42-3.3.1二元一次不等式(组)与平面区域(27)
课程资料:二元一次不等式(组)表示的平面区域
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y
≥
a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O
域
x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)
二元一次不等式(组)与平面区域 课件
|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.
数学ⅱ北师大版3.3.1二元一次不等式(组)与平面区域第2课时教案
随堂练习1
1、画出不等式2 +y-6<0表示的平面区域.
2、画出不等式组 表示的平面区域。
2.讲授新课
【应用举例】
例3某人预备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格〔以班级为单位〕:
学段
班级学生人数
配备教师数
硬件建设/万元
教师年薪/万元
初中
45
2
26/班
2/人
高中
课题
§3.3.1二元一次不等式〔组〕与平面区域
第2课时
课型
新授课
课时
备课时间
教学目标
知识与技能
巩固二元一次不等式和二元一次不等式组所表示的平面区域;能依照实际问题中的条件,找出约束条件;
过程与方法
经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
情感态度与价值观
结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.
重点
理解二元一次不等式表示平面区域并能把不等式〔组〕所表示的平面区域画出来;
难点
把实际问题抽象化,用二元一次不等式〔组〕表示平面区域
教学方法
教学过程
1.课题导入
[复习引入]
二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.〔虚线表示区域不包括边界直线〕
高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域
数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人
甲
2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.
高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5
则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)
3.3.1平面区域
高二数学必修五 编号:SX-05-113.3.1 二元一次不等式(组)与平面区域【学习目标】1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.【基础知识】1.二元一次不等式(组)的概念①含有 未知数,并且未知数的次数是 的不等式叫做二元一次不等式. ②由几个二元一次不等式组成的不等式组称为 .2.二元一次不等式表示的平面区域①在平面直角坐标系中,二元一次不等式Ax +By +C>0表示直线 某一侧所有点组成的平面区域,把直线画成 ,以表示区域不包括边界.②不等式Ax +By +C≥0表示的平面区域包括边界,把边界画成 .探究点一 二元一次不等式表示的平面区域在平面直角坐标系中,画出直线x -y +2=0,并标出以下九点:O(0,0),A(0,2), B(-2,0),C(-1,1),D(1,0),E(0,-1),F(-3,0),G(-2,2),H(0,3).通过图象容易得出以下结论:(1)点A(0,2),B(-2,0),C(-1,1)的坐标满足方程 ,它们在直线x -y +2=0上;(2)点O(0,0),D(1,0),E(0,-1)的坐标满足不等式 ,它们在直线x -y +2=0的 ;(3)点F(-3,0),G(-2,2),H(0,3)的坐标满足不等式 ,它们在直线x -y +2=0的 .◆◆ 一般地,二元一次不等式Ax +By +C>0与Ax +By +C<0分别表示直线Ax +By +C =0 (A 2+B 2≠0)两侧的平面区域.例如,不等式 表示直线x +y +2=0右上方的平面区域; 表示直线x +y +2=0左下方的平面区域.即:同侧同号,同号同侧:异侧异号,异号异侧P(11,y x )、Q(22,y x )在直线Ax +By +C =0 同侧⇔P(11,y x )、Q(22,y x )在直线Ax +By +C =0 异侧⇔探究点二 二元一次不等式(组)表示平面区域的确定方法问题 在平面直角坐标系中,画出直线Ax +By +C =0以后,需要判断出不等式Ax +By+C>0与Ax +By +C<0分别表示直线Ax +By +C =0的哪一侧?方法1:特殊值代入法------------直线定界,特殊点定域第一步,直线定边界:画出直线Ax +By +C =0(如果原不等式中带等号,那么画成实线,否则,画成虚线).第二步:取特殊点定平面区域:一般地,当C ≠0时,常取原点(0,0);当C=0时,常取点(1,0)或(0,1).然后计算Ax 0+By 0+C 的值,得出Ax 0+By 0+C 的符号,则原点所在的区域和它同号,另外一侧异号。
二元一次不等式(组)与平面区域
2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
典例导悟
类型一 二元一次不等式(组)表示平面区域 [例1] 画出下列不等式(组)表示的平面区域.
变式训练1
如图所示的阴影部分表示的区域用二元一 )
x+y-1≤0 B. x-2y+2≤0 x+y-1≤0 D. x-2y+2≥0
次不等式组表示为(
x+y-1≥0 A. x-2y+2≥0 x+y-1≥0 C. x-2y+2≤0
答案:A
类型二 [例2]
(2)不等式组的解集是x+y≤5 ①,x-2y≥3 集的交集.
②的解
①式表示的区域是直线x+y-5=0左下方平面区域并 且包括直线x+y-5=0. ②式表示的区域是直线x-2y=3右下方平面区域并且 包括直线x-2y-3=0. 所以不等式组表示的区域是图(2)中的阴影部分(包括直 线).
【点评】 画直线时容易虚实不分,若含等号应画成 实线.区域容易弄反,要注意方法.
(1)2x+y-6<0;
x+y≤5 (2) x-2y≥3.
[分析]
解题的关键在于正确地描绘出边界直线,然
高二数学 二元一次不等式(组)与平面区域 知识讲解
二元一次不等式(组)与平面区域【要点梳理】要点一:二元一次不等式(组)的定义1.二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.2.二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组.3.二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(,)x y ,所有这样的有序实数对(,)x y 构成的集合称为二元一次不等式(组)的解集.要点诠释:注意不等式(组)未知数的最高次数. 要点二:二元一次不等式(组)表示平面区域二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,因此,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.二元一次不等式所表示的平面区域:在平面直角坐标系中,直线:0l Ax By C ++=将平面分成两部分,平面内的点分为三类: ①直线l 上的点(x ,y )的坐标满足:0=++C By Ax ;②直线l 一侧的平面区域内的点(x ,y )的坐标满足:0>++C By Ax ; ③直线l 另一侧的平面区域内的点(x ,y )的坐标满足:0Ax By C ++<.即二元一次不等式0Ax By C ++>或0Ax By C ++<在平面直角坐标系中表示直线0Ax By C ++=的某一侧所有点组成的平面区域,直线0Ax By C ++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).要点三:二元一次不等式表示哪个平面区域的确定 二元一次不等式表示的平面区域由于对在直线0Ax By C ++=同一侧的所有点(,)x y ,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直线哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊点)以上判定方法简称为“直线定界、特殊点定域”法. 不等式组所表示的平面区域由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分. 1. 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法:因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧.2. 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线);②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域.要点诠释: “直线定界,特殊点定域”二元一次不等式(组)表示平面区域的重要方法. 【典型例题】类型一:二元一次不等式表示的平面区域 例1. 画出不等式240x y +->表示的平面区域. 【解析】先画直线240x y +-=(画成虚线). 取原点(0,0)代入24x y +-得200440⨯+-=-<, ∴原点不在240x y +->表示的平面区域内, 不等式240x y +->表示的区域如图:【总结升华】1. 画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.2. 虚线表示区域不包括边界直线,实线表示区域包括边界直线 举一反三:【变式1】画出下列不等式所表示的平面区域 (1)4312x y +≤; (2)1≥x 【答案】(1)(2)【变式2】图中阴影(包括直线)表示的区域满足的不等式是()A.x-y-1≥0 B.x-y+1≥0 C.x-y-1≤0 D.x-y+1≤0【答案】直线对应的方程为x-y-1=0,对应的区域,在直线的下方,当x=0,y=0时,0-0-1<0,即原点在不等式x-y-1<0对应的区域内,则阴影(包括直线)表示的区域满足的不等式是x-y-1≥0,故选:A.【变式3】不等式3x+2y-6≤0表示的区域是()【答案】可判原点适合不等式3x+2y-6≤0,故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,故选D。
2020版人教A数学必修5 课件:3.3.1 二元一次不等式(组)与平面区域
即时训练3-1:某家具厂制造甲、乙两种型号的桌子,每张桌子需木工和 漆工两道工序完成.已知木工做一张甲、乙型号的桌子分别需要1 h和 2 h,漆工油漆一张甲、乙型号的桌子分别需要3 h和1 h.又木工、漆工 每天工作分别不得超过8 h和9 h.请列出满足生产条件的数学关系式,并 画出相应的平面区域.
3.3 二元一次不等式(组)与简单的线性规划 问题
3.3.1 二元一次不等式(组)与平面区域
[目标导航]
1.知道什么是二元一次不等式及二元一次不等式组. 2.了解二元一次不等式的几何意义,并会画其表示的平面 课标要求 区域. 3.能从实际情境中抽象出二元一次不等式组,并能用平面 区域表示二元一次不等式组的解.
x y 2 1 0,
x ky k 0
(2)将图中阴影部分表示的平面区域,用不等式表示出来.
(2)解:由图(1)可知,其边界所在的直线在 x 轴和 y 轴上的截距均为 1,故边界所在的直线 方程为 x+y-1=0, 将原点(0,0)代入直线方程 x+y-1=0 的左边,得 0+0-1<0, 故所求的不等式为 x+y-1≤0;
思考1:不等式2x-3y>0是二元一次不等式吗? 答案:是,符合二元一次不等式的两个特征. 2.二元一次不等式表示的平面区域
表示直线 Ax+By+C=0
某一侧
二元一次不等式Ax+By+C>0 所有点组成的平面区域,我们把直线画 成 虚线 ,以表示区域 不包括 边界
表示直线 Ax+By+C=0
某一侧
y
1)
0,
表示的平面区
域的面积等于( )
必修5课件3.3.1二元一次不等式(组)与平面区域
二、新知探究:
(2)探究
特殊:二元一次不等式 x – y < 6 的解集所表示的图形。
作出x – y = 6的图像——一条直线,
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点 b)在直线x – y = 6左上方区域内 c)在直线x – y = 6右下方区域内
y
6
O
左上方区域
-6
x
x–y=6
右下方区域
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
(2)探究
验证:设点P(x,y 1)是直线x – y =
y
x–y=6 x
6上的点,选取点A(x,y 2),使它
的坐标满足不等式x – y < 6,请完成 下面的表格,
O
横坐标 x
–3
–2 -8
–1 -73 -3
3.3.1 二元一次不等 式(组)与平面区域
一、引入:
一家银行的信贷部计划年初投入25 000 000
元用于企业和个人贷款,希望这笔资金至少可带来
30000元的收益,其中从企业贷款中获益12%,从个
人贷款中获益10%.那么,信贷部应刻如何分配资
金呢?
问题:应该用什么不等式模型来刻画呢?
二、新知探究:
4 x x+4y―4=0
课堂练习1:
(1)画出不等式 4x―3y≤12 表示的平面区域
y
4x―3y-12=0 x x
(2)画出不等式x≥1 表示的平面区域
y
x=1
三、例题示范:
例2、用平面区域表示不等式组 y < -3x+12 的解集。 x<2y
y
0 x-2y=0
人教新课标版数学高二必修5课件3.3.1二元一次不等式(组)与平面区域
(2)在直角坐标平面内,把直线 l:ax+by+c=0 画成 实线 ,表示平面区域包 括这一边界直线;画成 虚线 表示平面区域不包括这一边界直线.
(3)①对于直线 ax+by+c=0 同一侧的所有点,把它的坐标(x,y)代入 ax+by +c 所得的符号都 相同 .
②在直线 ax+by+c=0 的一侧取某个特殊点(x0,y0),由 ax0+by0+c 的符 号可以断定 ax+by+c>0 表示的是直线 ax+by+c=0 哪一侧的平面区域.
探究点5 不等式组表示平面区域在生活中的应用
命题角度1,每张钢板可 同时截得三种规格的小钢板的块数如下表所示:
钢板类型
规格类型 A规格 B规格 C规格
第一种钢板
2
1
1
第二种钢板
1
2
3
今需要A、B、C三种规格的成品分别为15、18、27块,用数学关系式
即(3×3-2×1+a)[3×(-4)-2×6+a]<0, (a+7)(a-24)<0,解得-7<a<24.
名师点评
对于直线l:Ax+By+C=0两侧的点(x1,y1),(x2,y2),若Ax1+By1+C >0,则Ax2+By2+C<0,即同侧同号,异侧异号.
探究点2 二元一次不等式表示的平面区域 例2 画出不等式x+4y<4表示的平面区域. 解答
含两个未知数的不等式的一个解,即满足不等式的一组x,y 的取值,例如xy= =00, ,也可写成(0,0).
问题2 一元一次不等式(组)的解集可以表示为数轴上的区间,例如 xx+ -34><00,的解集为数轴上的一个区间(如图).
那么,在直角坐标系内,二元一次不等式x-y<6的解集表示 什么图形呢? 答案
第三章3.3 3.3.1二元一次不等式(组)与平面区域
1.二元一次不等式(组) (1)定义 ①二元一次不等式:含有两个未知数,并且未知数的次数是 1 的不等式. ②二元一次不等式组:由几个二元一次不等式组成的不等式组. (2)解集 ①定义:满足二元一次不等式(组)的 x 和 y 的取值构成有序数对(x,y),所有这样的有 序数对(x,y)构成的集合称为二元一次不等式(组)的解集. ②几何意义:可以看成直角坐标系内满足二元一次不等式(组)的 x 和 y 组成的点构成的 集合. 2.二元一次不等式表示的平面区域 二元一次不等式 Ax+By+C>0 二元一次不等式 Ax+By+C≥0 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 虚线,以表示区域不包括边界 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 实线,以表示区域包括边界 直线 Ax+By+C=0 同一侧的所有点,把它们的坐标(x,y)代入 依据 Ax+By+C 所得符号都相同 平面区域的确定 方法 在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0)作为测试 点,由 Ax0+By0+C 的符号可以断定 Ax+By+C>0 表示的是直 线 Ax+By+C=0 哪一侧的平面区域
)
用平面区域来表示实际问题的基本方法 (1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这些字母表示. (3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来. 3.配制 A、B 两种药品,需要甲、乙两种原料,已知配一剂 A 种药品需 甲料 3 mg,乙料 5 mg;配一剂 B 种药品需甲料 5 mg,乙料 4 mg.今有甲料 20 mg,乙料 25 mg,若 A、B 两种药品至少各配一剂,问共有多少种不同的配制方法? 解:设 A、B 两种药品分别配 x 剂、y 剂(x,y∈N*).由题意得, 甲料 A 药品/剂 B 药品/剂 共计 3 mg 5 mg 20 mg 乙料 5 mg 4 mg 25 mg
3.3.1二元一次不等式(组)与平面区域(第一课时)
学习目标
1、了解二元一次不等式的几何意义 、 2、会画二元一次不等式表示的平面区域 、
创设情境
一家银行的信贷部计划年初投入25000000元用于企业 元用于企业 一家银行的信贷部计划年初投入 和个人贷款,希望这笔资金至少可以带来30000元的收 和个人贷款,希望这笔资金至少可以带来 元的收 其中从企业贷款中获益12%,从个人贷款中获益 益,其中从企业贷款中获益 , 10%。那么,信贷部应该如何分配资金呢? 。那么,信贷部应该如何分配资金呢?
典例分析
画出不等式x+4y<4表示的平面区域 例1 画出不等式 表示的平面区域 分析: 分析: 画出边界 y 代特殊点确定区域
1
x+4y-4=0 4
o
x+4y<4
x
练习:课本 页第 页第1题 练习:课本86页第 题,第2题 题
典例分析
例2 用平面区域表示不等式组
y < −3 x + 12 x < 2 y
新课探究
问题3:对于一般的二元一次不等式Ax+By+C >0, 问题 :对于一般的二元一次不等式 其解集所表示什么图形,如何画出? 其解集所表示什么图形,如何画出? Ax+By+C>0表示直线 表示直线Ax+By+C=0某一侧所有点组成的 表示直线 某一侧所有点组成的 平面区域,不包括边界 平面区域, Ax+By+C≥0表示直线 表示直线Ax+By+C=0某一侧所有点组成的 表示直线 某一侧所有点组成的 平面区域, 平面区域,包括边界 画法:直线定界, 画法:直线定界,特殊点定域
高中数学《3.3.1二元一次不等式(组)与平面区域》教案2 新人教A版必修5
3.3.1二元一次不等式(组)与平面区域(2)
高二数学教·学案
【学习目标】
1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;
2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;
3.情感态度与价值观:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。
【学习重点】从实际问题中抽象出二元一次不等式(组),并能用图形表示.
【学习难点】从实际问题中抽象出二元一次不等式(组).
【授课类型】新授课
高二数学教·学案
课后反思:。
3.3.1二元一次不等式与平面区域
由几个二元一次不等式组成的不等式组;
(3 )二元一次不等式的解集: , 点的集合 思考:在平面直角坐标系中
满足二元一次不等式的有序实数对 (x,y)构成的集合; {(x,y)|x+y-1=0}表示什么图形?
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
回忆:一元一次不等式(组)的解集--数集 图形---数轴上的区间。
x 3 0 如:不等式组 的解集为数轴上的一个区间(如图)。 x 4 0
{x | 3 x 4}
问题3:在直角坐标系内,二元一次不等式的解集表示
什么图形?
二、新知探究:
(2)探究 特殊:二元一次不等式 x-y <6 的解集所表示的图形。
作出x-y =6的图像:一条直线
3.3.1
二元一次不等式(组) 与平面区域
重庆铁路中学 (400053) 何成宝
一、问题情境:
一只蚂蚁在地平面上寻找食物,蚂蚁的位置可由 坐标 (x,y) 确定,现知在直线 L : x+y-1=0 左下方 区域某处有一食物,如果蚂蚁运动的坐标始终满 足 x+y-1>0, 那 么 蚂 蚁 能 找 到 食 物 吗 ?
直线x-y=6的右下方的平面区域 y
x-y <6 O
-6 6
y
O
-6 6
x
x
x-y>6
直线叫做这两个区域的边界。
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
从 特 殊 到 一 般
二元一次不等式Ax + By + C>0在平面直角坐标系中表 示直线Ax + By + C = 0某一侧所有点组成的平面区域。
3.3.1二元一次不等式(组)与平面区
>0表示的直线Ax+By+C=0哪一侧的平面区域。
4y < 例x1 4 画出 不等 式 表示 的平 < 面区 4 解 域.取 < 原 : 0 点 先 ( 做 0 出 , 边 0 界
y
1 (0 , 0 ) 0 1
4
x
1)用平面区域表 示下面不等式组的 2)画出不等式 解集 .
y 3 x 1 2 x 2 y
l:x y 6
O -3 -6
3
6
9
x
l:x y 6 研究平面内的点A,P可 6 以发现:在直角坐标系中, Ax, y2 以二元一次不等式x-y<6的 3 解为坐标的点都在直线l的左 3 6 9 O 上方;反过来,直线l左上方 x -3 P( x, y1 ) 点的坐标都满足不等式x-y< -6 6,因此在平面直角坐标系中, 不等式x-y<6表示直线x-y=6 左上方的平面区域,如图,类似地,二元一次不 等式x-y>6表示直线x-y=6右下方的平面区域,直线xy=6叫做这两个区域的边界,这里,我们把直线x-y=6画 成虚线,以表示区域不包括边界。
12 4 0 4 12
图形表示如右
20
x
例2、一个化肥厂生产甲、乙两种混合肥料,生产 1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18;生 产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐 15t。现库存磷酸盐10t,硝酸盐66t,在此基础上生产这 两种混合肥料。列出满足生产条件的数学关系式,并 画出相应的平面区域。
4.画平面区域时,要注意边界是画成实线还是虚线。
1.用不等式(组)表示下列阴影部分所对应的 区域. y y
3
y
-6 4 x 2
0
x
6x+5y=22
《二元一次不等式组与平面区域》
(4)二元一次不等式(组)的解集与平面直角 坐标系内的点之间的关系:
二元一次不等式(组)的解集是有序实数对, 而点的坐标也是有序实数对,因此,有序 实数对就可以看成是平面内点的坐标, 进而,二元一次不等式(组)的解集就 可以看成是直角坐标系内的点构成的集合。
(5)探究二元一次不等式(组)的解集表示的 图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解 集 所表示的图形 思考:在直角坐标系内,二元一次不 等式(组)的解集表示什么图形?
3.3.1《二元一次不等式 (组)与平面区域》
二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:
含有两个未知数,并且未知数的最高次数是1的 不等式叫做二元一次不等式 ;
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组 称为二元一次不等式组。
(3)二元一次不等式(组)的解集:
满足二元一次不等式(组)的x和y的取 值构成有序实数对(x,y),所有这样的 有序实数(x,y)构成的集合称为二元一 次不等式(组)的解集。
归纳:不等式组表示的平面区域是各 个不等式所表示的平面点集的交集, 因而是各个不等式所表示的平面区域 的公共部分。
2.画出下列不等式组所表示的平面区域: (1)2 x y 1 0 解:(1)在同一个直角坐标系中,
x y 1≥ 0
作出直线2x-y+1=0(虚线),
x+y-1=0(实线)。 用例1的选点方法,分别作出不等式2x- y+1>0,x+y-1≥0所表示的平面区域,
则它们的交集就是已知不等式组所 表示的区域。
y 3 2 1 -1 O 2y+1=0 -1 -2 1 2 3 x-3=0 2x-3y+2=0
3.3.1二元一次不等式(组)与平面区域
四平市第一高级中学2013级高一年级数学学科学案学案类型:新课材料序号:13编稿教师:刘强审稿教师:刘强课题:3.3.1二元一次不等式(组)与平面区域一、学习目标:1、了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域。
2、经历从实际情景中抽象出二元一次不等式组的过程,提高数学建模的能力。
通过本节课的学习,体会数学来源于生活,提高数学学习兴趣。
二、学习重、难点:教学重点:探究、运用二元一次不等式(组)来表示平面区域。
教学难点:确定不等式)0(0<>++或C By Ax 表示直线0=++C By Ax 的哪一侧。
三、知识导学:1、二元一次不等式(组)的解集表示的图形:不等式0>++C By Ax 在平面直角坐标系中表示直线0=++C By Ax 某一侧所有点组成的平面区域。
(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法:由于对在直线0=++C By Ax 同一侧的所有点),(y x ,把它的坐标),(y x 代入C By Ax ++,所得到实数的符号都相同,所以只需要在此直线的某一侧取一特殊点),(00y x ,从C By Ax ++00的正负即可判断0>++C By Ax 表示直线哪一侧的平面区域。
(特殊地,当0≠C 时,常把原点作为此特殊点)四、典型例题:1、二元一次不等式表示的平面区域【例1】画出不等式44<+y x 表示的平面区域。
2、二元一次不等式组表示的平面区域【例2】用平面区域表示不等式组⎩⎨⎧<+-<y x x y 2123的解集。
3、实际应用问题【例3】要将两种大小不同的钢板截成C B A 、、三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:类型A 规格B 规格C 规格第一种钢板211第二种钢板123今需要C B A 、、三种规格的成品分别为15,18,27块,用数学关系式和图形表示上述要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.1二元一次不等式(组)与平面区域(2)
一、【教学目标】
重点: 探讨如何用二元一次不等式(组)表示实际问题. 难点:如何用二元一次不等式(组)表示实际问题. 知识点:二元一次不等式(组)所表示的平面区域.
能力点:从实际问题中抽象出二元一次不等式(组)的数学方法.
教育点:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力.
自主探究点:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想. 考试点:从实际情境中抽象出二元一次不等式(组),为简单的线性规划问题做好基础. 易错易混点:如何设变量,如何用二元一次不等式(组)表示实际问题.
拓展点:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 二、【引入新课】
二元一次不等式0Ax By C ++>在平面直角坐标系中表示直线0Ax By C ++=某一侧所有点组成的平面区域(虚线表示区域不包括边界直线).
判断方法:由于对在直线0Ax By C ++=同一侧的所有点,把它的坐标(,)x y 代入Ax By C ++,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点00(,)x y ,从00Ax By C ++的正负即可判断
0Ax By C ++>表示直线0Ax By C ++=哪一侧的平面区域.(特殊地,当0C ≠时,常把原点作为此特殊
点).
随堂练习1
1、画出不等式260x y +-<表示的平面区域.
2、画出不等式组⎪⎩
⎪
⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域.
【设计意图】通过回顾二元一次不等式(组)所表示的平面区域,为本节课由实际问题抽象出二元一次不等式(组)并画出其表示的平面区域奠定基础. 三、【探究新知】
例1.某人准备投资1200万元兴办一所完全学校,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位),分别用数学关系式来表示上述限制条件
:
【师生活动】请学生分组讨论, 寻找共同点,汇总结论,互相补充,得到正确解答.
解:设开设初中班x 个,高中班y 个,根据题意,总共招生班数应限制在20到30之间,所以有
2030
x y ≤+≤
考虑到所投资金的限制,得到
265422231200,x y x y ++⨯+⨯≤ 即 240x y +≤ 另外,开设的班数不能为负,则
0,0x y ≥≥
把上面四个不等式合在一起,得到
2030,240,0,0.x y x y x y ≤+≤⎧⎪+≤⎪
⎨
≥⎪⎪≥⎩
画出平面区域,如图所示 例2.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
今需要A 、B 、C 三种规格的成品分别为15、18、27块,用数学关系式和图形表示上述要求.
解:设需截第一种钢板x 张
,第二种钢板y 张,则
215,218,327,0,0.
x y x y x y x y +≥⎧⎪+≥⎪⎪
+≥⎨⎪≥⎪≥⎪⎩画出平面区域,如图所示
【设计意图】通过本例使学生体验经历从实际问题中得到二元
一次不等式(组)这一数学模型的抽象过程,了解二元一次不等式(组)这一数学模型产生的实际背景,体现数学问题是客观存在的,是从实际问题中产生和发展的. 四、【理解新知】
例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t 、硝酸盐18 t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t 、硝酸盐15 t.现库存磷酸盐10t 、硝酸盐66 t,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域.
解:设x 、y 分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:
410,181566,0,0.x y x y x y +≤⎧⎪+≤⎪
⎨
≥⎪⎪≥⎩
画出平面区域,如图所示.
用二元一次不等式(组)表示的平面区域来表示实际问题时,可先根据问题的需要选取起关键作用的关联较多的两个量用字母表示,进而问题中所有的量都用这两个字母表示出来,再由实际问题中有关的限制条件或由问题中所有量均有实际意义写出所有的不等式,再把这些不等式所组成的不等式组用平面区域表示出来即可.
【设计意图】总结归纳例3的解决过程,让学生明白把此类实际问题抽象为数学问题的过程, 为准确地运用新知,作必要的铺垫. 五、【运用新知】
例4、利用区域求不等式组⎪⎩
⎪
⎨⎧<--<-+>--015530632032y x y x y x 的整数解
分析:不等式组的实数解集为三条直线032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l 所围成的三角形区域内部(不含边界).设12l l A = ,13l l B = ,23l l C = ,求得区域内点横坐标范围,取出x 的所有整数值,再代回原不等式组转化为y 的一元不等式组得出相应的y 的整数值.
解:设032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l ,
12l l A = ,13l l B = ,23l l C = ∴)43,815(
A ,)3,0(-
B ,)19
12,1975(-C . 于是看出区域内点的横坐标在)19
75
,
0(内,取x =1,2,3, 当x =1时,代入原不等式组有⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
-><-<512341y y y ⇒1512-<<-y ,得y =-2, ∴区域内有整点(1,-2).同理可求得另外三个整点(2,0),(2,-1),(3,-1).
【设计意图】 求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫.
现在对找整数解的要求有所降低,通过本例让学生了解如何在平面区域内找整数点. 【设计说明】求不等式的整数解即求区域内的整点,常有两种处理方法,一种是通过打出网络求整点;
另一种
是本题解答中所采用的,先确定区域内点的横坐标的范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有整数值,即先固定x ,再用x 制约y . 例5、画出下列不等式表示的区域
(1)0)1)((≤---y x y x ; (2) x y x 2≤≤
分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由x x 2≤,得0≥x ,又用y -代y ,不等式仍成立,区域关于x 轴对称. 解:(1)10010≤-≤⇒⎩⎨
⎧≤--≥-y x y x y x 或⎩⎨
⎧≥-≤-1
y x y x 矛盾无解,故点),(y x 在一带形区域内(含边界). (2) 由x x 2≤,得0≥x ;当0>y 时,有⎩
⎨⎧≥-≤-020
y x y x 点),(y x 在一条形区域内(边界);当0≤y ,由对
称性得出.
指出:把非规范形式等价转化为规范不等式组形式便于求解.
【设计意图】 通过这两个例题,经学生分组讨论后,对结果进行汇总,老师要对学生展示的成果进行点评,针
对学习过程中出现的常见错误给予指正,帮助学生更好地运用新知. 随堂练习2
(1)1+>x y ; (2)y x >; (3)y x >
六、【课堂小结】
1.知识:(1)如何用二元一次不等式(组)表示实际问题及如何在平面区域内找整数解. (2) 非规范形式等价转化为规范不等式组形式求解问题. 2.思想:集合、化归、数形结合的数学思想. 七、【布置作业】
1.阅读教材P82—86.
2.书面作业 .
必做题:P86 练习4. 自主学习丛书P67 12. 选做题:自主学习丛书P69 11 P70 12. 3.预习教材P87—91.
八、【教后反思】
1.本教案的亮点是可通过多媒体教学形象直观地展示给学生.
2.用二元一次不等式(组)表示实际问题时让学生充分讨论思考,提高了学习兴趣,激发了学生的求知欲.
3.鉴于本堂课课堂容量不大,所以增加了不规则不等式的求解问题.。