微波天线与技术课程报告汇总
微波技术与天线报告赵聪蕾
设计一矩形波导TE10的仿真与电磁场分析班级:电1005-1 学号:20102571 姓名:赵聪蕾报告日期:2013.12.12一、实验目的:1.熟悉HFSS软件的使用;2.掌握导波场分析和求解方法,矩形波导TE10基本设计方法;3.利用HFSS软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、实验内容:1、使用HFSS软件建模矩形波导结构,选取合适的参数,并对其参数进行优化、仿真。
(1)打开软件,进行一些设置。
(2)设置坐标,调整到适当的图形。
(3)选择一面设置端口。
2、仿真终端匹配情况下,扫频激励下的,S参数分布以及波导场E Y、H X、H Z分布,并分析。
(1)进行必要的频率设置,并运行得到曲线图。
(2)根据一些操作得到表面电场。
3、仿真终端短路情况下,一端口仍为500ohm,二端口设为激励口,阻值设为如:50mohm扫频激励下的,观测S、驻波比等参数分布,并分析。
4、根据软件设计的结果和理论分析结果比较。
实验的结果和理论有一些出入,主要是系统误差引起的。
三、思考题1、在任何均匀导波装置中传播的波都可以分为那三种模式?答:TEM波、TM波、TE波2、TE10模式下矩形波导的截至波长是多少,它的场分布如何?答:波长为39.7mm,场分布在导体内部。
3、如何利用TE10模式下矩形波导,作为测量线?作为波导缝隙天线时,开槽如何选取?答:计算得出矩形波导的折射率,通过测量计算所求的电磁波波长等因素。
若作为波导天线,开槽应该选择波导的中间位置。
四、实验体会通过这次实验,首先是了解了HFSS软件的基本使用方法,与此同时,我对矩形波导的实验特性有了更深层次的理解,用实验仿真是为以后通过真正的实验验证定理的一个铺垫。
通过这次实验,我更加知道不仅仅要学习书本上的知识,更要有实践的基础,这样才能更好的学习微波与天线这门课。
设计二魔T一、微波元器件概述:无论在那个频段工作的电子设备,都需要各种功能的元器件。
微波与天线实验报告
微波与天线实验报告微波与天线实验报告引言:微波与天线是无线通信领域中非常重要的技术。
微波是指频率范围在1GHz至300GHz之间的电磁波,它在通信、雷达、卫星通信等领域得到广泛应用。
天线是将电磁波转换为电信号或将电信号转换为电磁波的装置,它在无线通信中起到传输和接收信号的关键作用。
本实验旨在通过实际操作,深入了解微波与天线的原理和应用。
一、实验目的本实验的目的是通过实际操作,掌握微波与天线的基本原理和实验方法,了解它们在无线通信中的应用。
二、实验设备与材料1. 微波信号发生器2. 微波天线3. 微波功率计4. 微波频谱仪5. 微波衰减器6. 微波衰减器控制器7. 微波衰减器电源8. 射频线缆9. 各种连接线缆10. 计算机三、实验步骤与结果1. 实验一:微波信号发生器的调试与测量a. 将微波信号发生器与微波功率计通过射频线缆连接。
b. 打开微波信号发生器和微波功率计,调节微波信号发生器的频率和功率,观察微波功率计的读数变化。
c. 记录不同频率和功率下的微波功率计读数,并绘制频率与功率的关系曲线。
2. 实验二:微波天线的特性测量a. 将微波天线与微波信号发生器通过射频线缆连接。
b. 调节微波信号发生器的频率和功率,观察微波天线的辐射特性。
c. 测量不同频率和功率下微波天线的增益、方向性等参数,并绘制相应的特性曲线。
3. 实验三:微波天线的阻抗匹配a. 将微波天线与微波信号发生器通过射频线缆连接。
b. 调节微波信号发生器的频率和功率,观察微波天线的阻抗匹配情况。
c. 根据实验结果,调整微波天线的结构和参数,实现最佳的阻抗匹配效果。
四、实验结果分析通过实验一,我们可以得到微波信号发生器的频率与功率的关系曲线,从而了解微波信号发生器的工作特性。
实验二则帮助我们了解微波天线的辐射特性,如增益、方向性等参数,这对于无线通信系统的设计和优化至关重要。
实验三则是为了实现微波天线的阻抗匹配,阻抗匹配的好坏直接影响到系统的传输效率和性能。
微波天线与技术报告书
︽微波技术与天线︾课程考查报告姓名:范依依班级:通信0904班学号:310909020401成绩:评语:《微波与天线技术》课程考查报告任务书第一部分:课程内容总结绪论:微波是电磁波谱介于超短波和红外线之间的波段,属于无线电波中波长最短的波段,其频率范围从300MHz 至3000GHz 。
微波具有以下特性:似光性、穿透性、频带宽特性、热效应特性、散射特性、抗低频干扰特性、视距传播特性、分布参数的不确定性、电磁兼容与电磁环境污染等。
第一章:均匀传输线理论微波传输线分为:双导体传输线、均匀填充介质的金属波导管、介质传输线。
1.1均匀传输线方程及其解t t z i L t z Ri z t z u ∂∂+=∂∂),(),(),( ○1 tt z u C t z Gu z t z i ∂∂+=∂∂),(),(),( ○2 ○1、○2是均匀传输线方程 传输线的工作特性参数:1)将传输线上导行波的电压与电流的比定义为特性阻抗:Z o =Cj G Lj R ωω++2)传输常数γβαωωγj C j G L j R +=++=))(( ()),(21LC GZ RY O O ωβα=+=对于无耗传输线,R=G=0,则0=α,此时LC j ωββγ==, 3)相速p ν与波长λβων=p r o p f v ελλ==1.2传输线阻抗与状态参数三个重要的物理量:输入阻抗、反射系数与驻波比1、输入阻抗:)tan()tan()sin()cos()sin()cos()()()(111111z jZ Z z jZ Z Z z Z U j z I z Z jI z U z I z U z Z o o o oo in ββββββ++=++==Z 1为终端负载阻抗。
无耗传输线上任意相距2λ处的阻抗相等,一般称之为2λ的重复性 2、反射系数:任意点反射系数)2(11)(z j e z βφ-Γ=Γ其中ooZ Z Z Z +-=Γ111称为终端反射系数,对于均匀无线传输线来说,任意点反射系数)(z Γ大小均相等,沿线只有相位按周期变化,其周期为2λ,即反射系数也具有2λ重复性。
微波技术与天线实验.
《微波技术与天线》实验一、实验目的:学会利用MATLAB 软件进行微波技术与天线的仿真,通过实验提高学生实际动手和编程能力,加深对基础知识的理解。
二、实验内容:1. 特性阻抗为Z0=150Ω的均匀无耗传输,终端接有负载100350j Z L +=Ω,用4/λ阻抗变换器实现阻抗匹配(如图所示),试计算4/λ阻抗变换器的特性阻抗Z01及离终端距离(设1=λ)。
2.利用MATLAB 分别绘出对于无耗传输线阻抗zjZ Z z jZ Z Z z Z L L in ββtan tan )(000++=的实部、虚部关于长度z 的图形,已知频率Hz f 9102⨯=,10120j Z L +=。
3.利用教材53页公式:导带厚度不为零(0≠t )的特性阻抗的近似公式为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛⋅+⋅⋅+=27.61818141ln 3020m m m Z r πππε (2–83)式中 tb wt b w m -∆+-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---=-∆n x b w x x x x x t b w 1.1/0796.02ln 5.01)1(2π (2–84) xx n -+=13/212 ; b tx = 画出r Z ε0关于w/b 的关系(t/b 取不同值时)。
4.利用MA TLAB 软件编程:求下图网络的[A]矩阵和[S]矩阵,设10==Y Y ,4/21πθθ==。
完成后发至sunxbcg68@《微波技术》实验报告学院:电子与信息工程学院专业:通信工程班级:_______姓名:_______学号:_______实验一阻抗匹配实验一、实验目的:学会利用MATLAB软件进行微波技术方面的仿真。
通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。
二、实验内容:利用MATLAB软件编程求解下面问题:1.特性阻抗为Z0=150Ω的均匀无耗传输线, 终端接有负载Z l=250+j100Ω, 用λ/4阻抗变换器实现阻抗匹配(如图所示), 试求λ/4阻抗变换器的特性阻抗Z01及离终端距离(可设λ=1)。
微波与天线课本总结(优秀)
微波技术与天线(第二版)总结绪论微波频段:300MHz-3000GHz微波波长:—1m (分米波,厘米波,毫米波,亚毫米波)微波的特点:似光性,穿透性,宽频带特性,热效应特性,散射特性,抗低频干扰特性,视距传播特性,分布参数的不确定性,电磁兼容和电磁环境污染。
分析方法:场的分析方法,路的分析方法。
(微波网络)一、均匀传输线理论、均匀传输线方程及其解传输线的分类:双导体传输线,金属波导管,介质传输线。
分析方法: 场分析法,等效电路法。
传输线的工作特性参数(1)特性阻抗—传输线上行波的电压与电流的比值对于均匀无耗传输线特性阻抗:(2)传播常数γ(3)相速υp —传输线上行波等相位面沿传输方向的传播速度(4)传输线的波长、传输线阻抗与状态参量均匀无耗传输线三个重要的物理量(1)输入阻抗—传输线上任意一点处的输入电压和输入电流之比值。
对无耗均匀传输线, 线上各点电压U(z)、 电流I(z)与终端电压Ul 、终端电流的关系如下:(2) 反射系数—传输线上任意一点处的反射波电压(或电流)与入射波电压(或电流)之比。
(3)电压驻波比—传输线上电压最大值与电压最小值之比。
、无耗传输线的状态分析 传输线的三种工作状态 (1)行波状态 沿线电压和电流振幅不变,驻波比等于1 电压和电流在任意点上都同相传输线上各点阻抗均等于传输线特性阻抗(2)纯驻波状态 终端短路 终端开路终端接纯电抗 Z in= ±j X(3)行驻波状态当微波传输线终端接任意复数阻抗负载时, 由信号源入射的电磁波功率一部分被终端负载吸收, 另一部分则被反射, 因此传输线上既有行波又有纯驻波, 构成混合波状态, 故称之为行驻波状态。
无耗传输线两个重要的特性(1)/4 阻抗变换性—无耗传输线上距离为/4的任意两点处输入阻抗的乘积均等于传输线特性阻抗的平方。
(2)/2 重复性—无耗传输线上距离为/2的任意两点处,电压、电流的大小(绝对值);输入阻抗;反射系数的值相等,具有/2 的周期性。
西电微波技术与天线总结
第一章1.均匀传输线(规则导波系统):截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统。
2.均匀传输线方程, 也称电报方程。
3.无色散波:对均匀无耗传输线, 由于β与ω成线性关系, 所以导行波的相速v p 与频率无关, 称为无色散波。
色散特性:当传输线有损耗时, β不再与ω成线性关系, 使相速v p 与频率ω有关,这就称为色散特性。
11010010110co s()sin ()tan ()()tan ()co s()sin ()in U z jI Z z Z jZ z Z z Z U Z jZ z I z jz Z ββββββ++==++02p rv fλπλβε===任意相距λ/2处的阻抗相同, 称为λ/2重复性z1 终端负载221021101()j z j zj zj zZ Z A ez eeZ Z A eββββ----Γ===Γ+ 1101110j Z Z eZ Zφ-Γ==Γ+ 终端反射系数 均匀无耗传输线上, 任意点反射系数Γ(z)大小均相等,沿线只有相位按周期变化, 其周期为λ/2, 即反射系数也具有λ/2重复性4.00()()()in in Z z Z z Z z Z -Γ=+ 0()1()()()1()in U z Z Z Z Z I z Z +Γ==-Γ111ρρ-Γ=+ 1111/1/1Γ-Γ+=-+=+-+-U U U U ρ电压驻波比 其倒数称为行波系数, 用K 表示5.行波状态就是无反射的传输状态, 此时反射系数Γl =0, 负载阻抗等于传输线的特性阻抗, 即Z l =Z 0, 称此时的负载为匹配负载。
综上所述, 对无耗传输线的行波状态有以下结论: ① 沿线电压和电流振幅不变, 驻波比ρ=1;② 电压和电流在任意点上都同相; ③ 传输线上各点阻抗均等于传输线特性阻抗6终端负载短路:负载阻抗Z l =0, Γl =-1, ρ→∞, 传输线上任意点z 处的反射系数为Γ(z)=-e -j2βz此时传输线上任意一点z 处的输入阻抗为0()tan in Z Z jZ zβ=① 沿线各点电压和电流振幅按余弦变化, 电压和电流相位差 90°, 功率为无功功率, 即无能量传输; ② 在z=n λ/2(n=0, 1, 2, …)处电压为零, 电流的振幅值最大且等于2|A 1|/Z 0, 称这些位置为电压波节点;在z=(2n+1)λ/4 (n=0, 1, 2, …)处电压的振幅值最大且等于2|A 1|, 而电流为零, 称这些位置为电压波腹点。
微波技术与天线总结
相速Vp :电压、电流入射波(或反射波)的等相位面沿传输方向的传播速度,用Vp 表示。
波长λ:传输线上电压(或电流)波的相位相差2π的两观察点间的距离称为波长,记为λ。
反射系数Γ:传输线上任一点z 处的反射波电压(或电流)和入射波电压(或电流)的比值,记作Γu(z)(或Γi(z)),它和阻抗本身有周期=λ/2,|Γ|与ρ为系统不变量,|Γ|∈[0,1], ρ∈[1,∞)。
驻波系数ρ:传输线上波腹点电压与波节点电压之比,记为ρ。
沿z 向传播的导行波的相速定义为导波的等相位面向前移动的速度,记为Vp 。
群速Vg :指一群具有非常接近的角频率ω和相移常数β的波,在传输过程中表现出来的共同速度,这个速度代表能量的传播速度,用Vg 表示。
无纵向场分量,即Ez=Hz=0。
只有横向电磁场分量,故称为横电磁模(TEM )。
有纵向场分量。
a)Ez ≠0,Hz=0,为横磁模(TM )。
只有电场才有纵向分量,故又称电模(E);b) Ez=0,Hz ≠0,为横电模(TE )。
只有磁场才有纵向分量,故又称磁模(H);c)Ez ≠0,Hz ≠0,为混合模,TE 、TM 线性叠加。
电基本振子:无限小的线性电流单元,即长度L 远小于工作波长λ,线上电流振幅和相位处处相通。
对称振子:由两根粗细和长度都相同的导线构成,中间为两个反馈点。
全波振子:对称振子的臂长为2h=λ的振子。
半波振子:对称振子的臂长为2h=λ/i 的振子。
谐振fo :在导体中,电储能等于磁储能。
谐振波长:光波长整数倍的波长。
方向性系数D :表示天线向某一个方向集中辐射电磁波的程度,即天线在远区最大辐射方向上某点的平均辐射功率密度(Smax)av 与平均辐射功率相同的无方向性天线在同一点的平均辐射功率密度(So)av 之比(Pr 、R 相同)。
增益系数G :天线在远区最大辐射方向上某点的平均功率密度与平均输入功率相同的无方向性天线在同一点的平均功率密度之比(Pin 、R 相同)。
微波与天线课本总结(优秀)上课讲义精选全文
可编辑修改精选全文完整版微波技术与天线(第二版)总结绪论微波频段:300MHz-3000GHz微波波长:0.1mm—1m (分米波,厘米波,毫米波,亚毫米波)微波的特点:似光性,穿透性,宽频带特性,热效应特性,散射特性,抗低频干扰特性,视距传播特性,分布参数的不确定性,电磁兼容和电磁环境污染。
分析方法:场的分析方法,路的分析方法。
(微波网络)一、均匀传输线理论1.1、均匀传输线方程及其解1.1.1传输线的分类:双导体传输线,金属波导管,介质传输线。
分析方法: 场分析法,等效电路法。
1.1.2传输线的工作特性参数(1)特性阻抗—传输线上行波的电压与电流的比值对于均匀无耗传输线特性阻抗:(2)传播常数γ(3)相速υp —传输线上行波等相位面沿传输方向的传播速度(4)传输线的波长1.2、传输线阻抗与状态参量1.2.1均匀无耗传输线三个重要的物理量 (1)输入阻抗—传输线上任意一点处的输入电压和输入电流之比值。
对无耗均匀传输线, 线上各点电压U(z)、 电流I(z)与终端电压Ul 、终端电流的关系如下:(2) 反射系数—传输线上任意一点处的反射波电压(或电流)与入射波电压(或电流)之比。
(3)电压驻波比—传输线上电压最大值与电压最小值之比。
1.3、无耗传输线的状态分析 1.3.1传输线的三种工作状态 (1)行波状态 ➢ 沿线电压和电流振幅不变,驻波比等于1 ➢ 电压和电流在任意点上都同相➢传输线上各点阻抗均等于传输线特性阻抗(2)纯驻波状态 ➢ 终端短路 ➢ 终端开路➢终端接纯电抗 Z in= ±j X(3)行驻波状态当微波传输线终端接任意复数阻抗负载时, 由信号源入射的电磁波功率一部分被终端负载吸收, 另一部分则被反射, 因此传输线上既有行波又有纯驻波, 构成混合波状态, 故称之为行驻波状态。
1.3.2无耗传输线两个重要的特性(1)λ/4 阻抗变换性—无耗传输线上距离为λ/4的任意两点处输入阻抗的乘积均等于传输线特性阻抗的平方。
微波技术与天线课程设计结题报告
2.结合所查模型设定天线参数。
8
2
研究的过程
2.结合所查模型设定天线参数。
9
2
研究的过程
3.仿真设计、分析。
10
2
研究的过程
3.仿真设计、分析。
11
2
研究的过程
4.绘制PCB图并制作实物。
12
2
研究的过程
4.绘制PCB图并制作实物。
13
2
研究的过程
5.天线测试。
14
2
研究的过程
如左图所示,HFSS中仿真-10dB带宽为2.2000GHz~2.7240GHz,中心频点为 2.4510GHz,中心频点处回波损耗为32.0307dB. 如右图所示,网络分析仪中-10dB带宽为2.2510GHz~2.6930GHz,中心频点为 2.4670GHz,中心频点处回波损耗为25.904dB. 仿真与实测均符合任务要求。(指标一:-10dB带宽2.4GHz—2.5GHz 指标二:中心频点2.45GHz处回波损耗大于20dB)
微波技术与天线课程设计报告
印刷偶极子天线设计 2.45G
小组成员:王志伟 陆煜天 黄于城
1
内容梗概:
1
题目及性能指标
2
研究的过程
总结
2
3
1
题目及性能指标
印刷偶极子天线设计
指标一:-10dB带宽2.4GHz—2.5GHz
指标二:中心频点2.45GHz处回波损耗大于 20dB
3
2
研究的过程
1.研究印刷偶极子天线原理。 2.结合所查模型设定天线参数。 3.仿真设计、分析。 4.绘制PCB图并制作实物。 5.测试天线,整理资料、数据,写报告。
7
微波天线及技术课程报告
《微波技术与天线》课程考察报告姓名:专业班级:学号:指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。
微波波段对应的频率范围为: 300MHz ~3000GHz 。
在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。
4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。
f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10宇宙射线射线目录绪论 (1)目录 (2)一、均匀传输线理论 (3)二、规则金属波导 (4)三、微波集成传输线 (5)四、微波网络基础 (5)五、微波元器件 (6)六、天线辐射与接收的基本理论 (7)七、电波传播概论 (8)八、线天线 (9)九、面天线 (10)十、微波应用系统 (11)心得体会 (12)本课程我们共学习了十章,主要学习了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础、微波元器件、天线辐射与接收理论、电波传播概论、线天线、面天线、微波应用系统。
1微波天线节课总结
目录一、均匀传输线理论 (2)二、规则金属波导 (5)三、微波集成传输线 (8)四、微波网络基础 (10)五、微波元器件 (12)六、天线辐射与接收的基本理论 (15)七、电波传播概论 (18)八、线天线 (20)九、面天线 (25)十、心得体会 (27)第1章均匀传输线理论微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称, 它的作用是引导电磁波沿一定方向传输,各种微波传输线本章从“化场为路”的观点出发, 首先建立传输线方程, 导出传输线方程的解, 引入传输线的重要参量——阻抗、反射系数及驻波比。
然后分析无耗传输线的特性, 给出传输线的匹配、效率及功率容量的概念。
最后介绍最常用的TEM传输线——同轴线。
1.1均匀传输线方程及其解1.由均匀传输线组成的导波系统都可等效为均匀平行双导线系统。
其中传输线的始端接微波信号源<简称信源), 终端接负载, 选取传输线的纵向坐标为z, 坐标原点选在终端处, 波沿负z方向传播。
均匀传输线方程,也称电报方程。
u(z, t>z=Ri(z, t>+Li(z, t>ti(z, t>z=Gu(z, t>+Cu(z, t>t2.电压的通解U(z>=U+(z>+U-(z>=A1e +γz+A2e -γz电流的通解为 I(z>=I+(z>+I-(z>=A1e +γz-A2e -γz, Z。
=3.1> 特性阻抗Z 2> 传播常数γ 3> 相速vp与波长λ1.2传输线阻抗与状态参量传输线上任意一点电压与电流之比称为传输线在该点的阻抗,它与导波系统的状态特性有关。
因为微波阻抗是不能直接测量的,只能借助于状态参量如反射系数或驻波比的测量而获得,为此,引入物理量:输入阻抗、反射系数和驻波比。
1.输入阻抗对无耗均匀传输线, 线上各点电压U(z>、电流I(z>与终端电压U l、终端电流I l的关系如下:定义传输线上任意一点z处的输入电压和输入电流之比为该点的输入阻抗, 记作Zin(z>=2. 反射系数定义传输线上任意一点z处的反射波电压<或电流)与入射波电压<或电流)之比为电压<或电流)反射系数, 即:通常将电压反射系数简称为反射系数, 并记作Γ(z>。
微波技术与天线实验报告
微波技术与天线实验报告一、实验名称:测量微波通信系统各模块的特性参数二、实验目的与要求◆了解矢量网络分析仪的工作原理◆理解模块的频率特性、驻波比、反射系数、插损、S参数等概念◆测量并分析微波通信系统各模块的S参数三、实验设备:矢量网络分析仪、PNA 天线实验测量仪四、实验原理(共同部分)1.矢量网络分析仪的工作原理矢量网络分析仪器是一种电磁波能量的测试设备。
矢量网络分析仪的原理与使用力直接取决于系统的动态范围指标。
相位波动参数的测试是利用矢量网络分析仪的电子延迟(Electrical Delay)功能来实现的。
直接观察插入相移通常不是很有用,这是因为器件的电长度相移相对于频率呈现负斜率(器件越长,斜率越大)。
由于只有偏离线性相移才会引起失真,因此希望移去相位响应的线性部分。
利用网络分析仪的电子延迟功能,能够抵消被测器件的电长度,结果得到与线性相移的偏差,即相位波动(失真)。
矢量网络分析仪既能测量单端口网络或两端口网络的各种参数幅值,又能测相位,矢量网络分析仪能用史密斯圆图显示测试数据。
2.几个重要的概念频率特性:系统频率响应与输入信号的复数比称为频率特性,频率特性表征了系统输入输出之间的关系,故可由频率特性来分析系统性能。
驻波比:驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。
在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。
其它各点的振幅值则介于波腹与波节之间。
这种合成波称为行驻波。
驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比。
驻波比就是一个数值,用来表示天线和电波发射台是否匹配。
如果 SWR 的值等于1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。
如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。
微波技术与天线实验报告(航大)
电磁场、微波测量实验报告姓名:学号:学院:电子信息工程学院实验1 电磁喇叭天线特性测量一、实验目的研究电磁喇叭天线方向性图的测量方法以及天线的互易性原理。
二、实验仪器及装置图1、三厘米固态信号源2、喇叭天线3、分度转台及支柱4、微分表三、实验原理由于在通信、雷达等用途中,天线都处于它的远区,所以正确的测试天线的远区场辐射特性非常重要。
天线参量是描述天线辐射特性的量,可用实验的方法测定。
天线参量的测量是设计天线和调整天线的重要手段,其中最重要的是测量其辐射场幅值分布的方向性,其表征量是天线的方向函数及方向图。
四、实验内容及步骤1、按图连接好装置。
2、整机机械调整:首先旋转工作平台使0度刻线与固定臂上只针对正,在转动活动臂使活动臂上的指针对正在工作平台180度刻线上。
3、固定被测天线,而把辅助天线沿以被测天线为中心,距离r为半径的圆周运动转动平台记录工作平台角度及微安表度数。
Y oz平面方向图的数据逆时针转动角度180 177 174 171 168 165 162 159 156 153 150 147微安100 94 80 62 46 32 20 10 6 4 2 0顺时针转动角度-180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 92 80 60 44 26 18 10 6 4 2逆时针转动顺时针转动Xoz 平面方向图数据逆时针转动逆时针转动角度 180177174171168165162159156153150147微安 100 92 80 56 36 20 8 2 0 0 0 0顺时针转动角度 -180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 88 70 52 30 12 4 2 0 0 0顺时针转动实验2 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E、H和S 互相垂直。
微波技术与天线期末总结
微波技术与天线期末总结本学期的微波技术与天线课程是电子信息类专业的必修课之一,主要学习了微波器件与系统的基础知识以及天线的设计与应用。
通过学习这门课程,我不仅对微波技术和天线有了更深入的了解,同时也提高了我解决工程问题的能力和独立思考的能力。
一、微波技术基础知识的学习微波技术是现代通信领域中的关键技术之一。
在本门课程中,我们学习了微波电磁场的特性、传输线理论、微波器件的工作原理和参数、微波功率的传输与处理、微波网络分析理论等内容。
通过上课、课后作业和实验实践,我们深入了解了微波能量的传输和与环境的交互作用,进一步拓宽了自己的知识面。
同时,我们还学习了专业术语和常用的分析方法,通过实验掌握了基本的微波测量技术。
二、微波器件与系统的设计在微波技术的学习过程中,我们重点学习了微波器件的设计和系统的组成。
通过学习传输线的基本特性和参数,我们了解了微波器件中构成元件的工作原理和性能指标。
在此基础上,我们学习了常用的微波器件设计方法,包括微带线的设计、波导器件的设计等。
通过实验设计和仿真软件的使用,我们学会了对不同的电路结构进行选取和优化,使其满足指定的性能要求。
三、天线设计与应用天线是电磁波传播中的核心组成部分,也是微波技术中的重要内容。
在本门课程中,我们学习了天线的基本原理、天线设计的基础知识等内容。
通过学习天线的缩比模型设计和测量,我们对天线的辐射功率、辐射模式、增益等参数有了更深入的了解。
另外,我们还学习了主动天线和阵列天线的基本原理和应用,了解了天线的其他功能和应用领域,比如雷达系统。
四、实验与实践本学期我们还进行了多个微波技术和天线相关的实验,这些实验既加深了我们对理论知识的理解,同时也培养了我们的动手能力和团队合作精神。
实验内容包括传输线参数测量、微带线及贴片式天线的制作和测试、天线参数测量等。
通过这些实验,我不仅掌握了实验仪器的使用方法,还加深了对微波技术和天线的理论知识的理解。
同时,我也意识到实验中往往存在的误差和不确定性,加强了我的实验分析和数据处理能力。
微波技术与天线实验报告
百度文库 - 好好学习,天天向上微波技术与天线实验报告姓名:才正国学号:50班级:F0703002指导教师:龙沪强任课教师:袁斌实验一基本低功率微波波导测试系统的熟悉与正确调试一.实验目的:通过本次实验,基本熟悉低功率微波波导测试系统的基本构成以及正确调试的操作方法,学会四点平均法测波导波长,掌握晶体定标曲线的测定方法。
二.实验仪器与预习要求:1.实验主要仪器:(1)X波段信号源(YM1123)(2)1kHz选频放大器(YM3892)(3)驻波测量器(TC26)(4)可变衰减器(BD-20-2)(5)直读式频率计(PX16)(6)短路板2.实验预习要求:详细阅读实验指导书,初步了解低功率微波波导测试系统的基本构成,熟悉探针电路调谐的基本原理,了解四点平均法测波导波长的基本原理。
三.实验仪器与接线框图:四. 实验原理:1. 基本微波测量系统一个小功率的微波测量系统组成如图1-1 所示:图1-1 基本微波测量系统组成微波信号源测试微波元件,必须要有微波信号源提供测试信号。
常用微波信号源可以分为简易信号发生器、标准信号发生器、功率信号发生器和扫频信号发生器。
简易信号发生器通常泛称为“微波信号发生器”。
一般要求信号频率能在一定范围内连续可调;最大信号的功率至少能达到毫瓦级并能连续控制;输出波形一般为正弦波,并至少能用一种低频方波进行开关式幅度调制。
标准信号发生器指的是屏蔽良好,输出信号的频率、功率和调制系数可以在一定范围内调节(有时调制系数可以固定不变),能精确读数的信号源。
通常用于测量微波接收机的灵敏度、选择性等指标。
功率信号发生器的功率输出要求达到瓦级,常用于测试天线性能等。
扫频信号发生器是能产生随时间作线性变化的扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或记录仪上立即显示出所需的幅频特性曲线和相频特性曲线。
●隔离器隔离器又称单向器,是一种使微波信号单向传输的非互易二端口铁氧体器件,它允许微波信号沿一个方向(正向)以很小的衰减通过,而沿另一个方向(反向)传输的波则受到很大的衰减而不能通过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波天线与技术课程报告汇总《微波技术与天线》课程考察报告姓名:专业班级:学号:指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。
微波波段对应的频率范围为: 300MHz ~3000GHz 。
在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。
一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。
3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。
4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。
f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10无线电波宇宙射线射频目录绪论 (1)目录 (2)一、均匀传输线理论 (3)二、规则金属波导 (4)三、微波集成传输线……………………5四、微波网络基础 (5)五、微波元器件 (6)六、天线辐射与接收的基本理论 (7)七、电波传播概论 (8)八、线天线 (9)九、面天线 (10)十、微波应用系统 (11)心得体会 (12)本课程我们共学习了十章,主要学习了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础、微波元器件、天线辐射与接收理论、电波传播概论、线天线、面天线、微波应用系统。
一、 均匀传输线理论1.1 均匀传输线方程及其解共有三个参量:1)均匀传输线方程2) 传播常数γ 3) 相速υp 与波长 λ 1.2 传输线阻抗与状态参量 1. 输入阻抗由上一节可知, 对无耗均匀传输线, 线上各点电压U (z )、 电流I (z )与终端电压U l 、终端电流I l 的关系如下:2. 反射系数定义传输线上任意一点z 处的反射波电压(或电流)与入射波电压(或电流)之比为电压(或电流)反射系数,3. 输入阻抗与反射系数的关系U(z)=U+(z)+U-(z)=A 1e j βz [1+Γ(z )]I(z)=I+(z)+I-(z) = e j βz [1-Γ(z )]1. 行波状态行波状态下传输线上的电压和电流: ⎪⎭⎪⎬⎫====++z j 01z j 1e )()(e )()(ββZ A z I z I A z U z U2. 纯驻波状态纯驻波状态就是全反射状态, 也即终端反射系数|Γl|=1。
在此状态下, 由式(1- 2- 10),负载阻抗必须满足:110101=Γ=+-Z Z Z Z3. 行驻波状态当微波传输线终端接任意复数阻抗负载时, 由信号源入射的电磁波功率一部分被终端负载吸收, 另一部分则被反射, 因此传输线上既有行波又有纯驻波,⎪⎭⎪⎬⎫+=+=)sin(j )cos()()sin(j )cos()(011011z Z U z I z I z Z I z U z U ββββ构成混合波状态, 故称之为行驻波状态。
1.4 传输线的传输功率、 效率和损耗 1.5 阻抗匹配1) 分三种:负载阻抗匹配,源阻抗匹配,共轭阻抗匹配。
1.6 史密斯圆图及其应用 1.7 同轴线的特性阻抗同轴线是一种典型的双导体传输系统, 它由内、 外同轴的两导体柱构成。
二、规则金属波导 2.1导波原理1. 规则金属管内电磁波2. 传输特性1) 相移常数和截止波数: 22c 2c 2/1k k k k k -=-=β。
2) 相速υp 与波导波长λg 。
电磁波在波导中传播, 其等相位面移动速率称为相速,。
3) 波阻抗。
定义即:ttH E Z =。
2.2 矩形波导1. 矩形波导中的场2.矩形波导尺寸选择原则 2.3 圆形波导 1. 圆波导中的场与矩形波导一样, 圆波导也只能传输TE 和TM 波型。
2. 圆波导的传输特性1) 截止波长。
⎪⎭⎪⎬⎫==a k a k mn mn mn mn υμcTM cTE 2) 简并模。
在圆波导中有两种简并模, 它们是E-H 简并和极化简并。
3. 几种常用模式1) 主模TE11模2) 圆对称TM01模TM01模是圆波导的第一个高次模3) 低损耗的TE01模TE01模是圆波导的高次模式2.4 波导的激励与耦合:1. 电激励2. 磁激励3. 电流激励传输线类型 主 模 截止波长λc 单模传输条件 矩形波导 TE 10模 2a a <λ<2a ,λ>2b 圆波导TE 11模3.14R2.62R <λ<3.41R同轴线TEM模∞λ>π/2(D+d)三、微波集成传输线1.微波集成传输线的优点:体积小、重量轻、价格低廉、可靠性高、性能优越、功能的可复制性好。
2.集成微波传输系统分为四大类:(1)准TEM波传输线,主要包括微带传输线和共面波导等。
(2)非TEM 波传输线,主要包括槽线等。
(3)开放式介质波导传输线,主要包括介质波导、镜像波导等。
(4)半开放式介质波导,主要包括H形波导、G形波导等。
3.带状线:它由两块相距为b的接地板与中间宽度为w、厚度为t的矩形截面导体构成,接地板之间填充均匀介质或空气。
4.带状线和微带线传输特性参量主要有:特性阻抗Z、衰减常数a、相速v p和波导波长λg。
5.介质波导可以分为两大类:一类是开放式介质波导,主要包括圆形介质波导和介质镜像线等;另一类是半开放式介质波导,主要包括H形波导、G形波导等。
6.光纤按组成材料可分为石英玻璃光纤、多组分玻璃光线、朔料包层玻璃芯光纤和全朔料光纤。
按折射率分布形状可分为阶跃型光纤和渐变型光纤。
按传输模式可分为多模光纤和单模光纤。
四、微波网络基础4.1 等效传输线1.等效电压和等效电流2.模式等效传输线4.2 单口网络1.单口网络的传输特性令参考面T处的电压反射系数为Γl, 由均匀传输线理论可知, 等效传输线上任意点的反射系数为:2. 归一化电压和电流由于微波网络比较复杂, 因此在分析时通常采用归一化阻抗, 即将电路中1(2)1()j zz eφβ-Γ=Γ各个阻抗用特性阻抗归一, 与此同时电压和电流也要归一。
4.3 双端口网络的阻抗与转移矩阵在各种微波网络中, 双端口网络是最基本的, 任意具有两个端口的微波元件均可视之为双端口网络。
下面介绍线性无源双端口网络各端口上电压和电流之间的关系。
1. 阻抗矩阵与导纳矩阵⎭⎬⎫+=+=22212122121111I Z I Z U I Z I Z U2. 转移矩阵转移矩阵也称为[A ]矩阵,它在研究网络级联特性时特别方便。
4 散射矩阵与传输矩阵1. 散射矩阵2.传输矩阵3.散射参量与其它参量之间的相互转换4.S ]参数测量4.5 多端口网络的散射矩阵(1) 互易性质(2) 无耗性质(3) 对称性质 五、微波元器件5.1 连接匹配元件(1) 短路负载(2) 匹配负载(3) 失配负载 2. 微波连接元件微波连接元件是二端口互易元件, 主要包括: 波导接头、 衰减器、相移器、转换接头。
3. 阻抗匹配元件(1) 螺钉调配器(2) 多阶梯阻抗变换器(3) 渐变型阻抗变换器 5.2 功率分配元器件 1. 定向耦合器1) 定向耦合器的性能指标(1)耦合度(2)隔离度(3) 定向度 (4) 输入驻波比(5)工作带宽2)波导双孔定向耦合器3)双分支定向耦合器4)平行耦合微带定向耦合器2. 功率分配器将一路微波功率按一定比例分成n 路输出的功率元件称为功率分配器。
按输出功率比例不同, 可分为等功率分配器和不等功率分配器。
在结构上, 大功率往往采用同轴线而中小功率常采用微带线。
(1) 两路微带功率分配器 ① 端口“①”无反射;② 端口“②、③”输出电压相等且同相; ③ 端口“②、③”输出功率比值为任意指定值 (2) 微带环形电桥微带环形电桥是在波导环形电桥基础上发展起来的一种功率分配元件。
3. 波导分支器将微波能量从主波导中分路接出的元件称为波导分支器, 它是微波功率分配器件的一种, 常用的波导分支器有E 面T 型分支、H 面T 型分支和匹配双T 。
(1) E-T 分支(2)H-T 分支(3) 匹配双T 5. 3 微波谐振器件在低频电路中, 谐振回路是一种基本元件, 它是由电感和电容串联或并联而成, 在振荡器中作为振荡回路,用以控制振荡器的频率; 在放大器中用作谐振回路; 在带通或带阻滤波器中作为选频元件等。
5.4 微波铁氧体器件1. 隔离器1) 谐振式隔离器2) 场移式隔离器3) 隔离器的性能指标 2. 铁氧体环行器一个理想的环行器必须具备以下的条件:输入端口完全匹配, 无反射;输入端口到输出端口全通, 无损耗; 输入端口与隔离器间无传输。
于是环行器的散射参数应满足: ⎪⎭⎪⎬⎫=========010231231133221332211S S S S S S S S S六、天线辐射与接收的基本理论6.1 概论通信的目的是传递信息, 根据传递信息的途径不同, 可将通信系统大致分为两大类:有线通信,无线通信。
6.2 基本振子的辐射 1. 电基本振子电基本振子是一段长度l 远小于波长, 电流I 振幅均匀分布、 相位相同的直线电流元, 它是线天线的基本组成部分, 任意线天线均可看成是由一系列电基本振子构成的。
2. 磁基本振子的场引入这种假想的磁荷和磁流的概念, 将一部分原来由电荷和电流产生的电磁场用能够产生同样电磁场的磁荷和磁流来取代,即将“电源”换成等效“磁源”, 可以大大简化计算工作。
6.3 天线的电参数1. 天线方向图及其有关参数所谓天线方向图, 是指在离天线一定距离处, 辐射场的相对场强(归一化模值)随方向变化的曲线图, 通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。
2. 天线效率天线效率定义为天线辐射功率与输入功率之比, 记为ηA , 即1i P P P P P A +==∑∑∑η 3. 增益系数增益系数是综合衡量天线能量转换和方向特性的参数, 它是方向系数与天线效率的乘积, 记为G , 即: G =D ·ηA4. 极化和交叉极化电平极化特性是指天线在最大辐射方向上电场矢量的方向随时间变化的规律。