数学八年级上《一次函数》复习测试题(答案)
八年级数学上册一次函数专题卷(附答案)
八年级数学上册一次函数专题卷(附答案)选择题(题型注释)n是常数且满足:m+n=6, mn=8那么该直线经过(B .第一■、二、三象限D .第一、二、四象限B C D3.如图,直线y=kx+b经过点A ( - 1, - 2)和点B ( - 2, 0),直线y=2x过点A,则不等式2x< kx+b v 0的解集为()A. xv— 2 B . - 2<x< - 1 C . - 2<x<0 D4.已知一次函数y =kx+5和y =k'x+7 ,假设在()A.第一象限B .第二象限C .第三象限D .第四象限5.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是()A.甲先到达终点 B .前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米(5题图)2.如图,A B, G D为。
0的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t (s) . /APB=y(。
),则下列图象中表示y与t之间函数关系最恰当的是()评卷人得分.已知直线其中mA.第二、三、四象限C.第一、三、四象限1小时后,途中靠边停车接了半小时电—1<x< 0k>0且k <0,则这两个一次函数的交点O6.小李驾驶汽车以50千米/小时的速度匀速行驶话,然后继续匀速行驶.已知行驶路程 y (单位:千米)与行驶时间 t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为()A. 43.5B. 50C. 56D. 587 .在直角坐标系中,一直线 l 向下平移3个单位后所得直线 b 经过点A (0, 3),将直线b绕点A 顺时针旋转 60。
后所得直线经过点 B (- J 3, 0),则直线l 的函数关系式为()A. y= — 33 x B . y= - 33 x+6 C . y= - x D . y= -x+6_ _.£ 1A,# B. 5 C, 2 D, 2k111.如图,已知y =ax+b 和y =kx 的图象交于点 P,根据图象可得关于 X 、Y 的二元一次12 .如图,直线y i =x+b 与y 2=kx - 1相交于点P,点P 的横坐标为-1,则关于x 的不等式 x+b>kx - 1 的解集 .13 .函数y= " -3中,自变量 x 的取值范围是 .14 .如图,在直角坐标系中,点 A, B 分别在x 轴,y 轴上,点A 的坐标为(-1,0),/ ABO=30 ,线段PQ 的端点P 从点O 出发,沿^ OBA 的边按OH B-A-。
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
八年级上册数学一次函数测试题及答案
八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
八年级上册数学一次函数测试题及答案
1 +0一次函数 测试题姓名: 成绩:一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。
2、若函数y= -2x m+2是正比例函数,则m 的值是 。
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。
4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。
5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。
6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。
7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b 的大小关系是____ 。
8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。
9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x 中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==- (D )1,12k b == 14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y15、已知一次函数y=kx+b 的图象如图所示,则k ,b的符号是( ) (A) k>0,b>0 (B) k>0,b<0。
(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(含答案解析)
一、选择题1.A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF交于点M,下列说法:①y乙=-2x+12;②线段OP 对应的y甲与x的函数关系式为y甲=18x;③两人相遇地点与A地的距离是9km;④经过3 8小时或58小时时,甲乙两个相距3km.其中正确的个数是()A.1个B.2个C.3个D.4个2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个3.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A.B.C.D.4.如图①,正方形ABCD中,点P以恒定的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,△APQ的面积为()A.6cm2B.4cm2C.262cm D.42cm25.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y (升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .259.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④10.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-11.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .12.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.15.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.16.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为____________.17.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 18.将直线2y x =向下平移1个单位,得到直线___________.19.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______. 20.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”)三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图1,O 的直径4cm AB =,C 为线段AB 上一动点,过点C 作AB 的垂线交O 于点D ,E ,连接AD ,AE .设AC 的长为cm x ,ADE 的面积为2cm y .小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是小华的探究过程,请帮助小华完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x00.51 1.52 2.53 3.54 /cm2y00.7 1.7 2.9a 4.8 5.2 4.60 /cma(2)如图2,建立平面直角坐标系xOy,描出表中各对应点,画出该函数的大致图像;(3)结合画出的函数图像,直接写出当ADE的面积为24cm时AC的长约为多少(结果保留一位小数).23.已知一次函数y=kx+b.当x=-3时,y=-8;当x=0时,y=-4.(1)求该一次函数的表达式;(2)求该函数的图像与坐标轴围成的图形的面积.24.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为 km/h;乙车速度为 km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图像;②从两车同时从C地出发到两车同时到达B地的,整个过程中,两车之间的距离何时为80km?25.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.26.已知某大酒店有三人间和双人间两种客房,凡团体入住,三人间每人每天100元、双人间每人每天150元.现有一个50人的旅游团到该酒店住宿.(1)如果每个客房正好住满,并且一天一共花去住宿费6300元.求入住的三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】①根据函数图像中的数据可以求得y 乙与x 的函数关系式;②根据函数图像中的数据可以求得线段OP 对应的y 甲与x 的函数关系式,进而可求得两人相遇时距离A地的距离;③根据①和②中的函数关系式,可求得两人相距3km 时所用的时间. 【详解】(1)设y 乙与x 的函数关系式为:y 乙=ax +b , 把(0,12)和(2,0)代入得:1220b a b =⎧⎨+=⎩解得:612a b =-⎧⎨=⎩,可得y 乙=-6x +12,故①错误;(2)设线段OP 对应的y 甲与x 的函数关系式为:y kx =甲, 把x =0.5代入y =-6x +12中得:y =9, ∴M (0.5,9), ∴9=0.5k , 解得:k =18, ∴18y x =甲,∴当x =0.5时,y =9,即两人相遇时距离A地的距离为9,故②③正确; (3)令|18x -(-6x +12)|=3,解得x =38或58,故④正确;故选:C . 【点睛】本题考查一次函数的应用,解题本题的关键是明确题意,利用一次函数的性质解答.2.C解析:C 【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案. 【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确; 设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =, 即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确;综上可知正确的有①②③共三个, 故选:C . 【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.D解析:D 【分析】由图2可得,行车速度在途中迅速减小并稳定了100多米然后又迅速提升,说明应该是进行一次性的拐弯,再对4个选项进行排除选择. 【详解】解:.A 行车路线为直线,则速度一直不变,排除; B .进入辅路后向右转弯,速度减小应该不大,排除;C .向前行驶然后拐了两次弯再掉头行驶,中间速度应该有两次变大变小的波动呢,排除;D .向前行驶拐了个较大的弯再进入直路行驶,满足图2的速度变化情况. 故选D . 【点睛】本题考查了函数图象的应用,正确理解函数图象的自变量和函数关系并对照实际问题进行分析是解题关键.4.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故BD=42;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.5.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 10.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.11.D解析:D【分析】逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【详解】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符;故选:D【点睛】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b +⎧⎨=⎩解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩∴P 点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.12【分析】分A 在B 左边时和A 在B 右边时两种情况分别列出不等式组解之再合并即可【详解】解:令y=2x-a=0则2x=ax=∴A (0)令y=3x-6=0则3x=bx=∴B (0)∵AB 线段上只有3个点横解析:12【分析】分A 在B 左边时和A 在B 右边时,两种情况分别列出不等式组,解之,再合并即可.【详解】解:令y=2x-a=0,则2x=a ,x=2a , ∴A (2a ,0), 令y=3x-6=0,则3x=b ,x=3b , ∴B (3b ,0), ∵AB 线段上只有3个点横坐标都是整数,为4,5,6,∴A 在B 左边时, 则34273a b b ⎧<≤⎪⎪⎨⎪≤<⎪⎩,解得:681821a b <≤⎧⎨≤<⎩, ∵a ,b 为整数,∴a=7或8,b=18或19或20,∴(a ,b )有2×3=6种可能;A 在B 右边时, 则72343a b b ⎧≤<⎪⎪⎨⎪<≤⎪⎩,解得:1214912a b ≤<⎧⎨<≤⎩, ∵a ,b 为整数,∴a=12或13,b=10或11或12,∴(a ,b )有2×3=6种可能,综上:共有12种可能,故答案为:12.【点睛】本题考查了一次函数的性质,解题的关键是分类讨论,根据坐标为整数得到不等式组. 15.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.16.【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差据此即可求解【详解】解:买签字笔的支数x (支)花的钱数是15x 元则剩余的钱数是(15-15x )元则签字笔后所剩钱数(元)与买签字笔的支数(解析:15 1.5y x =-【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差,据此即可求解.【详解】解:买签字笔的支数x (支)花的钱数是1.5x 元,则剩余的钱数是(15-1.5x )元,则签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为15 1.5y x =-. 故答案为:15 1.5y x =-.【点睛】此题考查函数关系式,根据题意,找到所求量的等量关系是解决问题的关键.17.y=2x-1【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1考点:一次函数的图象与几何变换 解析:y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1.考点:一次函数的图象与几何变换18.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键. 19.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.20.>【分析】根据k =3>0一次函数的函数值y 随x 的增大而增大解答【详解】解:∵k =3>0∴函数值y 随x 的增大而增大∵﹣1>﹣2∴y1>y2故答案为:>【点睛】此题考查一次函数的性质:当k>0时函数值y解析:>【分析】根据k =3>0,一次函数的函数值y 随x 的增大而增大解答.【详解】解:∵k =3>0,∴函数值y 随x 的增大而增大,∵﹣1>﹣2,∴y 1>y 2.故答案为:>.【点睛】此题考查一次函数的性质:当k>0时,函数值y 随x 的增大而增大;当k<0时,函数值y 随x 的增大而减小.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)4;(2)见解析;(3)2.0cm 或3.7cm【分析】(1)当x =2时,点C 与点O 重合,此时DE 是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y =4时x 的值即可;【详解】解:(1)当x =2时,点C 与点O 重合,此时DE 是直径,y=12×4×2=4.即a 的值是4,故答案是:4;(2)函数图象如图所示.(3)观察图象可知:当△ADE 的面积为4cm 2时,AC 的长度约为2.0cm 或3.7cm .【点睛】本题考查圆的性质,三角形的面积,函数图象等知识,解题的关键是理解题意,利用庙殿发画出函数图像,难度一般.23.(1)443y x =-;(2)6 【分析】(1)用待定系数法求解析式即可;(2)求出函数图象与坐标轴的交点,根据交点坐标求面积即可.【详解】解:(1)由当x =-3时,y =-8;当x =0时,y =-4可得, -8=-34k b b +⎧⎨-=⎩解得,4=34k b ⎧⎪⎨⎪=-⎩,∴该一次函数的表达式为443y x =-; (2)如图,设函数图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =3;即A 点坐标为(3,0)当x =0时,y =-4;即B 点坐标为(0,-4)∴S △AOB =12×3×4=6.【点睛】本题考查了待定系数法求一次函数解析式和求一次函数图象与坐标轴交点坐标及三角形面积公式,解题关键是熟练运用待定系数法求解析式和准确扎实的计算.24.(1)40,80;(2)①-40x 160S =+, (1.5x 4)≤≤,图见解析;②12t 1t 2.==,【分析】(1)根据乙车在A 地用1h 配货可知0.5到1.5小时的距离变化为甲车的变化,利用速度=路程÷时间计算即可;再根据前0.5小时甲乙两车相背而行列式求解乙车的速度;(2)①设从乙车掉头到乙车到达B 地的过程中,两车所用的时间为t 小时,然后根据追及问题求出相遇的时间,然后列出S 关于x 的函数解析式,再补全函数图象即可; ②分两种情况,当乙车没有调头,,两车之间的距离为80km 时,当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,分别求出t 的值,即可.【详解】解:(1)∵乙在A 地用1h 配货,∴0.5小时~1.5小时为甲独自行驶,∴甲的速度=(100-60)÷(1.5-0.5)=40(km/h ),乙的速度为:60÷0.5-40=80(km/h ),故答案是:40,80;(2)①设从乙车调头到乙车到达B 地的过程中,两车所用的时间为t 小时,由题意得,80t-40t =100,解得:t =2.5,1.5+2.5=4,此过程中,S =40(x-1.5)+100-80(x-1.5)=-40x +160(1.5≤x≤4),即:-40x 160S =+, 1.5x 4≤≤(), 补全图像如下:②当乙车没有调头,,两车之间的距离为80km 时,t=0.5+(80-60)÷40=1;当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,-40t +160=80,解得:t=2.综上所述:t 1=或t 2=.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题,追及问题的等量关系,读懂题目信息并找出等量关系列出方程是解题的关键.25.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|, ∵12•|t ﹣2|×3=2,解得t =103或t =23,。
八年级(初二)数学(一次函数)试卷试题附答案解析
一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
(压轴题)初中数学八年级数学上册第四单元《一次函数》测试(有答案解析)(1)
一、选择题1.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .2.一次函数y=2x-1的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D .5.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .6.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .9.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④11.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-212.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.已知1(2)23k y k xk -=-+-是关于x 的一次函数,则这个函数的解析式是_______.14.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________15.声音在空气中传播的速度(/)y m s (简称声速)与气温x (℃)的关系如下表所示: 气温x /℃ 0 5 10 15 20 … 声速/(/)y m s331334337340343…照此规律可以发现,当气温x 为__________℃时,声速y 达到352/m s .16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____. 19.正比例函数y =kx 的图象经过点(2,3),则k =______.20.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图,公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米.(1)设出发x小时后,汽车离A站y千米,求y与x之间的函数关系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站.汽车若按原速能否按时到达?请说明理由.23.如图,平面直角坐标系中,直线3944y x=-+与直线3922y x=+交于点B,与x轴交于点A.(1)求点B的坐标.(2)若点C在x轴上,且ABC是以AB为腰的等腰三角形,求点C的坐标.24.如图1,在平面直角坐标系xOy中,已知点A(0,3),B(2,3),OC=a.将梯形ABCO沿直线y=x折叠,点A落在线段OC上,对应点为E.(1)求点E的坐标;(2)①若BC//AE,求a的值,探究线段BC与AE的数量关系,说明理由.②如图2,若梯形ABCO的面积为2a,且直线y=mx将此梯形面积分为1∶2的两部分,求直线y=mx的解析式.25.某童装店以每件25元的价格购进某种品牌的童装若干件,销售了部分童装后,剩下的童装每件降价10元销售,全部售完.销售总额y(元)与销售量x(件)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前该童装的销售单价是元/件;(2)求降价后销售总额y(元)与销售量x(件)之间的函数关系式,并写出自变量的取值范围;(3)求该童装店这次销售童装盈利多少元?26.某技工培训中心有钳工20名、车工30名.现将这50名技工派往,A B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800y x x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.∴一次函数y =x ﹣k 的图象经过第一、三、四象限. 故选:B . 【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.2.B解析:B 【分析】根据一次函数的性质进行判断即可. 【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.3.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.4.D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.6.C解析:C【分析】根据选项依次求解,由图可知,第4min时,对应的容器内的水量为20L,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,可确定两段函数的关系式,即可求出每min 进水量为5L ,第8min 时容器内的水量为25L ,最后根据图像每分钟出水的量为3.75L . 【详解】A 项,由图可知,第4min 时,对应的容器内的水量y 为20L ,A 不符合题意;B 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx (k ≠0),通过图像过(4,20),解得k =5,所以每min 进水量为5L ,B 不符合题意;C 项,由B 项可知:每min 进水量为5L ,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L ,C 符合题意;D 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx+b (k ≠0,k 、b 为常数),通过图像过(4,20),(12,30),解得k =54,b =15,所以第8min 时,容器内的水量为25L ,D 不符合题意; 故选C . 【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题.7.B解析:B 【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③ 【详解】解:∵图象过第一,第二,第三象限, ∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大, ∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数, ∴这部分图像的纵坐标y>b ,③正确, 故①③正确 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.8.C解析:C 【解析】 试题根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.9.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II卷(非选择题)请点击修改第II卷的文字说明10.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160>150,②不正确;当乙在B地停留1h时,甲前进80km,甲乙相距=160-80=80km,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键,11.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键. 12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数,∴1120k k ⎧-=⎨-≠⎩,解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.14.(-20)【分析】作点B 关于x 轴的对称点D 连接AD 则AD 与x 轴交点即为点P 位置利用待定系数法求出AD 解析式再求出点P 坐标即可【详解】解:作点B 关于x 轴的对称点D 则点D 坐标为(0-4)连接AD 则AD 与解析:(-2,0)【分析】作点B 关于x 轴的对称点D ,连接AD ,则AD 与x 轴交点即为点P 位置,利用待定系数法求出AD 解析式,再求出点P 坐标即可.【详解】解:作点B 关于x 轴的对称点D ,则点D 坐标为(0,-4),连接AD ,则AD 与x 轴交点即为点P 位置.设直线AD 解析式为y=kx+b (k≠0),∵点A 、D 的坐标分别为(-3,2),(0,-4),∴324k b b -+=⎧⎨=-⎩ 解得24k b =-⎧⎨=-⎩ ∴直线AD 解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P 的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.15.35【分析】由题意观察图表数据可得气温每升高5℃音速增加3然后写出x 的表达式把音速y=352代入函数解析式求得相应的x 的值即可【详解】解:设函数解析式该函数图象经过点解得该解析式为:y=x+331当解析:35【分析】由题意观察图表数据可得气温每升高5℃,音速增加3,然后写出x 的表达式,把音速y=352代入函数解析式,求得相应的x 的值即可.【详解】解:设函数解析式y kx b =+该函数图象经过点()0331,,()5334, 3315334b k b =⎧∴⎨+=⎩解得35331k b ⎧=⎪⎨⎪=⎩ ∴该解析式为:y=35x+331, 当y=352时,352=35x+331, 解得x=35.即当声音在空气中的传播速度为352米/秒,气温是35℃.故答案为:35.【点睛】本题考查一次函数的应用.读懂题目信息答案,观察并发现气温每升高5℃,音速增加3是解题的关键. 16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得:21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.(0﹣3)【分析】代入x=0求出与之对应的y 值进而可得出点A 的坐标【详解】解:当x =0时y =x ﹣3=﹣3∴点A 的坐标为(0﹣3)故答案为:(0﹣3)【点睛】本题考查一次函数图象上点的坐标特征牢记直线解析:(0,﹣3)【分析】代入x=0求出与之对应的y 值,进而可得出点A 的坐标.【详解】解:当x =0时,y =x ﹣3=﹣3,∴点A 的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题关键.19.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx 中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:32【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx 中,得2k=3,解得k=32, 故答案为:32. 【点睛】 此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数. 20.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩,一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)y=40x+10;(2)汽车若按原速不能按时到达【分析】(1)先求出汽车的速度,再根据路程=速度×时间求得关系式即可;(2)由(1)中函数关系式求出汽车到达C 站的时间即可得出结论.【详解】解:(1)由题意知汽车的速度为2010401560-=(千米∕时),∴y 与x 之间的函数关系式为y=40x+10;(2)当y=150+30=180时,由180=40x+10得:x=4.25,∵12﹣8=4(小时),且4<4.25,∴汽车若按原速不能按时到达.【点睛】本题考查一次函数的应用、解一元一次方程,掌握行程问题中的等量关系,建立函数模型是解答的关键.23.(1)(1,3)B -;(2)123(5,0),(2,0),(8,0)C C C --【分析】(1)联立两直线解析式构建二元一次方程组求解即可;(2)由题意易得点A 的坐标,然后分AB=AC 和AB=BC 两种情况结合等腰三角形的性质可进行分类求解.【详解】解:(1)由题意可联立解析式得:39443922y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:13x y =-⎧⎨=⎩, ∴(1,3)B -;(2)由直线3944y x =-+可令y=0得:(3,0)A , ①若A 为顶角顶点,如图所示:由(1)及两点距离公式可得, ∴22435AC AB ==+=,∴22OC =,38OC =,②若B 为顶角顶点,∴5BC BA ==,过点B 作BD ⊥x 轴于点D ,则有14C D AD ==,∴15OC =,∴综上所述:当△ABC 以AB 为腰的等腰三角形,则有123(5,0),(2,0),(8,0)C C C --.【点睛】本题主要考查等腰三角形的性质、勾股定理及一次函数的性质,熟练掌握等腰三角形的性质、勾股定理及一次函数的性质是解题的关键.24.(1)E (3,0);(2)①a=5,BC=AE ,理由见解析;②619y x =或1211y x =. 【分析】(1)由折叠的性质可知OE=OA ,由OA 的长即可确定出点E 的坐标;(2)①由平行四边形的性质可知EC=AB ,BC=AE ,结合OE 的长即可求得a 的值; ②根据梯形的面积公式以及梯形的面积可求得a 的值,从而可求得梯形的面积,由直线y =mx 将梯形面积分为1∶2两部分,可得分成的三角形面积有两种情况,然后根据三角形的面积公式可求直线y=mx 与直线BC 交点的纵坐标,利用待定系数法可得直线BC 的函数表达式,将交点的纵坐标分别代入即可求得直线y =mx 的解析式【详解】解(1)∵点A 坐标为(0,3),∴OA=3∵直线y=x 是第一象限的角平分线,点A 落在x 轴上,∴OE=OA=3,∴E (3,0)(2)①∵//BC AE , //AB CE∴四边形ABCE 是平行四边形∴CE =AB =2∴OC =OE +CE =5∴a =5∵四边形ABCE 是平行四边形∴BC=AE②如图2,由梯形面积可知,3(2)22a a += 解得:a=6,梯形面积为12∴由B(2,3),C(6,0),可得直线BC 的解析式为3942=-+y x 若直线y=m 1x 分△OCG 1的面积为梯形面积的13时,直线y=m 1x 与BC 交于点G 1,过G 1作G 1 H 1垂直于x 轴于点H 1∴△OCG 1的面积为4,OC=6,∴G 1 H 1=43 可得点G 1384(,)93 ∴619y x = 若直线y=m 2x 分△OCG 2的面积为梯形面积的23时,直线y=m 2x 与BC 的交于点G 2,过G 2作G 2 H 2垂直于x 轴于点H 2∴△OCG 2的面积为8,OC=6,∴G 2 H 2=83 可得点G 2228(,)93∴1211y x =由上可得619y x =或1211y x = 【点睛】 本题主要考查了一次函数解析式的求法,熟练掌握待定系数法,应用分类讨论思想是解决本题的关键25.(1)45 ;(2)35400y x =+(4055)x< ;(3)该童装店这次销售童装盈利950元.【分析】(1)根据函数图象中的数据,可以计算出降价前该童装的销售单价=降价前的销售总额÷降价前的销售量;(2)设降价后销售金额y (元)与销售量x (千克)之间的函数解析式为y kx b =+,由图像可知过点(40,1800),(55,2325),两点代入求出解析式,并写出自变量的取值范围; (3)根据函数图象中的数据和题目中的数据,可以计算出该童装店这次销售童装盈利=销售总额-进价单价×销售量.【详解】(1)由图可得:降价前该童装的销售单价是:1800÷40=45元/件,故答案为:45(2)设降价后销售金额y (元)与销售量x (件)之间的函数关系式为:y kx b =+, 由题意知,该函数过点(40,1800),(55,2325) 则:180040232555k b k b =+⎧⎨=+⎩, 解之得:35400k b =⎧⎨=⎩∴35400y x =+(4055)x< (3)该童装店这次销售童装盈利了: 2325-55×25=950(元)∴ 该童装店这次销售童装盈利950元.【点睛】本题考查了一次函数的应用,解答本题明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)()400148000020y x x =+≤≤;(2)17名,154800元【分析】(1)根据50名技工的月工资总额y (元)=派往A 地x 名钳工月工资+派往B 地(20)x -名钳工月工资+派往B 地30名车工月工资,即可得出月工资总额y (元)与x 之间的函数表达式,并写出x 的取值范围;(2)根据月工资总额不得超过155000元先求出x 的取值范围,即确定y 的最大值,使他们的工资总额最高.【详解】解:(1)由题意可得,36003200(20)280030400148000y x x x =+-+⨯=+,即这50名技工的月工资总额y (元)与x 之间的函数表达式是()400148000020y x x =+≤≤;(2)∵月工资总额不得超过155000元.∴400148000155000x +≤ ∴352x ≤ 又∵k =400>0,∴∴当17x =时,y 取得最大值154800元,即当派往A 地17名钳工时,这些技工的月工资总额最大,?月工资总额最大为154800元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.。
(必考题)初中数学八年级数学上册第四单元《一次函数》测试(答案解析)(3)
一、选择题1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是( )A .小明中途休息用了20分钟B .小明在上述过程中所走路程为7200米C .小明休息前爬山的速度为每分钟60米D .小明休息前后爬山的平均速度相等2.如图,一次函数y=kx+b 图象与x 轴的交点坐标是(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx+b=0的解为x=2.其中说法正确的是( )A .①和②B .①和③C .②和③D .①②③都正确 3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 4.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 5.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 6.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D . 7.函数1y x =-x 的取值范围是( ) A .1x >B .1≥xC .1x ≥-D .1x ≠ 8.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 9.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A.B.C.D.10.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是()A.B.C.D.11.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,812.已知点A(1,1y)和点B(a,2y)在y=-2x+b的图象上且1y>2y,则a的值可能是()A.2 B.0 C.-1 D.-2二、填空题13.小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.14.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________17.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 18.正比例函数y =kx 的图象经过点(2,3),则k =______.19.2x +有意义,则x 的取值范围为______.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图,,A B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以36/dm min 的流量从水箱B 中抽水注入水箱A 中,直至水箱A 注满水为止.设注水()t min ,水箱A 的水位高度为()yA dm ,水箱B 中的水位高度为()yB dm .根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)注水t 分钟时,A 水箱中水的体积为 3dm(2)分别求出yA yB 、与t 之间的函数表达式;(3)当注水2分钟时,求出此时两水箱中水位的高度差.(4)当水箱A 与水箱B 中的水的体积相等时,求出此时两水箱中水位的高度差. 22.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.23.如图,平面直角坐标系中,A (0,a ),B (b ,0),OC =OA ,且a ,b 满足|a ﹣8|+6b +=0(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当S △ABM :S △ACM =3:7时,求此时P 点的坐标.24.已知一次函数y =kx +b 的图像经过点(1,﹣4),且与正比例函数y =0.5x 的图像交于点(4,a).(1)求a、k、b的值;(2)画出函数y=kx+b与y=0.5x的图像;(3)求两函数图像与y轴围成的三角形的面积.25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,货车与甲地的距离是________千米;(2)在轿车行进过程中,轿车行驶多少时间两车相遇?(3)在轿车行进过程中,轿车行驶多少时间,两车相距15千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【详解】A 、小明中途休息的时间是:60-40=20分钟,故本选项正确;B 、小明在上述过程中所走路程为4800米,故本选项错误;C 、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确; D 、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B .【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 2.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.3.D解析:D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.4.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5.D解析:D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.6.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.7.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.8.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.9.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=1×4×(6-x)=-2x+12(0<x<6),2∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.10.A解析:A【分析】从下滑过程中速度与时间变化情况来看,速度随时间的增大而增大,不会保持不变,更不会减少,从而可得出结果.【详解】解:雪撬手从斜坡顶部滑下来,速度越来越快即速度随时间的增大而增大.符合条件的只有A .故选:A .【点睛】本题考查函数图象的判断,根据速度随时间的增大而增大确定函数图象是解题的关键. 11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.5【分析】根据图象可知:小明从家骑车上学平路路程是1千米用3分钟;上坡的路程是1千米用6分钟则上坡速度是千米/分钟;下坡路长是2千米用3分钟因而速度是千米/分钟由此即可求出答案【详解】解:根据图象可 解析:5【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是16千米/分钟;下坡路长是2千米,用3分钟,因而速度是23千米/分钟,由此即可求出答案. 【详解】解:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟, 则上坡速度是16千米/分钟; 下坡路长是2千米,用3分钟, 则速度是23千米/分钟, 他从学校回到家需要的时间为:2÷16+1÷23+3=16.5(分钟). 故答案为:16.5.【点睛】 此题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(-20)【分析】作点B关于x轴的对称点D连接AD则AD与x轴交点即为点P位置利用待定系数法求出AD解析式再求出点P坐标即可【详解】解:作点B 关于x轴的对称点D则点D坐标为(0-4)连接AD则AD与解析:(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴324k bb-+=⎧⎨=-⎩解得24 kb=-⎧⎨=-⎩∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.17.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C(7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,解S=12|t﹣3|×2﹣12|t﹣3|×1=3,得t=9或﹣3,∵当S=2时,得t=7或﹣1,∴若S的最小值为2,最大值为3,点C的横坐标t的取值范围为7≤t≤9或﹣3≤t≤﹣1;故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.18.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:3 2【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx中,得2k=3,解得k=32,故答案为:3 2 .【点睛】此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数.19.x>-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x-3≠0再解即可【详解】由题意得:x+2≥0且x-3≠0解得:x>-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)6t ;(2)365yB t =-+;yA t =;(3)2.8dm ;(4)2dm ; 【分析】(1)根据题目中B→A 的速度求解即可;(2)根据A 的体积求出yA ,再根据长方体体积计算即可;(3)分别求出yA ,yB ,计算即可;(4)根据题意求出yB ,求出t ,即可得解;【详解】(1)∵注水t 分钟,水从B→A 以36/dm min , ∴()36A V t dm =; 故答案为6t ; (2)∵326A V yA t =⨯⨯=, ∴yA t =,又∵()5266yB t ⨯⨯-=,()1066yB t -=,365yB t =-+;(3)当2t =时,()2yA t dm ==,()33626 4.855yB t dm =-+=-⨯+=, ∴高度差()4.82 2.8dm =-=; (4)∵A 、B 水体积相等,∴B 箱中水抽走一半, ∴1525262yB ⨯⨯=⨯⨯⨯, ∴()3yB dm =,当3yB =时,3635t -+=, 5t =,当5t =时,()5yA t dm ==,∴高度差()532dm =-=.【点睛】 本题主要考查了一次函数的实际应用,准确计算是解题的关键.22.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 23.(1)483y x =+;(2)6-t 或t ﹣6;(3)P (﹣1.8,0)【分析】(1)根据非负数的性质可得a 和b 的值,确定点A 和B 的坐标,利用待定系数法即可得出结论;(2)分两种情况:判断出△AOP ≌△CON ,即可得出结论;(3)先判断出BH :CM =3:7,进而判断出S △ABP :S △ACP =3:7,得出BP :CP =3:7,即可得出结论.【详解】解:(1)∵860a b -++=,∴80a -=,60b +=,∴a =8,b =6,∴A (0,8),B (﹣6,0),设直线AB 的表达式为:y kx m =+,则860m k m =⎧⎨-+=⎩,解得:438k m ⎧=⎪⎨⎪=⎩, ∴直线AB 的表达式为:483y x =+; (2)由(1)知,A (0,8),B (﹣6,0),∴OB =6,OA =8,∵OC =OA ,∴OC =8,∴C (8,0),①当点P 在x 轴负半轴时,即0≤t≤6时,如图1,由运动知,BP =t ,∴OP =6﹣t ,∵CM ⊥AP ,∴∠CMA =90°=∠AOP =∠AOC ,∵∠ANM =∠CNO ,∴∠OAP =∠OCN ,∵OA =OC ,∴△AOP ≌△CON (ASA ),∴ON =OP =6﹣t ;②当点P 在x 轴正半轴时,即6<t≤14,如图2,由运动知,BP =t ,∴OP =t ﹣6,同①的方法得,△AOP ≌△CON (ASA ),∴ON =OP =t ﹣6;(3)如图3,过点B 作BH ⊥AP 于H ,则S △ABM =12AM•BH ,S △ACM =12AM•CM , ∵S △ABM :S △ACM =3:7, ∴12AM•BH :12AM•CM =3:7, ∴37BH CM , ∵S △ABP =12AP•BH ,S △ACP =12A P•CM , ∴S △ABP :S △ACP =3:7,∵S △ABP =12BP•OA ,S △ACP =12CP•OA , ∴BP :CP =3:7,∴BP :BC =3:10,∵B (﹣6,0),C (8,0),∴BC =14,∴BP =4.2,∴OP =6﹣4.2=1.8,∴P (﹣1.8,0).【点睛】本题考查一次函数与三角形的综合动态问题,准确求取解析式,并根据题意适当分类讨论是解题关键.24.(1)a =2,k =2,b =-6;(2)答案见解析;(3)12.【分析】(1)直接把(4,a )代入y=0.5x 可求出a ,从而得到a 的值;把两点坐标代入y=kx+b 得到关于k 、b 的方程组,然后解方程组即可;(2)利用描点、连线,即可画出函数的图像;(3)先确定一次函数与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)把(4,a )代入y=0.5x 得a=2;把(1,-4)、(4,2)代入y=kx+b 得442k b k b +=-⎧⎨+=⎩, 解得:26k b =⎧⎨=-⎩; (2)函数图像如图所示:(3)一次函数解析式为y=2x-6,当x=0时,y=6-,,则一次函数与y 轴的交点坐标为(0,-6),所以这两个函数图象与y 轴所围成的三角形面积=164122⨯⨯=. 【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.25.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 26.(1)270;(2)y =110x ﹣195;(3)2.4小时;(3)轿车行驶2.1小时或2.7小时,两车相距15千米.【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD 对应的函数表达式,OA 和CD 交点横坐标即为所求;(3)根据题意和函数图象中的数据,可以计算出在轿车行进过程,轿车行驶多少时间,两车相距15千米.【详解】解:(1)(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),故答案为:270;(2)设线段CD对应的函数表达式是y=kx+b.∵点C(2.5,80),点D(4.5,300),∴2.580 4.5300k bk b+=⎧⎨+=⎩,解得110195 kb=⎧⎨=-⎩,即线段CD对应的函数表达式是y=110x﹣195,由图象可得:线段OA对应的函数解析式为y=60x,则60x=110x﹣195,解得:x=3.9,3.9﹣1.5=2.4答:轿车行驶2.4小时两车相遇;(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70.∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得:线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得:x1=3.6,x2=4.2.∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。
北师大版八年级上册数学第四章 一次函数含答案(综合知识)
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≠2B.x≥2C.x≤2D.全体实数2、成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B.C. D.3、下列各式中,自变量x的取值范围是x≥2的是( )A.y=x-2B.y=C.y=·D.y=x 2-44、下列函数的图象不经过第一象限,且y随x的增大而减小的是( )A. B. C. D.5、同一坐标系中有四条直线::,:,:,:,其中与轴交于点的直线是()A.直线B.直线C.直线D.直线6、某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s (米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B. C.D.7、如图,反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为()A.大于4吨B.等于5吨C.小于5吨D.大于5吨8、已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的()A. B. C.D.9、若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3B.0<k≤3C.0≤k<3D.0<k<310、下列各图中,是函数图象的是().A. B. C. D.11、对于0≤x≤100,用[x]表示不超过x的最大整数,则[x]+[ x]的不同取值的个数为( )A.267B.266C.234D.23312、一次函数y=-2x+5的图象性质错误的是().A.y随x的增大而减小B.直线经过第一、二、四象限C.直线从左到右是下降的D.直线与x轴交点坐标是(0,5)13、如图,已知点A 的坐标为(-1,0 ),点B在直线y=x上运动,当线段AB 最短时,点B的坐标为()A.(0,0)B.(, - )C.(-,-)D.(-,-)14、若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)15、某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量(x)的函数关系如图所示,则降价后每件商品的销售价格为()A.5元B.10元C.12.5元D.15元二、填空题(共10题,共计30分)16、若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.17、如图所示的是春季某地一天气温随时间变化的图象,根据图象判断,在这天中,最高温度与最低温度的差是________ ℃.18、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1, y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x=h时,两车相遇;③当x=时,两车相距60km;④图2中C点坐标为(3,180);⑤当x=h或h时,两车相距200km.其中正确的有________(请写出所有正确判断的序号)19、如图,A(4,3),B(2,1),在x轴上取两点P、Q,使PA+PB值最小,|QA-QB|值最大,则PQ=________.20、表示变量之间关系的常用方法有________ ,________ ,________ .21、某函数满足当自变量x=-1时,函数的值y=2,且函数y的值始终随自变量x的增大而减小,写出一个满足条件的函数表达式________.22、若一次函数y=(m﹣3)x+1中,y值随x值的增大而减小,则m的取值需满足________.23、已知正比例函数的图像经过点M( )、、,如果,那么________ .(填“>”、“=”、“<”)24、写出一个正比例函数,使其图象经过第二、四象限:________.25、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分 1 2 3 4 5 …电话费/元 0.36 0.72 1.08 1.44 1.8 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?28、如图,已知一次函数的图象与轴,轴分别交于A,B两点,点在该函数的图象上,连接OC.求点A,B的坐标和的面积.29、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M 点坐标为(2,0).(1)A点所表示的实际意义是;=;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?30、如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)求m的值。
八年级数学-一次函数练习题(含解析)
八年级数学-一次函数练习题(含解析)一、单选题1.下列的点在函数y =13x -2上的是( ) A .(0,2) B .(3,-2) C .(-3,3) D .(6,0)2.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-93.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对4.下列不是一次函数关系的是( )A .矩形一条边的长固定,面积与另一条边的长的关系B .矩形一条边的长固定,周长与另一条边的长的关系C .圆的周长与直径的关系D .圆的面积与直径的关系5.已知函数()15my m x m =-+是一次函数,则m 的值为( ) A .1 B .1- C .0或1- D .1或1-6.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 7.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .38.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >9.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <010.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( )A .2种B .3种C .4种D .5种二、填空题 11.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________. 12.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=____.13.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.14.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为________cm .15.若直线y mx n =-+经过第一、二、三象限,则直线y nx m =-+不经过第________象限.三、解答题16.如图,正比例函数的图像经过点()1,2-,求此函数的解析式.17.已知y 与23x -成正比例,且当4x =时,10y =,求y 与x 的函数解析式.18.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.19.已知一次函数的图象经过A(−2,−3),A(1,3)两点. (1)求这个一次函数的表达式;(2)试判断点A(−1,1)是否在这个一次函数的图象上.20.如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足时,y1>y2.21.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.参考答案1.D【解析】A 选项:当x =0时,102223y =⨯-=-≠. 因此,点(0, 2)不在该函数的图象上. 故A 选项不符合题意.B 选项:当x =3时,132123y =⨯-=-≠-. 因此,点(3, -2)不在该函数的图象上. 故B 选项不符合题意.C 选项:当x =-3时,()132333y =⨯--=-≠. 因此,点(-3, 3)不在该函数的图象上. 故C 选项不符合题意.D 选项:当x =6时,16203y =⨯-=. 因此,点(6, 0)在该函数的图象上. 故D 选项符合题意.故本题应选D.2.C【解析】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.3.A【解析】解:由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.故选:A .4.D【解析】A 项,矩形的面积=一条边长×另一条边长,当矩形一条边的长固定,面积与另一条边的长的关系是一次函数关系,故本选项不符合题意;B 项,矩形的周长=2×一条边长+2×另一条边长,当矩形一条边的长固定,周长与另一条边的长的关系是一次函数关系,故本选项不符合题意;C 项,圆的周长=π×直径,圆的周长与直径的关系是一次函数关系,故本选项不符合题意;D 项,圆的面积=4π×直径2,圆的面积与直径的关系不是一次函数关系,故本选项符合题意.故选D .5.B【解析】 由题意可知:110m m =-≠⎧⎪⎨⎪⎩,解得:m=−1故选:B . 6.D【解析】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =, Q 两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-. 故选:D .7.A【解析】把(0,0)代入y=(k+2)x+k 2-4得k 2-4=0,解得k=±2,而k+2≠0,所以k=2.故选A .8.B【解析】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .9.B【解析】∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.10.C【解析】①将(0,−2)代入解析式得,左边=−2,右边=−2,故图象过(0,−2)点,正确;②当y=0时,y=−x−2中,x=−2,故图象过(−2,0),正确;③因为k=−1<0,所以y随x增大而减小,错误;④因为k=−1<0,b=−2<0,所以图象过二、三、四象限,正确;⑤因为y=−x−2与y=−x的k值(斜率)相同,故两图象平行,正确.故选C.11.112y x=-+【解析】由平移的规律知,得到的一次函数的解析式为112y x=-+.12. -23【解析】∵y=kx+b的图象平行于直线y=−2x,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为:−2,3.【解析】解:∵y 随x 增大而减小,∴k<0,∴2m -6<0,∴m<3.14.32【解析】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg 时,弹簧的长度为:y=14+18=32(cm ).故答案为:32.15.一【解析】由直线y=-mx+n 的图象经过第一、二、三象限,∴-m >0,n >0,∴m<0,-n <0∴直线y=-nx+m 经过第二、三、四象限,∴直线y=-nx+m 不经过第一象限,故答案为:一.16.2y x =-.解:设该正比例函数的解析式为()0y kx k =≠.∵该正比例函数经过点()1,2-,则21k -=⨯,解得:2k =-.∴该正比例函数的解析式为:2y x =-.17.46y x =-【解析】设函数解析式为()()230y k x k =-≠,把4x =,10y =代入()23y k x =-,得:()1083k =-, 解得,2k =,所以,函数解析式为()22346y x x =-=-.18.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x −2k+6的图象y 随x 的增大而减小, ∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.19.(1)A =2A +1;(2)点A (−1,1)不在这个一次函数的图象上.【解析】解:(1)设这个一次函数的表达式为A =AA +A .由题意得{−2A +A =−3,A +A =3, 解得{A =2,A =1,∴这个一次函数的表达式为A =2A +1.(2)当A =−1时,A =2×(−1)+1=−1≠1.∴点A (−1,1)不在这个一次函数的图象上.20.(1)m=3, n=4;(2)4;(3)x <2.【解析】(1)∵点A (2,n )在正比例函数y=2x 的图象上,∴n=2×2=4,∴A(2,4);∵点A (2,4)在一次函数y 1=(m ﹣2)x+2的图象上,∴4=2(m-2)+2,解得m=3,∴y 1=x+2.(2)当y 1=0时,x+2=0,即x=-2,∴点B 的坐标为(-2,0), ∴12442AOB S ∆=⨯⨯=. (3)观察图象可知,当x 满足x <2时,y 1>y 2.21.(1)y=x+1;(2)C (0,1);(3)1【解析】(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2), ∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩== 则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.。
(典型题)初中数学八年级数学上册第四单元《一次函数》检测(答案解析)(1)
一、选择题1.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .72.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .无法比较3.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<-D .122k -≤≤-4.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小5.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 6.弹簧大家了解吗?弹簧挂上物体后会伸长。
测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B.物体质量每增加1kg,弹簧长度y增加0.5cmC.y与x的关系表达式是y=0.5xD.所挂物体质量为7kg时,弹簧长度为13.5cm7.如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段BE B.线段EF C.线段CE D.线段DEx的函数的是()8.下列各图象中,y不是..A.B.C.D.9.如图,△ABC的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )A .4B .8C .82D .1610.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④12.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分 1 2 3 4 … 水池中水量/3m48464442…A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m二、填空题13.为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的1l 和2l 分别表示去年和今年的水费y (元)和用水量x (3m )之间的函数关系图像.如果小明家今年和去年都是用水1503m ,要比去年多交水费________元.14.把一根长为20cm 的蜡烛,每分钟燃烧2cm ,蜡烛剩余长度y(cm)与燃烧时间t(分)之间的关系为_______(不需要写出自变量的取值范围).15.一列火车以100km /h 的速度匀速前进.则它的行驶路程s (单位:km )关于行驶时间t (单位:h )的函数解析式为_____. 16.已知()111,P y ,()222,P y 在正比例函数14y x =-的图象上,则1y ___________2y .(填“>”或“<”或“=”).17.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列结论: ①甲、乙两地相距1800千米;②点B 的实际意义是两车出发后4小时相遇; ③动车的速度是280千米/小时; ④6,900.m n ==其中正确的是_______________________.(写出所有正确结论的序号)18.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.19.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.20.某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.三、解答题21.如图,在平面直角坐标系中,()1,4A -,()3,3B -,()2,1C -.(1)已知111A B C △与ABC 关于x 轴对称,画出111A B C △(请用2B 铅笔将111A B C △描深);(2)在y 轴上找一点P ,使得PBC 的周长最小,试求点P 的坐标.22.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;(4)甲船拖拽的小艇与A港的距离和经历的时间之间的函数图像如图2所示,求点C的坐标.23.甲、乙两家商场平时以同样价格出售相同的商品,元旦假期,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)小明需要购买原价为300元的商品,在元旦期间他去哪家商场购买更省钱?24.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.25.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.26.已知y 与2x -1成正比例,当x =3时,y =10. (1)求y 与x 之间的函数关系式; (2)当y =-2时,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】把2x =-代入解析式即可. 【详解】解:把2x =-代入23y x =+得, 2(2)31y =⨯-+=-,故选:A . 【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算.2.A解析:A 【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较. 【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<, 所以y 随着x 的增大而减小, ∵-2<1, ∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y >; 故选:A . 【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.3.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.4.D解析:D 【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断. 【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确. 故选:D . 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.5.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.6.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【详解】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项不符合题意;B、物体质量每增加1kg,弹簧长度y增加0.5cm,故B选项不符合题意;C、y与x的关系表达式是y=0.5x+10,故C选项符合题意;D、由C知,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D 选项不符合题意;故选:C.【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.7.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.8.B解析:B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 9.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC 扫过的面积S=S 平行四边形BCFE =CF•FD=16.故选D .10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可;【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.二、填空题13.210【分析】根据函数图象中的数据可以求得x>120时l2对应的函数解析式从而可以求得x=150时对应的函数值由l1的图象可以求得x=150时对应的函数值从而可以计算出题目中所求问题的答案【详解】解解析:210【分析】根据函数图象中的数据可以求得x>120时,l 2对应的函数解析式,从而可以求得x=150时对应的函数值,由l 1的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案.【详解】解:设当x>120时,l 2对应的函数解析式为y=kx+b ,120480160720k b k b +=⎧⎨+=⎩ 解:6240k b =⎧⎨=-⎩故x>120时,l 2的函数解析式y=6k-240,当x=150时,y=6×150-240=660,由图象可知,去年的水价是480÷160=3(元/m 3),小明去年用水量150m 3,需要缴费:150×3=450(元),660-450=210(元),所以要比去年多交水费210元,故答案为:210【点睛】本题考查的是一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14.y=20-2t 【分析】根据题意可得燃烧的长度为2tcm 根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度根据等量关系再列出函数关系式即可【详解】由题意得:y=20−2t 故答案为y=20−2t 【解析:y=20-2t【分析】根据题意可得燃烧的长度为2tcm ,根据题意可得等量关系:蜡烛剩余长度y=原长度-燃烧的长度,根据等量关系再列出函数关系式即可.【详解】由题意得:y=20−2t ,故答案为y=20−2t.【点睛】本题考查函数关系式,解题的关键是准确获取题文信息.15.s =100t 【分析】利用路程=速度×时间用t 表示出路程s 即可【详解】解:根据题意得s =100t 故答案为s =100t 【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式也称为函数关系式注解析:s =100t【分析】利用路程=速度×时间,用t 表示出路程s 即可.【详解】解:根据题意得s =100t .故答案为s =100t .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.16.【分析】根据正比例函数的增减性解答【详解】∵<0∴y 随着x 的增大而减小∵1<2∴>故答案为:>【点睛】此题考查了正比例函数的增减性:当k>0时y 随x 的增大而增大;当k<0时y 随x 的增大而减小熟练掌握解析:>【分析】根据正比例函数的增减性解答.【详解】 ∵14k =-<0, ∴y 随着x 的增大而减小,∵1<2,∴1y >2y ,故答案为:>.【点睛】此题考查了正比例函数的增减性:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握正比例函数的增减性是解此题的关键.17.①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点C点表示动车先行到达终点D点表示列车达到终点进而求出动车和列车的速度再结合题中各数据逐个分析即可解答本题【详解】解:对于①:由图像解析:①②④【分析】根据题意和函数图像中的数据可以判断B点表示两车相遇的点,C点表示动车先行到达终点,D点表示列车达到终点,进而求出动车和列车的速度,再结合题中各数据逐个分析即可解答本题.【详解】解:对于①:由图像可知,甲、乙两地相距1800千米,故①说法正确;对于②:点B的实际意义是两车出发后4小时相遇,故②说法正确;对于③:C点表示动车先行到达终点,D点表示列车达到终点,普通列车的速度为:1800÷12=150(km/h),动车的速度为:(1800-150×4)÷4=300(km/h),故③说法错误;对于④:动车到达终点所需要的时间为1800÷300=6小时,故m=6,动车到达终点的6小时内,列车运行的路程为6×150=900km,此时n=1800-900=900,故④说法正确;故答案为:①②④【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,确定好B、C、D点各代表的含义,利用数形结合的思想解答.18.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.19.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm 其中一边长为xcm ∴另一边长为:(12-x )cm ∵长方形面积为∴y 与x 的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.20.59【解析】由题意得解得a=59故答案为59解析:59【解析】 由题意得,300.29600500a -=-,解得a=59. 故答案为59. 三、解答题21.(1)答案见解析;(2)(0,95). 【分析】(1)分别作出ABC 三个顶点关于x 轴的对称点,再首尾顺次连接即可;(2)作点C 关于y 轴的对称点C ',再利用待定系数法求出BC '所在直线解析式,再令x =0,求出y ,即可求出P 点坐标.【详解】(1)如图所示111A B C △即为所求.(2)如图所示P 点即为所求,由对称可知,点C 关于y 轴的对称点C '的坐标为(2,1),设BC '所在直线解析式为y kx b =+,则3312k bk b=-+⎧⎨=+⎩,解得2595kb⎧=-⎪⎪⎨⎪=⎪⎩,即BC'所在直线解析式为2955y x=-+.当0x=时,95y=,即P点坐标为(0,95).【点睛】本题考查作图-轴对称变换以及利用待定系数法求一次函数解析式,解题的关键是掌握轴对称的定义和性质.22.(1)6/km h;(2)3km;(3)19(02)5630(2)215579()222x xy x xx x⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h.(2)甲船在逆流中行驶的路程为6(2.52)3()km⨯-=.(3)设甲船顺流的速度为/akm h ,由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km . ∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.23.(1)0.9y x 甲;(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙;(2)乙商场. 【分析】(1)甲是单价的0.9倍,乙的需要分大于100和小于等于100两种情形计算;(2)分别代入两种表达式中计算,比较大小后,作出判断.【详解】解:(1)由题意得,0.9y x 甲, 当0100x 时,y x =乙,当100x >时,100(100)0.80.820y x x =+-⨯=+乙,由上可得,(0100)0.820(100)x x y x x ⎧=⎨+>⎩乙, (2)当300x =时,0.9300270,0.830020260y y =⨯==⨯+=甲乙此时,y y >甲乙所以,小明购买原价为300元的商品,在元旦期间,他去乙家商场购买更省钱.【点睛】本题考查了函数的表示方式,理解打折的意义,学会用分类思想表示是解题的关键. 24.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).【点睛】本题考查一次函数与几何图形,掌握一次函数的性质利用数形结合思想解题是关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】 (1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入,152520b k b=⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y =4x -2;(2)x =0.【分析】(1)根据正比例函数定义设设y=k(2x -1),将数值代入计算即可;(2)将y=-2代入(1)的函数解析式求解.【详解】解:(1)设y=k(2x -1),当x =3时,y =10,∴5k=10,解得k=2,∴y 与x 之间的函数关系式是y =4x -2;(2)当y=-2时4x -2=-2,解得x =0.【点睛】此题考查正比例函数的定义,求函数解析式,已知函数值求自变量,正确理解正比例函数的定义是解题的关键.。
沪科版数学八年级上册 第十二章 一次函数 单元测试(含答案)
第 十二 章 一次函数(时间:120分钟满分:150分)题 号一二三四五六七八总 分得 分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数 y =x−3x中,自变量x 的取值范围是 ( )A. x≠0B. x≥3C. x≥3且x≠0D. x>3且x≠02.若正比例函数的图象经过点(-1,2),则这个图象必经过点 ( )A.(1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.函数 y =k (x−k )(k <0)的图象不经过 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数y =−x +3,,当x=a 时,y=5;当x=b 时,y=-5;当x=c 时,y =3,则a ,b ,c 的大小关系是( )A.a >b >cB. a>c>bC. b>a>cD. b>c>a5.直线 y =2x 向下平移2 个单位得到的直线是 ( ) A.y =2x (x +2) B.y =2(x−2) C.y =2x−2 D.y =2x +26.如图,在下列平面直角坐标系中,一次函数 y =12kx−2k 的图象只可能是( )7.如图,下列方程组的解可以用两直线 l₁,l₂的交点坐标表示的是 ( )A.{x−y =1,2x−y =1 B.{x−y =−1,2x−y =1 C.{x−y =3,2x−y =1 D.{x−y =−3,2x−y =−18.如图,函数 y 1=|x|,y 2=13x +43.当 y₁>y₂时,x 的取值范围是 ( )A. x< -1B.−1<x <2C.x <−1或x>2D.x >29.小高从家门口骑车去单位上班,先走平路到达点 A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )A.12 分钟B.15分钟C.25分钟D.27 分钟10.如图,在平面直角坐标系中,在边长为1 的正方形ABCD 的边上有一动点 P 沿A→B→C→D→A 运动一周,则点 P 的纵坐标y 与点 P 走过的路程s 之间的函数关系用图象表示大致是 ( )二、填空题(本大题共4 小题,每小题5分,满分20分)11.已知一次函数 y =(4m +1)x−(m +1),,当m 满足 时,直线在y 轴上的截距小于0.12.一次函数 y =2x−6的函数值为0,则 x =.13.甲、乙两人以相同路线前往距离单位10 千米的培训中心参加学习.图中 l 甲,l 乙分别表示甲、乙两人前往目的地所走的路程s(千米)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/时;③乙的平均速度为1507千米/时;④乙出发6分钟后追上甲.其中正确的有 .(填所有正确的序号)14.已知一次函数 y =ax +b (a ,b 是常数),x 与y 的部分对应值如下表:x -2-10123y642-2-4那么方程ax+b=0的解是 ;不等式。
数学八年级上《一次函数》复习测试题(答案)
一次函数复习基础达标验收卷 一、选择题:1. 一次函数1-=x y 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A. 小于3吨 B. 大于3吨 C. 小于4吨 D. 大于4吨3. 若正比例函数x m y )21(-=的图象经过点),(11y x A 和点),(22y x B ,当21x x <时,21y y >,则m 的 取值范围是( )A. 0<mB. 0>mC. 21<m D. 21>m 4. 结合正比例函数x y 4=的图象回答:当1>x 时,y 的取值范围是( )A. 1<yB.1≤x <4C. 4=yD. 4>y5. 若1-<m ,则下列函数:①)0(>=x xmy ;②1+-=mx y ;③mx y =; ④x m y )1(+=中,y 随x 的增大而增大的是( )A. ①②B. ②③C. ①③D. ③④6. 两条直线b ax y +=1与a bx y +=2在同一坐标系中的图象可能是下图中的( )7. 有一个装有进、出水管的容器,单位时间内进、出的水量都是一定. 已知容器的容积为600升,又知单开进水管10分钟可把空容器注满. 若同时打开进、出水管,20分钟可把满容器的水放完. 现已知容器内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放,直至把容器中的水放完,则正确反映这一过程中容器中的水量Q (升)随时间t (分)变化的图象是( )339ABCD8. “高高兴兴上学来,开开心心回家去”小明某天放学后,17时从学校出发,回家途中离家的路程 s (百米)与所走的时间t (分钟)之间的函数关系如图所示,那么这天 小明到家的时间为( ) A. 17时15分 B. 17时14分 C. 17时12分 D. 17时11分9. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s(千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米; (2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时; (4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地其中符合图象描述的说法有( ) A. 2个 B. 3个 C. 4个D. 5个二、填空题:1. 如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. 在平面直角坐标系中,直线b kx y +=(k ,b 为常数k ≠0,b >0)可以看成是将直线kxy =沿y 轴向上平行移动b 个单位得到的,那么将直线kx y =沿x 轴向右平行移动m 个单位(m >0)得到的直线方程是____________.3. 大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程s (千米)与行驶的速度t (小时)之间的函数关系式为第10题图_________________.4. 若一次函数m x m y +-=)2(的图象经过第一、二、四象限,则m 的取值范围是________________. 三、解答题:1. 已知y 与2+x 成正比例,且1=x 时,6-=y .(1)求y 与x 之间的函数关系式;(2)若点)2,(a 在函数的图象上,求a 的值.2. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例. 当x =20时,y =1600;当x =30时,y =2000.(1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?3. 在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A 地到B 地,所经过的路程y (千米)与时间x (小时)的函数关系如图所示,试根据图象回答下列问题: (1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A 地到B 地的距离为_________千米. (2)轿车追上货车需要多小时? (3)轿车比货车早到多少时间?能力提高练习 一、跨学科综合题1. 在某一段电路中,保持电压不变,则 电力强度I 与电阻R 之间的函数关系的图象是下图中的( )2. 转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降(1)将试验所得数据在如图所示的直角坐标系中用点表示;(注:该 图中坐标轴的交点代表点(1,70)) (2)用线段将题(1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流x 的函数关系,试写出该函数在1.7≤x ≤2.4时的表达式;(3)利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A ).二、实际应用题3.春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破Array坏现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭到霜冻灾害,需采取预防措施. 下图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随着时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系. 请你根据图中信息,针对这种植物判断次日是否需要采取防霜措施,并说明理由.三、开放探索题:4.(如图(1),在矩形ABCD中,AB=10cm,BC=8cm. 点P从A点出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q同时..出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时..改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm. 图(2)是点P出发x秒后△APD的面积..1S(cm2)与x(秒)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积..2S(cm2)与x(秒)的函数关系图象.(1)(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为1y(cm),点Q到点A还需要走的路程为2y(cm),请分别写出改变速度后1y、2y与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q出发_________秒时,点P、点Q在运动路线上的路程为为25cm.四、创新题5. 甲、乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox 表示这条公路,原点为零千米路标(如图1),并作如下约定:①速度v >0,表示汽车向数轴正方向行驶;速度v <0,表示汽车向数轴负方向行驶;速度v =0,表示汽车静止.②汽车位置在数轴上的坐标s >0,表示汽车位于零千米路标的右侧;汽车在数轴上的坐标s <0,表示汽车位于零千米路标的左侧;汽车在数轴上的坐标s =0,表示汽车恰好位于零千米路标处. 遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数的形式画在了同一直角坐标系中,如图2. 请解答下列问题:(1)就这两个一次函数图象反映的两汽车在这条公路上行驶的状况填写如下的表格.(2)甲、乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.图2参考答案基础达标验收卷二、填空题:三、解答题: 1. 解:(1)42--=x y ;(2)3-=a . 2. 解:(1)80040+=x y ;(2)每名运动员需支付56元.3. 解:(1)1,150,300.(2)根据图象提供的信息,可知点M 为ON 的中点,MK ∥NE ,∴5.221==OE OK . ∴5.1=-=OC OK CK ,即轿车追上货车需1.5小时. (3)根据图象提供的信息,可知M 为CD 的中点,且MK ∥DF , ∴K 是CF 的中点. ∴CF =3. ∴431=+=+=CF OC OF . ∴145=-=-=OF OE EF ,即轿车比货车早到1小时.能力提高练习 1. D. 2. 解:(1)如下图.(2)如上图连结,⎪⎩⎪⎨⎧≤≤+-<≤+-<≤+=)4.21.2(15030)1.29.1(5.975)9.17.1(5.245x x x x x x y(3)当9.17.1<≤x 时,由855.245>+x ,得9.18.1<<x ; 当4.21.2<≤x 时,由8515030>+-x ,得2.21.2≤≤x ; 又当1.29.1<≤x 时,恒有855.975>+-x .综上所述可知:满足需要时该装置的电流应控制在1.8A 至2.2A 之间.3. 解:设0时~5时的一次函数解析式为111b x k y +=,将点)3,0(,)3,5(-分别代入,得3=b ,56-=k . ∴3561+-=x y . 设5时~8时的一次函数解析式为222b x k y +=,将点)3,5(-,)5,8(分别代入,得382=k ,3492-=b . ∴349382-=x y . 当1y 、2y 分别为0时,251=x ,8492=x ,而38292584912>=-=-x x ,∴应采取防霜冻措施. 4. 解:(1)观察图2得S △APD =24821·21=⨯=a AD PA .∴6=a (秒),2686110=-⨯-=b (厘米/秒).(2)依题意1228)622(-=-d . 解得1=d (厘米/秒).(3)621-=x y ,x y -=222. 依题意x x -=-2262.∴328=x (秒). (4)1,19. 5.(2)甲乙两车能相遇.设经过t 小时两车相遇,由⎩⎨⎧-=+-=,8050,19040t s t s 得⎩⎨⎧==.70,3s t所以经过3小时两车相遇,相遇在零千米路标右侧70千米处。
(必考题)初中数学八年级数学上册第四单元《一次函数》检测卷(有答案解析)
一、选择题1.一次函数21y x =-+上有两点()12,y -和()21,y ,则1y 与2y 的大小关系是( ) A .12y y > B .12y y < C .12y y = D .无法比较 2.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 3.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 4.一次函数y=2x-1的图象大致是( )A .B .C .D . 5.对于一次函数24y x =-+,下列结论错误的是( )A .函数的图象与x 轴的交点坐标是()0,4B .函数值随自变量的增大而减小C .函数的图象不经过第三象限D .函数的图象向下平移4个单位长度得到2y x =-的图象6.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( ) A . B .C.D.7.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个8.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个9.一次函数y mx n =-+的图象经过第二、三、四象限,则化简22()m n n -+所得的结果是( ) A .m B .m - C .2m n - D .2m n - 10.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .11.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 12.甲、乙两车分别从A 、B 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB 中点C 路程y (千米)与甲车出发时间t (时)的关系图象如图所示,则下列说法错误的是( )A .乙车的速度为90千米/时B .a 的值为52C .b 的值为150D .当甲、乙车相距30千米时,甲行走了95h 或125h 二、填空题13.已知某汽车装满油后油箱中的剩余油量y (升)与汽车的行驶路程x (千米)之间具有一次函数关系(如图所示).为了行驶安全考虑,邮箱中剩余油量不能低于5升,那么这辆汽车装满油后至多行驶_____千米,就应该停车加油.14.如图,在平面直角坐标系中,点M (﹣1,3)、N (a ,3),若直线y =﹣2x 与线段MN 有公共点,则a 的值可以为_____.(写出一个即可)15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.17.已知1(2)23k y k x k -=-+-是关于x 的一次函数,则这个函数的解析式是_______.18.在一次函数28(2)1k y k x -=-+中,随y 的x 增大而增大,则k =________.19.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______. 20.将直线2y x =向下平移1个单位,得到直线___________.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.一次试验中,小明把一根弹簧的上端固定,在其下端悬挂砝码,下面是测得的弹簧长度()y cm 与所挂砝码的质量()x g 的一组对应值: ()x g 0 1 2 3 4 5 …()y cm 18 20 22 24 26 28 …(2)弹簧的原长是多少?当所挂砝码质量为3g 时,弹簧的长度是多少?(3)砝码质量每增加1g ,弹簧的长度增加_______cm .(4)请写出y 与x 之间的关系式(写成用含x 的式子表示y 的形式),并判断y 是不是x 的函数.23.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?x 时,求y与x之间的函数关系式;(2)当100(3)月用电量为150度时,应交电费多少元?25.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?26.A,B两个红十字会分别有100吨和120吨生活物资,准备直接运送给甲、乙两个灾区,甲地需160吨,乙地需60吨,A,B两地到甲、乙两地的路程以及每吨每千米的运费如图所示.(1)设A 红十字会运往甲地物资x 吨,完成下表.运量(吨) 运费(元)A 红十字会B 红十字会 A 红十字会 B 红十字会甲地x 160x - 1.330x ⨯ ()20 1.5160x ⨯⨯- 乙地(3)当A ,B 两红十字会各运往甲、乙两地多少吨物资时,总运费最省?最省运费是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的增减性直接判断即可;或求出1y 、2y 的值,进行比较.【详解】解:方法一:因为一次函数21y x =-+中的比例系数20-<,所以y 随着x 的增大而减小,∵-2<1,∴12y y >;方法二:把x=-2或1分别代入21y x =-+得,15y =、21y =-,∴12y y ;故选:A .【点睛】本题考查了一次函数的增减性,解题关键是知道一次函数的增减性由比例系数k 决定,根据k 值可直接判断.2.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 3.B解析:B【分析】根据正比例函数的性质可得出k >0,进而可得出-k <0,由1>0,-k <0利用一次函数图象与系数的关系,可找出一次函数y=x-k 的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,∴k >0,∴﹣k <0.又∵1>0,∴一次函数y =x ﹣k 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.4.B解析:B【分析】根据一次函数的性质进行判断即可.【详解】解:∵k=2>0,∴直线y=2x-1经过第一、三象限;∵b=-1,∴直线y=2x-1与y轴的交点在x轴下方,∴直线y=2x-1经过第一、三、四象限,∴B选项符合题意.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.5.A解析:A【分析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.【详解】A、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故A选项错误;B、因为一次函数y=-2x+4中k=-2<0,因此函数值随x的增大而减小,故C选项正确;C、因为一次函数y=-2x+4中k=-2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故C选项正确;D、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=-2x的图象,故D选项正确.故选A.【点睛】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.6.B解析:B【分析】张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,即可解答.【详解】对于张老师从住家小区单元的2楼坐电梯到5楼(中途不停),高度与时间关系成正相关关系,于是可知它对应的是选项B,故选B.【点睛】此题考查函数图象,解题关键在于理解高度与时间关系成正相关关系.7.C解析:C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.8.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x 分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.9.D解析:D【分析】根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,∴=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.10.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P 到A→B 的过程中,y=0(0≤x≤2),故选项C 错误,点P 到B→C 的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A 错误, 点P 到C→D 的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D 错误, 点P 到D→A 的过程中,y=12⨯2(12-x)=12-x(8<x ≤12), 由以上各段函数解析式可知,选项B 正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.11.B解析:B【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.12.D解析:D【分析】根据题意和函数图象中的数据,先求出A 、B 两地的距离,再求出甲乙的速度,进而即可判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,A 、B 两地之间的距离为为30×2÷(32-2323++)=300(千米),乙车的速度为:(300÷2+30)÷2=90(千米/时),故选项A 正确; 甲车的速度为:(300÷2−30)÷2=60(千米/时),a =300÷2÷60=52,故选项B 正确; b=300÷2=150,故C 正确;当甲、乙车在相遇前相距30千米时,30030960905t -==+, 当甲、乙车在相遇后相距30千米时,300301160905t +==+, 故D 错误,故选D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出A 、B 两地的距离以及甲乙的速度,利用数形结合的思想解答. 二、填空题13.450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程此题得解【详解】解:设该一次函数解析式为y =kx +b 将(4001解析:450【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为5升时行驶的路程,此题得解.【详解】解:设该一次函数解析式为y =kx +b ,将(400,10),(500,0)代入得400105000k b k b +=⎧⎨+=⎩, 解得0.150k b =-⎧⎨=⎩, ∴该一次函数解析式为y =−0.1x +50.当y =−0.1x +50=5时,x =450.故答案为:450.【点睛】本题考查了一次函数的应用,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.14.﹣16【分析】把y=3代入y=-2x 得到x=-15根据已知可得N 点应该在直线y=-2x 的左侧从而分析出a 的取值范围依此判断即可【详解】解:当y =3时x =﹣15若直线y =﹣2x 与线段MN 有公共点则N 点解析:﹣1.6【分析】把y=3代入y=-2x 得到x=-1.5,根据已知可得N 点应该在直线y=-2x 的左侧,从而分析出a 的取值范围,依此判断即可.【详解】解:当y =3时,x =﹣1.5.若直线y =﹣2x 与线段MN 有公共点,则N 点应该在直线y =﹣2x 的左侧,即a ≤﹣1.5.∴a 的值可以为﹣1.6.(不唯一,a ≤﹣1.5即可).故答案为:﹣1.6.【点睛】本题考查了一次函数图象上点的坐标特征,解决本题的关键是掌握一次函数的性质. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x 的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 17.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数, ∴1120k k ⎧-=⎨-≠⎩, 解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.18.-3【分析】根据一次函数图象的增减性来确定(2-k )的符号从而求得k 的取值范围【详解】解:∵在一次函数y=(2-k )x+1中y 随x 的增大而增大∴2-k >0∴k <2k=±3∴k=-3故答案是:-3【点解析:-3【分析】根据281k -=,一次函数图象的增减性来确定(2-k )的符号,从而求得k 的取值范围.【详解】解:∵在一次函数y=(2-k )x+1中,y 随x 的增大而增大,∴2-k >0,281k -=,∴k <2,k=±3,∴k=-3故答案是:-3.【点睛】本题考查了一次函数图象与系数的关系.关键是掌握在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.19.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之. 20.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k =-, 当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)弹簧长度与所挂砝码质量;(2)18cm ;24cm ;(3)2;(4)218y x =+;y 是x 的一次函数.【分析】(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系;(2)由表可知,当物体的质量为0g 时,弹簧的长度即弹簧的原长是18cm ;当物体的质量为3g 时,弹簧的长度是24cm ;(3)由表中的数据可知,x=0时,y=18;x=1时,y=20,则砝码质量每增加1g ,弹簧的长度增加2cm .(4)根据表格,利用待定系数法,即可求出关系式.【详解】解:(1)上表反映了弹簧长度与所挂砝码质量之间的关系;其中所挂砝码质量是自变量,弹簧长度是因变量;(2)因为不挂砝码时的弹簧长度即为弹簧的原长,所以弹簧的原长是18cm ;当所挂物体重量为3g 时,弹簧长24cm ;(3)根据上表可知,砝码质量每增加1g ,弹簧的长度增加2cm .故答案为:2.(4)设关系式为y kx b =+,则当x=0时,y=18;x=1时,y=20;∴1820b k b =⎧⎨+=⎩,解得182b k =⎧⎨=⎩, ∴关系式为:218y x =+;∴y 是x 的一次函数.【点睛】考查了一次函数的定义,常量与变量,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.23.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅6,5m DE ∴=∴=又在Rt DBE 中,222BD DE BE =+,即222,m BE BE ⎫=+∴=⎪⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是5CE DE m ==由CE BE BC +=,即55m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF 易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15)∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】解:()10100x <≤时,35y x = 月用电量为50度时,应交电费30元;()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)他们出发半小时时,离家30千米;(2)在服务区等了半个小时;y =80x -60(1.5≤x ≤3.25);(3)上午11点时,离目的地还有20千米.【分析】(1)根据函数图象,可求出线段OA 的函数表达式,即可求出出发半小时时离家的距离. (2)根据题意可列出(10060)800.5-÷=小时,即可进一步求出在服务区等待的时间.根据图象利用待定系数法即可求出BC 段的函数表达式.(3)将x=3代入BC 段的函数表达式,即可.【详解】(1)设线段OA 的函数表达式为y =kx ,当x =1时,y =60.所以k =60,即y =60x (0≤x ≤1).当x =0.5时,y =60×0.5=30(千米).即他们出发半小时时,离家30千米.(2)因为(10060)800.5-÷=(小时),所以在服务区等了2-1-0.5=0.5个小时,设线段BC 的函数表达式为1y k x b =+.因为B(1.5,60),B(2,100),代入得111.5602100k b k b +=⎧⎨+=⎩, 解得18060k b =⎧⎨=-⎩, 所以y =80x -60(1.5≤x ≤3.25)(3)当x =11-8=3(时),y =80×3-60=180(千米),所以200-180=20(千米).上午11点时,离目的地还有20千米.【点睛】本题考查一次函数的实际应用.根据函数图象求出各段的函数表达式是解答本题的关键. 26.(1)100x -,40x -,()351100x ⨯⨯-,()25 1.240x ⨯⨯-;(2)47100y x =+,自变量x 的取值范围是:40100x ≤≤;(3)当A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨时费用最省,为7260元.【分析】(1)根据题意及图中的信息可直接得出答案;(2)根据4个运费相加再化简即可得出答案;(3)根据一次函数的性质即可得出最大值,从而得出方案.【详解】解:(1) 运量(吨) 运费(元)(2)总运费47100x =+自变量x 的取值范围是:40100x ≤≤.(3)∵47100y x =+中,40k =>,∴y 随x 的增大而增大.∵40100x ≤≤,∴当40x =时,min 7260y =元此时A 运往甲、乙分别为40吨、60吨,B 运往甲、乙分别为120吨、0吨.【点睛】本题考查了一次函数的应用,熟练掌握一次函数的性质是解题的关键.。
(必考题)初中数学八年级数学上册第四单元《一次函数》测试卷(含答案解析)(4)
一、选择题1.A ,B 两地相距12千米,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OPQ 和线段EF 分别表示甲乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP 与EF 交于点M ,下列说法:①y 乙=-2x+12;②线段OP 对应的y 甲与x 的函数关系式为y 甲=18x ;③两人相遇地点与A 地的距离是9km ;④经过38小时或58小时时,甲乙两个相距3km .其中正确的个数是( )A .1个B .2个C .3个D .4个2.已知一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,则函数()20y kx k =-≠ 的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( )A .B .C .D .5.如图,直线l:33y x,过点A(0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为( )A .(0,20154)B .(0, 20144)C .(0, 20153)D .(0, 20143)6.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t=或154其中正确的结论有()A.1个B.2个C.3个D.4个7.弹簧大家了解吗?弹簧挂上物体后会伸长。
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版
八年级数学上册《第十九章 一次函数》单元测试卷附带答案-人教版一、单选题1.对于函数y=x+1,自变量x 取5时,对应的函数值为( )A .3B .36C .16D .62.下列各图像中,y 不是x 的函数的是( ).A .B .C .D .3.已知正比例函数3y x =的图象经过点()1m ,,则m 的值为( ) A .13B .3C .13-D .3-4.若一次函数的3y x b =-+图象上有两点()12A y -,和()26B y ,,则下列1y ,2y 大小关系正确的是( ). A .12y y >B .12y y <C .12y y ≥D .12y y ≤5.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <6.一个圆形花坛,面积S 与半径r 的函数关系式2S πr =中关于常量和变量的表述正确的是( )A .常量是2,变量是S 、π、rB .常量是2、π,变量是S 、rC .常量是2,变量是S 、πD .常量是π,变量是S 、r7.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,8.根据图象,可得关于x 的不等式k 1x <k 2x+b 的解集是( )A .x <2B .x >2C .x <3D .x >39.同一平面直角坐标系中,一次函数1y k x b =+的图象与2y k x =的图象如图所示,则关于x 的方程12k x b k x +=的解为( )A .0x =B .1x =-C .2x =-D .以上都不对10.清明假期第一天天气晴朗,小明和爸爸去爬山.小明和爸爸同时从山脚出发,由于爸爸有爬山经验,匀速爬到山顶.小明刚开始的速度比爸爸快,累了之后减速继续爬山,和爸爸相遇后0.5h 才加速追赶爸爸,最终爸爸用2h 爬到了山顶,小明比爸爸晚了6min 到达.他们出发的时间x (单位:h )与爬山的路程y (单位:km )的函数图象如图所示,则下列说法错误的是( )A .爸爸爬山的速度为3km/hB .1.5h 时爸爸与小明的距离为0.5kmC .山脚到山顶的总路程为6kmD .小明加速追赶爸爸时的速度为3km/h二、填空题11.函数232x y x -=+中,自变量x 的取值范围是 . 12.正比例函数(2)y m x =-的图象从左到右逐渐下降,则m 的取值范围是 .13.将直线21y x =--向左平移a (0a >)个单位长度后,经过点()15-,,则a 的值为 . 14.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1,0.5,2.分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是 .三、解答题15.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.16.正比例函数 y kx = 的图象经过点 ()1,3A - , (),1B a a + 求a 的值.17.已知一次函数的图象经过点A (﹣4,9)与点B (6,3),求这个一次函数的解析式.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时,可使所付金额最少?最少为多少元?四、综合题19.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时,地砖的费用.20.在平面直角坐标系中,一个正比例函数的图象经过点(12),,把此正比函数的图象向上平移5个单位,得到一次函数:y kx b =+ (1)求一次函数的解析式.(2)直线(0)y kx b k =+≠与x 轴交于点A ,求A 点的坐标.(3)点(1)B n -,是该直线上一点,点C 在x 轴上,当ABC 的面积为154时,请直接写出C 点的坐标.21.如图,一次函数()10y kx b k =+≠的图象分别与x 轴和y 轴相交于C 、()03A ,两点,且与正比例函数22y x =-的图象交于点()1B m -,.(1)求一次函数的解析式;(2)当12y y >时,直接写出自变量x 的取值范围;22.某养殖场计划今年养殖无公害标准化龙虾和鲤鱼,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位: 千元/吨)品种 先期投资养殖期间投资产值 鲤鱼 9 3 30 龙虾41020苗的投放量为x 吨. (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?参考答案与解析1.【答案】D【解析】【解答】解:当x=5时,y=5+1=6故答案为:D .【分析】将x=5代入y=x+1,求出y 的值即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数复习基础达标验收卷 一、选择题:1. 一次函数1-=x y 的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( ) A. 小于3吨 B. 大于3吨 C. 小于4吨 D. 大于4吨3. 若正比例函数x m y )21(-=的图象经过点),(11y x A 和点),(22y x B ,当21x x <时,21y y >,则m 的 取值范围是( )A. 0<mB. 0>mC. 21<m D. 21>m 4. 结合正比例函数x y 4=的图象回答:当1>x 时,y 的取值范围是( )A. 1<yB.1≤x <4C. 4=yD. 4>y5. 若1-<m ,则下列函数:①)0(>=x xmy ;②1+-=mx y ;③mx y =; ④x m y )1(+=中,y 随x 的增大而增大的是( )A. ①②B. ②③C. ①③D. ③④6. 两条直线b ax y +=1与a bx y +=2在同一坐标系中的图象可能是下图中的( )7. 有一个装有进、出水管的容器,单位时间内进、出的水量都是一定. 已知容器的容积为600升,又知单开进水管10分钟可把空容器注满. 若同时打开进、出水管,20分钟可把满容器的水放完. 现已知容器内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放,直至把容器中的水放完,则正确反映这一过程中容器中的水量Q (升)随时间t (分)变化的图象是( )339ABC D8. “高高兴兴上学来,开开心心回家去”小明某天放学后,17时从学校出发,回家途中离家的路程 s (百米)与所走的时间t (分钟)之间的函数关系如图所示,那么这天 小明到家的时间为( ) A. 17时15分 B. 17时14分 C. 17时12分 D. 17时11分9. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s(千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米; (2)甲在途中停留了0.5小时; (3)乙比甲晚出发了0.5小时; (4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地其中符合图象描述的说法有( ) A. 2个 B. 3个 C. 4个D. 5个二、填空题:1. 如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.2. 在平面直角坐标系中,直线b kx y +=(k ,b 为常数k ≠0,b >0)可以看成是将直线kxy =沿y 轴向上平行移动b 个单位得到的,那么将直线kx y =沿x 轴向右平行移动m 个单位(m >0)得到的直线方程是____________.3. 大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连开往庄河,则汽车距庄河的路程s (千米)与行驶的速度t (小时)之间的函数关系式为第10题图_________________.4. 若一次函数m x m y +-=)2(的图象经过第一、二、四象限,则m 的取值范围是________________. 三、解答题:1. 已知y 与2+x 成正比例,且1=x 时,6-=y .(1)求y 与x 之间的函数关系式;(2)若点)2,(a 在函数的图象上,求a 的值.2. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分与参加比赛的人数x (人)成正比例. 当x =20时,y =1600;当x =30时,y =2000.(1)求y 与x 之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么没2名运动员需要支付多少元?3. 在我省环岛高速公路上,一辆轿车和一辆货车沿相同路线从A 地到B 地,所经过的路程y (千米)与时间x (小时)的函数关系如图所示,试根据图象回答下列问题: (1)货车比轿车早出发__________小时,轿车追上货车时行驶了__________千米,A 地到B 地的距离为_________千米. (2)轿车追上货车需要多小时? (3)轿车比货车早到多少时间?能力提高练习 一、跨学科综合题1. 在某一段电路中,保持电压不变,则 电力强度I 与电阻R 之间的函数关系的图象是下图中的( )2. 转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降(1)将试验所得数据在如图所示的直角坐标系中用点表示;(注:该 图中坐标轴的交点代表点(1,70)) (2)用线段将题(1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流x 的函数关系,试写出该函数在1.7≤x ≤2.4时的表达式;(3)利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A ).二、实际应用题3.春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破Array坏现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭到霜冻灾害,需采取预防措施. 下图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随着时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系. 请你根据图中信息,针对这种植物判断次日是否需要采取防霜措施,并说明理由.三、开放探索题:4.(如图(1),在矩形ABCD中,AB=10cm,BC=8cm. 点P从A点出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q同时..出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时..改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm. 图(2)是点P出发x秒后△APD的面积..1S(cm2)与x(秒)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积..2S(cm2)与x(秒)的函数关系图象.(1)(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为1y(cm),点Q到点A还需要走的路程为2y(cm),请分别写出改变速度后1y、2y与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q出发_________秒时,点P、点Q在运动路线上的路程为为25cm.四、创新题5. 甲、乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴Ox 表示这条公路,原点为零千米路标(如图1),并作如下约定:①速度v >0,表示汽车向数轴正方向行驶;速度v <0,表示汽车向数轴负方向行驶;速度v =0,表示汽车静止.②汽车位置在数轴上的坐标s >0,表示汽车位于零千米路标的右侧;汽车在数轴上的坐标s <0,表示汽车位于零千米路标的左侧;汽车在数轴上的坐标s =0,表示汽车恰好位于零千米路标处. 遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数的形式画在了同一直角坐标系中,如图2. 请解答下列问题:(1)就这两个一次函数图象反映的两汽车在这条公路上行驶的状况填写如下的表格.(2)甲、乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由.图2参考答案基础达标验收卷二、填空题:三、解答题: 1. 解:(1)42--=x y ;(2)3-=a . 2. 解:(1)80040+=x y ;(2)每名运动员需支付56元.3. 解:(1)1,150,300.(2)根据图象提供的信息,可知点M 为ON 的中点,MK ∥NE ,∴5.221==OE OK . ∴5.1=-=OC OK CK ,即轿车追上货车需1.5小时. (3)根据图象提供的信息,可知M 为CD 的中点,且MK ∥DF , ∴K 是CF 的中点. ∴CF =3. ∴431=+=+=CF OC OF . ∴145=-=-=OF OE EF ,即轿车比货车早到1小时.能力提高练习 1. D. 2. 解:(1)如下图.(2)如上图连结,⎪⎩⎪⎨⎧≤≤+-<≤+-<≤+=)4.21.2(15030)1.29.1(5.975)9.17.1(5.245x x x x x x y(3)当9.17.1<≤x 时,由855.245>+x ,得9.18.1<<x ; 当4.21.2<≤x 时,由8515030>+-x ,得2.21.2≤≤x ; 又当1.29.1<≤x 时,恒有855.975>+-x .综上所述可知:满足需要时该装置的电流应控制在1.8A 至2.2A 之间.3. 解:设0时~5时的一次函数解析式为111b x k y +=,将点)3,0(,)3,5(-分别代入,得3=b ,56-=k . ∴3561+-=x y . 设5时~8时的一次函数解析式为222b x k y +=,将点)3,5(-,)5,8(分别代入,得382=k ,3492-=b . ∴349382-=x y . 当1y 、2y 分别为0时,251=x ,8492=x ,而38292584912>=-=-x x ,∴应采取防霜冻措施. 4. 解:(1)观察图2得S △APD =24821·21=⨯=a AD PA .∴6=a (秒),2686110=-⨯-=b (厘米/秒).(2)依题意1228)622(-=-d . 解得1=d (厘米/秒).(3)621-=x y ,x y -=222. 依题意x x -=-2262.∴328=x (秒). (4)1,19. 5.(2)甲乙两车能相遇.设经过t 小时两车相遇,由⎩⎨⎧-=+-=,8050,19040t s t s 得⎩⎨⎧==.70,3s t所以经过3小时两车相遇,相遇在零千米路标右侧70千米处。