2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案(1)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习含解析(2)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习含解析(2)一、选择题1.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii )得,3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩, 所以,原方程组的解是:12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.2.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩.【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.3.解方程组221444y x x xy y =+⎧⎨-+=⎩ 【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.4.解方程组:22x 2xy 3y 3x y 1⎧--=⎨+=⎩【答案】x 1.5y 0.5=⎧⎨=-⎩【解析】【分析】把方程组的第一个方程分解因式求出x 3y 3-=,再解方程组解x y 1x 3y 3+=⎧⎨-=⎩即可. 【详解】由22x 2xy 3y 3--=得:()()x y x 3y 3+-=, x y 1+=Q ,x 3y 3∴-=,解x y 1x 3y 3+=⎧⎨-=⎩得:x 1.5y 0.5=⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成低次方程组是解此题的关键.5.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩ 中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.6.解方程组:2263100x y x xy y -=⎧⎨+-=⎩【答案】11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩ 【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.【详解】解:2263100x y x xy y -=⎧⎨+-=⎩由②得:()()250x y x y -+=原方程组可化为620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.7.解方程:22310x y x y ⎧-=-⎨++=⎩【答案】12x y =⎧⎨=-⎩【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y ,代入方程1,得到一个关于y 的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.8.阅读材料,解答问题 材料:利用解二元一次方程组的代入消元法可解形如的方程组. 如:由(2)得,代入(1)消元得到关于的方程: , 将代入得:,方程组的解为 请你用代入消元法解方程组:【答案】解:由(1)得,代入(2)得化简得:, 把,分别代入得:, ,【解析】这是阅读理解题,考查学生的阅读理解能力,把二元二次方程组利用代入消元转化成一元二次方程,解出一元二次方程的解,再求另一个未知数的解即可9.解方程组 1730x y xy -=⎧⎨=-⎩ 【答案】1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据第一个式子,得出x 与y 的关系,代入第二个式子求解.【详解】解:1730x y xy -=⎧⎨=-⎩①②, 由①,得x=17+y③,把③代入②式,化简得y 2+17y+30=0,解之,得y 1=-15,y 2=-2.把y 1=-15代入x=17+y ,得x 1=2,把y 2=-2代入x=17+y ,得x 2=15.故原方程组的解为1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题考查了二元二次方程的解法,解题的关键是运用代入法得出x 、y 的值.10.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.【答案】12cm 、16cm 、20cm.【解析】【分析】设两直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩求解即可.【详解】设该直角三角形的两条直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩ 解得=12=16a b ⎧⎨⎩或=16=12a b ⎧⎨⎩, 经检验,=12=16a b ⎧⎨⎩和=16=12a b ⎧⎨⎩cm. 答:该直角三角形的三边长分别是12cm 、16cm 、20cm.【点睛】 此题运用三角形面积表示出1=962ab11.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩ 【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】 先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0,x +y =0或x−2y =0, 原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,.【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.12.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2, 所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.13.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.14.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.15.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】 解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.16.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.17.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 【解析】【分析】把第一个方程化为x=3y ,代入第二个方程,即可求解.【详解】由方程①,得x =3y③,将③代入②,得(3y )2+y 2=20,整理,得y 2=2,解这个方程,得y 1,y 2④,将④代入③,得x 1=,2x =﹣所以,原方程组的解是11x y ⎧=⎪⎨=⎪⎩11x y ⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.18.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】解:222603x y y mx ⎧+-=⎨=+⎩①② 把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.19.解方程22220x y x xy y -=⎧⎨--=⎩①② 【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】 先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.20.解方程组:22222303x xy y x xy y ⎧--=⎨-+=⎩【答案】111,1.x y =⎧⎨=-⎩ 【解析】【分析】首先将由22230x xy y --=得30x y -=或0x y +=,分别与223x xy y -+=求解即可.【详解】解: 22222303x xy y x xy y ⎧--=⎨-+=⎩①② 由①得30x y -=或0x y +=,原方程组可化为22303x y x xy y -=⎧⎨-+=⎩;2203x y x xy y +=⎧⎨-+=⎩解这两个方程组得原方程组的解为11,7,7x y ⎧=⎪⎪⎨⎪=⎪⎩2277x y ⎧=-⎪⎪⎨⎪=-⎪⎩331,1,x y =-⎧⎨=⎩441,1.x y =⎧⎨=-⎩ 【点睛】 此题考查二元二次方程,解题关键在于掌握运算法则.。
新初中数学方程与不等式之二元二次方程组知识点总复习含答案解析(2)
新初中数学方程与不等式之二元二次方程组知识点总复习含答案解析(2)一、选择题1.k 为何值时,方程组2216x y x y k ⎧+=⎨-=⎩只有唯一解? 【答案】k=±.【解析】【分析】将方程组转化为一元二次方程,根据△=0求解即可.【详解】2216(1)(2)x y x y k ⎧+=⎨-=⎩ 由(2)得, y=x-k (3)将(3)代入(1)得,2222160x kx k -+-=,要使原方程组有唯一解,只需要上式的△=0,即22(2)42(16)0k k --⨯⨯-=,解得,k=±.所以当k=±2216x y x y k⎧+=⎨-=⎩只有唯一解. 【点睛】本题考查的是高次方程的解法和一元二次方程根的判别式的应用,掌握当判别式为0时,一元二次方程有两个相等的实数根是解题的关键.2.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组:2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.3.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.5.解方程组2210260x y x x y -+=⎧⎨--+=⎩【答案】1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩. 【解析】【分析】由(1)得21y x =+,代入到(2)中整理为关于x 的一元二次方程,求出x 的值,并分别求出对应的y 值即可.【详解】解: ()()221012602x y x x y ⎧-+=⎪⎨--+=⎪⎩, 由(1),得21y x =+(3),把(3)代入(2),整理,得2540x x -+=,解这个方程,得121,4x x ==,把11x =代入(3),得13y =,把24x =代入(3),得29y =,所以原方程组的解是1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.. 【点睛】本题考查了二元二次方程组的解法,用代入消元法消去一个未知数,转化为解一元二次方程是解题关键.6.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.7.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组: 23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.8.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩ , 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .9.解方程组:226021x xy y x y ⎧+-=⎨+=⎩ 【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.10.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.11.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩ 【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩ . 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.12.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩(Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.13.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】 2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组14.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.15.21220y x x xy -=⎧⎨--=⎩【答案】10x y =-⎧⎨=⎩或23x y =⎧⎨=⎩ 【解析】【分析】本题考查二元二次方程组的解法,在解题时观察本题的特点,可用代入法先消去未知数y ,求出未知数x 的值后,进而求得这个方程组的解.【详解】解:由①得:1y x =+③把③代入②,得22(1)20x x x -+-=,整理得:220x x --=,解得11x =-,22x =.当11x =-时,1110y =-+=当22x =时,2213y =+=∴原方程组的解为1110x y =-⎧⎨=⎩,2223x y =⎧⎨=⎩. 【点睛】本题考查了二元二次方程组的解法,二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组.16.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.17.解方程组:224490x xy y x y ⎧++=⎨+=⎩ 【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①②方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.18.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩,解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解. 【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.19.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩ 【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】 解:222603x y y mx ⎧+-=⎨=+⎩①②把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.20.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩ 解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.。
初中数学方程与不等式之二元一次方程组知识点训练及答案(1)
初中数学方程与不等式之二元一次方程组知识点训练及答案(1)一、选择题1.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d+=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x by c e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d+=⎧⎨+=⎩, ∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.若是关于x 、y 的方程组的解,则(a+b)(a ﹣b)的值为( ) A .15 B .﹣15C .16D .﹣16【答案】B 【解析】 【分析】把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值. 【详解】 解:∵是关于x 、y 的方程组的解,∴ 解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15. 故选:B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.若关于x , y 的方程组2{ x y m x my n -=+=的解是2{ 1x y ==,则m n -为( )A .1B .3C .5D .2【答案】D 【解析】解:根据方程组解的定义,把21x y =⎧⎨=⎩代入方程,得:412m m n -=⎧⎨+=⎩,解得:35m n =⎧⎨=⎩.那么|m -n |=2.故选D .点睛:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( )A .8B .232C .-232D .-192【答案】B 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】 解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2, 解得:m=232, 故选:B . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2∴c=-2,a=4,b=5∴a+b+c=7.故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.7.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1,所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.8.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x 个班,分配到的入场券有y 张, 则1051215x yx y+=⎧⎨-=⎩.故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】 解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( ) A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C.12154503x yy x+=⎧⎨=-⎩D.12154503x yx y+=⎧⎨=-⎩【答案】B【解析】【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y=450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y﹣x=3,据此可得.【详解】设甲种树苗每棵x元,乙种树苗每棵y元.由题意可列方程组12154503x yy x+=⎧⎨-=⎩,故选:B.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(),故选:D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2 C .-5 D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.13.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.14.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x+=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x-=⎧⎨=⎩D .2753x y x y+=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】 根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.15.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.16.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆, 根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.17.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.18.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030xy=⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时,故选B.【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.19.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得: 10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.20.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B【解析】【分析】 二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.故选B.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.。
方程与不等式之二元二次方程组知识点总复习附答案
方程与不等式之二元二次方程组知识点总复习附答案一、选择题1.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】 222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0, x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.2.解方程组:⑴3{351x y x y -=+= ⑵3+10{2612x y z x y z x y z -=+-=++= 【答案】(1)2{1x y ==-;(2)3{45x y z ===【解析】(1)先用代入消元法求出x 的值,再用代入消元法求出y 的值即可.(2)先利用加减消元法去z 得到关于x 、y 的两个方程,解这两个方程组成的方程组求出x 、y ,然后利用代入法求z ,从而得到原方程组的解.(1)2{1x y ==- ; (2) 3{45x y z ===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.3.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组: 2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.4.解方程组【答案】原方程组的解为:,【解析】【分析】把第一个方程代入第二个方程,得到一个关于x的一元二次方程,解方程求出x,把x代入第一个方程,求出y即可.【详解】解:把①代入②得:x2-4x(x+1)+4(x+1)2=4,x2+4x=0,解得:x=-4或x=0,当x=-4时,y=-3,当x=0时,y=1,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程,降次是解题的基本思想.5.解方程组:【答案】,.【解析】【分析】先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程.6.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.7.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩.【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.8.解方程组:226021x xy y x y ⎧+-=⎨+=⎩【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.9.解方程组:222,{230.x y x xy y -=--=【答案】1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩ 【解析】【分析】【详解】x 2-2xy-3y 2="0"(x-y)2-4y 2=0又因:x-y=2代入上式4-4y 2=0y=1或y=-1再将y=1、y=-1分别代入x-y=2则 x=1、x=3∴1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩10.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.11.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①②由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.12.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩ 解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.13.解方程组:()25()230x y x y x y +=⎧⎪⎨----=⎪⎩①②. 【答案】1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩ 【解析】【分析】先将②化为30x y --=或10x y -+=,再分别和①式结合,分别求解即可.【详解】解:由②得()()310x y x y ---+=,得30x y --=或10x y -+=,原方程组可化为53x y x y +=⎧⎨-=⎩,51x y x y +=⎧⎨-=-⎩解得,原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩ ∴原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩. 【点睛】 本题考查了二元二次方程组的解,将二次降为一次是解题的关键.14.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.15.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩ 【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】【分析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.16.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.17.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩ 由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩ 分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.18.(探究证明)(1)在矩形ABCD 中,EF ⊥GH ,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.,求证:=EF AD GH AB; (结论应用) (2)如图2,在满足(1)的条件下,又AM ⊥BN ,点M ,N 分别在边BC ,CD 上.若11=15EF GH ,求BN AM; (联系拓展)(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,AM ⊥DN ,点M ,N 分别在边BC ,AB 上,求DN AM的值.【答案】(1)证明见解析;(2)1115;(3)45.【解析】分析:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,根据矩形的性质证明△PDA∽△QAB;(2)根据(1)的结论可得BNAM;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,SC=x,DS=y,在Rt△CSD,Rt△ARD中,用勾股定理列方程组求出AR,AB,结合(1)的结论求解.详解:(1)如图1,过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP,四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QAT+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB.∴AP ADBQ AB=,∴EF ADGH AB=.(2)如图2,∵GH⊥EF,AM⊥BN,∴由(1)的结论可得EF ADGH AB=,BN ADAM AB=,∴1115 BN EFAM GH==.(2)如图3,过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线与S,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得DN AR AM AB=.设SC =x ,DS =y ,则AR =BS =5+x ,RD =10﹣y ,∴在Rt △CSD 中,x 2+y 2=25①,在Rt △ARD 中,(5+x )2+(10﹣y )2=100②,由②﹣①得x =2y ﹣5③,222525x y x y ⎧⎨-⎩+==,解得34x y ⎧⎨⎩==,50x y -⎧⎨⎩==(舍), 所以AR =5+x =8,则84105DN AR AM AB ===.点睛:这是一个类比题,主要考查了相似三角形的判定与性质,在特殊图形中存在的结论,放在非特殊图形中结论是有可能成立也有可能不成立,但特殊图形中结论的推导过程仍然适用于一般图形.19.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,CE=43,求AC BC的值.【答案】(1)见解析;(2)6 ; (3)57. 【解析】【分析】(1)只要证明△ECH ∽△BCD ,可得EC BC =CH CD,即可推出CE•CD=CH•BC ; (2)如图2中,连接AH .只要证明△AEH ∽△HFB ,可得AE HF =EH FB ,推出FH 2=6,推出6,即可解决问题.(3)只要证明△ECF ∽△BCA ,求出CF 即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A,∠ECF=∠ACB,∴∠CEF=∠B,∵∠ECH=∠DCB,∴△ECH∽△BCD,∴EC CH BC CD=,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,, ∵∴∵S △HCF :S △HCE =FH :EH=FC :EC , ∴x():, 又∵x 2=y 2+(52)2, 解得∴∵∠CEF=∠B ,∠ECF=∠ACB ,∴△ECF ∽△BCA , ∴EC CF BC AC=,∴AC CF BC EC ===57. 【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.20.解方程组22224024x y x xy y ⎧-=⎨-+=⎩. 【答案】原方程组的解是114,32;3x y ⎧=⎪⎪⎨⎪=-⎪⎩224,32;3x y ⎧=-⎪⎪⎨⎪=⎪⎩334,2;x y =⎧⎨=⎩444,2.x y =-⎧⎨=-⎩ 【解析】【分析】由①得x+2y=0,或x-2y=0,由②得x-y=2,或x-y=-2,从而可将原方程组化为4个二元一次方程组求解.【详解】22224024x y x xy y ⎧-=⎨-+=⎩①②, 由①得(x+2y)(x-2y)=0,∴x+2y=0或x-2y=0,由②得(x-y)2=4,∴x-y=2或x-y=-2,∴原方程组可化为202x y x y +=⎧⎨-=⎩,202x y x y +=⎧⎨-=-⎩,202x y x y -=⎧⎨-=⎩,202x y x y -=⎧⎨-=-⎩, 分别解这四个方程组得114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩, ∴原方程组的解是114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,将原方程组化为4个二元一次方程组求解是解答本题的关键.。
初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)
初中数学方程与不等式之二元一次方程组知识点总复习附答案解析(1)一、选择题1.已知关于x ,y 的二元一次方程组57345x y a x y a-=⎧⎨-+=⎩,且x ,y 满足x –2y =0,则a 的值为( )A .2B .–4C .0D .5 【答案】C【解析】【分析】将二元一次方程组中的两个方程相加,化简整理得x –2y =4a,进而求出4a =0即可解题.【详解】 方程组57345x y a x y a -=⎧⎨-+=⎩,两个方程相加可得:x –2y =4a , ∵x –2y =0,∴4a =0,解得a =0,故选C .【点睛】本题考查了加减消元的实际应用,属于简单题,熟悉加减消元的步骤,建立新的等量关系是解题关键.2.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( ) A .6B .-6C .9D .-9 【答案】B【解析】【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得:693ax x +=+,即(6)12a x +=,∵原方程无解,∴60a +=,解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.3.已知二元一次方程1342x y -=的一组解是x a y b =⎧⎨=⎩,则63a b -+的值为( ) A .11B .7C .5D .无法确定 【答案】A【解析】【分析】 把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】 ∵x a y b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解, ∴12a-3b=4, 即a-6b=8,∴a-6b+3=8+3=11.故选:A .【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.4.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2 B .2 C .-1 D .1【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.5.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411x y ⎧⎨⎩==,88x y ⎧⎨⎩==,125x y ⎧⎨⎩==,162x y ⎧⎨⎩==. 设可购买a 袋笔和b 本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b , ∵a ,b 均为正整数,∴44a b ⎧⎨⎩==; ②当x=8,y=8时,4x+6y-22=58, ∴8a+8b=58,即a+b=294,∵a ,b 均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a -, ∵a ,b 均为正整数, ∴34a b ==⎧⎨⎩; ④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a ,∵a ,b 均为正整数,∴119a b ⎧⎨⎩==,211a b ⎧⎨⎩==,33a b ⎧⎨⎩==. 综上所述,共有5种购进方案.故选:C .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.7.用四个完全一样的长方形和一个小正方形拼成如图所示的大正方形,若已知大正方形的面积是196,小正方形的面积是4,若用(),x y x y >表示长方形的长和宽,则下列四个等式中不成立的是( )A .14x y +=B .2x y -=C .22196x y +=D .48xy =【答案】C【解析】【分析】 根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.【详解】由题意得,大正方形的边长为14,小正方形的边长为2∴x+y=14,x−y=2,则142x y x y +=⎧⎨-=⎩, 解得:86x y =⎧⎨=⎩, 故可得C 选项的关系式符合题意.故选C.【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意找出等量关系.8.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩ C .302001505300x y x y +=⎧⎨+=⎩ D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩.故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021 【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可.【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195-【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】解:因为512110a b a b +++-+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩ ∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为() A .4个B .3个C .2个D .1个【答案】C【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可;【详解】2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --= 解得:521y a =-- 把521y a =--代入②得:54721x a -=+ 解得:7624a x a +=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合;当0a =时,3x =,是整数,符合;当3a =-时,32x =,不是整数,舍去; 故选:C.【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.13.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( ) A .4639611x y x y +=⎧⎨-=⎩ B .6396222x y x y +=⎧⎨-=⎩ C .4669633x y x y +=⎧⎨-=⎩ D .6936411x y x y +=⎧⎨-=⎩【答案】C【解析】【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数.解:233 {3211 x yx y+=-=①×2得,4x+6y=6③,②×3得,9x-6y=33④,组成方程组得:466{9633 x yx y+=-=.故选C.【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.14.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030xy=⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时,故选B.【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.15.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩ 则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y =⎧⎪⎨+=⎪⎩ 【答案】C【解析】【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y x y =⎧⎪⎨+=⎪⎩ 故答案为:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4B .1-C .2D .1 【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm【答案】C【解析】【分析】 设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可.【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-=故答案为:C .【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.20.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的A .1B .2C .3D .4【答案】C【解析】【分析】 整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附解析(2)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附解析(2)一、选择题1.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii )得,3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩, 所以,原方程组的解是:12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.2.已知A ,B 两地公路长300km ,甲、乙两车同时从A 地出发沿同一公路驶往B 地,2小时后,甲车接到电话需返回这条公路上与A 地相距105km 的C 处取回货物,于是甲车立即原路返回C 地,取了货物又立即赶往B 地(取货物的时间忽略不计),结果两下车同时到达B 地,两车的速度始终保持不变,设两车山发x 小时后,甲、乙两车距离A 地的路程分别为y1(km)和y2(km).它们的函数图象分别是折线OPQR 和线段OR .(1)求乙车从A 地到B 地所用的时问;(2)求图中线段PQ 的解析式(不要求写自变量的取值范围);(3)在甲车返回到C 地取货的过程中,当x= ,两车相距25千米的路程.【答案】(1)5h (2)90360y x =-+(3)67h 30或77h 30【解析】(1)由图可知,求甲车2小时行驶了180千米的速度,甲车行驶的总路程,再求甲车从A 地到B 地所花时间;即可求出乙车从A 地到B 地所用的时间;(2)由题意可知,求出线段PQ 的解析式;(3)由路程,速度,时间的关系求出x 的值.(1)解:由图知,甲车2小时行驶了180千米,其速度为180290÷=(km/h ) 甲车行驶的总路程为: ()2180105300450⨯-+=(km)甲车从A 地到B 地所花时间为: 450905÷=(h )又∵两车同时到达B 地,∴乙车从A 地到B 地所用用的时间为5h.(2)由题意可知,甲返回的路程为18010575-=(km),所需时间为575906÷=(h ),517266+=.∴Q 点的坐标为(105, 176).设线段PQ 的解析式为: y kx b =+, 把(2,180)和(105, 176)代入得: 1802{171086k b k b =+=+,解得90360k b =-=,, ∴线段PQ 的解析式为90360y x =-+.(3)6730 h 或7730“点睛”本题考查了一次函数的应用,解题关键是明确题意,找出所求问题需要的条件,利用数型结合的思想解答问题.3.解方程组:222321x y x xy y +=⎧⎨-+=⎩【答案】114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】由②得:2()1x y -=,即得1x y -=或1x y -=-,再同①联立方程组求解即可.【详解】222321x y x xy y +=⎧⎨-+=⎩①②由②得:2()1x y -=,∴1x y -=或1x y -=-把上式同①联立方程组得:231x y x y +=⎧⎨-=⎩,231x y x y +=⎧⎨-=-⎩解得:114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩ ∴原方程组的解为114313x y ⎧=⎪⎪⎨⎪=⎪⎩,222353x y ⎧=⎪⎪⎨⎪=⎪⎩.4.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩,解得原方程组的解为122112xxyy⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,∴原方程组的解是为122112xxyy⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,.【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.5.解方程组:2220 23x xy yx y⎧--=⎨+=⎩.【答案】原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:由①得出(x+y)(x-2y)=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:2220 23x xy yx y⎧--⎨+⎩=①=②由①得:(x+y)(x-2y)=0,x+y=0,x-2y=0,即原方程组化为23x yx y+⎧⎨+⎩==,2023x yx y-⎧⎨+⎩==,解得:123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩,即原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.6.解方程组:【答案】,.【解析】【分析】 先由①得x=4+y ,将x=4+y 代入②,得到关于y 的一元二次方程,解出y 的值,再将y 的值代入x=4+y 求出x 的值即可.【详解】 解:由①得:x =4+y ③,把③代入②得:(4+y )2-2y 2=(4+y )y ,解得:y 1=4,y 2=-2,代入③得:当y 1=4时,x 1=8,当y 2=-2时,x 2=2, 所以原方程组的解为:,. 故答案为:,. 【点睛】本题考查了解高次方程.7.解方程组:2220334x y x y y -=⎧⎨+-=⎩. 【答案】21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩【解析】【分析】 由①可知x=2y ,代入②可得一个关于y 的一元二次方程,进行解答,求出y 值,再进一步求x 即可.【详解】解:2220......33 4......x y x y y -=⎧⎨+-=⎩①② , 由①得:2x y =………… ③将③代入②,化简整理,得:2340y y +-=,解得:13y y ==-或,将13y y ==-或代入①,得:21x y =⎧⎨=⎩或63x y =-⎧⎨=-⎩. 【点睛】考查了解方程组,解答此类题目一般用代入法比较简单,先消去一个未知数,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.8.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 【解析】【分析】把第一个方程化为x=3y ,代入第二个方程,即可求解.【详解】由方程①,得x =3y③,将③代入②,得(3y )2+y 2=20,整理,得y 2=2,解这个方程,得y 1,y 2④,将④代入③,得x 1=,2x =﹣所以,原方程组的解是11x y ⎧=⎪⎨=⎪⎩11x y ⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.9.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.10.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】 2224490x xy y x xy ⎧++=⎨+=⎩①② 由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.11.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.12.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.13.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】 222403260x y x xy x y ⎧-=⎨-+++=⎩①② 由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.14.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.15.解方程组:2228560x y x xy y +=⎧⎨+-=⎩ 【答案】11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】先将第2个方程变形为x +6y =0,x ﹣y =0,从而得到两个二元一次方程组,再分别求解即可.【详解】解:2228560x y x xy y +=⎧⎨+-=⎩①②, 由②得:x +6y =0,x ﹣y =0, 原方程组可化为2860x y x y +=⎧⎨+=⎩或280x y x y +=⎧⎨-=⎩, 故原方程组的解为11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.16.解方程组:2225210x y x y xy +=⎧⎨+--=⎩.【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.17.22x -y -3x 10y ⎧=⎨++=⎩,①,②【答案】x 1y -2=⎧⎨=⎩【解析】【分析】根据解二元二次方程组的步骤求解即可.【详解】解:由方程①得:()()x y x-y -3+⋅=,③由方程②得:x y -1+=,④联解③④得x-y=3,⑤联解④⑤得x 1y -2=⎧⎨=⎩所以原方程组的解为x 1y -2=⎧⎨=⎩【点睛】本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.18.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱, 箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.19.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】 试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.20.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩解得 2129x y =⎧⎨=⎩ 此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.。
2020-2021初中数学方程与不等式之二元二次方程组易错题汇编含答案
2020-2021初中数学方程与不等式之二元二次方程组易错题汇编含答案一、选择题1.解方程组:223403x xy y x y ⎧--=⎨-=⎩【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.2.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩.【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可.试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①② 由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.3.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组:2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.4.已知1132x y =⎧⎨=-⎩是方程组22x y m x y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解. 【答案】22-23x y =⎧⎨=⎩ 【解析】【分析】先将1132x y =⎧⎨=-⎩代入方程组22x y m x y n ⎧+=⎨+=⎩中求出m 、n 的值,然后再求方程组的另一组解.【详解】解:将1132x y =⎧⎨=-⎩代入方程组22x y m x y n⎧+=⎨+=⎩中得:131m n =⎧⎨=⎩ , 则方程组变形为:22131x y x y ⎧+=⎨+=⎩, 由x+y=1得:x=1-y ,将x=1-y 代入方程x 2+y 2=13中可得:y 2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-23x y =⎧⎨=⎩ . 【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m 和n 的值是解题的关键.5.解方程组:226021x xy y x y ⎧+-=⎨+=⎩【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.6.解方程组:22x y 2{x xy 2y 0-=---=. 【答案】 11x 1y 1=-⎧⎨=⎩,22x 4y 2=-⎧⎨=-⎩ 【解析】【分析】注意到22x xy 2y --可分解为,从而将原高次方程组转换为两个二元一次方程组求解.【详解】解:由22x xy 2y 0--=得()()x y x 2y 0+-=,即x y 0+=或x 2y 0-=, ∴原方程组可化为x y 2x y 0-=-⎧⎨+=⎩或x y 2x 2y 0-=-⎧⎨-=⎩. 解x y 2x y 0-=-⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩;解x y 2x 2y 0-=-⎧⎨-=⎩得x 4y 2=-⎧⎨=-⎩.∴原方程组的解为11x 1y 1=-⎧⎨=⎩,22x 4y 2=-⎧⎨=-⎩.7.直角坐标系xOy 中,有反比例函数()830y x =>上的一动点P ,以点P 为圆心的圆始终与y 轴相切,设切点为A(1)如图1,⊙P 运动到与x 轴相切时,求OP 2的值.(2)设圆P 运动时与x 轴相交,交点为B 、C ,如图2,当四边形ABCP 是菱形时, ①求出A 、B 、C 三点的坐标.②设一抛物线过A 、B 、C 三点,在该抛物线上是否存在点Q ,使△QBP 的面积是菱形ABCP 面积的12?若存在,求出所有满足条件的Q 点的坐标;若不存在,说明理由.【答案】(1)32)①A (0,3B (2,0),C (6,0);②存在,满足条件的Q 点有(0,314,1638,36,0).【解析】【分析】(1)当⊙P 分别与两坐标轴相切时,PA ⊥y 轴,PK ⊥x 轴,x 轴⊥y 轴,且PA =PK ,进而得出PK 2,即可得出OP 2的值;(2)①连接PB ,设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP 3=,P (m 3),进而得出答案; ②求直线PB 的解析式,利用过A 点或C 点且平行于PB 的直线解析式与抛物线解析式联立,列方程组求满足条件的Q 点坐标即可.【详解】解:(1)∵⊙P 分别与两坐标轴相切,∴PA ⊥OA ,PK ⊥OK .∴∠PAO =∠OKP =90°.又∵∠AOK =90°,∴∠PAO =∠OKP =∠AOK =90°.∴四边形OKPA 是矩形.又∵AP =KP ,∴四边形OKPA 是正方形,∴OP 2=OK 2+PK 2=2PK •OK =2xy ==(2)①连结BP ,则AP =BP ,由于四边形ABCP 为菱形,所以AB =BP =AP ,△ABP 为正三角形, 设AP =m ,过P 点向x 轴作垂线,垂足为H ,则PH =sin60°BP 2m =,P (m,2m ), 将P 点坐标代入到反比例函数解析式中,则2m 2=解得:m =4,(m =﹣4舍去),故P (4,),则AP =4,OA =OB =BH =2,CH =BH =2,故A (0,B (2,0),C (6,0);②设过A 、B 、C 三点的抛物线解析式为y =a (x ﹣2)(x ﹣6),将A 点坐标代入得,a =,故解析式为2y =+ 过A 点作BP 的平行线l 抛物线于点Q ,则Q 点为所求.设BP 所在直线解析式为:y =kx +d ,则204k d k d +=⎧⎪⎨+=⎪⎩解得:k d ⎧=⎪⎨=-⎪⎩ 故BP所在的直线解析式为:y =-故直线l的解析式为y =+l与抛物线的交点是方程组2y x y ⎧=-+⎪⎨⎪=+⎩解得:110x y =⎧⎪⎨=⎪⎩,2214x y =⎧⎪⎨=⎪⎩ 故得Q (0,Q (14,同理,过C 点作BP 的平行线交抛物线于点Q 1,则设其解析式为:y 3=x +e ,则0=63+e ,解得:e =﹣63,故其解析式为:y 3=x ﹣63,其直线与抛物线的交点是方程组234323363y x x y x ⎧=-+⎪⎨⎪=-⎩的解, 可求得Q 1(8,23)和(6,0).故所求满足条件的Q 点有(0,23),(14,163),(8,23)和(6,0).【点睛】本题考查了二次函数的综合运用以及二元二次方程组解法和正方形的判定以及菱形的性质等知识,关键是由菱形、圆的性质,数形结合解题.8.解方程组 1730x y xy -=⎧⎨=-⎩ 【答案】1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据第一个式子,得出x 与y 的关系,代入第二个式子求解.【详解】解:1730x y xy -=⎧⎨=-⎩①②, 由①,得x=17+y③,把③代入②式,化简得y 2+17y+30=0,解之,得y 1=-15,y 2=-2.把y 1=-15代入x=17+y ,得x 1=2,把y 2=-2代入x=17+y ,得x 2=15.故原方程组的解为1212215152x x y y ⎧==⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】 本题考查了二元二次方程的解法,解题的关键是运用代入法得出x 、y 的值.9.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.10.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.11.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】 解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.12.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.13.已知正比例函数()()249m n y m n xm -=++-的图像经过第二、四象限,求这个正比例函数的解析式.【答案】19y x =-【解析】【分析】根据正比例函数的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,再根据其所经过的象限进行取舍即可.【详解】 解:∵该函数为正比例函数,∴2190m n m -=⎧⎨-=⎩,解得32m n =⎧⎨=⎩或34m n =-⎧⎨=-⎩, ∵该函数图像经过第二、四象限,∴40m n +<,∴34m n =-⎧⎨=-⎩,∴函数解析式为:19y x =-.【点睛】本题考查了正比例函数的定义和性质以及二元二次方程组的求解,熟练掌握正比例函数的定义和性质是解题关键.14.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.15.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --= 解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.16.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.17.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①②方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.18.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩ 解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则19.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩ 解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.20.解方程组:22444{10x xy y x y -+=++=①②. 【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.。
2020-2021初中数学方程与不等式之不等式与不等式组真题汇编附答案解析(1)
2020-2021初中数学方程与不等式之不等式与不等式组真题汇编附答案解析(1)一、选择题1.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩, 得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.2.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.3.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8【答案】C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.4.已知方程组31331x y m x y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.5.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确; 故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( )A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x<3.故选:B.【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.7.若不等式组0,122x ax x-≥⎧⎨->-⎩有解,则a的取值范围是()A.a>-1 B.a≥-1 C.a≤1D.a<1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a的取值范围是a<1.【详解】解:122x ax x-≥⎧⎨->-⎩①②,由①得:x≥a,由②得:x<1,∵不等式组有解,∴a<1,故选:D.【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x的取值范围为()A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.9.不等式组30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】【详解】 解:30240x x -≥⎧⎨+>⎩①②, 解不等式①得,x ≤3解不等式②得,x >﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.10.不等式组21512xx①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260{50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.关于x的不等式412x-≥-的正整数解有()A .0个B .1个C .3个D .4个【答案】C【解析】【分析】 先解不等式求出解集,根据解集即可确定答案.【详解】解不等式412x -≥-得3x ≤,∴该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.13.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】 解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.14.若关于x 的不等式组24x x a<⎧⎨-≤⎩的解集是2x <,则a 的取值范围是( )A .2a ≥-B .2a >-C .2a ≤-D .2a <-【答案】A【解析】【分析】 求出不等式的解集,根据已知不等式组的解集x<2,推出a 42+≥求解即可.【详解】因为不等式组24x x a <⎧⎨-≤⎩的解集是x<2 所以不等式组2+4<⎧⎨≤⎩x x a 的解集是x<2 根据同小取较小原则可知,a 42+≥ ,故2a ≥-故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集和已知得到a 42+≥是解此题的关键.15.不等式组354x x ≤⎧⎨+>⎩的最小整数解为( ) A .-1B .0C .1D .2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】 解:354x x ≤⎧⎨+>⎩①② 解①得x≤3,解②得x >-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x 的范围是本题的关键.16.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.17.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】B【解析】【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.18.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b >【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是()A.a<2 B.a>2 C.a≥2D.a≤2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】∵不等式组232x ax a+⎧⎨-⎩><无解,∴a+2≥3a﹣2,解得:a≤2.故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。
2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(2)
2020-2021初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(2)一、选择题1.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( ) A . B .C .D .【答案】C【解析】【分析】分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集. 【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分, 即:31x -≤<,解集在数轴上表示应为C.故选C.【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.2.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可. 【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<,∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->,解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.3.已知关于x 的不等式组的解集在数轴上表示如图,则b a 的值为( )A .﹣16B .C .﹣8D . 【答案】B【解析】【分析】求出x 的取值范围,再求出a 、b 的值,即可求出答案.【详解】由不等式组, 解得.故原不等式组的解集为1-bx -a , 由图形可知-3x 2,故, 解得,则b a =. 故答案选B .【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.4.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤<【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】 解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a ,∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.7.若关于x 的不等式组无解,且关于y 的分式方程有非正整数解,则符合条件的所有整数k 的值之和为( )A .﹣7B .﹣12C .﹣20D .﹣34【答案】B【解析】【分析】先根据不等式组无解解出k 的取值范围,再解分式方程得y =,根据方程有解和非正整数解进行综合考虑k 的取值,最后把这几个数相加即可.【详解】 ∵不等式组无解,∴10+2k >2+k ,解得k >﹣8. 解分式方程,两边同时乘(y +3),得 ky ﹣6=2(y +3)﹣4y ,解得y =. 因为分式方程有解,∴≠﹣3,即k +2≠﹣4,解得k ≠﹣6. 又∵分式方程的解是非正整数解,∴k +2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k =﹣3,﹣4,﹣5,﹣8,﹣14.又∵k >﹣8,∴k =﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B .【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.8.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】 解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选:C.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.9.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.10.不等式组222xx>⎧⎨-≥-⎩的解集在数轴上表示为( )A.B.C.D.【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.11.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.14.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a =﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a 的和为0.故选B .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.15.如果,0a b c ><,那么下列不等式成立的是( )A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选:D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.16.已知实数(0)a a >,b ,c 满足0a b c ++<,20a b +=,则下列判断正确的是( ).A .c a <,24b ac >B .c a <,24b ac <C .c a >,24b ac >D .c a >,24b ac <【答案】A【解析】【分析】由20a b +=,可得2,b a =- 代入0a b c ++<可得答案,再由2b a =-得到224,b a =利用已证明的基本不等式c a <,利用不等式的基本性质可得答案.【详解】解:20,a b +=Q 2,b a ∴=- 224,b a =0,a b c ++Q <20,a a c ∴-+<,c a ∴<0,a Q > 40,a ∴>244,a ac ∴>24.b ac ∴>故选A .【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.17.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】 213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤< B .10m -<≤ C .10m -≤≤ D .10m -<<【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m-1<-1,解得10m -≤<,故选A.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.不等式组53643x x x +>⎧⎨+>-⎩的整数解的个数是( ) A .2B .3C .4D .5【答案】C【解析】【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.【详解】53643x x x +>⎧⎨+>-⎩①②, 由①得:x>-2,由②得:x<3,所以不等式组的解集为:-2<x<3,整数解为-1,0,1,2,共4个,故选C .【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习有答案解析(2)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习有答案解析(2)一、选择题1.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩ 【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①② 由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.2.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩ 由②得,()224x y -= ③,把①代入③,得()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.3.如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1.解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.【答案】(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(35. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,抛物线的解析式为y =211x x 122-++;(2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12;②AB 的解析式为1122y x =+当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩,即P (6,﹣14);当PB ⊥AB 时,PB 的解析式为y =﹣2x+3,联立PB 与抛物线,得21112223y x x y x ⎧=++⎪⎨⎪=-+⎩,解得11x y =⎧⎨=⎩(舍)45x y =⎧⎨=-⎩,即P (4,﹣5),综上所述:△PAB 是以AB 为直角边的直角三角形,点P 的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M到直线AB 5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键4.解方程:22310 x yx y⎧-=-⎨++=⎩【答案】12 xy=⎧⎨=-⎩【解析】【分析】本题可用代入消元法进行求解,即把方程2写成x=-1-y,代入方程1,得到一个关于y的一元二次方程,求出y 值,进而求x .【详解】解:()()2231102x y x y ⎧-=-⎪⎨++=⎪⎩ 由(2)得:1x y =--(3)把(3)代入(1):22(1)3y y ---=-∴2y =-∴1x =原方程组的解是12x y =⎧⎨=-⎩【点睛】本题中考查了由一个二元一次方程和一个二元二次方程组成的方程组的解法,可用代入法求解.5.解方程组:22694(1)23(2)x xy y x y ⎧-+=⎨-=⎩【答案】1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【解析】【分析】先将①中的x 2 -6xy+9y 2分解因式为:(x-3y )2,则x-3y=±2,与②组合成两个方程组,解出即可【详解】解:由①,得(x ﹣3y )2=4,∴x ﹣3y =±2,∴原方程组可转化为:3323x y x y -=⎧⎨-=⎩ 或3-223x y x y -=⎧⎨-=⎩ 解得1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 所以原方程组的解为:1151x y =⎧⎨=⎩或22135x y =⎧⎨=⎩ 【点睛】此题考查二元二次方程组的解,解题关键在于掌握运算法则6.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为()()2620x y x y x y -=⎧⎨-+=⎩ ∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩∴原方程组的解为 42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【点睛】本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.7.解方程组:222023x xy y x y ⎧--=⎨+=⎩. 【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩,即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.8.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.9.已知正比例函数()()249m n y m n x m -=++-的图像经过第二、四象限,求这个正比例函数的解析式.【答案】19y x =-【解析】【分析】根据正比例函数的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,再根据其所经过的象限进行取舍即可.【详解】解:∵该函数为正比例函数,∴2190m n m -=⎧⎨-=⎩,解得32m n =⎧⎨=⎩或34m n =-⎧⎨=-⎩, ∵该函数图像经过第二、四象限,∴40m n +<,∴34m n =-⎧⎨=-⎩, ∴函数解析式为:19y x =-.【点睛】本题考查了正比例函数的定义和性质以及二元二次方程组的求解,熟练掌握正比例函数的定义和性质是解题关键.10.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①② 由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.11.222102520x y x xy y +-=⎧⎨-+=⎩【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.12.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】 解:224490x xy y x y ⎧++=⎨+=⎩①②方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.13.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.14.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.15.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;解:222603x y y mx ⎧+-=⎨=+⎩①② 把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.16.解方程22220x y x xy y -=⎧⎨--=⎩①② 【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】 先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩ 答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.17.某起重机厂四月份生产A 型起重机25台,B 型起重机若干台.从五月份起, A 型起重机月增长率相同,B 型起重机每月增加3台.已知五月份生产的A 型起重机是B 型起重机的2倍,六月份A 、 B 型起重机共生产54台.求四月份生产B 型起重机的台数和从五月份起A 型起重机的月增长率.【答案】四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%【解析】【分析】设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y,根据题目中的等量关系列出方程组求解即可.【详解】解:设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y.根据题意 ,可列方程组()()()()2251232513254y x y x ⎧+=+⎪⎨+++⨯=⎪⎩解得:x=12,y=0.2答:四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%.【点睛】本题考查了二元二次方程组的应用,解题的关键是找准题中的等量关系.18.解方程组:2234021x xy y x y ⎧--=⎨+=⎩. 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【解析】【分析】方程组中第一个方程可因式分解为两个二元一次方程,这两个方程与组中的另一个方程组成两个二元一次方程组,解这两个二元一次方程组即可求得原方程组的解.【详解】解:2234021x xy y x y ①②⎧--=⎨+=⎩, 由①得:(x ﹣4y )(x +y )=0,∴x ﹣4y =0或x +y =0.原方程组可化为4021x y x y -=⎧⎨+=⎩,021x y x y +=⎧⎨+=⎩.解4021x y x y -=⎧⎨+=⎩,得112316x y ⎧=⎪⎪⎨⎪=⎪⎩;解021x y x y +=⎧⎨+=⎩,得,2211x y =-⎧⎨=⎩. ∴原方程组的解为112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,熟练掌握解法是求解的关键.19.解方程组:222302x xy y x y ⎧--=⎨-=⎩【答案】1131x y =⎧⎨=⎩ 2211x y =⎧⎨=-⎩ 【解析】【分析】利用因式分解把方程①转化为两个二元一次方程,再分别与方程②组成方程组,解二元一次方程组即可得到答案.【详解】解:222302x xy y x y ⎧--=⎨-=⎩①②, 由①得:x 3y 0-= 或 x y 0+=原方程组化为: 302x y x y -=⎧⎨-=⎩ 或02x y x y +=⎧⎨-=⎩解得:1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ ∴ 原方程组的解为1131x y =⎧⎨=⎩ 或 2211x y =⎧⎨=-⎩ 【点睛】本题考查的是二元二次方程组的解法,掌握利用因式分解降次是解题关键.20.解方程组22224024x y x xy y ⎧-=⎨-+=⎩.【答案】原方程组的解是114,32;3x y ⎧=⎪⎪⎨⎪=-⎪⎩224,32;3x y ⎧=-⎪⎪⎨⎪=⎪⎩334,2;x y =⎧⎨=⎩444,2.x y =-⎧⎨=-⎩ 【解析】【分析】 由①得x+2y=0,或x-2y=0,由②得x-y=2,或x-y=-2,从而可将原方程组化为4个二元一次方程组求解.【详解】22224024x y x xy y ⎧-=⎨-+=⎩①②, 由①得(x+2y)(x-2y)=0,∴x+2y=0或x-2y=0,由②得(x-y)2=4,∴x-y=2或x-y=-2,∴原方程组可化为202x y x y +=⎧⎨-=⎩,202x y x y +=⎧⎨-=-⎩,202x y x y -=⎧⎨-=⎩,202x y x y -=⎧⎨-=-⎩, 分别解这四个方程组得114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩, ∴原方程组的解是114323x y ⎧=⎪⎪⎨⎪=-⎪⎩,224323x y ⎧=-⎪⎪⎨⎪=⎪⎩,3342x y =⎧⎨=⎩,4442x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,将原方程组化为4个二元一次方程组求解是解答本题的关键.。
2020-2021初中数学方程与不等式之不等式与不等式组基础测试题含解析(2)
2020-2021初中数学方程与不等式之不等式与不等式组基础测试题含解析(2)一、选择题1.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C 【解析】 【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可. 【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47, 解不等式②得,x≤23, 解不等式③得,x >11, 所以,x 的取值范围是11<x≤23. 故选:C . 【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.2.关于x ,y 的方程组32451x y m x y m +=+⎧⎨-=-⎩的解满足237x y +>,则m 的取值范围是( )A .14m <- B .0m < C .13m > D .7m >【答案】C 【解析】 【分析】通过二元一次方程组进行变形可得到关于2x+3y 与含m 的式子之间的关系,进一步求出m的取值范围. 【详解】32451x y m x y m +=+⎧⎨-=-⎩①② ①-②,得2x+3y=3m+6 ∵2x+3y>7 ∴3m+6>7 ∴m>13【点睛】此题考查含参数的二元一次方程,重点是将二元一次方程组进行灵活变形,得到与其他已知条件相联系的隐藏关系,进而解题.3.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m > B .1m <C .1m ≠D .1m =【答案】B 【解析】 【分析】根据不等式的基本性质3,两边都除以m-1后得到x >1,可知m-1<0,解之可得. 【详解】∵不等式(m-1)x <m-1的解集为x >1, ∴m-1<0,即m <1, 故选:B . 【点睛】此题考查不等式的解集,熟练掌握不等式的基本性质是解题的关键.4.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( )A .a >-1B .a≥-1C .a≤1D .a <1【答案】D 【解析】 【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1. 【详解】 解:0122x a x x -≥⎧⎨->-⎩①②,由①得:x≥a , 由②得:x <1, ∵不等式组有解,∴a <1, 故选:D . 【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.5.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+【答案】A 【解析】 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立; C 、根据不等式的性质2,不等式的两边乘以13,可得33a b>,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立. 故选:A. 【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( )A .1k >B .1k <C .1k ³D .1k ≤【答案】C 【解析】 【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可. 【详解】解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩,∵该不等式组的解集为:2x <,∴12k +≥, ∴1k ≥, 故选:C. 【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.7.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解析】 分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<; 解不等式②,得:x 3≥-; ∴原不等式组的解集为:3x 1-≤<, 将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.8.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8 B .9C .10D .12【答案】C 【解析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可. 【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠. 又∵方程有整数解, ∴11a -=±,2±,4±, 解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩,得,25a x -<…. 又不等式组有且只有3个整数解, 可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10. 故选:C . 【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.9.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解析】 【分析】先解不等式,根据解集确定数轴的正确表示方法.解:不等式2x+1>-3, 移项,得2x >-1-3, 合并,得2x >-4, 化系数为1,得x >-2. 故选C . 【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.10.关于x 的不等式412x -≥-的正整数解有( ) A .0个 B .1个C .3个D .4个【答案】C 【解析】 【分析】先解不等式求出解集,根据解集即可确定答案. 【详解】解不等式412x -≥-得3x ≤, ∴该不等式的正整数解有:1、2、3, 故选:C. 【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A 【解析】 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<, 解得:3<x <5. 故选:A . 【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.把不等式组的解集表示在数轴上,下列选项正确的是( )A .B .C .D .【答案】B 【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .13.已知不等式组122x a x b +>⎧⎨+<⎩的解集为23x -<<,则2019()a b +的值为( )A .-1B .2019C .1D .-2019【答案】A 【解析】 【分析】根据不等式组的解集即可得出关于a 、b 的方程组,解方程组即可得出a 、b 值,将其代入计算可得. 【详解】解不等式x +a >1,得:x >1﹣a , 解不等式2x +b <2,得:x <22b-, 所以不等式组的解集为1﹣a <x <22b-. ∵不等式组的解集为﹣2<x <3,∴1﹣a =﹣2,22b-=3, 解得:a =3,b =﹣4,∴201920192019()(34)(1)a b +=-=-=﹣1.故选:A . 【点睛】本题考查了解一元一次不等式组,解题的关键是求出a 、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.14.下列不等式变形正确的是( ) A .由a b >,得ac bc > B .由a b >,得2ax bc > C .由a b >,得ac bc < D .由a b >,得a c b c ->-【答案】D 【解析】 【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确. 故选:D 【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.15.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C 【解析】 【分析】此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围. 【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2,由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1, 解得:2≤a <3, 故选C . 【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.16.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.17.不等式组26020xx+>⎧⎨-≥⎩的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020xx+>⎧⎨-≥⎩①②,由①得:3x >-; 由②得:2x ≤,∴不等式组的解集为32x -<≤, 表示在数轴上,如图所示:故选:C . 【点睛】考核知识点:解不等式组.解不等式是关键.18.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->- D .()()11a c b c -<-【答案】D 【解析】 【分析】根据不等式的性质即可求出答案. 【详解】 解:∵0c <, ∴11c -<-, ∵a b >,∴()()11a c b c -<-, 故选:D . 【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.19.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折. A .6折 B .7折C .8折D .9折【答案】C 【解析】 【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解. 【详解】 解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%, 解得:x≥8. 答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.20.若关于x的不等式组无解,且关于y的分式方程有非正整数解,则符合条件的所有整数k的值之和为()A.﹣7 B.﹣12 C.﹣20 D.﹣34【答案】B【解析】【分析】先根据不等式组无解解出k的取值范围,再解分式方程得y=,根据方程有解和非正整数解进行综合考虑k的取值,最后把这几个数相加即可.【详解】∵不等式组无解,∴10+2k>2+k,解得k>﹣8.解分式方程,两边同时乘(y+3),得ky﹣6=2(y+3)﹣4y,解得y=.因为分式方程有解,∴≠﹣3,即k+2≠﹣4,解得k≠﹣6.又∵分式方程的解是非正整数解,∴k+2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k=﹣3,﹣4,﹣5,﹣8,﹣14.又∵k>﹣8,∴k=﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B.【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.。
2020-2021初中数学方程与不等式之不等式与不等式组经典测试题含答案解析(1)
2020-2021初中数学方程与不等式之不等式与不等式组经典测试题含答案解析(1)一、选择题1.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由–12a>2得a<2 D.由2x+1>x得x<–1【答案】B【解析】【分析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.2.若m n,则下列不等式中成立的是()A.m+a<n+b B.ma>nb C.ma2>na2D.a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a=0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.3.下列不等式的变形正确的是()A .若,am bm >则a b >B .若22am bm >,则a b >C .若,a b >则22am bm >D .若a b >且0,ab >则11a b> 【答案】B【解析】【分析】 根据不等式的性质,对每个选项进行判断,即可得到答案.【详解】解:当0m <时,若am bm >,则a b <,故A 错误;若22am bm >,则a b >,故B 正确;当=0m 时,22=am bm ,故C 错误;若0a b >>,则11a b<,故D 错误; 故选:B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握不等式的性质进行判断.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;故选:A .【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.6.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.【详解】A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.7.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.8.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k > B .1k < C .1k ³ D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.9.关于 x 的不等式组21231x x a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为( )A .-2≤a <-1B .-2<a≤-1C .-3≤a <-2D .-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】 解:21231x x a -⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72, 解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】 222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.12.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得2ax bc >C .由a b >,得ac bc <D .由a b >,得a c b c ->-【答案】D【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确.故选:D【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.13.不等式组26020x x +>⎧⎨-≥⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:26020x x +>⎧⎨-≥⎩①②, 由①得:3x >-;由②得:2x ≤,∴不等式组的解集为32x -<≤,表示在数轴上,如图所示:故选:C .【点睛】考核知识点:解不等式组.解不等式是关键.14.若整数a 使关于x 的分式方程111a x a x x ++=-+的解为负数,且使关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10 【答案】C【解析】【分析】解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出a 的范围,继而可得整数a 的所有取值,然后相加.【详解】解:解关于x 的分式方程111a x a x x ++=-+,得x =−2a+1, ∵x ≠±1,∴a ≠0,a≠1,∵关于x 的分式方程111a x a x x ++=-+的解为负数, ∴−2a+1<0, ∴12a >, 解不等式1()02x a -->,得:x <a , 解不等式2113x x +-≥,得:x≥4, ∵关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解, ∴a ≤4,∴则所有满足条件的整数a 的值是:2、3、4,和为9,故选:C .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的方法,并根据题意得到a 的范围是解题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.17.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .10m -≤≤D .10m -<<【答案】A【解析】 ∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m-1<-1,解得10m -≤<,故选A.18.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x<2的解集故选:A.【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.。
新初中数学方程与不等式之二元二次方程组知识点总复习有答案解析(2)
新初中数学方程与不等式之二元二次方程组知识点总复习有答案解析(2)一、选择题1.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①② 由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩, 故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则2.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=.整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩.3.解方程组:⑴3{351x y x y -=+= ⑵3+10{2612x y z x y z x y z -=+-=++= 【答案】(1)2{1x y ==-;(2)3{45x y z ===【解析】(1)先用代入消元法求出x 的值,再用代入消元法求出y 的值即可.(2)先利用加减消元法去z 得到关于x 、y 的两个方程,解这两个方程组成的方程组求出x 、y ,然后利用代入法求z ,从而得到原方程组的解.(1)2{1x y ==- ; (2) 3{45x y z ===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.4.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩, 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .5.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可. 试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①②由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,. 所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.6.解方程组:222023x xy y x y ⎧--=⎨+=⎩.【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.7.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩ 由②得,()224x y -= ③,把①代入③,得()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x1=-4,x2=0,把x1=-4,x2=0,分别代入①,得y1=-3,y2=1.所以,方程组的解是1 14 3x y =-⎧⎨=-⎩,221xy=⎧⎨=⎩【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.8.解方程组:【答案】,.【解析】【分析】先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程.9.解方程组:222920x xy yx y⎧++=⎨--=⎩.【答案】5212xy⎧=⎪⎪⎨⎪=⎪⎩或1252xx⎧=-⎪⎪⎨⎪=-⎪⎩.【解析】【分析】先变形(1)得出x+y=1,x+y=-1,作出两个方程组,求出方程组的解即可.【详解】22291202x xy y x y ()()⎧++=⎨--=⎩, 由(1)得出x+y=3,x+y=-3,故有32x y I x y +=⎧⎨-=⎩或x+y=-3II x-y=2⎧⎨⎩解得:5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩原方程组的解是5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组和解高次方程组的应用,解此题的关键是能把高次方程组转化成二元一次方程组.10.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii)得,3 32 2x y =-⎧⎨=⎩4422 xy=⎧⎨=-⎩,所以,原方程组的解是:12121111x xy y⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩3322xy=-⎧⎨=⎩4422xy=⎧⎨=-⎩【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.11.解方程组:222449{x xy yx xy++=+=.【答案】{1.5xy==,3{3xy=-=,{1.5xy==-,3{3xy==-.【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】222449x xy yx xy⎧++=⎨+=⎩①②由①得:(x+2y)2=9,x+2y=±3,由②得:x(x+y)=0,x=0,x+y=0,即原方程组化为:23x yx+=⎧⎨=⎩,23x yx y+=⎧⎨+=⎩,23x yx+=-⎧⎨=⎩,23x yx y+=-⎧⎨+=⎩,解得:1.5xy=⎧⎨=⎩,33xy=-⎧⎨=⎩,1.5xy=⎧⎨=-⎩,33xy=⎧⎨=-⎩,所以原方程组的解为:1.5xy=⎧⎨=⎩,33xy=-⎧⎨=⎩,1.5xy=⎧⎨=-⎩,33xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.12.解方程组:222232()x yx y x y⎧-=⎨-=+⎩.【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩(Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.13.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩ 【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①② , 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.14.2222340441x xy y x xy y ⎧--=⎨++=⎩ 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①② 将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.15.222102520x y x xy y +-=⎧⎨-+=⎩【答案】111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】首先将二元二次方程进行因式分解,然后组成两个新的二元二次方程,求解即可.【详解】222102520x y x xy y +-=⎧⎨-+=⎩①② 将②因式分解,得()()220x y x y --=∴方程组可化为两个新方程组:21020x y x y +-=⎧⎨-=⎩,21020x y x y +-=⎧⎨-=⎩∴方程组的解为:111412x y ⎧=⎪⎪⎨⎪=⎪⎩,222515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.16.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】解:222603x y y mx ⎧+-=⎨=+⎩①② 把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±, 当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.17.解方程: 【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得: ······························································· (2分) 解得,························································ (2分) 代人得18.某起重机厂四月份生产A 型起重机25台,B 型起重机若干台.从五月份起, A 型起重机月增长率相同,B 型起重机每月增加3台.已知五月份生产的A 型起重机是B 型起重机的2倍,六月份A 、 B 型起重机共生产54台.求四月份生产B 型起重机的台数和从五月份起A 型起重机的月增长率.【答案】四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%【解析】【分析】设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y,根据题目中的等量关系列出方程组求解即可.【详解】解:设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y.根据题意 ,可列方程组()()()()2251232513254y x y x ⎧+=+⎪⎨+++⨯=⎪⎩ 解得:x=12,y=0.2答:四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%.【点睛】本题考查了二元二次方程组的应用,解题的关键是找准题中的等量关系.19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.()28024x y x y x ++=⎧⎪⎨++=⎪⎩【答案】3022x y =-⎧⎨=⎩【解析】【分析】运用代入法进行消元降次,即可得解.【详解】()28024x y x y x ++=⎧⎪⎨++=⎪⎩①② 由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④ 将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.。
初三二元二次方程总复习
初三二元二次方程总复习一、基础知识回顾初中二元二次方程的一般形式为:$ax^2 + by^2 + cx + dy + e =0$,其中$a, b, c, d, e$为已知的实数,且$a, b$不能同时为0。
解二元二次方程通常有两种方法,分别是消元法和代入法。
消元法和代入法。
在消元法中,我们通过将一个方程乘以适当的数使其系数相消,从而将二元二次方程化简为一元二次方程,然后利用一元二次方程的解法求解。
这种方法的关键在于选择合适的方程以达到系数相消的效果。
而在代入法中,我们先将一个方程解出一个变量的值,再将此值代入另一个方程中,从而将二元二次方程化简为一元二次方程。
这种方法的关键在于找到合适的方程解出变量值,然后代入另一个方程进行求解。
二、解题技巧总结1. 决定使用消元法还是代入法时,要根据题目给出的条件和方程形式来选择适合的方法。
2. 在消元法中,可以选择先消去$y$的系数,也可以选择先消去$x$的系数,在选择时要考虑系数的大小和计算的简便程度。
3. 在代入法中,要选择适合的方程解出变量值,通常选择系数较小或较简单的方程来解出变量值会更方便。
4. 解一元二次方程时,注意解的个数可能为两个、一个或无解,要根据判别式的值进行判断。
5. 在计算过程中,要注意运算的准确性和整理的规范性,避免计算错误和解答混乱。
三、例题实操例题1:求解二元二次方程组方程组:$\begin{cases}2x^2 + y^2 - 3x + 5y - 2 = 0 \\x^2 + 3y^2 - 2x + 4y - 5 = 0 \\\end{cases}$解:我们可以先进行消元,将第一个方程乘以3,第二个方程乘以2,然后相互相减,消去$x$的系数:$\begin{cases}6x^2 + 3y^2 - 9x + 15y - 6 = 0 \\2x^2 + 6y^2 - 4x + 8y - 10 = 0 \\\end{cases}$得到:$4x^2 - 3x - 7y + 4 = 0$然后,我们可以使用代入法,将解出$y$的值代入方程组的第一个方程,得到一元二次方程:$4x^2 - 3x - 7(1 - 2x + 3x^2) + 4 = 0$化简得:$11x^2 - 17x + 11 = 0$解出一元二次方程,得到$x = \frac{17 \pm \sqrt{97}}{22}$将$x$的值代入方程组的第一个方程,得到对应的$y$的值,得到$y = \frac{5 \pm \sqrt{97}}{11}$所以,方程组的解为:$(x = \frac{17 + \sqrt{97}}{22}, y =\frac{5 + \sqrt{97}}{11})$ 和 $(x = \frac{17 - \sqrt{97}}{22}, y =\frac{5 - \sqrt{97}}{11})$例题2:求解二元二次方程组方程组:$\begin{cases}x^2 + 2xy + 3y^2 = 0 \\3x^2 - 4xy - y^2 + 5 = 0 \\\end{cases}$解:这是一个齐次方程组,我们可以将第一个方程除以$y^2$,第二个方程除以$xy$:$\begin{cases}\frac{x^2}{y^2} + 2\frac{x}{y} + 3 = 0 \\3\frac{x^2}{y^2} - 4\frac{x}{y} - 1 + 5\frac{1}{xy} = 0\end{cases}$令$\frac{x}{y} = t$,则方程组可以化简为:$\begin{cases}t^2 + 2t + 3 = 0 \\3t^2 - 4t - 1 + 5t = 0\end{cases}$解出一元二次方程,得到$t = -1 \pm \sqrt{2}i$将$t$的值代入方程组的第一个方程,得到:$x = (-1 \pm \sqrt{2}i)y$所以,方程组的解为:$(x = (-1 + \sqrt{2}i)y, y)$ 和 $(x = (-1 - \sqrt{2}i)y, y)$四、总结二元二次方程的解题方法主要有消元法和代入法。
新初中数学方程与不等式之二元二次方程组知识点总复习含答案(2)
新初中数学方程与不等式之二元二次方程组知识点总复习含答案(2)一、选择题1.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 【解析】【分析】把第一个方程化为x=3y ,代入第二个方程,即可求解.【详解】由方程①,得x =3y③,将③代入②,得(3y )2+y 2=20,整理,得y 2=2,解这个方程,得y 1,y 2④,将④代入③,得x 1=,2x =﹣所以,原方程组的解是11x y ⎧=⎪⎨=⎪⎩11x y ⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.2.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=.整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是111 3x y =⎧⎨=⎩,2267xy=⎧⎨=-⎩.3.解方程组:⑴3{351x yx y-=+=⑵3+10{2612x y zx y zx y z-=+-=++=【答案】(1)2{1xy==-;(2)3{45xyz===【解析】(1)先用代入消元法求出x的值,再用代入消元法求出y的值即可.(2)先利用加减消元法去z得到关于x、y的两个方程,解这两个方程组成的方程组求出x、y,然后利用代入法求z,从而得到原方程组的解.(1)2{1xy==-; (2)3{45xyz===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.4.解方程组:2220 23x xy yx y⎧--=⎨+=⎩.【答案】原方程组的解为123 3x y =⎧⎨=-⎩,226535xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】分析:由①得出(x+y)(x-2y)=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:2220 23x xy yx y⎧--⎨+⎩=①=②由①得:(x+y)(x-2y)=0,x+y=0,x-2y=0,即原方程组化为23x yx y+⎧⎨+⎩==,2023x yx y-⎧⎨+⎩==,解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.5.解方程组221444y x x xy y =+⎧⎨-+=⎩ 【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.6.解方程组:22x 2xy 3y 3x y 1⎧--=⎨+=⎩ 【答案】x 1.5y 0.5=⎧⎨=-⎩【解析】【分析】把方程组的第一个方程分解因式求出x 3y 3-=,再解方程组解x y 1x 3y 3+=⎧⎨-=⎩即可. 【详解】由22x 2xy 3y 3--=得:()()x y x 3y 3+-=, x y 1+=Q ,x 3y 3∴-=,解x y 1x 3y 3+=⎧⎨-=⎩得:x 1.5y 0.5=⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成低次方程组是解此题的关键.7.如图,已知抛物线y =ax 2+bx+1经过A (﹣1,0),B (1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l 1:y =k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y =k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=﹣1.解决问题:①若直线y =2x ﹣1与直线y =mx+2互相垂直,则m 的值是____;②抛物线上是否存在点P ,使得△PAB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)M 是抛物线上一动点,且在直线AB 的上方(不与A ,B 重合),求点M 到直线AB 的距离的最大值.【答案】(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(35. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,抛物线的解析式为y =211x x 122-++;(2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12;②AB 的解析式为1122y x =+当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩,解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩,即P (6,﹣14);当PB ⊥AB 时,PB 的解析式为y =﹣2x+3,联立PB 与抛物线,得21112223y x x y x ⎧=++⎪⎨⎪=-+⎩,解得11x y =⎧⎨=⎩(舍)45x y =⎧⎨=-⎩,即P (4,﹣5),综上所述:△PAB 是以AB 为直角边的直角三角形,点P 的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB=2221=5,设M到AB的距离为h,由三角形的面积,得h=5=5.点M到直线AB的距离的最大值是5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键8.阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组.如:由(2)得,代入(1)消元得到关于的方程:,将代入得:,方程组的解为 请你用代入消元法解方程组:【答案】解:由(1)得,代入(2)得化简得:, 把,分别代入得:, ,【解析】这是阅读理解题,考查学生的阅读理解能力,把二元二次方程组利用代入消元转化成一元二次方程,解出一元二次方程的解,再求另一个未知数的解即可9.22x -y -3x 10y ⎧=⎨++=⎩,①,② 【答案】x 1y -2=⎧⎨=⎩ 【解析】【分析】根据解二元二次方程组的步骤求解即可.【详解】解:由方程①得:()()x y x-y -3+⋅=,③由方程②得:x y -1+=,④联解③④得x-y=3,⑤联解④⑤得x 1y -2=⎧⎨=⎩所以原方程组的解为x 1y -2=⎧⎨=⎩ 【点睛】本题考查解二元二次方程组,解二元二次方程组的基本思想是先消元转化为一元二次方程,再降次转化为一元一次方程解之.10.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.11.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.【答案】12cm 、16cm 、20cm.【解析】【分析】设两直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩求解即可.【详解】设该直角三角形的两条直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩解得=12=16a b ⎧⎨⎩或=16=12a b ⎧⎨⎩, 经检验,=12=16a b ⎧⎨⎩和=16=12a b ⎧⎨⎩cm. 答:该直角三角形的三边长分别是12cm 、16cm 、20cm.【点睛】 此题运用三角形面积表示出1=962ab12.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0, x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.13.解方程组:223403x xy y x y ⎧--=⎨-=⎩【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得y =, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.14.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组15.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.16.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.17.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或 44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.18.()28024x y x y x ++=⎧⎪⎨++=⎪⎩【答案】3022x y =-⎧⎨=⎩【解析】【分析】运用代入法进行消元降次,即可得解.【详解】()28024x y x y x ++=⎧⎪⎨++=⎪⎩①② 由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.19.有一直立杆,它的上部被风吹折,杆顶着地处离杆脚20dm ,修好后又被风吹折,因新断处比前次低5dm ,故杆顶着地处比前次远10dm ,求此杆的高度.【答案】此竿高度为50dm【解析】【分析】由题中条件,作如下示意图,可设第一次折断时折断处距地面AB 的高为x dm ,余下部分BC 长为y dm ,进而再依据勾股定理建立方程组,进而求解即可.【详解】解:设第一次折断时,折断处距地面AB=x dm ,余下部分为BC 为ydm .由题意得22222220;(5)(5)30.y x y x ⎧=+⎨+=-+⎩ 解得 2129x y =⎧⎨=⎩此杆的高度为x+y=21+19=50 dm答:此竿高度为50dm【点睛】本题主要考查了简单的勾股定理的应用问题,能够熟练掌握.20.解方程组:22560{21x xy y x y +-=-=①②【答案】11613{113x y ==-,221{1x y ==. 【解析】【分析】 先将方程①变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0,分别与方程②组成二元一次方程组,从而求出方程的解.【详解】解:方程①可变形为(x+6y )(x ﹣y )=0得x+6y=0或x ﹣y=0将它们与方程②分别组成方程组,得(Ⅰ)6021x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,解方程组(Ⅱ)11x y =⎧⎨=⎩, 所以原方程组的解是11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 故答案为11613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,2211x y =⎧⎨=⎩. 【点睛】此题是解高次方程,解题思路与解一元一次方程组差不多,都是先消元再代入来求解,只是计算麻烦点.。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案解析
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案解析一、选择题1.解方程组:2263100x y x xy y -=⎧⎨+-=⎩【答案】11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩ 【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.【详解】解:2263100x y x xy y -=⎧⎨+-=⎩由②得:()()250x y x y -+=原方程组可化为620x y x y -=⎧⎨-=⎩或650x y x y -=⎧⎨+=⎩, 解得:11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. ∴原方程组的解为11126x y =⎧⎨=⎩,1151x y =⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.2.如图,在平面直角坐标系中,直线l :沿x 轴翻折后,与x 轴交于点A ,与y 轴交于点B ,抛物线与y 轴交于点D ,与直线AB 交于点E 、点F (点F 在点E 的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.【答案】(1);(2);(3)(1,),(3,0).【解析】【分析】(1)设直线AB的解析式为y=kx+b,先求出直线与x轴、y轴交点坐标,根据沿x轴翻折,得到A、B的坐标,把A、B的坐标代入直线AB的解析式y=kx+b,即可求出直线AB的解析式;(2)设抛物线的顶点为P(h,0),得出抛物线解析式为:,根据DF∥x轴,得出F的坐标,把F的坐标代入直线AB 的解析式即可求出h的值,即可得到答案;(3)过M作MT⊥FH于T,得到Rt△MTF∽Rt△AGF,得到FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,求出FN的值,根据三角形的面积公式求出△MNF和△AFH的面积,根据之间的等量关系即可求出k的值,设直线MN的解析式为:y=kx+b,把M、N(6,-4),代入得到方程组,求出方程组的解即可得到直线MN的解析式,解由方程和的解即可得出P、Q的坐标.【详解】(1)解:设直线AB的解析式为y=kx+b直线与x轴、y轴交点分别为(-2,0),(0,),沿x轴翻折,∵直线,直线AB与x轴交于同一点(-2,0)∴A(-2,0).与y轴的交点(0,)与点B关于x轴对称∴B(0,),∴解得k=,b=,∴直线AB的解析式为.(2)解:设抛物线的顶点为Q(h,0),抛物线解析式为:∴D(0,).∵DF∥x轴,∴点F(2h,),又点F在直线AB上,∴,解得 h1=3,h2=(舍去),∴抛物线的解析式为.(3)解:过M作MT⊥FH于T,∴Rt△MTF∽Rt△AGF.∴FT:TM:FM=FG:GA:FA=3:4:5,设FT=3k,TM=4k,FM=5k,则FN=AH+HF+AF)-FM=16-5k,∴S△MNF=(AH+HF+AF)-FM=16-5k,又∵S△MNF=S△AFH.∴=24,解得k ==或k=2 (舍去),∴FM=6,FT=,MT= ,GN=4,TG=, ∴M (,))、N (6,-4),代入得:=k+b 且-4=6k+b , 解得:k=,b=4, ∴y =x+4, 联立y =x+4与y =,求得P (1, ),Q (3,0).答:存在P 的坐标是(1, ),Q 的坐标是(3,0).【点睛】本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组、解二元二次方程组,三角形相似的性质和判定,图形的旋转等知识点,综合运用这些性质进行计算是解此题的关键,此题是一个拔高的题目,有一定的难度.3.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.4.解方程组:⑴3{351x y x y -=+= ⑵3+10{2612x y z x y z x y z -=+-=++= 【答案】(1)2{1x y ==-;(2)3{45x y z ===【解析】(1)先用代入消元法求出x 的值,再用代入消元法求出y 的值即可.(2)先利用加减消元法去z 得到关于x 、y 的两个方程,解这两个方程组成的方程组求出x 、y ,然后利用代入法求z ,从而得到原方程组的解.(1)2{1x y ==- ; (2) 3{45x y z ===“点睛”本题考查了解二元一次方程组、三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为二元一次方程组的问题.5.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.6.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩ 【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==, 解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩. 故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.7.解方程组:2322441x y x xy y +=⎧-+=⎨⎩【答案】2112115,175x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】分析:把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.详解:2322441x y x xy y +=⎧-+=⎨⎩①② 由②得2(2)1x y -=,所以21x y -=③,21x y -=-④由①③、①④联立,得方程组:2321x y x y +=⎧-=⎨⎩,2321x y x y +=⎧-=-⎨⎩ 解方程组2321x y x y +=⎧-=⎨⎩得,{11x y == 解方程组2321x y x y +=⎧-=-⎨⎩得,1575x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以原方程组的解为:1111x y =⎧=⎨⎩,221575x y ⎧=⎪⎪⎨⎪=⎪⎩点睛:本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.8.解方程组221444y x x xy y =+⎧⎨-+=⎩【答案】1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【解析】【分析】先将②式左边因式分解,再将①式代入,可求出x,再分别代入①式求出y.【详解】解:221? 444y x x xy y ①②=+⎧⎨-+=⎩由②得,()224x y -= ③,把①代入③,得 ()2214x x ⎡⎤-+=⎣⎦,即:()224x +=,所以,x+2=2或x+2=-2所以,x 1=-4,x 2=0,把x 1=-4,x 2=0,分别代入①,得y 1=-3,y 2=1.所以,方程组的解是 1143x y =-⎧⎨=-⎩,2201x y =⎧⎨=⎩ 【点睛】本题考核知识点:解二元二次方程组.解题关键点:用代入法解方程组.9.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.10.解方程组:22235,230.x y x xy y +=⎧⎨+-=⎩. 【答案】1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩. 【解析】【分析】先将第二个方程利用因式分解法得到两个一元一次方程,然后分别与第一个方程联立成二元一次方程组,分别解方程组即可.【详解】由②得:()()30x y x y -+=;所以,0x y -=或30x y +=;整理得:2350x y x y +=⎧⎨-=⎩或23530x y x y +=⎧⎨+=⎩; 解得:11x y =⎧⎨=⎩或553x y =⎧⎪⎨=-⎪⎩; 所以,原方程组的解为1111x y =⎧⎨=⎩,22553x y =⎧⎪⎨=-⎪⎩; 【点睛】本题主要考查二元二次方程组的解法,能够将原方程组拆成两个二元一次方程组是解题的关键.11.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①② 由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩ ,故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则12.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为 ()()2620x y x y x y -=⎧⎨-+=⎩∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩∴原方程组的解为 42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩. 【点睛】 本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.13.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.14.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.15.解方程组: 222403260x y x xy x y ⎧-=⎨-+++=⎩. 【答案】1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩【解析】【分析】由①得:2x ﹣y =0,2x +y =0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①②由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.16.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩【答案】1184x y =⎧⎨=⎩或2293x y =⎧⎨=⎩ 【解析】【分析】利用因式分解法求22560x xy y -+=,得到20x y -=或30x y -=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y -=或30x y -=, 2012x y x y -=⎧⎨+=⎩或3012x y x y -=⎧⎨+=⎩, 解方程组得:1184x y =⎧⎨=⎩,2293x y =⎧⎨=⎩ , 则原方程组的解为 1184x y =⎧⎨=⎩和 2293x y =⎧⎨=⎩. 【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.17.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =, 故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.18.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩【答案】114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.19.解方程: 【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得: ······························································· (2分) 解得,························································ (2分) 代人得20.解方程组:2234021x xy y x y ⎧--=⎨+=⎩. 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【解析】【分析】方程组中第一个方程可因式分解为两个二元一次方程,这两个方程与组中的另一个方程组成两个二元一次方程组,解这两个二元一次方程组即可求得原方程组的解.【详解】解:2234021x xy y x y ①②⎧--=⎨+=⎩, 由①得:(x ﹣4y )(x +y )=0,∴x ﹣4y =0或x +y =0.原方程组可化为4021x y x y -=⎧⎨+=⎩,021x y x y +=⎧⎨+=⎩. 解4021x y x y -=⎧⎨+=⎩,得112316x y ⎧=⎪⎪⎨⎪=⎪⎩;解021x y x y +=⎧⎨+=⎩,得,2211x y =-⎧⎨=⎩. ∴原方程组的解为112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,熟练掌握解法是求解的关键.。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附解析(1)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附解析(1)一、选择题1.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为()()2620x y x y x y -=⎧⎨-+=⎩ ∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩∴原方程组的解为 42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【点睛】本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.2.直角坐标系xOy 中,有反比例函数)0y x =>上的一动点P ,以点P 为圆心的圆始终与y 轴相切,设切点为A(1)如图1,⊙P 运动到与x 轴相切时,求OP 2的值.(2)设圆P 运动时与x 轴相交,交点为B 、C ,如图2,当四边形ABCP 是菱形时, ①求出A 、B 、C 三点的坐标.②设一抛物线过A 、B 、C 三点,在该抛物线上是否存在点Q ,使△QBP 的面积是菱形ABCP 面积的12?若存在,求出所有满足条件的Q 点的坐标;若不存在,说明理由.【答案】(1)32)①A(0,3B(2,0),C(6,0);②存在,满足条件的Q点有(0,314,1638,36,0).【解析】【分析】(1)当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,进而得出PK2,即可得出OP2的值;(2)①连接PB,设AP=m,过P点向x轴作垂线,垂足为H,则PH=sin60°BP3=,P(m3),进而得出答案;②求直线PB的解析式,利用过A点或C点且平行于PB的直线解析式与抛物线解析式联立,列方程组求满足条件的Q点坐标即可.【详解】解:(1)∵⊙P分别与两坐标轴相切,∴PA⊥OA,PK⊥OK.∴∠PAO=∠OKP=90°.又∵∠AOK=90°,∴∠PAO=∠OKP=∠AOK=90°.∴四边形OKPA是矩形.又∵AP=KP,∴四边形OKPA是正方形,∴OP2=OK2+PK2=2PK•OK=2xy=3=3(2)①连结BP,则AP=BP,由于四边形ABCP为菱形,所以AB=BP=AP,△ABP为正三角形,设AP=m,过P点向x轴作垂线,垂足为H,则PH=sin60°BP3=,P(m,32m),将P点坐标代入到反比例函数解析式中,32=3解得:m=4,(m=﹣4舍去),故P (4,),则AP =4,OA =OB =BH =2,CH =BH =2,故A (0,B (2,0),C (6,0);②设过A 、B 、C 三点的抛物线解析式为y =a (x ﹣2)(x ﹣6),将A 点坐标代入得,a =,故解析式为2y x x 63=-+ 过A 点作BP 的平行线l 抛物线于点Q ,则Q 点为所求.设BP 所在直线解析式为:y =kx +d ,则204k d k d +=⎧⎪⎨+=⎪⎩解得:k d ⎧=⎪⎨=-⎪⎩ 故BP所在的直线解析式为:y =-故直线l的解析式为y =+l与抛物线的交点是方程组263y x x y ⎧=-+⎪⎨⎪=+⎩解得:110x y =⎧⎪⎨=⎪⎩,2214x y =⎧⎪⎨=⎪⎩ 故得Q (0,Q (14,同理,过C 点作BP 的平行线交抛物线于点Q 1,则设其解析式为:y =+e ,则0=e ,解得:e =﹣,故其解析式为:y =﹣其直线与抛物线的交点是方程组2y x x y ⎧=-+⎪⎨⎪=-⎩可求得Q 1(8,6,0).故所求满足条件的Q 点有(0,14,8,6,0).【点睛】本题考查了二次函数的综合运用以及二元二次方程组解法和正方形的判定以及菱形的性质等知识,关键是由菱形、圆的性质,数形结合解题.3.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩ , 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .4.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.5.解方程组:222023x xy y x y ⎧--=⎨+=⎩.【答案】原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】分析:由①得出(x+y )(x-2y )=0,即可转化成两个二元一次方程组,求出方程组的解即可.详解:222023x xy y x y ⎧--⎨+⎩=①=②由①得:(x+y )(x-2y )=0,x+y=0,x-2y=0,即原方程组化为023x y x y +⎧⎨+⎩==,2023x y x y -⎧⎨+⎩==, 解得:1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩, 即原方程组的解为1233x y =⎧⎨=-⎩,226535x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:本题考查了解高次方程组,运用因式分解法把高次方程组转化成二次一次方程组是解此题的关键.6.解方程组:222920x xy y x y ⎧++=⎨--=⎩. 【答案】5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】先变形(1)得出x+y=1,x+y=-1,作出两个方程组,求出方程组的解即可.【详解】22291202x xy y x y ()()⎧++=⎨--=⎩, 由(1)得出x+y=3,x+y=-3,故有32x y I x y +=⎧⎨-=⎩或x+y=-3II x-y=2⎧⎨⎩解得:5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩原方程组的解是5212x y ⎧=⎪⎪⎨⎪=⎪⎩或1252x x ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组和解高次方程组的应用,解此题的关键是能把高次方程组转化成二元一次方程组.7.解方程组:222570x y x y x +=⎧⎨-++=⎩. 【答案】1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩ 【解析】【分析】用代入法即可解答,把①化为y=-2x+5,代入②得x 2-(-2x+5)2+x+7=0即可.【详解】由①得25y x =-+.③把③代入②,得22(25)70x x x --+++=. 整理后,得2760x x -+=.解得11x =,26x =.由11x =,得1253y =-+=.由26x =,得21257y =-+=-.所以,原方程组的解是1113x y =⎧⎨=⎩,2267x y =⎧⎨=-⎩.8.k 为何值时,方程组2216x y x y k ⎧+=⎨-=⎩只有唯一解? 【答案】k=±.【解析】【分析】将方程组转化为一元二次方程,根据△=0求解即可.【详解】2216(1)(2)x y x y k ⎧+=⎨-=⎩ 由(2)得, y=x-k (3)将(3)代入(1)得,2222160x kx k -+-=,要使原方程组有唯一解,只需要上式的△=0,即22(2)42(16)0k k --⨯⨯-=,解得,k=±.所以当k=±2216x y x y k⎧+=⎨-=⎩只有唯一解. 【点睛】本题考查的是高次方程的解法和一元二次方程根的判别式的应用,掌握当判别式为0时,一元二次方程有两个相等的实数根是解题的关键.9.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩ 解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.10.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x −y =0或x−2y =0,原方程组可化为2120x y x y +=⎧⎨-=⎩,21220x y x y +=⎧⎨-=⎩, 解这两个方程组,得原方程组的解为:1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩. 【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.11.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ),解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩, ∴原方程组的解是21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩ 331,25.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y ,即可得到关于x 的一元二次方程.12.解方程组:222221x y x xy y +=⎧⎨++=⎩【答案】1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【解析】【分析】由方程②得出x +y =1,或x +y =﹣1,进而解答即可.【详解】222221x y x xy y +=⎧⎨++=⎩①②,由②可得:x +y =1,或x +y =﹣1,所以可得方程组221x y x y +=⎧⎨+=⎩①③或221x y x y +=⎧⎨+=-⎩①④,解得:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩; 所以方程组的解为:1110x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩. 【点睛】本题考查了解二元二次方程组,关键是根据完全平方公式进行消元解答.13.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩.【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①②由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.14.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩. 【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组15.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①②由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.16.解下列方程组:(1)222220560x y x xy y ⎧+=⎨-+=⎩ (2)217,11 1.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩【答案】(1)3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩2)112512x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)把原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩再分别解这两个方程组可得答案. (2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案. 【详解】解:(1)因为222220560x y x xy y ⎧+=⎨-+=⎩把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩因为222020x y x y ⎧+=⎨-=⎩ 把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩ 同理解222030x y x y ⎧+=⎨-=⎩得方程组的解是x y ⎧=⎪⎨=⎪⎩或x y ⎧=-⎪⎨=⎪⎩所以原方程组的解是:3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩(2)因为217,111.x y x y x y x y⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩①② 所以①+②得:36x y =+,所以12x y +=,把12x y +=代入② 得:13x y -=-, 所以1213x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得:112512x y ⎧=⎪⎪⎨⎪=⎪⎩ 经检验112512x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解,所以原方程的解是112512x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.17.解方程组:2228560x y x xy y +=⎧⎨+-=⎩【答案】11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】先将第2个方程变形为x +6y =0,x ﹣y =0,从而得到两个二元一次方程组,再分别求解即可.【详解】解:2228560x y x xy y +=⎧⎨+-=⎩①②, 由②得:x +6y =0,x ﹣y =0,原方程组可化为2860x y x y +=⎧⎨+=⎩或280x y x y +=⎧⎨-=⎩, 故原方程组的解为11122x y =⎧⎨=-⎩,228383x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.18.已知直角三角形周长为48厘米,面积为96平方厘米,求它的各边长.【答案】12cm 、16cm 、20cm.【解析】【分析】设两直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩求解即可.【详解】设该直角三角形的两条直角边为a 、b+1=962a b ab ⎧⎪⎨⎪⎩ 解得=12=16a b ⎧⎨⎩或=16=12a b ⎧⎨⎩, 经检验,=12=16a b ⎧⎨⎩和=16=12a b ⎧⎨⎩cm. 答:该直角三角形的三边长分别是12cm 、16cm 、20cm.【点睛】 此题运用三角形面积表示出1=962ab19.如图在矩形ABCD 中,AB= n AD,点E 、F 分别在AB 、AD 上且不与顶点A 、B 、D 重合, AEF BCE ∠=∠, 圆O 过A 、E 、F 三点。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案解析(2)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案解析(2)一、选择题1.解方程组:222449{0x xy y x xy ++=+=. 【答案】0{ 1.5x y ==,3{3x y =-=,0{ 1.5x y ==-,3{3x y ==-. 【解析】【分析】先把原方程组的每个方程化简,这样原方程组转化成四个方程组,求出每个方程组的解即可.【详解】2224490x xy y x xy ⎧++=⎨+=⎩①②由①得:(x+2y )2=9,x +2y =±3,由②得:x (x+y )=0,x =0,x +y =0,即原方程组化为:230x y x +=⎧⎨=⎩,230x y x y +=⎧⎨+=⎩,230x y x +=-⎧⎨=⎩,230x y x y +=-⎧⎨+=⎩, 解得:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩, 所以原方程组的解为:01.5x y =⎧⎨=⎩,33x y =-⎧⎨=⎩,01.5x y =⎧⎨=-⎩,33x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组和解高次方程组,能把高次方程组转化成二元一次方程组是解此题的关键.2.解方程组()()22x y x y 0x y 8⎧+-=⎪⎨+=⎪⎩. 【答案】11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【解析】【分析】先把方程组转化成两个二元二次方程组,再求出两个方程组的解即可.【详解】解:由原方程组变形得:22x y 0x y 8⎧+=⎪⎨+=⎪⎩①②, 22x-y 0x y 8⎧=⎪⎨+=⎪⎩③④ 由①变形得:y=-x ,把y=-x 代入②得:22x -x 8+=(),解得12x =2x =-2,,把12x =2x =-2,代入②解得:12y =-2y =2,,所以解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩, 由③变形得:y=x ,把y=x 代入②得:22x x 8+=,解得34x =2x =-2,,把34x =2x =-2,代入②解得:34y =2y =-2,,所以解为:33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩, 综上所述解为:11x 2y 2⎧=⎪⎨=-⎪⎩,22x 2y 2⎧=-⎪⎨=⎪⎩,33x 2y 2⎧=⎪⎨=⎪⎩,44x 2y 2⎧=-⎪⎨=-⎪⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成二元二次方程组是解此题的关键.3.解方程组:2256021x xy y x y ⎧+-=⎨-=⎩①② 【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩, 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .4.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ 【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==, 解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.5.计算:(1(2)解方程组:3534106x y x y -=-⎧⎨-+=⎩ (3)解不等式组,并把解集在数轴上表示出来:6234211132x x x x -≥-⎧⎪--⎨-<⎪⎩ 【答案】(1)12-;(2)035x y =⎧⎪⎨=⎪⎩;(3)21137x -≤≤. 【解析】【分析】(1)先求开方运算,再进行加减;(2)用加减法解方程组;(3)解不等式组,再在数轴上表示解集.【详解】解:(1)原式=-3+4-32=12- (2)3534106x y x y -=-⎧⎨-+=⎩①② ①×2+②,得x=0把x=0代入①式 y=35所以,方程组的解是035x y =⎧⎪⎨=⎪⎩(3)6234211132x x x x -≥-⎧⎪⎨---<⎪⎩①② 由①式得,x≥-23 由②式得,x <117所以,不等式组的解集是21137x -≤≤, 把解集在数轴上表示:【点睛】本题考核知识点:开方,解二元一次方程组,解不等式组.解题关键点:掌握相关解法.6.解方程组【答案】原方程组的解为:,【解析】【分析】把第一个方程代入第二个方程,得到一个关于x的一元二次方程,解方程求出x,把x代入第一个方程,求出y即可.【详解】解:把①代入②得:x2-4x(x+1)+4(x+1)2=4,x2+4x=0,解得:x=-4或x=0,当x=-4时,y=-3,当x=0时,y=1,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程,降次是解题的基本思想.7.阅读材料,解答问题材料:利用解二元一次方程组的代入消元法可解形如的方程组.如:由(2)得,代入(1)消元得到关于的方程:,将代入得:,方程组的解为请你用代入消元法解方程组:【答案】解:由(1)得,代入(2)得化简得:, 把,分别代入得:, ,【解析】这是阅读理解题,考查学生的阅读理解能力,把二元二次方程组利用代入消元转化成一元二次方程,解出一元二次方程的解,再求另一个未知数的解即可8.222620x y x xy y -=⎧⎨--=⎩【答案】42x y =⎧⎨=⎩或22x y =⎧⎨=-⎩ . 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】解:原方程组变形为 ()()2620x y x y x y -=⎧⎨-+=⎩∴2620x y x y -=⎧⎨-=⎩ 或260x y x y -=⎧⎨+=⎩ ∴原方程组的解为 42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩ . 故答案为:42x y =⎧⎨=⎩ 或22x y =⎧⎨=-⎩ . 【点睛】 本题考查二次方程组的解,将二次方程组化为一次方程组是解题的关键.9.解方程组:2241226x y x y ⎧-=⎨+=⎩①②.【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.10.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2, 所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.11.解方程组:223403x xy y x y ⎧--=⎨-=⎩ 【答案】1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【解析】【分析】由代入消元法,消去一个未知数x ,得到关于y 的一元二次方程,然后用公式法解出y 的值,然后计算出x ,即可得到方程组的解.【详解】解:223403x xy y x y ⎧--=⎨-=⎩①②, 由②得:3x y =+③,把③代入①,得22(3)3(3)40y y y y +-+-=,整理得:26390y y +-=,∵2494692250b ac ∆=-=+⨯⨯=>,∴用求根公式法,得326y -±=⨯, 解得:1=1y ,232y =-; ∴14x =,232x =; ∴方程组的解为:1141x y =⎧⎨=⎩或223232x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元二次方程组,利用代入消元法把解方程组转变为解一元二次方程,掌握公式法解一元二次方程是解题的关键.12.解方程组: 2223412916x y x xy y -=⎧⎨-+=⎩.【答案】1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩ 【解析】【分析】 根据代入消元法,将第一个方程带入到第二个方程中,即可得到两组二元一次方程,分别计算解答即可【详解】2223412916x y x xy y -=⎧⎨-+=⎩①② 由②得:(2x ﹣3y )2=16,2x ﹣3y =±4,即原方程组化为23234x y x y -=⎧⎨-=⎩和23234x y x y -=⎧⎨-=-⎩, 解得: 1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩, 即原方程组的解为:1212117,210x x y y ⎧=-=-⎧⎪⎨⎨=-=-⎪⎩⎩. 【点睛】本题的关键是将第一个方程式带入到第二个方程式中得到两组方程组13.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩ 解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.14.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩ 【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩ 【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.15.2222340441x xy y x xy y ⎧--=⎨++=⎩【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①② 将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩ 解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ ∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.16.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=,整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-, 则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解.本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.17.解方程组:2220{25x xy y x y --=+=①②【答案】5{5x y ==-或21x y =⎧⎨=⎩. 【解析】【分析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.【详解】 2220{25x xy y x y --=+=①②由①得()()20x y x y +-=,即0x y +=或20x y -=,∴原方程组可化为0{25x y x y +=+=或20{25x y x y -=+=. 解0{25x y x y +=+=得5{5x y ==-;解20{25x y x y -=+=得21x y =⎧⎨=⎩. ∴原方程组的解为5{5x y ==-或21x y =⎧⎨=⎩. 18.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩ 解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.19.解方程组:222220,21,x xy y x xy y ⎧--=⎨++=⎩ 【答案】1123;13x y ⎧=⎪⎪⎨⎪=⎪⎩222313x y ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】【分析】先对方程①②分解因式转化为两个一元一次方程,然后联立,组成4个二元一次方程组,解之即可.【详解】2222x 2y 0x 2y 1xy xy ⎧--=⎨++=⎩①②, 由①得 (x+y )(x-2y )=0,∴x+y=0或x-2y=0,由②得 (x+y )2=1,∴x+y=1或x+y=-1,所以原方程组化为01x y x y +=⎧⎨+=⎩或01x y x y +=⎧⎨+=-⎩或201x y x y -=⎧⎨+=⎩或201x y x y -=⎧⎨+=-⎩, 所以原方程组的解为121222x x 3311y y 33⎧⎧==-⎪⎪⎪⎪⎨⎨⎪⎪==-⎪⎪⎩⎩. 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.20.()28024x y x y x ++=⎧⎪⎨++=⎪⎩ 【答案】3022x y =-⎧⎨=⎩ 【解析】【分析】运用代入法进行消元降次,即可得解.【详解】 ()28024x y x y x ++=⎧⎪⎨++=⎪⎩①②由①,得8x y +=-③将③代入②,得6424x +=,解得30x =-④ 将④代入①,得22y =∴方程组的解为3022x y =-⎧⎨=⎩. 【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习有答案(1)
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习有答案(1)一、选择题1.解方程组:2220449x xy x xy y ⎧+=⎪⎨++=⎪⎩ 【答案】123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ 【解析】【分析】由第一个等式可得x (x+y )=0,从而讨论可①x=0,②x≠0,(x+y )=0,这两种情况下结合第二个等式(x+2y )2=9可得出x 和y 的值.【详解】∵x(x+y)=0,①当x=0时,(x+2y)2 =9,解得:y 1=32 ,y 2 =−32; ②当x≠0,x+y=0时,∵x+2y=±3, 解得:33x y =-=⎧⎨⎩ 或33x y ==-⎧⎨⎩. 综上可得,原方程组的解是123434120033,,,333322x x x x y y y y ==⎧⎧=-=⎧⎧⎪⎪⎨⎨⎨⎨==-=-=⎩⎩⎪⎪⎩⎩ . 【点睛】此题考查二元二次方程组,解题关键在于掌握运算法则.2.解方程组:22120y x x xy y -=⎧⎨--=⎩. 【答案】21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将第二个方程分解因式可得:x ﹣2y =0或x +y =0,分别与第一个方程组成新的方程组,解出即可.【详解】解:22120y x x x y -=⎧⎨--=⎩①② 由②得:(x ﹣2y )(x +y )=0x ﹣2y =0或x +y =0原方程组可化为11200y x y x x y x y -=-=⎧⎧⎨⎨-=+=⎩⎩, 解得原方程组的解为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩, ∴原方程组的解是为122112x x y y ⎧=-⎪=-⎧⎪⎨⎨=-⎩⎪=⎪⎩,. 【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.3.解方程组:2222295x xy y x y ⎧-+=⎨+=⎩. 【答案】1121x y =⎧⎨=-⎩,2212x y =⎧⎨=-⎩,3321x y =-⎧⎨=⎩,4412x y =-⎧⎨=⎩ 【解析】试题分析:变形方程组中的①,得两个一元一次方程,与组中的②联立得方程组,求解方程组即可. 试题解析:解:2222295x xy y x y ⎧-+=⎨+=⎩①②由①得:(x ﹣y )2=9所以x ﹣y =3③,x ﹣y =﹣3④③②与④②联立得:22223355x y x y x y x y -=-=-⎧⎧⎨⎨+=+=⎩⎩, 解方程组2235x y x y -=⎧⎨+=⎩,得:12122112x x y y ==⎧⎧⎨⎨=-=-⎩⎩,; 解方程组2235x y x y -=-⎧⎨+=⎩,得:34342112x x y y =-=-⎧⎧⎨⎨==⎩⎩,.所以原方程组的解为:3124312422111122x x x x y y y y =-===-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=⎩⎩⎩⎩,,,. 点睛:本题考查了二元二次方程组的解法,由两个二元二次方程组成的方程组,通常采用变形组中的一个二次方程为两个一元一次方程用代入法求解.4.计算:(1(2)解方程组:3534106x y x y -=-⎧⎨-+=⎩(3)解不等式组,并把解集在数轴上表示出来:6234211132x x x x -≥-⎧⎪--⎨-<⎪⎩ 【答案】(1)12-;(2)035x y =⎧⎪⎨=⎪⎩;(3)21137x -≤≤. 【解析】【分析】(1)先求开方运算,再进行加减;(2)用加减法解方程组;(3)解不等式组,再在数轴上表示解集.【详解】解:(1)原式=-3+4-32=12- (2)3534106x y x y -=-⎧⎨-+=⎩①② ①×2+②,得x=0 把x=0代入①式 y=35 所以,方程组的解是035x y =⎧⎪⎨=⎪⎩(3)6234211132x x x x -≥-⎧⎪⎨---<⎪⎩①② 由①式得,x≥-23 由②式得,x <117所以,不等式组的解集是21137x -≤≤, 把解集在数轴上表示:【点睛】本题考核知识点:开方,解二元一次方程组,解不等式组.解题关键点:掌握相关解法.5.解方程组【答案】原方程组的解为:,【解析】【分析】把第一个方程代入第二个方程,得到一个关于x的一元二次方程,解方程求出x,把x代入第一个方程,求出y即可.【详解】解:把①代入②得:x2-4x(x+1)+4(x+1)2=4,x2+4x=0,解得:x=-4或x=0,当x=-4时,y=-3,当x=0时,y=1,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程,降次是解题的基本思想.6.解方程组:【答案】,.【解析】【分析】先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.故答案为:,.【点睛】本题考查了解高次方程.7.已知113 2x y =⎧⎨=-⎩是方程组22x y mx y n⎧+=⎨+=⎩的一组解,求此方程组的另一组解.【答案】22-2 3x y =⎧⎨=⎩【解析】【分析】先将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中求出m、n的值,然后再求方程组的另一组解.【详解】解:将113 2x y =⎧⎨=-⎩代入方程组22x y mx y n⎧+=⎨+=⎩中得:131mn=⎧⎨=⎩,则方程组变形为:22131x yx y⎧+=⎨+=⎩,由x+y=1得:x=1-y,将x=1-y代入方程x2+y2=13中可得:y2-y-6=0,即(y-3)(y+2)=0,解得y=3或y=-2,将y=3代入x+y=1中可得:x=-2;所以方程的另一组解为:22-2 3x y =⎧⎨=⎩.【点睛】用代入法解二元二次方程组是本题的考点,根据题意求出m和n的值是解题的关键.8.解方程组:2256021x xy yx y⎧+-=⎨-=⎩①②【答案】12216113,1113x x y y ⎧=⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩【解析】【分析】把①方程变形为(6)()0x y x y +-=,从而可得60x y +=或0x y -=,把这两个方程分别和原方程组中的②方程组合得到两个新的二元一次方程组,解这两个方程组即可.【详解】方程①可变形为(6)()0x y x y +-=,得60x y +=或0x y -=,将它们与方程②分别组成方程组,得:(Ⅰ)6020x y x y +=⎧⎨-=⎩或(Ⅱ)021x y x y -=⎧⎨-=⎩, 解方程组(Ⅰ)613113x y ⎧=⎪⎪⎨⎪=-⎪⎩, 解方程组(Ⅱ)11x y =⎧⎨=⎩ 所以原方程组的解是613113x y ⎧=⎪⎪⎨⎪=-⎪⎩,11x y =⎧⎨=⎩ .9.解方程组:2226691x y x xy y +=⎧⎨-+=⎩. 【答案】1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先由②得(x-3y)2=1,x-3y=1或x-3y=-1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩最后分别解这两个方程组即可. 【详解】解:2226691,x y x xy y +=⎧⎨-+=⎩①② 由②得:(x-3y)2=1,x-3y=1或x-3y=-1,所以原方程组变为:2631x y x y +=⎧⎨-=⎩,2631,x y x y +=⎧⎨-=-⎩解这两个方程组得:41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1411x y =⎧=⎨⎩,2216575x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】此题考查了解高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.10.解方程组:222232()x y x y x y ⎧-=⎨-=+⎩. 【答案】111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或 223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩,解方程组(Ⅱ)得43341,1,21;5.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩,∴原方程组的解是21123,1,21;3.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩331,25.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.11.解方程组:231437xy yy x⎧-=⎨-=⎩①②【答案】32 xy=-⎧⎨=-⎩.【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2,所以原方程组的解为32 xy=-⎧⎨=-⎩.【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.12.解方程组:222403260 x yx xy x y⎧-=⎨-+++=⎩.【答案】112 4x y =-⎧⎨=-⎩,2236xy=-⎧⎨=-⎩【解析】【分析】由①得:2x﹣y=0,2x+y=0,这样原方程组化成两个二元二次方程组,求出每个方程组的解即可.【详解】222403260x y x xy x y ⎧-=⎨-+++=⎩①②由①得:2x ﹣y =0,2x +y =0,原方程组化为:①2203260x y x xy x y -=⎧⎨-+++=⎩,②2203260x y x xy x y +=⎧⎨-+++=⎩, 解方程组①得: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩,方程组②无解, 所以原方程组的解为: 1124x y =-⎧⎨=-⎩, 2236x y =-⎧⎨=-⎩. 【点睛】本题考查解二元二次方程组,难度不大,熟练掌握二元二次方程组求解是解题关键.13.解二元二次方程组210210x y x y x +-=⎧⎨---=⎩ 【答案】121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩ 【解析】【分析】把方程①变形为y=1-x ,利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.【详解】解:210210x y x y x +-=⎧⎨---=⎩①②, 把①变形y =1﹣x ,代入②得x 2﹣(1﹣x )﹣2x ﹣1=0,化简整理得x 2﹣x ﹣2=0,∴x 1=2,x 2=﹣1,把x =2代入①得y =﹣1,把x =﹣1代入①得y =2,所以原方程组的解为:121221,12x x y y ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩. 【点睛】本题考查二元二次方程组的解法,一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.14.已知()22221(0)0,0x y a b a b x my n m n ⎧+=>>⋯⋯⎪⎨⎪=+≠≠⋯⋯⎩①② 求证:()()2222222220a b m y mnb y n a b +++-=. 【答案】详见解析【解析】【分析】先把②式代入①式可以去掉x ,然后整理y 的函数,即可证明.【详解】证明:把②代入①,得2222()1my n y a b++=, ()222222222b m y mny n a y a b ∴+++=,222222222220m b y mnb y n b a y a b ∴+++-=, ()()2222222220a b m y mnb y n a b ∴+++-=.【点睛】本题主要考查了解二元二次方程组,整式的乘法,关键是把②式代入①式可以去掉x ,然后整理y 的函数.15.21220y x x xy -=⎧⎨--=⎩ 【答案】10x y =-⎧⎨=⎩或23x y =⎧⎨=⎩【解析】【分析】本题考查二元二次方程组的解法,在解题时观察本题的特点,可用代入法先消去未知数y ,求出未知数x 的值后,进而求得这个方程组的解.【详解】解:由①得:1y x =+③把③代入②,得22(1)20x x x -+-=,整理得:220x x --=,解得11x =-,22x =.当11x =-时,1110y =-+=当22x =时,2213y =+=∴原方程组的解为1110x y =-⎧⎨=⎩,2223x y =⎧⎨=⎩. 【点睛】本题考查了二元二次方程组的解法,二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组.16.(1)解方程组:22120x y x xy y -=⎧⎨--=⎩ (2)解方程组:51121526x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩ 【答案】(1)21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)1213x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)由1x y -=得1x y =+,将其代入2220x xy y --=求出y 的值,再根据y 的值分别求出对应的x 的值即可;(2)设1A x y =+,1B x y=-,方程组变形后求出A ,B 的值,然后得到关于x ,y 的方程组,再求出x ,y 即可.【详解】解:(1)由1x y -=得:1x y =+,将1x y =+代入2220x xy y --=得:()()221120y y y y +-+-=, 整理得:2201y y --=,解得:1y =或12y =-, 将1y =代入1x y -=得:2x =, 将12y =-代入1x y -=得:12x =, 故原方程组的解为:21x y =⎧⎨=⎩或1212x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)设1A x y =+,1B x y=-,则原方程组变为:5121526A B A B +=⎧⎨-=⎩, 解得:656A B ⎧=⎪⎨⎪=⎩, ∴66516x y x y +=⎧⎪⎨-=⎪⎩, 解得:1213x y ⎧=⎪⎪⎨⎪=⎪⎩, 经检验,1213x y ⎧=⎪⎪⎨⎪=⎪⎩是方程组的解. 【点睛】本题考查了解二元二次方程组以及解分式方程组,熟练掌握代入消元法以及换元法是解题的关键.17.解方程组:2241226x y x y ⎧-=⎨+=⎩①②. 【答案】41x y =⎧⎨=⎩. 【解析】【分析】将①分解因式可得(2)(2)12x y x y -+=,再将将②代入③后得22x y -=,然后与②组成可得【详解】解:由①得(2)(2)12x y x y -+=.③将②代入③,得22x y -=.④得方程组2226x y x y -=⎧⎨+=⎩, 解得41x y =⎧⎨=⎩, 所以原方程组的解是41x y =⎧⎨=⎩.【点睛】本题考查了解二元二次方程组,解题思路是降次,可以利用代入法或分解因式,达到降次的目的.18.解方程组22()()08x y x y x y +-=⎧⎨+=⎩ 【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩. 19.解方程22220x y x xy y -=⎧⎨--=⎩①② 【答案】114,2x y =⎧⎨=⎩,221,1x y =⎧⎨=-⎩. 【解析】【分析】先把2220x xy y --=化为(2)()0x y x y -+=,得到20x y -=或0x y +=,再分别联立2x y -=求出x,y 即可.【详解】2220x xy y --=可以化为:(2)()0x y x y -+=,所以:20x y -=或0x y +=原方程组可以化为:2,20x y x y -=⎧⎨-=⎩(Ⅰ)与2,0x y x y -=⎧⎨+=⎩(Ⅱ) 解(Ⅰ)得4,2x y =⎧⎨=⎩,解(Ⅱ)得1,1x y =⎧⎨=-⎩答:原方程组的解为114,2x y =⎧⎨=⎩与221,1x y =⎧⎨=-⎩. 【点睛】此题主要考查二元方程的求解,解题的关键是把原方程变形成两个二元一次方程组进行求解.20.某起重机厂四月份生产A 型起重机25台,B 型起重机若干台.从五月份起, A 型起重机月增长率相同,B 型起重机每月增加3台.已知五月份生产的A 型起重机是B 型起重机的2倍,六月份A 、 B 型起重机共生产54台.求四月份生产B 型起重机的台数和从五月份起A 型起重机的月增长率.【答案】四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%【解析】【分析】设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y,根据题目中的等量关系列出方程组求解即可.【详解】解:设四月份生产B 型起重机x 台,从五月份起A 型起重机的月增长率为y.根据题意 ,可列方程组()()()()2251232513254y x y x ⎧+=+⎪⎨+++⨯=⎪⎩ 解得:x=12,y=0.2答:四月份生产B 型起重机12台,从五月份起A 型起重机的月增长率为20%.【点睛】本题考查了二元二次方程组的应用,解题的关键是找准题中的等量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学方程与不等式之二元二次方程组知识点总复习附答案(1)一、选择题1.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.2.如图,要建一个面积为45 m 2的长方形养鸡场(分为两片),养鸡场的一边靠着一面长为14m 的墙,另几条边用总长为22 m 的竹篱笆围成,每片养鸡场的前面各开一个宽l m 的门.求这个养鸡场的长与宽.【答案】这个养鸡场的长为9m ,宽为5 m.【解析】试题分析:设鸡场的长为x m ,宽为y m ,根据鸡场的面积和周长列出两个等量关系,解方程组即可,注意鸡场的长小于围墙的长.解:设鸡场的长为xm ,宽为ym ,由题意可得:322245x y xy +-=⎧⎨=⎩,且x <14,解得y =3或5; 当y =3时,x =15;∵x <14,∴不合题意,舍去;当y =5时,x =9,经检验符合题意.答:这个养鸡场的长为9m ,宽为5m.3.解方程组:22229024x y x xy y ⎧-=⎨-+=⎩【答案】113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩ 【解析】【分析】将原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==,所以有3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==,然后解4个二元一次方程组就可以求出其值.【详解】原方程组变形为:()()()()330220x y x y x y x y ⎧-+⎪⎨---+⎪⎩==, 原方程组变为四个方程组为:3020x y x y -⎧⎨--⎩==,3020x y x y -⎧⎨-+⎩==,3020x y x y +⎧⎨--⎩==,3020x y x y +⎧⎨-+⎩==, 解这四个方程组为:113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩. 故答案为113212x y ⎧=⎪⎪⎨⎪=-⎪⎩,223212x y ⎧=-⎪⎪⎨⎪=⎪⎩,3331x y =⎧⎨=⎩,4431x y =-⎧⎨=-⎩.4.解方程组:224;20.x y x xy y +=⎧⎨+-=⎩【答案】121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】把2220x xy y +-=进行因式分解,化为两个一元一次方程,和4x y +=组成两个二元一次方程组,解方程即可.【详解】由②得:()()20x y x y +-=所以200x y x y +=-=或44200x y x y x y x y +=+=⎧⎧⎨⎨+=-=⎩⎩所以或, 121282,42x x y y ==⎧⎧⎨⎨=-=⎩⎩所以原方程组的解为. 【点睛】考查二元二次方程组的解法,把方程2220x xy y +-=进行因式分解,化为两个一元一次方程是解题的关键.5.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩ 由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩ 分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.6.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①②由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩, 故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则7.解方程组:224490x xy y x y ⎧++=⎨+=⎩【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①② 方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得;230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.8.解方程组: 22320449x y x xy y -+=⎧⎨++=⎩. 【答案】1111x y =⎧⎨=⎩,2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】由完全平方公式,组中②可变形为(x +2y )2=9,即x +2y =3或x +2y =﹣3.这样原方程组可变形为关于x 、y 的两个二元一次方程组,这两个二元一次方程组的解就是原方程组的解.【详解】22320449x y x xy y -+=⎧⎨++=⎩①② 由②得:(x +2y )2=9,即:x +2y =3或x +2y =﹣3所以原方程组可化为3223x y x y -=-⎧⎨+=⎩; 3223x y x y -=-⎧⎨+=-⎩. 解方程组3223x y x y -=-⎧⎨+=⎩;得1111x y =⎧⎨=⎩; 解方程组3223x y x y -=-⎧⎨+=-⎩.得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩.∴原方程组的解是得1111x y =⎧⎨=⎩;得2213515x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了二元二次方程组的解法.把二元二次方程组转化为一元一次方程组是解决本题的关键.9.解方程组222221690x xy y x y ⎧-+=⎨=-⎩. 【答案】1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【解析】【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,求出的四个二元一次方程组的解就是原方程组的解.【详解】解:222221690x xy y x y ⎧-+=⎨-=⎩①② 由①,得(x ﹣y )2=16,所以x ﹣y =4或x ﹣y =﹣4.由②,得(x +3y )(x ﹣3y )=0,即x +3y =0或x ﹣3y =0所以原方程组可化为:430x y x y -=⎧⎨+=⎩,430x y x y -=⎧⎨-=⎩,430x y x y -=-⎧⎨+=⎩,430x y x y -=-⎧⎨-=⎩ 解这些方程组,得1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 所以原方程组的解为:1131x y =⎧⎨=-⎩,2262x y =⎧⎨=⎩,3331x y =-⎧⎨=⎩,4462x y =-⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,利用分解因式法将二元二次方程组转化为四个二元一次方程组是解题的关键.10.解方程组:()25()230x y x y x y +=⎧⎪⎨----=⎪⎩①②. 【答案】1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩ 【解析】【分析】先将②化为30x y --=或10x y -+=,再分别和①式结合,分别求解即可.【详解】解:由②得()()310x y x y ---+=,得30x y --=或10x y -+=,原方程组可化为53x y x y +=⎧⎨-=⎩,51x y x y +=⎧⎨-=-⎩解得,原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩ ∴原方程组的解为1141x y =⎧⎨=⎩ ,2223x y =⎧⎨=⎩. 【点睛】 本题考查了二元二次方程组的解,将二次降为一次是解题的关键.11.(1)解方程组:221104100x y y ⎧+-=⎪-+= (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩【答案】(1)3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)16x y =-⎧⎨=-⎩. 【解析】【分析】(1)将方程组的第二个方程移项、两边平方求出2x ,再代入第一个方程可求出y 的值,然后将y 的最代入第二个方程可求出x 的值,从而可得方程组的解;(2)将原方程组的两个方程通过去括号、合并同类项变形可得一个二元一次方程组,再利用加减消元法求解即可.【详解】(1)221104100x y y ⎧+-=⎪-+=①②由②410y =-两边平方化简得:22(1042)x y -=,即2284050x y y -+=代入①得:2940390y y -+=,即(3)(913)0y y --=解得:3y =或139y = 将3y =代入②12100-+=,解得:x =将139y =代入②1341009-⨯+=,解得:x =故原方程组的解为:3x y ⎧=⎪⎨=⎪⎩139x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)(3)(2)(3)(10)(1)(3)(2)(12)x y x y x y x y +-=-+⎧⎨-+=++⎩去括号化简得:236103303312224xy x y xy x y xy x y xy x y -+-=+--⎧⎨+--=+++⎩,即2439x y x y -=⎧⎨+=-⎩①② +①②得:55x =-,解得:1x =-将1x =-代入①得:2(1)4y ⨯--=,解得:6y =-故原方程组的解为16x y =-⎧⎨=-⎩. 【点睛】本题考查了利用消元法解方程组,熟练掌握方程组的解法是解题关键.12.21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩【答案】231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩ 【解析】【分析】将x 和z 分别都用y 表示出来,代入第三个方程,解出y ,然后就可以解出x 、z .【详解】解:21238438xy x y yz z y zx z x =+-⎧⎪=+-⎨⎪=+-⎩①②③ 由①得:12y x y -=-④ 由②得:382y z y -=-⑤ 将④⑤代入③得:1384(38)3(1)82222y y y y y y y y ----=+-----g , 去分母整理得:2422300y y -+=,∴2(3)(25)0y y --=,3y ∴=或52=, 将3y =分别代入④⑤得:2x =,1z =; 将52y =分别代入④⑤得:3x =,1z =-; 综上所述,方程组的解为:231x y z =⎧⎪=⎨⎪=⎩或3521x y z =⎧⎪⎪=⎨⎪=-⎪⎩. 【点睛】本题考查了三元二次方程组的解法,解方程的基本思想是消元,任意选择两个方程将两个未知数用第三个未知数表示,即可代入第三个方程,解出一个未知数之后,剩下两未知数就可直接算出.13.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.14.解方程组:2225210x y x y xy +=⎧⎨+--=⎩. 【答案】7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【解析】【分析】将方程22210x y xy +--=变形整理求出1x y -=或1x y -=-,然后分别与25x y +=组成方程组,求出对应的x ,y 的值即可.【详解】解:2225210x y x y xy +=⎧⎨+--=⎩①②, 对②变形得:()21x y -=,∴1x y -=③或1x y -=-④,①-③得:34y =,解得:43y =, 把43y =代入①得:4253x +⨯=,解得:73x =; ①-④得:36y =,解得:2y =,把2y =代入①得:225x +⨯=,解得:1x =,故原方程组的解为:7343x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y =⎧⎨=⎩. 【点睛】本题考查了解二元二次方程组,解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”,掌握好消元和降次的方法和技巧是解二元二次方程组的关键.15.已知方程组222603x y y mx ⎧+-=⎨=+⎩有两组相等的实数解,求m 的值,并求出此时方程组的解.【答案】1m =±,当1m =时 21x y =-⎧⎨=⎩;当1m =-时 21x y =⎧⎨=⎩【解析】【分析】联立方程组,△=0即可求m 的值,再将m 的值代入原方程组即可求方程组的解;【详解】 解:222603x y y mx ⎧+-=⎨=+⎩①②把②代入①后计算得()222112120m x mx +++=,∵方程组有两组相等的实数解,∴△=(12m )2−4(2m 2+1)•12=0,解得:1m =±,当1m =时,解得21x y =-⎧⎨=⎩当1m =-时,解得21x y =⎧⎨=⎩ 【点睛】本题考查了解二元二次方程组,能把二元二次方程组转化成一元一次方程是解题关键.16.温州三垟湿地的瓯柑名气很大,但今年经济不景气,某经销商为了打开销路,对1220斤瓯柑进行包装优惠出售.包装方式及售价如下图.假设用这两种包装方式恰好装完全部瓯柑.(1)若销售2箱纸盒装和3筐萝筐装瓯柑的收入共 元(请直接写出答案).(2)假如预计这批瓯柑全部售完,总销售额为3210元时.请问纸盒装包装了多少箱,箩筐装包装了多少筐?(3)但由于天气原因,瓯柑腐烂了a 斤(不能出售),在售价不变的情况下,为了保证总.销售额为....3210元,剩余瓯柑必须用以上两种方式重新包装,且恰好装完,那么纸盒装 箱,箩筐装 箱.(请直接写出答案)【答案】(1)495;(2)纸盒装包装了16箱,箩筐装包装了18筐;(3)41,6【解析】(1)根据题意可得出方程解出即可;(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据等量关系列出方程组,解出即可; (3)根据(3)问的条件直接写出答案即可.解:(1)495元(2)设纸盒装包装了x 箱,箩筐装包装了y 筐,根据题意得:20501220601253210x y x y +=⎧⎨+=⎩1618x y =⎧⎨=⎩解得 答:纸盒装包装了16箱,箩筐装包装了18筐.(3)41箱,6箱.“点睛”本题考查了二元一次方程组的应用,解题关键是仔细审题,理解题目所给条件,转化为方程思想求解.17.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.18.解方程: 【答案】【解析】 解:原方程组即为···································· (2分)由方程(1)代人(2)并整理得: ······························································· (2分) 解得,························································ (2分) 代人得19.一个三位数的中间数字是0,其余的两个数字的和为9,且这两个数字颠倒后的三位数比这两个数字之积的33倍还多9,求此三位数.【答案】306【解析】【分析】设百位数字是x ,个位数字是y .则依据“两个数字的和为9;这两个数字颠倒后的三位数比这两个数字之积的33倍还多9”列出方程组.【详解】设百位数字是x ,个位数字是y .则9100339x y y x xy +⎧⎨++⎩==, 解得36x y ⎧⎨⎩==,90x y ⎧⎨⎩==(不符合题意,舍去). 答:这个三位数是306.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.20.解方程组:22222303x xy y x xy y ⎧--=⎨-+=⎩ 【答案】111,1.x y =⎧⎨=-⎩ 【解析】【分析】首先将由22230x xy y --=得30x y -=或0x y +=,分别与223x xy y -+=求解即可.【详解】解: 22222303x xy y x xy y ⎧--=⎨-+=⎩①②由①得30x y -=或0x y +=,原方程组可化为22303x y x xy y -=⎧⎨-+=⎩;2203x y x xy y +=⎧⎨-+=⎩解这两个方程组得原方程组的解为11,7x y ⎧=⎪⎪⎨⎪=⎪⎩227x y ⎧=⎪⎪⎨⎪=-⎪⎩331,1,x y =-⎧⎨=⎩441,1.x y =⎧⎨=-⎩ 【点睛】此题考查二元二次方程,解题关键在于掌握运算法则.。