -⎰⎰解:Dx ydxdy -=⎰⎰1D x y dxdy -+⎰⎰2D x y dxdy -⎰⎰1()D y x dxdy =-+⎰⎰2()D x y dxdy -⎰⎰1110()()xxdx y x dy dx x y dy =-+-⎰⎰⎰⎰1121200011()()22x x y xy dx xy y dx ⎡⎤=-+-⎢⎥⎣⎦⎰⎰ 112200111()222x x dx x dx =-++⎰⎰1201()2x x dx =-+⎰0311111()3223x x =-+=例5.计算积分⎰⎰+Ddxdy y x 22,其中{}x y x x y y x D 2,0),(22≤+≤≤=.解:利用极坐标 ⎩⎨⎧==θθsin cos r y r x 则原式=⎰⎰⎰=403cos 2040cos 38.πθπθθθd rdr r dθθπs i n)s i n 1(38402d ⎰-= 2910sin 31sin 38403=⎥⎦⎤⎢⎣⎡-=πθθ 例6.计算2Dxy d σ⎰⎰,其中D 是直线,23y x y x ==-+和2y =围成的闭区域. 解:三条直线的交点分别为()()1,2,1,1,2,22A B C ⎛⎫⎪⎝⎭. 将D 看作Y -型区域,把二重积分化为先对x 后对y 的二次积分。

§-9-重积分习题与答案(2021年整理精品文档)

§-9-重积分习题与答案(2021年整理精品文档)

(完整版)§-9-重积分习题与答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)§-9-重积分习题与答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)§-9-重积分习题与答案的全部内容。

第九章 重积分A1、 填空题1)交换下列二次积分的积分次序 (1)()=⎰⎰-dx y x f dy y y102,______________________________________________(2)()=⎰⎰dx y x f dy yy222,______________________________________________ (3)()=⎰⎰dx y x f dy y10,_______________________________________________(4)()=⎰⎰---dx y x f dy y y 11122,___________________________________________(5)()=⎰⎰dy y x f dx e x1ln 0,______________________________________________(6)()()=⎰⎰---dx y x f dy y y44214,________________________________________2)积分dy e dx xy ⎰⎰-2022的值等于__________________________________3)设(){}10,10,≤≤≤≤=y x y x D ,试利用二重积分的性质估计()σd y x xy I D⎰⎰+=的值则 。

重积分基本概念

重积分基本概念

重积分基本概念重积分是微积分中的一个重要概念,它主要应用于对三维空间中复杂体积的计算。

通过重积分,我们可以将曲线、曲面以及空间区域的某种量进行求和或者平均。

本文将介绍重积分的基本概念,包括重积分的定义、性质以及计算方法。

一、重积分的定义在三维空间中,如果将一个曲线、曲面或者空间区域划分成无数个微小的体积元素,每个微小体积元素的体积可以表示为dV,并且在每个体积元素上都定义了一个函数f(x, y, z),那么重积分可以用下式表示:∬f(x, y, z)dV其中,∬代表重积分的符号,f(x, y, z)是被积函数,dV表示微小体积元素。

二、重积分的性质1.线性性质:如果f(x, y, z)和g(x, y, z)是可积函数,k是常数,那么以下性质成立:∬[kf(x, y, z) + g(x, y, z)]dV = k∬f(x, y, z)dV + ∬g(x, y, z)dV2.保号性质:如果在积分区域上,f(x, y, z) ≥ 0,那么∬f(x, y, z)dV ≥ 0;如果f(x, y, z) ≤ 0,那么∬f(x, y, z)dV ≤ 0。

3.单调性质:如果在积分区域上,f(x, y, z) ≤ g(x, y, z),那么∬f(x, y, z)dV ≤ ∬g(x, y, z)dV。

三、重积分的计算方法1.直角坐标系的计算方法:在直角坐标系中,我们可以采用三重积分的方法来计算重积分。

具体而言,我们可以将积分区域划分成小的立体体积,然后通过求和的方式将每个小立体体积的贡献加起来,得到整体的重积分值。

2.柱坐标系的计算方法:在柱坐标系中,我们可以将被积函数和微小体积元素表示为f(r,θ,z)和r dθ dr dZ,其中r表示从原点到点(x,y)的距离。

通过应用柱坐标系的变量替换和雅可比行列式的计算,可以将立体体积的重积分转化为曲线和平面的二重积分。

3.球坐标系的计算方法:在球坐标系中,我们可以将被积函数和微小体积元素表示为f(ρ,θ,φ)和ρ²sinφ dφ dθ dρ,其中ρ表示从原点到点(x,y,z)的距离,θ和φ分别表示极角和方位角。

第九章 重积分

第九章 重积分

第九章 重积分(一)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ, (比较大小)(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

(3) 在极坐标系中,面积元素为 。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

(2) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

5.交换积分()⎰⎰-2120,y dx y x f dy 的积分次序。

6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。

7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。

8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。

9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。

10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。

11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。

(整理)第九讲重积分

(整理)第九讲重积分

精品文档第九章 重积分一、学习目的与要求1、加深理解二重积分与三重积分的概念,熟悉重积分的性质。

2、熟练掌握二重积分的计算方法(包括直角坐标与极坐标系下的计算)。

3、熟练掌握三重积分的计算方法(包括直角坐标、柱坐标以及球坐标系下的计算)。

4、能用重积分来表达一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等)。

二、学习重点二重积分和三重积分的计算法三、内容提要1、重积分的定义⎰⎰∑=→∆=Dni iiif d y x f 1),(lim ),(σηξσλ(与D 的划分及),(i i ηξ取法无关),其中D 为平面有界闭区域,}{max ),,,2,1(),(1的直径i ni i i i n i σλσηξ∆==∆∈≤≤ 。

⎰⎰⎰∑Ω=→∆=ni i iiiV f dV z y x f 1),,(lim ),,(ζηξλ(与Ω的划分及),,(i i i ζηξ取法无关,其中Ω为空间有界闭区域,}{max ),,,2,1(),,(1的直径i ni i i i i V n i V ∆==∆∈≤≤λζηξ 。

2、重积分的几何意义当0),(≥y x f 时,⎰⎰Dd y x f σ),(表示以区域D 为底,以曲面z =f (x,y )为顶的曲顶柱体体积。

当1),(≡y x f 时,⎰⎰Dd σ表示平面区域D 的面积。

当1),,(≡z y x f 时,⎰⎰⎰ΩdV表示空间区域Ω的体积。

3、重积分的可积性若),(y x f (或),,(z y x f )在有界闭区域D (或Ω)上分块连续,则),(y x f (或),,(z y x f )在D (或Ω)上可积。

4、重积分的性质二重积分与三重积分具有类似的性质,现以二重积分为例,并假设所有被积函数都是可积的。

(Ⅰ)线性性质⎰⎰⎰⎰⎰⎰+=+DDDd y x g k d y x f k d y x g k y x f kσσσ),(),()],(),([2121,其中k 1,k 2为常数。

高等数学 课件 PPT 第九章 重积分

高等数学 课件 PPT 第九章  重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4

第九章 重积分(二重和三重)高数课件

第九章 重积分(二重和三重)高数课件

其中Ω 其中Ω 所围立体. 所围立体
z
π
4
0≤r ≤ R Ω: 0 ≤ ϕ ≤ π 4 0 ≤ θ ≤ 2π

r=R
∫∫∫Ω
3. 三重积分的计算
(1) 投影法 (“先单后重”) 先单后重” 先单后重
z = z2 (x, y)
z
z = z1(x, y)
= ∫∫ dxdy∫
D
z2 ( x, y)
z1( x, y)
f (x, y, z)d z
关键:正确的判断上、下曲面 关键:正确的判断上、下曲面; 找对投影区域. 找对投影区域
2011-2012学年高等数学第二学期期 中考试说明
• 题型: 题型: 个小题); 个小题); 一、填空题(5个小题);二、选择题( 5个小题);三、 填空题( 个小题);二 选择题( 个小题);三 计算题( 个小题);四 计算题( 个小题);五 个小题); 个小题); 计算题( 5个小题);四、计算题( 5个小题);五、计 算与解答题( 个小题);六 证明题( 个小题 个小题); 个小题)。 算与解答题( 2个小题);六、证明题( 1个小题)。 • 考试时间: 考试时间: 2012年5月4日(第10周周五)下午 :00-6:00 年 月 日 周周五) 周周五 下午4: - : • 考试地点: 考试地点: 化学工程与工艺6班 制药工程 化学工程与工艺 班、制药工程1—2班: 24-303 班 生物工程1—2班:24-305 班 生物工程

2 h
h
x
o
y
例. 计算三重积分
其中Ω 其中Ω为由
柱面 x2 + y2 = 2x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体. 成半圆柱体

高等数学讲义第九章重积分

高等数学讲义第九章重积分

性质6:(二重积分的中值 ) 定理
设函数 f (x, y)在闭区D域上连续 ,是D的面,积 则(,)D,使得
f(x,y)d f(,)
D
a
4
§2. 二重积分的计算法
1。利用直角坐标计算二重积分 z
A(x) y2(x) f(x,y)dy y1(x)
A(x)
o
a
yy1(x)
x
b x
a
y yy2(x)
5
d dr r
则极坐标下二重积分可化为二次积分
f(x,y)d f(rco ,rs si)n rdrd
D
D
dr2()f(rco ,srsin )rdrd r1()
a
11
设积分区域是由不等式
0rr(),
r r()
来表示r, ()在 其 [,中 ]上连0 续 β α。
则极坐标下二重积分可化为二次积分
z z=z2(x,y)
1 : z z1 ( x , y ),
2 : z z 2 ( x , y ),
其中 z1 ( x , y ), z 2 ( x , y ) 都是 D xy 上的连续函数,
z=z1(x,y)
o
y
且 z1(x, y) z2 (x, y)
Dxy
(如图所示 )
x
F(x,y) z2(x,y) f(x,y,z)dz z1(x,y)
a
13
例 11.计算二重积 R2分 x2y2d,
D
其中区 D:x域 2y2Rx
例 12.计算二重 ln积 1(x分 2y2)d,
D
其中区 D:x域 2y21,x0,y0
a
14
§3. 三重积分的计算法

重积分知识点总结(一)

重积分知识点总结(一)

重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。

它在物理学、工程学和计算机科学等领域都有广泛的应用。

本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。

正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。

而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。

2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。

3.重积分的性质:包括线性性质、保号性质、次可加性质等。

这些性质在进行重积分计算时非常重要。

二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。

在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。

2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。

3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。

4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。

对于具有旋转对称性的问题,极坐标法可以简化计算过程。

三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。

在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。

2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。

3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。

4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。

对于具有旋转对称性的问题,柱坐标法可以简化计算过程。

结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。

通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。

前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。

高等数学同济第七版7版下册习题 全解

高等数学同济第七版7版下册习题 全解

第十章重积分95数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个I)b\lh尤公共内点的WK域.96一、《高等数学》(第七版)下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(2)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k\\f{x,y)Aa.A-°台•{!(3)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0,",l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=jjf(x,y)da+JJ/(x f y)da.p,un}V,n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1-2.v2-V2 大于等于零的点,而不包含使被积函数1-2/-y2小于零的点,即当£»是椭圆2/+y2= l所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t)n2所围成;(3)I'M A;+y)(lor与!"[In(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(4)Jpn(:r+y)dcr与In(:t+y)]2fW,其中/)=|(.r,.v)|3,0彡、彡1 .i)i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D(2)由于积分区域0位于半平面|(A:,V) | .V+ •、彡1第十章重积分97(3)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此jj[ln(A:+y)]2(Jo-^+y)d(4)由于积分区域/)位于半平面丨(x,y)| .v+y彡e|内,故在Z)上有ln(x+y)彡1,从而:In(-v+)')]2彡In(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i)a36.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y)1,01|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:98{高等数学> (第七叛)下册习题全第十) ;,其中"是由两坐标轴及直线-- + =听围成的闭区域;b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D =( x , v )0 ^ A : ^ 1 .0 ^ v ^ 1;u( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. 4- 2 2 ) dx fh 2) D 可用不等式表示为 2 r 3xy +y 2 ]l~x dx = | (4 + 2x - 2x 2 ) dx 203(+ + 3 > (文3+ 3.2 +、、).+ + "JC di (4l )可用不等式表示为0 ^ V ^ A : ,0 ^ .t ^ 7T .于是|A :COS JC + ) = + ) d I [ sin (.t + y ) ]Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v )卜(1X (-TT r T X cos .v —rus TT.& 2. _出枳分ix:域,斤i 卜r): v 列m 分:第十章重积分99 x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(1)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(2)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(2)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1+因此100一、《高等数学》(第七版)下册习题全解Ea 3.如果二重积分|/( .r ,y )心办的被积函数/( x ,v )是两个函数/] ( O 及)的乘n积,即/(X ,y) = f\(x) ./“y ),积分区域/) = { (.V , y ) I (1 ^ V ^ />, r ^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) flatly = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1 ( x ) • .,2 ( / ) dvd V ~ J [ f J \ ( v ) ■ ./: t ^] l ^x *在上式右端的第一次单枳分f /,(.V )•/2(.V )dv 中,./,(A .)1Jfut 变招:、无关,nn 见为 常数提到积分5外,W 此上式“端笏T第十章重积分101fix/ = j [ dy ^/(*,y )tk.而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕.^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1)由直线及抛物线y 2 =4x 所围成的闭区域;(2)由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3)由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4)环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(2)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的先对*、后对y 的二次枳分:102一、《高等数学》(第七版)下册习题全解dr x,y) dx.(3)如图 10-7.:条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx • \/4J\x y y)dy + d.vl(1%/T /(A :,y)clr +d.vl■ yA -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、/( \ , > ) d.v -f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得o 第十章重积分103x ,r)d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o=丨h,y)1°^^^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(2)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.104一、《高等数学>(第七版)下册习题全解-y2^.V ^1$、飞V彡1(3)所给二次积分等于二重积分.其中D=:(.v.v)|-V 1UX^J1-y2,0彡>•彡1;•又D可表示为:(JC,)*)丨0彡y 彡V 1- .r2,-1=(图10-11),因此f 1 f V1 -X~原式=J^dxj/(x,v)dy.(4)所给二次积分等于二重积分其中D=:(.v.v)'2-hs/lx -x1%\彡.r彡2:.又D可表示为:(A:,V)|2-1彡.t•彡1+Y1—v2,0:(图10-12),故原式=丄d)j f(x %y)dx.(5)所给二次积分等于二重积分]|/(.10)(1^,)1:中/)=1(.v.v)|0^v^I)x彡e|•又/)可表示为|(A:,>•)|e、彡A•彡e,0彡、彡1i(|劄10-1,故原式=L(I.、|,./X .、,.、)(l.v.(6)m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^o 第十章重积分105/(x,y)dx.y广 1r ir - arcsin >原式=I dyf(x y y)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 | 1 ,D 2 = |(.r, y)一 2arcsin, 一1彡)'彡0|.于是rt-x + xydrAy~d\2x c\)''i x E | o»•Y = s i n A 的反闲数足A = i i r r s »M y- -1 x足ih y - H in x = sin ( T T - x) "n!J T T - x ^ arcKiny,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y+z6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2 ) dx(\y6 ( 1 - x ) - x 2 +——f 1\1_6"*10-17m 10 - 18解江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高等数学第九章重积分

高等数学第九章重积分

第9章 重积分典型例题一、二重积分的概念、性质 1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者), i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。

所以d 1Dσ⎰⎰表示区域D 的面积。

3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(3X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x d y=++⎰⎰⎰⎰⎰⎰⎰(4(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)D D f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数(6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。

9重积分

9重积分
2 2
曲面面积公式为:A

D xy
z z 1 ( x ) ( y ) dxdy 2 2
同理可得 2.设曲面的方程为:x g ( y , z ) 曲面面积公式为:A

3 D 2 2 D
( x 2 ) ( y 1) 2 所 围 成 .
2 、 ln( x y ) d 与 [ln( x y )] d ,其 中 D 是 矩 形
2 D
闭 区 域 : 3 x 5 ,0 y 1 .
四 、估 计积 分 I
2
( x 4 y 9 ) d 的 值 ,其 中 D 是 圆
练习题
一 、填 空 题 : 1 、 当 函 数 f ( x , y ) 在 闭 区 域 D 上 ______________ 时 , 则 其在 D 上 的 二重 积分必 定存 在 . 2 、二 重 积 分

D
f ( x , y )d
的 几 何 意 义 是
___________________________________. 3 、若 f ( x , y ) 在 有 界 闭 区 域 D 上 可 积 , 且 D D 1 D 2 ,当 f ( x , y ) 0 时 , 则 f ( x , y ) d __________ f ( x , y ) d ;
播放
步骤如下:
先分割曲顶柱体的底,z 并取典型小区域, 用若干个小平
z f ( x, y )
顶柱体体积之
和近似表示曲
o
D

y
( i , i )
顶柱体的体积,x
曲顶柱体的体积 V
lim
0

i 1

9重积分总复习

9重积分总复习

D
D
的大小, 其中 D 是三角形闭区域, 三顶点各为
(1,0),(1,1), (2,0).
y
解 三角形斜边方程 x y 2 1 在 D 内有 1 x y 2 e,
故 ln( x y) 1,
o
于是ln( x y) ln( x y)2,
D
12x
因此 ln( x y)d [ln( x y)]2 d .
的密度函数 , 通过计算该物体的质量引出下列各计算 方法:
方法1 . 投影法 (“先z后xy”) 方法2 平行截面法 当被积函数只含有一个变量用与此变量所在坐标轴垂 直的平面截积分区域所的截面面积容易求出时,用平行 截面法比较简单。
方法1. 投影法 (“先一后二” )
:
z1
( (
x, x,
y) y)
例 计算 e z dv, : x2 y2 z2 1.
解 被积函数仅为 z 的函数,截面 D(z) 为圆
域 x2 y2 1 z2,故采用"先二后一" 法.
e z dv 2 ezdv

2
1[
0
dxdy ]e z dz
D(z)
201 (1 z2 )ezdz 2.
例 4 计算三重积分 z2dxdydz 其中 是由
f
( y)dy
1b
n 1a
(b
y)n1
f
(
y)dy.
b

b
a
dx
x
a
(
x
y)n2
f
( y)dy
b
a
dy
b
y
(
x
y)n2
f
( y)dx
a
b
a

第九章 重积分 单元测试题2

第九章 重积分 单元测试题2
D D D
系是( ) A I1 < I 2 < I3 3. 若 B I3 < I 2 < I1
π
a cosθ
C I1 < I3 < I 2
D I3 < I1 < I 2
∫∫
D
2
f ( x, y )dxdy = ∫ 2π dθ ∫

2 2 2
0
f ( r cos θ , r sin θ )rdr ,则积分区域 D 为( )
8 3
13. 设 D 是由摆线 ⎨
⎧ ⎪ x = a ( t − sin t ) 2 的一拱与 Ox 轴所围成的区域,则 ∫∫ y dxdy = ( ⎪ D ⎩ y = a (1 − cos t )
B.

A. 3π a 4
35 4 πa 12
C.
17 4 πa 6
D.
33 4 πa 12
2
海文钻石卡学员专用内部资料-数学部分
. 18.
∫ dy ∫
0
1
π -arcsin y
arcsin y 2 2
xdx =
2
. . .
19.积分 20.

0
dx ∫ e- y dy 的值等于
x
x + y ≤1
∫∫
xy ( x 2 + y 2 )dxdy =
5
e
D I = dy
0
∫ ∫ f ( x, y)dx
9. 球面 x + y + z = a 含在 x + y = ax 内部的面积 S =( )
2
π
A 4 dθ
0

2
a cosθ

高等数学 重积分 (9.4.2)--重积分的应用

高等数学 重积分  (9.4.2)--重积分的应用

习题 9.41. 求下列平面闭区域D 的面积.(1) D 由曲线e ,e x x y y -==及1x =围成;(2) D 由曲线21,1y x y x =+=--围成;(3) D 由双纽线22222()4()x y x y +=-围成;(4) {(cos ,sin )|24sin }D r r r θθθ=≤≤;(5) 1(cos ,sin )1cos 2D r r r θθθ⎧⎫=≤≤+⎨⎬⎩⎭; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由椭圆22(234)(567)9x y x y +++++=围成;(8) D 是由曲线3y x =,34y x =,3x y =,34x y =所围成的位于第一象限部分;2. 利用二重积分计算下列各题中立体Ω的体积.(1) Ω为第一卦限中由圆柱面224y z +=与平面2,0,0x y x z ===所围成;(2) Ω由平面0,0,y z y x ===及6236x y z ++=围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤+;(4) 222{(,,)|1,11}x y z x y z z Ω=+≤+-≤≤;(5) Ω由平面0,0,0,1x y z x y ===+=及抛物面226x y z +=-围成.3. 设平面薄片所占的闭区域是由直线2,x y y x +==和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.4. 在一半径为R 的球体内,以某条直径为中心轴用半径为r 的圆柱形钻孔机打一个孔(r R <),求剩余部分的体积. 若圆柱形孔的侧面高为h ,证明所求体积只与h 有关,而与r 和R 无关.5. 利用三重积分求所给立体Ω的体积.(1) Ω是由柱面2x y =和平面0z =及1x z +=所围成的立体;(2) Ω是由抛物面22z x y =+和所2218z x y =--围成的立体;(3) Ω为圆柱体cos r a θ≤内被球心在原点、半径为a 的球所割下的部分;(4) Ω是由单叶双曲面2222x y z R +-=和平面0,z z H ==围成的立体;(5) 1Ω是Oxyz 坐标系中体积为5的立体,Ω为1Ω在变换448u x y z =++,274v x y z =++,43w x y z =++下的像.6. 已知物体Ω的底面是xOy 平面上的圆域222{(,)|}x y x y R +≤,当用垂直于x 轴的平面截Ω均得到正三角形, Ω的体密度函数为(,,)1x x y z Rρ=+,试求其质量. 7. 计算下列曲面的面积.(1) 平面63212x y z ++=位于第一卦限部分的曲面;(2) 正弦曲线的一拱sin y x =(0πx ≤≤)绕x 轴旋转一周而成的曲面;(3) 球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面;(4) 曲面222z x y =+被柱面22222()x y x y +=-所截下部分的曲面;(5) 抛物面22z y x =-夹在圆柱面221x y +=和224x y +=之间部分的曲面;(6) 球面22223x y z a ++=(0z >)和抛物面222x y az +=(0a >)所围成立体的表面;(7) 圆柱面229x y +=,平面4312y z +=和4312y z -=所围成立体的表面;(8) 两个底面半径都为R , 轴相互正交的圆柱所围立体的表面.8. 求占有下列区域D , 面密度为(,)x y μ的平面薄片的质量与质心:(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形闭区域, (,)x y x y μ=+;(2) D 是第一象限中由抛物线2y x =与直线1y =围成的闭区域, (,)x y xy μ=;(3) D 是由心脏线1sin r θ=+所围成的闭区域, (,)2x y μ=;(4) 22{(,)|(1)1}D x y x y =+-≤, (,)|1|x y y y μ=+-.9. 计算下列立体Ω的体积和形心:(1) 2222{(,,)|3633}x y z x y z x y Ω=+≤≤--;(2) 2222(,,)1x y x y z z a b ⎧⎫⎪⎪Ω=+≤≤⎨⎬⎪⎪⎩⎭; (3) Ω位于锥面3πϕ=上方,球面4cos ρϕ=下方.10. 若半径为R 的半球体上任一点密度与该点到底面之距离成正比(比例系数为k ), 求其质量与质心.11. 求下列平面薄片或物体对指定轴的转动惯量.(1) 均匀薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤(面密度为1)对极轴;(2) 底长为a ,高为h 的等腰三角形均匀薄片(面密度为1)对其高;(3) 质量为M , 半径为R 的非均匀球体(其上任一点的密度与球心到该点的距离成正比)对其直径;(4) 密度为1的均匀物体2222x y z ++≤,222x y z +≥对Oz 轴.12. 设物体Ω占有的区域为222{(,,)|,||}x y z x y R z H +≤≤,其密度为常数. 已知Ω关于x 轴及z 轴的转动惯量相等. 证明:2H R =.13. 求下列密度为1的均匀物体对指定质点的引力(引力常数为k ).(1) 高为h ,半顶角为α的圆锥体对位于其顶点的单位质量质点;(2) 柱体222x y R +≤(0z h ≤≤)对位于点0(0,0,)()M a a h >处的单位质量质点;(3) 半径为R 的球体对球内的单位质量质点P .。

高等数学教案ch 9 重积分

高等数学教案ch 9  重积分

第九章重积分教学目的:1、理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。

2、掌握二重积分的(直角坐标、极坐标)计算方法。

3、掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。

4、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。

教学重点:1、二重积分的计算(直角坐标、极坐标);2、三重积分的(直角坐标、柱面坐标、球面坐标)计算。

3、二、三重积分的几何应用及物理应用。

教学难点:1、利用极坐标计算二重积分;2、利用球坐标计算三重积分;3、物理应用中的引力问题。

§9. 1 二重积分的概念与性质一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积.首先, 用一组曲线网把D 分成n 个小区域:∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为 高而底为∆σ i 的平顶柱体的体积为 : f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ). 这个平顶柱体体积之和:i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值. 2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M . 用一组曲线网把D 分成n 个小区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n . 把各小块的质量近似地看作均匀薄片的质量: ρ(ξ i , η i )∆σ i . 各小块质量的和作为平面薄片的质量的近似值: i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量i i i n i M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim),(10.f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和.直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdyy x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二. 二重积分的性质 性质1 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质2如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质3σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质4 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.特殊地σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质5 设M 、m 分别是f (x , y )在闭区域D 上的最大值和最小值, σ为D 的面积, 则有σσσM d y x f m D≤≤⎰⎰),(.性质6(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得σηξσ),(),(f d y x f D=⎰⎰.§9. 2 二重积分的计算法一、利用直角坐标计算二重积分 X --型区域:D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }.此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为⎰=b adx x A V )(dx dy y x f bax x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f bax x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d ,则有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .解法1. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰=211][x Ddx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xxDydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰=212][yDdy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y .例2. 计算σd y x y D⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211x Ddy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x 21)1(3213=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydyd y x yσ.例3 计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2,其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx x xDxydydx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4 求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积. 解 设这两个圆柱面的方程分别为x 2+y 2=ρ 2及x 2+z 2=ρ 2.利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=Rx R dy x R dx 0022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.二. 利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(.按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim),(.下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i ρξcos =, i i i ρηsin =.于是 ii ni i i i i i i ni i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim),(lim ,即θρρθρθρσd d f d y x f DD)s i n ,c o s (),(⎰⎰⎰⎰=. 若积分区域D 可表示为ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β, 则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5. 计算⎰⎰--Dy xdxdye 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为 0≤ρ≤a , 0≤θ ≤2π .于是⎰⎰⎰⎰---=DDy x d d e dxdy e θρρρ222θθρρπρπρd e d d e a a02020]21[ ][22⎰⎰⎰---== )1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdye 22也常写成⎰⎰≤+--22222a y x y xdxdy e.利用)1(222222a a y x y x edxdy e-≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y x dxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy x dx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y x e d x d y e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R Rx R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而22π=-∞+⎰dx e x .例6 求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积.解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .§9.3 三重积分一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξ i , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim),,(10ζηξλ.三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv——被积表达式, dv 体积元素, x , y , z ——积分变量, Ω——积分区域. 在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=d x d y d zz y x f dv z y x f ),,(),,(. 当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的,因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的.三重积分的性质: 与二重积分类似. 比如dvz y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;Vdv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为 z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([ ⎰⎰⎰=bay x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(, 即⎰⎰⎰⎰⎰⎰=Ωba y x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b , 计算⎰⎰⎰Ωdvz y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ), ⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([ ⎰⎰⎰=bay x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域.例1 计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1.于是⎰⎰⎰⎰⎰⎰---Ω=10210210x yx x d z dy dx dxdydzx⎰⎰---=1210)21(x dyy x xdx⎰=+-=1032481)2(41dx x xx . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2 计算三重积分dxdydz z ⎰⎰⎰Ω2,其中Ω是由椭球面1222222=++cz b ya x 所围成的空间闭区域.解 空间区域Ω可表为:2222221cz b y a x -≤+, -c ≤ z ≤c .于是⎰⎰⎰⎰⎰⎰-Ω=c cD zdxdy dz z dxdydz z 22 3222154)1(abc dz z c z ab ccππ=-=⎰-. 练习1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域.2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式,其中Ω由曲面z =1-x 2-y 2, z =0所围成的闭区域. 2. 利用柱面坐标计算三重积分设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为:0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系: x =ρcos θ, y =ρsin θ, z =z .⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz . 柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydzz y x f θρρθρθρ),sin ,cos (),,(.例3 利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域. 解 闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dzd d z zdxdydz θρρ⎰⎰⎰=πρρρθ20242z d z d d ⎰⎰-=πρρρθ2024)16(21d dπρρπ364]618[2212062=-⋅=. 3. 利用球面坐标计算三重积分设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为 0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π. 坐标面r =r 0, ϕ=ϕ0, θ=θ0的意义: 点M 的直角坐标与球面坐标的关系: x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ .⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd d r d r r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=.例4 求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解 该立体所占区域Ω可表示为:0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π. 于是所求立体的体积为⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd d r d r d x d y d z V s i n 2⎰⎰⎰=παϕϕϕθ200c o s202s i n a dr r d d⎰⎰=αϕϕϕπ0c o s202s i n 2a dr r d⎰=αϕϕϕπ033s i n c o s 316d a )c o s 1(3443a a -=π.提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ.§9. 4 重积分的应用元素法的推广:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则σγσd y x f y x f d dA y x ),(),(1cos 22++==, 这就是曲面S 的面积元素. 于是曲面S 的面积为σd y x f y x f A y x D),(),(122++=⎰⎰,或 d x d y yz x z A D22)()(1∂∂+∂∂+=⎰⎰.设dA 为曲面S 上点M 处的面积元素, dA 在xOy 面上的投影为小闭区域d σ, M 在xOy 面上的投影为点P (x , y ), 因为曲面上点M 处的法向量为n =(-f x , -f y , 1), 所以σσd y x f y x f d dA y x ),(),(1||22++==n . 提示: dA 与xOy 面的夹角为(n ,^ k ), dA cos(n ,^ k )=d σ, n ⋅k =|n |cos(n ,^ k )=1, cos(n ,^ k )=|n |-1.讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求? d y d zzxy x A yzD ⎰⎰∂∂+∂∂+=22)()(1,或 d z d x xy zy A zxD ⎰⎰∂∂+∂∂+=22)()(1.其中D yz 是曲面在yOz 面上的投影区域, D zx 是曲面在zOx 面上的投影区域. 例1 求半径为R 的球的表面积.解 上半球面方程为222y x R z --=, x 2+y 2≤R 2.因为z 对x 和对y 的偏导数在D : x 2+y 2≤R 2上无界, 所以上半球面面积不能直接求出. 因此先求在区域D 1: x 2+y 2≤a 2 (a <R )上的部分球面面积, 然后取极限.d x d y yx R R a y x 222222--⎰⎰≤+⎰⎰-=πθ2022arR r d r d R)(222a R R R --=π.于是上半球面面积为2222)(2lim R a R R R Ra ππ=--→.整个球面面积为 A =2A 1=4πR 2. 提示: 222yx R x xz ---=∂∂, 222yx R y yz ---=∂∂, 22222)()(1yx R R yz xz --=∂∂+∂∂+.解 球面的面积A 为上半球面面积的两倍. 上半球面的方程为222y x R z --=, 而222yx R x xz ---=∂∂, 222yx R y yz ---=∂∂,所以 22)()(12222yz x z A R y x ∂∂+∂∂+=⎰⎰≤+d x d y y x R RR y x 2222222--=⎰⎰≤+⎰⎰-=πρρρθ20222RR d d R20224 4R R R R πρπ=--=.例2设有一颗地球同步轨道通讯卫星, 距地面的高度为h =36000km , 运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径R =6400km).解 取地心为坐标原点, 地心到通讯卫星中心的连线为z 轴, 建立坐标系. 通讯卫星覆盖的曲面∑是上半球面被半顶角为α的圆锥面所截得的部分. ∑的方程为222y x R z --=, x 2+y 2≤R 2sin 2α. 于是通讯卫星的覆盖面积为 ⎰⎰⎰⎰--=∂∂+∂∂+=xyxyD D dxdyyx R R dxdy yz x z A 22222)()(1.其中D xy ={(x , y )| x 2+y 2≤R 2sin 2α}是曲面∑在xOy 面上的投影区域. 利用极坐标, 得 )c o s 1(222s i n22s i n2220απρρρπρρρθααπ-=-=-=⎰⎰⎰R d R R d R R d A R R .由于hR R +=αcos , 代入上式得hR hR hR R R A +=+-=222)1(2ππ.由此得这颗通讯卫星的覆盖面积与地球表面积之比为%5.4210)4.636(21036)(24662≈⋅+⋅=+=h R h R A π.由以上结果可知, 卫星覆盖了全球三分之一以上的面积, 故使用三颗相隔π32角度的通讯卫星就可以覆盖几乎地球全部表面. 二、质心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有 y M M x =⋅, x M M y =⋅ . 于是 ⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDx d y x d y x y MM y σμσμ),(),(.在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则 平面薄片对x 轴和对y 轴的力矩元素分别为 dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ. 平面薄片对x 轴和对y 轴的力矩分别为 ⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅ . 于是 ⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDx d y x d y x y MM y σμσμ),(),(.提示: 将P (x , y )点处的面积元素d σ看成是包含点P 的直径得小的闭区域. D 上任取一点P (x , y ), 及包含的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求?求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例3 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为 ⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDDd yd y . 所求形心是)37,0(C . 类似地, 占有空间闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )(假宽ρ(x , y , z )在Ω上连续)的物体的质心坐标是⎰⎰⎰Ω=dvz y x x Mx ),,(1ρ, ⎰⎰⎰Ω=dvz y x y My ),,(1ρ, ⎰⎰⎰Ω=dv z y x z Mz ),,(1ρ,其中⎰⎰⎰Ω=dv z y x M ),,(ρ.例4 求均匀半球体的质心.解 取半球体的对称轴为z 轴, 原点取在球心上, 又设球半径为a , 则半球体所占空间闭区可表示为Ω={(x , y , z )| x 2+y 2+z 2≤a 2, z ≥0} 显然, 质心在z 轴上, 故0==y x .⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ==dvzdvdvdv z z ρρ83a =.故质心为)83 ,0 ,0(a .提示: Ω: 0≤r ≤a , 20πϕ≤≤, 0≤θ≤2π.⎰⎰⎰⎰⎰⎰=Ωadr r d d dv 022020sin ϕθϕππ⎰⎰⎰=adr r d d 022020sin ππθϕϕ323a π=,⎰⎰⎰⎰⎰⎰⋅=Ωadr r r d d dv z 022020sin cos ϕϕθϕππ⎰⎰⎰=a dr r d d 0320202sin 21ππθϕϕ42214a ⋅⋅=π.三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量. 在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为 dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为 σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例5 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为 D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x , ⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ02432s i n 4s i n d a d d a2441241Ma a =⋅=πμ,其中μπ221a M =为半圆薄片的质量.类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为⎰⎰⎰Ω+=d v z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=d v z y x x z I y ),,()(22ρ,⎰⎰⎰Ω+=d v z y x y x I z ),,()(22ρ.例6 求密度为ρ的均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为坐标原点, z 轴与轴l 重合, 又设球的半径为a , 则球体所占空间闭区域Ω={(x , y , z )| x 2+y 2+z 2≤a 2}.所求转动惯量即球体对于z 轴的转动惯量I z . ⎰⎰⎰Ω+=dv y x I z )(22ρθϕϕθϕθϕρd d r d r r r s i n )s i n s i n c o s s i n(2222222+=⎰⎰⎰Ωθϕϕρd d r d r 34s i n ⎰⎰⎰Ω=dr r d d a ⎰⎰⎰=ππϕϕθρ200043 sin ρπ5158a =M a 252=,其中ρπ334a M =为球体的质量.提示: x 2+y 2=r 2sin 2ϕcos 2θ+r 2sin 2ϕ sin 2θ=r 2sin 2ϕ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题.设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续.在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为 ),,(z y x dF dF dF d =F )))(,,(,))(,,(,))(,,((303030dv r z z z y x Gdv r y y z y x Gdv r x x z y x G---=ρρρ,其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量,202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ).例7设半径为R 的匀质球占有空间闭区域Ω={(x , y , z )|x 2+y 2+z 2≤R 2). 求它对于位于点M 0(0, 0, a ) (a >R )处的单位质量的质点的引力.解 设球的密度为ρ0, 由球体的对称性及质量分布的均匀性知F x =F y =0, 所求引力沿z 轴的分量为 dva z y x az G F z 2/32220])([-++-=⎰⎰⎰Ωρ⎰⎰⎰--≤+-++-=RRzR y x a z y x dxdydza z G 22222/32220])([)(ρ⎰⎰⎰---+-=2202/322200])([)(z R R Ra z d d dz a z G ρρρθρπ⎰-+----=RRdz aaz R za a z G )211)((2220ρπ]2)(12[2220⎰-+--+-=RRa az R d a z aR G ρπ)3222(2230a R R R G -+-=πρ2203134aM G a R G -=⋅⋅-=ρπ,其中0334ρπR M =为球的质量.上述结果表明: 匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力.。

重积分的积分方法和积分公式

重积分的积分方法和积分公式

重积分的积分方法和积分公式重积分是高等数学中的重要概念,也是应用数学和物理学中使用最广泛的数学工具之一。

重积分包括二重积分和三重积分两种形式,其积分方法和积分公式对于求解各种物理量的大小、均值、中心、惯性矩等、数学物理问题的衍生、傅里叶级数的变换等都有着非常重要的应用价值。

1.二重积分的积分方法在二维空间内,设有一函数$f(x,y)$,在有界区域$D$上有定义,那么$f(x,y)$在$D$上的二重积分可以通过将$D$分成若干个无穷小的小矩形,然后对每个小矩形求面积乘上$f(x,y)$在矩形内的均值得出,公式如下:$\iint_Df(x,y)dxdy=\lim_{\Delta x, \Delta y \to 0} \sum_{i=1}^nf(x_i, y_i) \Delta x_i \Delta y_i$这里,$\Delta x$和$\Delta y$表示$x$和$y$在区域$D$上的最小划分,$n$表示小矩形的个数,而$f(x_i,y_i)$则为小矩形中心点$(x_i,y_i)$处的函数值。

不同的小矩形划分方式会影响到二重积分的精确度,一种常用的划分方式是网格划分方法,即将区域D分成若干格子,然后在每个格子中取其中心点作为较准确的位置来求积分。

2.二重积分的积分公式(1) Fubini定理:对于在矩形域$D$上的二重积分,其积分范围可以交换。

$\iint_Df(x,y)dxdy=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy=\int_{c}^ {d}dy\int_{a}^{b}f(x,y)dx$(2) 极坐标变换:若对于$f(x,y)$在极坐标下的表示为$f(r,\theta)$,则对于圆域$D$有以下公式成立。

$\iint_Df(x,y)dxdy=\int_{0}^{2\pi}d\theta\int_{0}^{R(\theta)}f(r\c os\theta,r\sin\theta)rdr$其中,$R(\theta)$表示圆$D$在极坐标系下,相对于$\theta$的极径取值范围。

第九章重积分习题

第九章重积分习题

成的闭区域. 7.利用球面坐标计算下列三重积分: (1) ∫∫∫ x 2 + y 2 + z 2 d x d y d z ,其中 Ω 是由球面 x 2 + y 2 + z 2 = z 所围成的闭区域.

(2) ∫∫∫ z d x d y d z , 其中 Ω 是由不等式 x 2 + y 2 + ( z − a )2 ≤ a 2 , x 2 + y 2 ≤ z 2 (a > 0) 所确定.
D
(2) ∫∫ y 2 d x d y , 其中 D 是由横轴和摆线 x = a (t − sin t ), y = a(1 − cos t ) (0 ≤ t ≤ 2π ) 所围成
D
的闭区域 (a > 0) . (3) ∫∫ xy d σ , 其中 D 是由圆周 x 2 + y 2 = a 2 (a > 0) 所围成.
________ ________ ___ ___
_______________________ d z .
6.利用柱面坐标计算下列三重积分: d xd yd z (1) ∫∫∫ 2 ,其中 Ω 是由锥面 x 2 + y 2 = z 2 以及平面 z = 1 所围成的闭区域. 2 x + y + 1 Ω (2) ∫∫∫ z x 2 + y 2 d x d y d z ,其中 Ω 是由曲面 y = 2 x − x 2 , z = 0, z = a (a > 0), y = 0 所围
D
区域 D 是: (1) 0 ≤ y ≤ x 2 , 0 ≤ x ≤ 1 . (2)由曲线 y = a 2 − x 2 , y = ax − x 2 及 y = − x 围成的闭区域 (a > 0) . 8.利用极坐标计算 ∫∫ y + 3x d x d y, ,其中区域 D 为 x 2 + y 2 ≤ 1 .

理学第九章重积分

理学第九章重积分

1
1
2
2
(
1 2
,
2)
y
(
1 2
,1)
yx (1,1)
2
dy
1
y f (x, y)dx
1
1 2
(
1 2
,
1 2
)
y
1 x
o 11 2
x
机动 目录 上页 下页 返回 结束
4. 计算 I
2 dy
2
sin
x
dx.
0
yx
解: 积分区域如图. 交换积分顺序得:
I
2
sin
x
dx
0x
x
dy
0
x
cos(x y)dy
2
x
2
1
D2
o
D1
2
x
机动 目录 上页 下页 返回 结束
x y , x2 y 2x2
8. 设 f (x, y)
0 , 其他
,求 I f (x, y)dxdy,
D
其中 D {(x, y) 0 x 1 , 0 y 1}.
解: 积分区域如图.
I f (x, y)dxdy f (x, y)dxdy f (x, y)dxdy
z
1
解: 积分区域如图.
x2 y2 z2 6
z x2 y2
Dxy : x2 y2 2
y
2
o Dxy
x
1 : z 6 x2 y2
2 : z x2 y2
机动 目录 上页 下页 返回 结束
S1 Dxy
6 6 x2 y2 dxdy
2
2
6 d
0
0
rdr 6 r2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 重积分
(一)
一.填空题
1、 设()y x y x P 2
,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,

()σd y x P D
⎰⎰,()⎰⎰D
d y x Q σ,
2、设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,
准线为D 的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

3、 在极坐标系中,面积元素为 。

4、⎰⎰≤+=+1
2)(y x dxdy y x
31 。

解:
3
144)(1021
,01
2
1
1
2
1
2
===+
=
+⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰-≥≥≤+≤+≤+≤+x y x y x y x y x y x dy x dx dxdy x
ydxdy dxdy x
dxdy y x。

5、=
⎰⎰1
51
3
31
cos y
dx x y dy sin1 203。

解:

⎰⎰⎰=3 053
11 0 1 35311
0 cos cos x y dy
x y dx dx x y dy
1sin 203)(cos 203cos 431 0 5
51 0 54===
⎰⎰x d x dx x x 。

6、
=-⎰⎰y dx x x dy 221 1sin cos1cos2-。

解:该积分不是二重积分的二次积分。

1
cos 2cos sin 1sin 1sin 1sin 21 12
1 2
2
1 2
2
1 -=-=--=--=-⎰⎰⎰⎰⎰⎰⎰xdx dy x x dx dx x x dy dx x x
dy x y y 换序。

7、.

⎰⎰
⎰-+=2
40
2
1
30
1
),(),(x x
dy
y x f dx dy y x f dx I 在极坐标系下的二次积分
为=
I ⎰

ρ
ρϕρϕρϕπ
20
30 )sin ,cos (d f d 。

8、当函数f(x,y)在闭区域D 上______________时,则其在D 上的二重积分必定存在 .
9、二重积分
(,)D f x y d σ
⎰⎰的几何意义是
___________________________________.
二、选择题
1.设),(y x f 连续,且⎰⎰+=D dudv
v u f xy y x f ),(),(,其中D 是由0=y ,2
x y =,
1=x 所围成区域,则),(y x f 等于( C )
(A )xy ; (B )xy 2; (C )
81+
xy ; (D )1+xy 。

解:设⎰⎰=D dudv v u f b ),((常数)。

在D 上对⎰⎰+=D dudv
v u f xy y x f ),(),(两边积分得:
b dy dx b ydy xdx dxdy b xydxdy b x x D D 3
112122010010+=+=+=⎰⎰⎰⎰⎰⎰⎰⎰,解得81=b ,

81
),(+
=xy y x f 。

2.二次积分⎰⎰ϕρρϕρϕρϕ
πcos 0
)sin cos 2 d ,f(d 可以写成( D )
(A )
⎰⎰-2
0 1
0 y y f(x,y)dx
dy ; (B )
⎰⎰-2
1 0 1
0 y f(x,y)dx
dy ;
(C )⎰⎰1
0 1 0 f(x,y)dy dx ; (D )
⎰⎰-2 0 1
0 x x f(x,y)dy
dx 。

3.设)(u f 为连续函数,
}
1 ,1),{(3x y x y x D ≤-≤≤=,
dxdy
y y x f x x I D
⎰⎰++=]sin )([22,则I =( B )
(A )32-
; (B )32; (C )0; (D )23。

4、选择题
设空间区域1Ω:2222R z y x ≤++,0≥z ,2Ω:2222R z y x ≤++,0≥x ,
0≥y ,0≥z ,则………………( )
A .
⎰⎰⎰⎰⎰⎰ΩΩ=2
1
4dv
zdv B .
⎰⎰⎰⎰⎰⎰ΩΩ=2
1
4dv
dv
C .
⎰⎰⎰⎰⎰⎰ΩΩ=2
1
2ydv
ydv D .
⎰⎰⎰⎰⎰⎰ΩΩ=2
1
zdv
dv
三、计算
1.利用二重积分性质,估计积分
()
⎰⎰++=D
d y x I σ
92222的值,其中D 是圆
形闭区域42
2≤+y x 。

2.计算()⎰⎰+D
d y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区
域。

9.计算()⎰⎰+D
yd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的
梯形闭区域。

10.计算二重积分⎰⎰D
dxdy ,其中区域D 由曲线2
1x
y -=与12
-=x y 围成。

11.计算二重积分⎰⎰D
d xy σ2,其中D 是由圆周
42
2=+y x 及y 轴所围成的右半闭区域。

14.计算二重积分⎰⎰
+D
dxdy
y x 22,其中D :x y x 22
2≤+。

15.计算⎰⎰-11
22
x
y dy
e dx x 。

17.计算⎰⎰⎪⎪⎭⎫ ⎝⎛++--D dxdy y x y x 2
1222
2
11,其中D 为
12
2≤+y x 在第一象限的部分。

相关文档
最新文档