红外分光光度法
红外分光光度法
第十四章
答:C-H键的振动频率为3030cm-1。
第二节 基本原理
第十四章
由于有机化合物的结构不同,化学键连接 的两原子折合质量和化学键的力常数各不相同, 就会出现不同的吸收频率,因此,不同的化合 物各有其特征的红外光谱。
第二节 基本原理
第十四章
2.多原子分子的振动
伸缩振动
第二节 基本原理
自由度。 所以 非线性分子的振动自由度=3N-3-3=3N-6
线性分子的振动自由度=3N-3-2=3N-5
第二节 基本原理
第十四章
如H2O的振动自由度等于 3×3-6=3
水的红外光谱图
第二节 基本原理
第十四章
(四)吸收峰的类型
基频:振动能级由基态跃迁到第一激发态时产生的 吸收峰称为基频峰,相应的频率称为基频。
第二节 基本原理
第十四章
分子振动的自由度
N个原子组成分子。
有3N个独立运动=平动数+振动数+转动数
N个原子中每个原子都能向X,Y,Z三
个坐标方向独立运动。
即N个原子有3N个独立运动。
Z
3个平动自由度
y X
第二节 基本原理
第十四章
转动:非线性:3个转动自由度 线 性:2个转动自由度,键轴为轴的转 动原子的位置没有改变。不形成转动的
对称分子:没有偶极矩,辐射不能引起共振,无红外 活性。如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红外活性。
第二节 基本原理
第十四章
IR谱带的强度用 s(strong,强)、m(middle,中等)、 w(weak,弱)、vw(very weak,极弱) 表示。
第二节 基本原理
第十四章
红外分光光度法
31
红外活性振动: 偶极矩发生变化的振动
产生红外吸收 红外非活性振动:偶极矩不发生变化的振动 不产生红外吸收
N2、O2、Cl2、H2 没有红外活性 。
+
-
CO2
+ -
qr q 0 0 0
qr>0 0
32
2.吸收峰峰数
苯的振动自由度=3*12-6=30,但实际观 察到的红外吸收峰数目并不等于分子振动 自由度即基本振动数,其主要原因是:
19
分子总自由度等于该分子中各原子在空间 坐标的总和。在空间确定一原子的位置需三个 坐标(x.y.z),故一原子有三个自由度.含N个 原子的分子总自由度为3N, 而分子作为一个整 体,其运动状态可分为平动、转动,、振动三类. 分子总自由度应该等于平动、转动和振动自由 度的总和,即: f总=f振+f平+f转=3N f振=3N -f平-f转 振动自由度 基本振动数目 基频峰峰数
1
分子振动
E1 υ 32 v υ2 1 v
v υ 10
3 2 1 0 43 32 21 10
4 3 2 1
J J J
43 32 21 10 43 32 21 10
E0
分子振动吸收光谱
J
分子转动吸收光谱
2
红外光谱通常是指中红外吸收光谱, 由振 动能级跃迁产生,同时伴随转动能级的变化。 二、红外吸收光谱的表示方法
图6-1 聚苯乙烯薄膜的红外光栅光谱(T-σ曲线)
3
10 4 1 (cm ) ( m)
4
三、IR与UV的区别 IR 起源 分子振动能级伴随 转动能级跃迁 适用 所有有机化合物 UV 分子外层价电子能级 跃迁 具n-π*、π-π*跃迁 有机化合物 特征性光谱复杂,特征性强 光谱简单、特征性不强 用途 鉴定化合物类别 定量 鉴定官能团 推测有机化合物共轭骨架 推测结构
红外分光光度法
• 为了增加吸收峰强度,提高测试店噪比,现代 ATR附件采用增加全反射次数来使吸收谱带增 强.这就是多重衰减全反射
衰减全反射傅里叶变换红外光谱技术
• 谱学特点 (1)不破坏样品,不需要象透射红外光谱那样要将样品进
应用实例
• ATR红外光谱技术在药品包装材料检测中的 应用
方法:分别采用衰减全反射(ATR)红外光谱 法、透射光谱薄膜法等对药品包装材料材 质进行定性分析
• 高密度聚乙烯瓶(含遮光剂,且瓶壁较厚)
透射法:取样品适量敷于微热的的溴化钾晶片上, 照分光光度法《中国药典》测定。
全反射法:从瓶体上直接剪取少许样品,置于晶 体上,直接进行摄谱
红外分光光度法
• 一、红外分光光度法概述 • 二、图谱解析 • 三、样品的制备方法 • 四、近代红外光谱技术的发展
一、红外分光光度法概述
红外分光光度法:利用物质对红外光区电 磁辐射的选择性吸收的特性来进行结构分 析、定性和定量的分析方法,又称红外吸 收光谱法
红外线区划
区域 近红外区 中红外区 远红外区
• 倍频峰中,二倍频可经常观测到,三倍及三倍以 上,跃迁几率小,一般都很弱,常观测不到。
二、图谱解析
• 基频峰分布
σ :波数 K :键的力常数 u :折合质量
u Ma•Mb MaMb
1 2
K u
• 基频峰分布
• (1)折合质量越小,伸缩频率越高。因此,含氢 官能团的伸缩振动,出现在中红外光谱的高频区。
• PA/PE双层复合膜 该复合膜为透明材质,故直接剪取样品少 许,以透射光谱直接摄谱
采用ATR红外光谱技术,从该PA/PE双层
第5章 红外分光光度法
红外分光光度法红外分光光度法 §1 概述UV 光谱又称:电子光谱、振一转光谱一、定义:由分子的振动—转动能级跃迁产生的光谱为红外光谱。
是以速光率T —ζ或T —λ图来进行定性、定量分析方法。
T-λ曲线,由于波长等距,曲线“前密后疏” 使用较多的是T-ζT-ζ曲线,由于波数等距,曲线“前疏后密” 使用较多的是T-ζ 二、IR 与UV 的区别:1、起源不同:UV 是分子的价电子跃迁产生(电子光谱)IR 是分子振-转能级跃迁产生(振-转光谱)2、适用范围:UV 主要讨论芳香化合物、共轭、长共轭化合物,且限于溶液。
IR :几乎所有的有机化合物,且用于固、液、气。
3、特征性强:ζ波数cm -1=)(104m μλ0.76~2.5μm 近红外 2.5~25μm 中红外(中红外研究最为)4000~400 25~500μm 定红外红外主要用于定性、紫外主要用于定量。
三、用途:定性、定量、定结构构型、取代基位置定结构:①官能量;②化学类别;③精细结构 直链、支链 §2 基本原理IR :由峰位、峰形、峰强描述主要讨论:起源、峰位、峰形、峰强及其影响因素。
一、振动能级和振动光谱讨论双原子分子。
re-平衡位置时原子间距。
将A 、B 两原子看作两个小球,化学键质量可忽略,则两个原子沿键轴方向的伸缩振动可近似为简谐振动,双原子分子视为谐振子。
1、位能:U=2)(21re r K -r=re, U=0r>re, U>0 r<re, U>0由量子力学可推,分子振动的总能量:Ev=(V+Ev=(V+21)h υ V=0,1,2……(振动量子数)由Hu 克定律:F=-Kr ,条件:弹簧伸长量不能太大。
而由图15-4,V=0时,E V =21h υ 振幅小V=1时,E V =23h υ ……振幅增大当大到一定程度时,化学键断裂了,即分子离解了(达到了离解能) ∴真实分子并不是谐振 2、基频峰产生的重要条件 V=0 V=1由图15-4,振动能级是量子化的,分子只能吸收相当于两个能级差的光量子,才能发生跃迁。
仪器分析红外分光光度法
红外分光光度法的优势与局限性
优势
红外光谱具有高灵敏度、高分辨率和 无损检测等优点,能够提供丰富的化 学结构信息,有助于快速准确地鉴定 和鉴别物质。
局限性
对于一些低浓度的物质,可能需要较 高的检测限;另外,对于一些复杂的 样品或未知物,解析红外光谱可能会 比较困难,需要结合其他分析方法进 行综合判断。
01
采用棱镜作为分束器,能够提供高分辨率和高精度的光谱数据,
但体积较大。
傅里叶变换型红外分光光度计
02
采用干涉仪作为分束器,能够快速扫描并获得连续光谱数据,
具有高灵敏度和高分辨率,体积较小。
光栅型红外分光光度计
03
采用光栅作为分束器,能够提供高精度的光谱数据,但扫描速
度较慢。
04
实验操作流程与注意事项
红外分光光度法的应用领域
有机化合物分析
生物样品分析
红外光谱能够提供有机化合物的官能 团、化学键和分子结构等信息,广泛 应用于有机化合物的定性和定量分析。
在生物领域,红外光谱可以用于研究 生物大分子的结构和功能,如蛋白质、 核酸等。
无机物分析
对于一些无机物,如矿物、金属氧化 物等,红外光谱也可以提供有关其结 构和组成的信息。
数据处理与分析
05 对记录的数据进行处理和分析
,计算样品的浓度、含量等参 数。
结果报告
06 整理实验数据,撰写实验报告
,将结果报告给相关人员。
实验注意事项
样品纯度
仪器保养
操作规范
确保待测样品的纯度, 以减小误差。
定期对仪器进行保养和 维护,确保其正常运转。
严格遵守操作规程,避 免因操作不当导致实验
仪器分析红外分光光度法
• 红外分光光度法简介 • 仪器分析在红外分光光度法中的作用 • 红外分光光度计的组成与工作原理 • 实验操作流程与注意事项 • 案例分析
第十四章红外分光光度法
振动自由度: 非线性分子:3N-6
线性分子:3N-5
例1:H2O
振动自由度数=3×3-6=3
二、红外吸收光谱产生的条件和吸收峰强度
Ev ( V 1 / 2)h
分子振动能级差 E振 V h
光子照射能量 E L h L
产生红外光谱前提 E振 E L
L V
第四节 红外吸收光谱分析
一、试样的制备
对样品的要求 a. 纯度:>98% b. 不含水分 固态样品的制样:压片法(KBr)
IR与UV的区别(p208)
2. μ折合质量 3. μ`折合原子量
mA mB mA mB
K 1 1307 (cm ) `
(一)基本振动频率
K 1 1307 (cm ) `
(1)折合相对原子质量越小,基团的伸缩振动频 率越高 (2)折合原子质量相同的基团,化学键力常数越
大,伸缩振动频率越高
(3)折合原子质量相同的基团,ν > β > γ
L 红外光的照射频率 分子的振动频率
例2:CO2
振动自由度数=3×3-5=4
基频峰数小于基本振动数 a. 简并 b. 红外非活性振动
简并:振动形式不同,但振动频率相同的现象
b. 红外非活性振动
红外非活性振动:不能引起偶极矩变化的振动 红外活性振动:能引起偶极矩变化的振动 偶极矩 C+ OO-
鉴别的依据。例如C=O总是在1870~1540cm-1间。
分布稀疏,容易辨认,确定官能团的存在
2、指纹区:1300~400cm-1 振动容易受到附近化学键振动的影响,结构 的微小变化可使光谱的面貌发生较大的差异。 协助确认化合物的结构
第三节 红外光谱仪
红外分光光度法
二、振动形式
2)面外弯曲γ:弯曲振动垂直几个原子构成的平面 A:面外摇摆振动 ω:两个X 原子同时向面下或面上的振动
B:蜷曲振动 τ:一个X原子在面上,一个X原子在面下的振动
二、振动形式
3、变形振动
1)对称的变形振动δs:三个AX键与轴线的夹角同时变大 或缩小。形如花瓣开、闭的振动。
区
波数:13158—4000cm-1
中红外区:2.5—25μm
振动、伴随转动光谱
波数:4000—400cm-1
远红外区:25—1000μm 纯转动光谱
波数:400—10cm-1
二、红外光谱的表示方法
T~λ 曲线 →前密后疏 波长等距
T ~σ 曲线→ 前疏后密 波数等距
“谷”是IR中的吸收峰
三、红外光谱与紫外光谱的区别
定量(准确)
结构研究的主要手段(官能团、化合物类别、 结构研究(推测有机化合物
结构异构、氢键以及某些链状化合物的链长等)共轭骨架)
4—2 IR 基本原理
一、振动-转动光谱 二、振动形式 三、振动自由度 四、红外光谱产生的条件 五、吸收峰强度 六、吸收峰的分类 七、吸收峰的峰位及其影响因素 八、吸收峰峰数的影响因素
二、振动形式
振动频率不仅受化学键性质和原子质量的影响,也受到整个 分子的影响
双原子分子 多原子分子
伸缩振动()
1、伸缩振动 1)对称伸缩振动s 2)反称伸缩振动as
1)面内弯曲振动β
A:剪式振动δ B:面内摇摆ρ
2、弯曲振动
2)面外弯曲γ
A:面外摇摆振动 ω B:蜷曲振动 τ
3)变形振动
A:对称的变形振动δs B:不对称的变形振动δas
分析化学基础知识——第七课红外分光光度法
分析化学基础知识——第七课红外分光光度法第七课红外分光光度法⼀、概述1.红外区波长范围及分区波长范围:0.76µm-1000µm分区:2.红外吸收光谱的表⽰⽅法3.IR的特点适⽤于⽓、液、固态样品、且样品⽤量少。
⼤多数化合物均有红外吸收,除了单原⼦分⼦和同核分⼦。
红外光谱中的吸收峰较多,特征性强,适合⽤于定性和结构解析。
红外光谱仪的价格相对低廉。
定量分析灵敏度差,准确度低,主要⽤于定性分析。
不适合作含⽔样品的分析。
⼆、基本原理分⼦振动和红外吸收吸收峰的位置吸收峰的强度1.分⼦振动和红外吸收双原⼦分⼦的振动与红外吸收分⼦振动简单的双原⼦A-B间的振动可近似地⽤谐振⼦模型来描述振动频率可由虎克定律和⽜顿定律推导出来A、B视为两个刚性⼩球化学键视为质量忽略不计的弹簧A、B间的振动视为简谐振动红外吸收⼊射光频率与分⼦振动频率相等时,分⼦将吸收⼊射光,振动振幅加⼤,产⽣吸收光谱,因此,所吸收光的频率为:多原⼦分⼦振动形式伸缩振动γ弯曲振动δ(1)伸缩振动键长变化但键⾓不变的振动它包括两种类型对称伸缩振动γs反称伸缩振动γas亚甲基的伸缩振动(2)弯曲振动键⾓发⽣周期性变化,但键长不变的振动。
它包括以下⼏种类型⾯内弯曲振动 AX2⾯外弯曲振动变形振动AX3⾯内弯曲振动(β)剪式振动(δ)⾯内摇摆振动(ρ)⾯外弯曲振动(γ)⾯外摇摆振动(ω)扭曲振动(τ)变形振动对称变形振动(δs)不对称变形振动(δas)(3)振动⾃由度双原⼦分⼦:⼀种振动形式多原⼦分⼦:振动形式复杂,可以分解为许多简单的基本振动。
基本振动的数⽬称为振动⾃由度,可以⽤作估计基频峰的可能数⽬。
振动⾃由度的计算分⼦的运动形式分为:平动、振动和转动,则:振动⾃由度=总⾃由度-平动⾃由度-转动⾃由度设:分⼦含有N个原⼦则:总⾃由度为3N,平动⾃由度为3转动⾃由度为3(对于⾮线形分⼦)或2(对于线形分⼦)振动⾃由度⾮线形分⼦线形分⼦3N-6 3N-5H2O分⼦的振动⾃由度3×3-6=3CO2的振动⾃由度3×3-5=4基频峰数⽬与振动⾃由度通常,基频峰数⽬<振动⾃由度原因:简并红外⾮活性振动仪器的分辨率或灵敏度不够⾼产⽣红外吸收峰的条件1.辐射恰好提供物质产⽣振动跃迁所需的能量。
红外分光光度法
红外分光光度法1 简述红外分光光度法是在4000~400cm -1波数范围内测定物质的吸收光谱,用于化合物的鉴别、检查或含量测定的方法,化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能级跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振—转光谱。
红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的相互作用。
习惯上,往往把红外区分为3个区域,即近红外区(12800~4000cm -1,0.78~2.5µm),中红外区(4000~400cm -1,2.5~25µm)和远红外区(400~10cm -1,25~1000µm)。
其中中红外区是药物分析中最常用的区域。
红外吸收与物质浓度的关系在一定范围内服从于朗伯—比尔定律,因而它也是红外分光光度法定量的基础。
红外分光光度计分为色散型和傅里叶变换型两种。
前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制和数据处理系统组成。
以光栅为色散元件的红外分光光度计,波数为线性刻度,以棱镜为色散元件的仪器以波长为线性刻度。
波数与波长的换算关系如下:)(10)41m cm μ波长波数(=-傅里叶变换型红外光谱仪(简称FT-IR )则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和数据处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。
该型仪器现已成为最常用的仪器。
2 红外分光光度计的检定所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计检定规程”、“傅里叶变换红外光谱仪检定规程”和《中国药典》2015年版四部通则0401规定,并参考仪器说明书,对仪器定期进行校正规定。
2.1 波数准确度2.1.1 波数准确度的允差范围 傅里叶变换红外光谱仪在3000cm -1附近的波数误差应不大于±5cm-1,在1000cm-1附近的波数误差应不大于±lcm-1。
红外分光光度法
某基本振动吸收红外线 而发生能级跃迁, 必须满足两个条件:
1)Δμ≠0
2) υL= ΔVυ
2.泛频峰
1)倍频峰 υL= nυ 2)组频峰
合频峰 υ1+υ2 差频峰 υ1-υ2 强度弱,特征性明显,有利于结构 分析
四.特征峰与相关峰
1.特征峰(特征频率)
能证明某官能团存在的,又容易 辨认的一些吸收峰。 官能团(基团)的存在与吸收峰 的存在相对应。因此可用一些易 辨认、又代表性的吸收峰来确认 官能团的存在。
4. 吸收池
(1)液体池——分析液体样品 固定池:窗片间距离固定 密封池:用于测定挥发性样品 可拆卸池:用于测定高沸点液体或 糊剂,用于定性分析 (2)气体池——分析气体样品 用于测量气体及沸点较低的液体样品
二.傅立叶变换红外光谱仪简介
1. 工作原理
2. 检测器
热电型硫酸三甘肽(TGS) 或光电导 型如汞镉碲(MCT)
本章重点
吸收曲线的描述(峰数、峰 位、峰强),典型光谱(芳 烃、羰基化合物),光谱解析 方法。
本章难点
光谱解析方法
第一节 概述
一.定义
红外分光光度法是以红外区域 电磁波连续光谱作为辐射源照射样 品,记录样品吸收曲线的一种光学 分析方法,又称红外吸收光谱法。
二. 红外线的区别
区域 波长 名称 λ(μm)
了解基频峰的可能数目。 2.振动形式 伸缩振动(键长改变):υ s,υ as
弯曲振动(键角改变):β (δ ,ρ ) γ (ω ,τ )
伸缩振动
对称伸缩振动 不对称伸缩振动
弯曲振动(变角振动)
3. 振动自由度(f)
——独立的基本振动的数目(独立振动数) 中红外区没有电子跃迁,只需考虑分子中的 三种运动形式:平动(位移)、振动、转动。 分子的平动能改变,不产生光谱,转动能级 跃迁产生远红外光谱。 在讨论中红外光谱时,这两种运动形式要扣 除。
红外分光光度法
红外分光光度法具有非破坏性、快速、准确等优点,能够为化学分析、材料研 究、生物医学等领域提供重要的结构和组成信息。同时,随着红外光谱技术的 不断发展,其在更多领域的应用潜力将得到进一步挖掘。
02
红外分光光度法实验技术
样品制备与处理方法
01
02
03
固体样品制备
将固体样品研磨成粉末, 与干燥剂混合均匀后压制 成透明薄片。
外标法
使用已知浓度的标准品建立标准曲线,通过测量待测样品的吸收峰 强度来在标准曲线上查找对应的浓度值。
应用举例
红外分光光度法在化学、材料科学、生物医学等领域具有广泛应用, 如测定高分子材料的官能团含量、分析生物样品的化学成分等。
04
红外分光光度法在化学领 域应用
有机化合物结构鉴定
官能团鉴定
红外光谱可以提供化合物中官能团(如羟基、羰基、胺基 等)的信息,通过对特征吸收峰的识别,可以确定官能团 的存在及其类型。
水体污染物检测与治理技术探讨
水体污染物检测
红外分光光度法可用于检测水体中的多种污染物,如重金属、有 机物、营养盐等,具有灵敏度高、选择性好等优点。
污染物迁移转化研究
通过分析水体中污染物的红外光谱特征,可揭示其在环境中的迁移 转化规律,为水污染治理提供理论支持。
治理技术探讨
结合红外分光光度法检测结果,可针对性地研发和应用水污染治理 技术,提高治理效果并降低治理成本。
和应用土壤修复技术,实现土壤污染治理和生态恢复的目标。
06
红外分光光度法在生物医 学领域应用
生物组织成分鉴定及功能研究
蛋白质结构和功能分析
利用红外光谱技术可以研究蛋白质二级结构,如α-螺旋、β-折叠等,进而推断蛋白质的功能 和活性。
红外分光光度法
红外分光光度法1 简述化合物受红外辐射照射后,使分子的振动和转动运动由较低能级向较高能及跃迁,从而导致对特定频率红外辐射的选择性吸收,形成特征性很强的红外吸收光谱,红外光谱又称振-转光谱。
红外光谱是鉴别物质和分析物质化学结构的有效手段,已被广泛应用于物质的定性鉴别、物相分析和定量测定,并用于研究分子间和分子内部的互相作用。
习惯上,往往把红外区分为3个区域,近红外区(12800~40000cm -1,0.78~2.5μ m),中红外区(4000~400cm -1 ,2.5~25 μ m)和远红外区(400~10cm -1 ,25~1000μ m)。
其中中红外区是药物分析中最常用的区域。
红外吸收与物质的关系在一定范围内服从朗伯-比尔定律,因而它也是红外分光光度法定量的基础。
红外分光光度计分为色散型和傅里叶变换型两种。
前者主要由光源、单色器(通常为光栅)、样品室、检测器、记录仪、控制盒数据处理系统组成。
以光栅为色散元件的红外分光光度计,以波数为线性刻度,以棱镜为色散元件的仪器,以波长为线性刻度。
波数与波长的换算关系如下:10000波数(cm -1)= )波长(μm傅里叶变换型红外光谱仪(简称FT-IR)则由光学台(包括光源、干涉仪、样品室和检测器)、记录装置和数据处理系统组成,由干涉图变为红外光谱需经快速傅里叶变换。
该型号仪器现已成为最常用的仪器。
2 红外分光光度计的检定所用仪器应按现行国家质量与核查技术监督局“色散型红外分光光度计鉴定规程”、“傅里叶变换红外光谱仪鉴定规程”和《中国药典》附录规定,并参考仪器说明书,对仪器定期进行校正检定。
2.1 波数准确度2.1.1 波数准确度的允差范围傅里叶变换红外光谱仪在3000cm -1附近的波数误差应不大于±5cm -1,在1000cm -1附近的波数误差应不大于±1cm -1。
2.1.2 波数准确度检定方法2.1.2.1 以聚苯乙烯膜校正按仪器使用说明书要求设置参数,以常用的扫描速度记录厚度为50μ m 的聚苯乙烯膜红外光谱图。
红外分光光度法
红外分光光度法
红外分光光度法是当物质分子吸收-记波长的光能,能引起分子振动和转动能级跃迁,产生的吸收光谱一般在2.5~25nm的中红外光区,称为红外分子吸收光谱,简称红外光谱。
利用红外光谱对物质进行定性分析或定量测定的方法称红外分光光度法。
由于物质分子发生振动和转动能级跃迁所需的能量较低,几乎所有的有机化合物在红外光区均有吸收。
分子中不同官能团,在发生振动和转动能级跃迁时所需的能量各不相同,产生的吸收谱带其波长位置就成为鉴定分子中官能团特征的依据,其吸收强度则是定量检测的依据。
红外分光光度法可用于分子结构的基础研究(测定分子键长、键角、推断分子的立体构型等),以及化学组成的分析(化合物的定性定量分析),应用最广泛的是对未知毒物的结构分析、纯度鉴定。
缺点是灵敏度低,不宜进行微量成分定量测定,而1L要求样品必须纯化。
后来发展起来的傅立叶红外光谱法克服了灵敏度低的不足,可测定(T9g的微量样品。
红外分光光度法
二、核磁共振基本原理
自旋量子数I≠0旳原子核具有自旋现象,称自旋核。
氢原子核旳自旋量子数I=1/2,可看成电荷均匀分布旳球体, 绕自旋轴转动时,产生磁场,类似一种小磁铁。
当氢原子核置于外加磁场B0中时,相对于外加磁场,可有 (2I+1)种取向。氢核I=1/2,故有两种取向(两个能级):
(1)与外磁场平行,能量稍低,磁量子数m=+1/2
1385cm1和
1375cm1双峰
s C
(CH3
不等强度裂分为
)3
1395cm1和
1365cm1双峰
3. C-C骨架振动
CC 1250 ~ 1140cm(1 弱 中)
(二)烯烃 1.C-H振动
CH 3100 ~ 3000cm(1 弱 中强) CH 1010 ~ 650cm(1 强)
CCH (顺式) ~ 960cm(1 中 强)
实际上氢核周围有运动旳电子,在外磁场作用下,运动旳电 子产生相对于外磁场方向旳感应磁场,起到屏蔽作用,使氢核
实际受外磁场作用减小 即:B=(1 )B0
式中:σ为屏蔽常数,σ越大,屏蔽效应越大。
所以,共振条件修正为: =[ B0 / 2 ] (1 )
因为屏蔽作用旳存在,氢核产生共振需更大旳外磁场强度, 来抵消屏蔽影响
C
(芳环)
C
~
1600
,~
1580,~ 1500
和
~
1450cm(1 四峰)
Hale Waihona Puke 、醇、酚、醚(一)醇、酚1.O-H伸缩振动: OH 3650 ~ 3200cm(1 强) O(H 游离)3650 ~ 3600cm(1 较强 变,锐峰) O(H 缔合)3500 ~ 3200cm(1 强 中强,宽、钝峰)
第4章 红外分光光度法
第4章 红外分光光度法一、内容提要红外线(infrared ray )是波长为0.76~1000μm 的电磁波。
红外分光光度法(infrared spectrophotometry )是依据物质对红外辐射的特征吸收而建立的一种分析方法,即红外光谱法。
红外分为近、中、远三个区域,通常红外光谱指中红外吸收光谱,由分子中原子的振动能级跃迁和分子的转动能级跃迁所产生的光谱,故为振动-转动光谱,简称振-转光谱。
红外吸收光谱又称红外吸收曲线,多用透光率-波数(T -σ)曲线描述,所谓吸收峰实际上是曲线的“谷”。
一条红外吸收曲线的特征主要由吸收峰的位置(λmax 、σmax )、吸收峰的个数及吸收峰的强度来描述。
分子吸收适当频率的红外辐射(L νh )后,可以由基态跃迁至激发态,其所吸收的光子能量必须等于分子振动能量之差,即ννh E h V V L ∆=∆=,即ννV L ∆= 或σσV L ∆= 是产生红外吸收峰的必要条件之一。
双原子分子只有一类振动形式(mode of vibration )为伸缩振动。
多原子分子有两类振动形式为伸缩振动和弯曲振动。
振动自由度(f )是分子基本振动的数目,非线性分子, 63-=N f ;线性分子,53-=N f 。
在红外光谱中,某一基团或分子的基本振动能吸收红外线而发生能级跃迁,必须满足两个基本条件:(1)振动过程中,△μ≠0;(2)必须服从 νL =ΔV ν,两者缺一不可。
泛频峰使吸收峰数多于基本振动数,简并和红外非活性振动使基频峰数少于基本振动数。
吸收峰的位置或称峰位通常用σmax (或νmax 、λmax )表示,对基频峰而言,σmax =σ,基频峰的峰位即是基团或分子的基本振动频率。
μk σ'=1307(cm -1) 折合相对质量相同时,化学键力常数越大,则基本振动频率越大。
化学键相同时,随着折合相对质量μ'的增大,其吸收频率变低。
吸收峰峰位由化学键两端的原子质量和化学键的键力常数预测,在比较复杂的分子中,由于有诱导效应(induction effection ,I 效应)、共轭效应(conjugation effect ,M 效应)、空间位阻、氢键等因素影响,峰位产生10~100cm -1的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外分光光度法第一节 概述(一)红外线的区划红外线:波长大于0.76μm,小于500μm(或1000μm)的电磁波称为~习惯上将红外线分为三个区域:近红外区(0.76μm~2.5μm),OH、NH、CH键的倍频吸收区中红外区(2.5μm~50μm),振动,伴随着转动(基本振动区)远红外区(50μm~5000(或1000μm)),转动三种波长范围的红外线,引起三种类型的能级跃迁红外光谱:由分子的振动、转动能级引起的光谱,称为中红外吸收光谱,简称红外吸收光谱或红外光谱远红外光谱及微波谱:由分子的纯转动能级跃迁所引起的光谱称为~红外吸收光谱法:利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法,或称红外分光光度法,简称红外光谱法(二)红外吸收光谱的表示方法T-λ曲线,T-σ曲线T-λ曲线“前密后疏”T-σ曲线“前疏后密”这是因为前者是波长等距,后者是波数等距目前的红外光谱采用波数为横坐标波数为波长的倒数,在红外光谱中波长的单位用微米(μm),波数的单位用cm-1,1μm=10-4cmσ(cm-1)=104/λ(μm)波数:表示每1cm距离内包含多少个波长(三)1 起源不同紫外光谱与红外光谱都属于分子吸收光谱,但起源不同1 电子能级跃迁紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁,虽伴有振动及转动能级跃迁,因能级差较小,常被淹没,除某些化合物(苯)蒸汽的紫外光谱,会显现振动能级跃迁外,一般不显现因此紫外吸收光谱属电子光谱2 振动-转动能级跃迁红外线的波长比紫外线长,光子能量比紫外线小得多,只能引起分子的振动能级并伴随转动能级的跃迁因而中红外光谱是振动-转动光谱2 适用范围不同1 紫外吸收光谱法:只是用于研究芳香族或具有共轭结构的不饱和芳香族化合物及某些无机物,不适用于饱和有机化合物红外吸收光谱法:不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,红外光谱还可以用于研究某些无机物2 紫外分光光度法:测定对象的物态为溶液及少数物质的蒸汽红外分光光度法:测定气、液及固体样品,并以固体样品最为方便3紫外分光光度法:用于定量分析及测定某些化合物的类别红外分光光度法:用于定性鉴别及测定有机化合物的分子结构3 特征性不同红外光谱的特征性比紫外光谱强紫外光谱主要是分子的π电子或n电子跃迁所产生的吸收光谱,因此多数紫外光谱比较简单,特征性较差红外吸收光谱是振动-转动光谱,每个官能团都有几种振动形式,在中红外区相应产生几个吸收峰,光谱复杂,特征性强,除了个别化合物外,每个化合物都有其特征红外光谱,因而红外光谱是定性鉴别的有力手段(四)用途红外分光光度法的用于可概括为:定性鉴别、定量分析、结构分析等可提供化合物具有什么官能团、化合物类别(脂肪族、芳香族)、结构异构、氢键、某些链状化合物的链长等信息,是分子结构研究的主要手段之一第二节 基本原理一条红外吸收曲线,可由吸收峰的位置(λmax或σmax)及吸收强度(ξ)来描述一、振动能级与振动光谱由于分子的振动能级差大于转动能级差,因此在分子发生振动能级跃迁时,不可避免地伴随着转动能级的跃迁,因而无法测得纯振动光谱由于振动能级是量子化的,则所吸收的光子的能量hνL必须恰等于振动能级的能量差,即hνL=△EvνL=ν·△V σL=σ·△V若把双原子分子视为谐振子,吸收红外线而发生能级跃迁时所吸收的红外线频率(νL),只能是谐振子振动频率(ν)的△V倍二、振动形式双原子分子只有一类振动形式:伸缩振动多原子分子有两类振动形式:伸缩振动、弯曲振动振动形式可以了解吸收峰的起源振动形式的数目,有助于了解基频峰的可能数目(一)伸缩振动伸缩振动:键长沿键轴方向发生周期性的变化称为~多原子分子(或基团)的每个化学键可以近似地看做一个谐振子伸缩振动的振动形式可分为两种:1 对称伸缩振动2 不对称伸缩振动或称反称伸缩振动除CH2及CH3以外,凡含有两个或两个以上相同键的基团也都有对称及反称两种伸缩振动形式化合物中含有两个相邻相同的官能团,也有对称伸缩振动和反称伸缩振动两种形式(二)弯曲振动弯曲振动:使键角发生周期性变化的振动称为~(或称为变形振动)弯曲振动分为:面内、面外、对称弯曲振动、不对称弯曲振动1 面内弯曲振动:在由几个原子所构成的平面内进行的弯曲振动,称为~按振动形式,面内弯曲振动可以分为:剪式振动、面内摇摆振动两种组成为AX2的基团或分子易发生此类振动(1) 剪式振动:在振动过程中键角的变化类似剪刀“开”“闭”的振动(2) 面内摇摆振动:基团作为一个整体,在平面内摇摆2 面外弯曲振动:在垂直于由几个原子所组成的平面外进行的而弯曲振动称为~(1) 面外摇摆振动:两个X同时向面上或向面下的振动(2) 蜷曲振动:一个X向面上,另一个X向面下的振动3 变形振动AX3基团或分子的弯曲振动分为两种:(1) 对称变形振动在振动过程中,三个AX键与轴线组成的夹角α对称的缩小或增大(2) 不对称变形振动在振动过程中,二个α角缩小,一个α角增大,或相反的振动(三)振动自由度双原子分子只有一种振动形式——伸缩振动基本振动的数目称为振动自由度,即分子的独立振动数在中红外区,光子的能量较小,不足以引起分子的电子能级跃迁只需考虑分子中三种运动形式的能量变化:平动、振动、转动的能量变化分子的平动能改变,不产生光谱转动能级跃迁产生远红外光谱,不在中红外光谱的讨论范围,因此应扣除这两种运动形式N个原子有3N个独立运动方向,分子有三个平动自由度在非线性分子中,分子由三个转动自由度,剩下3N-6个振动自由度在线性分子中,分子有两个转动自由度,剩下3N-5个振动自由度由振动自由度数可以估计基频峰的可能数目三、基频峰与泛频峰在红外光谱上,从吸收峰的峰位(即所吸收红外线的频率)与基团的振动频率(或称基本振动频率)之间的关系,可以分为基频峰和泛频峰(一)基频峰基频峰是红外光谱上最重要的一类吸收峰1 简并某些振动虽然振动形式不同,但是振动频率相等2 红外非活性振动红外非活性振动:不能吸收红外线发生能级跃迁的振动称为~,反之称为红外活性振动红外非活性振动的原因:振动过程中分子的偶极矩不变只有偶极矩有变化的振动过程,才能吸收红外线而发生能级跃迁这是因为红外线是具有交变电场和磁场的电磁波,不能与非电磁分子或基团发生振动耦合(共振)的缘故红外线不能将振动过程中无偶极矩变化的分子或基团激发3 仪器的分辨率不高,一些弱峰仪器检测不出来等原因某基团和或分子的基本振动吸收红外线而发生能级跃迁,必须满足两个条件:1振动过程△μ≠02 必须服从νL=ν·△V的关系(二)泛频峰倍频峰:在红外吸收光谱上,除基频峰外,还有振动能级由基态(V=0)跃迁至第二振动激发态(V=2)、第三激发态(V=3)....等现象,所产生的吸收峰称为~二倍频峰、三倍频峰等统称为倍频峰三倍频峰及三倍以上,因跃迁几率很小,一般都很弱,常观测不到由于分子的非谐振性质,位能曲线中的能稽查并非等距,V越大,间距越小倍频峰的频率并非是基频峰的整数倍,而是略小一些倍频峰、合频峰、差频峰统称为泛频峰取代苯的泛频峰出现在2000~1667cm-1(5~6μm)的区间,主要由苯环上碳-氢面外弯曲的倍频峰等构成,特征性很强,可用于鉴别苯环上的取代位置四、特征峰与相关峰(一)特征峰(特征频率)官能团的存在与吸收峰的存在相对应,因此可用一些易辨认、有代表性的吸收峰来确认官能团的存在凡是可用于鉴别官能团存在的吸收峰,称为特征吸收峰,简称特征峰或特征频率(二)相关峰多数情况一个官能团有数种振动形式,而每一种红外活性振动,一般相应产生一个吸收峰,有时还能观测到泛频峰,因而常常不能由单一特征峰肯定官能团的存在相关峰:由一个官能团,所产生的一组相互依存的特征峰,可称为相关吸收峰,简称~相关峰的数目与基团的活性振动数及光谱的波数范围有关用一组相关吸收峰确定一个官能团的存在,是光谱解析的一条重要原则五、吸收峰的位置吸收峰的位置或称峰位通常用σmax(或νmax、λmax)表示,即前述振动能级跃迁时所吸收的红外线的波数σL(或频率νL、波长λL)对基频峰而言,σmax=σ,基频峰的峰位即基团或分子的基本振动频率其他峰,σmax=σ△V每种基频峰都在一段区间内出现,这是因为虽是同一种基团、同一种振动形式的跃迁,但在不同的化学环境中所受的影响不同,而使吸收峰的位置有所改变基频峰的位置主要由四方面因素所决定:化学键两端原子的质量、化学键力常数、内部影响因素、外部影响因素(一)基本振动频率1 基本振动频率的计算公式:K为化学键力常数,是将化学键两端的原子由平衡位置拉长0.1nm后的恢复力称为~化学键力常数越大,表明化学键的强度越大K越大,折合质量越小,谐振子的振动频率越大双原子基团的基本振动频率与化学键力常数及折合质量有关,即基频峰的峰位与K和u有关同类原子组成的化学键,力常数越大,则基本振动频率越大比较不同原子组成的化学键,则需看力常数与折合质量哪一个是主要矛盾由于氢原子的原子量最小,故所有含氢原子单键的基频峰,都出现在中红外光谱上的高频区2 基频峰的分布图1)折合质量越小,伸缩频率越高2)折合质量相同的基团,伸缩力常数越大,伸缩振动基频峰的频率越高3)折合质量相同时,ν>β>γ,因为它们的力常数依次减小(二)影响因素1 内部因素主要是结构因素,如相邻基团的影响及空间效应1)诱导效应吸电子的诱导效应,常使吸收峰向高频方向移动2)共轭效应共轭效应的存在使吸收峰向低频方向移动3)氢键氢键的形成使伸缩振动频率降低分子内氢键缔合作用的一种形式,由于分子内氢键的形成,往往对谱带位置有极明显的影响,但它不受浓度的影响,有助于结构分析分子间氢键受浓度的影响较大,随浓度的稀释吸收峰位置改变可观测稀释过程峰位是否变化,来判断是分子间氢键还是分子内氢键4)杂化影响在碳原子的杂化轨道中s成分增加,键能增加,键长变短,C-H伸缩振动频率增加碳-氢伸缩振动频率是判断饱和氢与不饱和氢的重要依据,不饱和碳氢的伸缩振动频率大于3000cm-12 外部因素主要是溶剂、仪器色散元件、温度的影响溶剂影响:极性基团的伸缩频率,常随溶剂的极性增大而降低通常是因为极性基团与溶剂间生成氢键的缘故,形成氢键的能力越强,降低越多(三)特征区和指纹区1 特征区特征区:习惯上把4000~1250cm-1(2.5~8.0μm)区间称为特征频率区,简称~特征区的吸收峰较疏,易辨认主要包括:1 含有氢原子的单键2 各种三键及双键的伸缩振动的基频峰3 含氢单键的面内弯曲振动的基频峰羰基峰时红外吸收光谱上最受重视的吸收峰之一2 指纹区指纹区:1250~200cm-1(8.0~50μm)的低频区称为~指纹区的红外线的能量比特征频率区低所出现的谱带起源于:各种单键的伸缩振动、多数基团的弯曲振动两个结构相近的化合物的特征频率区可能大同小异,只要它们的化学结构上存在着微小差别,指纹区一般就有较明显的不同但是含碳较多的直链烷烃,碳数差别较小时,指纹区也无明显差别六、吸收峰的强度吸收峰的强度:是讨论一条吸收曲线上吸收峰(谱带)的相对强度或摩尔吸光系数与什么有关的额问题,而不是讨论浓度与吸光度之间的关系在红外分光光度法中,浓度与吸光度的关系与可见-紫外吸收光谱法一致,仍然服从Lambert-Beer定律1跃迁几率:跃迁过程中激发态分子占总分子的百分数,称为~谱带的强度即跃迁几率的量度跃迁几率与振动过程中偶极矩的变化有关,偶极矩变化越大,跃迁几率越大,谱带强度越大偶极矩的变化与键的偶极矩及振动形式有关在一定测定条件下,一个化合物的各基团的各种振动能级的跃迁几率恒定在不考虑相邻基团的相互抵消前提下,键的偶极矩越大,伸缩振动过程偶极矩变化越大振动过程偶极矩的变化还与分子结构的对称性有关,对称性越强,变化越小,完全对称,变化为零2谱带强度的划分:红外吸收光谱上的吸收峰高、矮,可以说明相对吸光强度谱带的绝对强度,需用摩尔吸光系数来描述用ε将红外吸收光谱的谱带强度区分为五级:非常强谱带(vs)ε>100强谱带(s) 20~100中等强度谱带(m) 10~20弱谱带(w) 1~10非常弱谱带(vw) <1第四节 红外分光光度计及制样分光器:将复光分解为单色光的仪器称为~光度计:测量光强的仪器分光光度计:兼有分光器和光度计两种性能的仪器称为~按工作波长范围的不同,分为:紫外-可见、红外分光光度计仪器发展大体历经三个阶段:主要区别是单色器第一代仪器为棱镜红外分光光度计第二代仪器为光栅红外分光光度计第三代仪器为干涉调频分光傅里叶变换红外分光光度计一、光栅红外分光光度计光栅红外分光光度计,属于色散型一起,其色散元件为光栅按仪器的平衡原理可以分为:光学平衡式、电学平衡式红外分光光度计由:光源、吸收池(或固体样品框)、单色器、检测器、记录装置五个基本部分组成1 辐射源(光源)凡能发射连续波长的红外线,强度能满足需要的物体,均可为红外光源一般分为:碳硅棒、Nernst灯、特殊线圈Nernst灯低温时不导电2 色散元件目前多用反射光栅当红外线照射至光栅表面时,由反射线间的干涉作用而形成光栅光谱,各级光谱相互重叠,为了获得单色光,必须滤光由于一级光谱最强,故常滤去二级、三级光谱3 检测器常用检测器为:真空热电偶、Golay池热电偶:是利用不同导体构成回路时的温差现象,将温差转变为电位差的装置4 吸收池分为:液体池、气体池,分别用于液体样品与气体样品为了使红外线能透过,吸收池都具有岩盐窗片吸收池不用时需在保干器中保存(1)液体池分为固定池、密封池、可拆卸池可拆卸池:只能用于定性分析(2)气体池可用减压法将气体装入样品池中测定,气体池常用的光径为50mm及100mm多次反射气体池:测量低浓度、弱吸收气体样品,沸点较低的液体样品气体池在药物分析中很少应用二、干涉分光型红外分光光度计检测器多用热电型硫酸三甘肽(TGS)、光电导型检测器三、仪器性能红外分光光光度计的性能指标有分辨率、波数的准确度与重复性、透过率或吸光度的准确度与重复性仪器的最主要指标:I0线的平直度,检测器的满度能量输出1 分辨率(分辨本领):在某波数处恰能分开两个吸收峰的波数差为指标2 波数准确度与重复性波数准确度:仪器测定所得波数与文献值比较之差称为~波数重复性:多次重复测量同一样品,所得同一吸收峰波数的最大值与最小值之差称为~波数准确性关系测得光谱峰位的正确性,直接影响光谱解析四、制样气、液、固态样品皆可测定其红外光谱,但以固态样品最方便对样品的主要要求:1样品的纯度需大于98%,以便于纯化合物光谱对照2 样品应不含水分,若含水(结晶水、游离水)则对羟基峰有干扰样品更不得是水溶液若制成溶液,需用符合光谱波段要求的溶剂配制(一)固态样品固体样品可用三种方法制样:压片法、糊剂法、薄膜法(二)液态样品可用夹片法、液体池法粘度大的样品可用涂片法第五节 应用与示例一、光谱解析方法红外吸收光谱是定性分析的有力工具(一)样品的来源和性质、1 来源、纯度、灰分来源可帮助估计样品及杂质的范围纯度需大于98%,若不符合要求则需精制混合物,需经色谱分离,而后再用红外定性有灰分则含无机物2 物理化学常数样品的沸点、熔点、折光率、旋光度等,作为光谱解析的旁证3 分子式不饱和度:分子结构中达到距离饱和时所缺一价元素的“对”数每缺二个一价元素时,不饱和度为一个单位(U=1)不饱和度公式:(二)光谱解析的几种情况1 若要求判定样品是否是某物质,可采用1 已知物对照法2 对照标准光谱法3 简单化合物一般进行红外光谱解析即可判定2 新发现化合物待定结构或化合物的结构复杂,或标准光谱尚未收载,则需要进行综合光谱解析 综合光谱解析:包括元素分析、UV、IR、NMR、MS(三)光谱解析程序两区域法:将光谱划分为特征区及指纹区两个区域进行解析解析方法:四先、四后、相关法遵循:先特征区、后指纹区,先最强峰、后次强峰,先粗查、后细找,先否定、后肯定的顺序以及由一组相关峰确认一个官能团存在的原则。