四边形中考题
专题43四边形(2) 中考数学真题分项汇编系列2(学生版)
专题43四边形(2)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·贵州遵义中考真题)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A.125B.185C.4 D.2452.(2020·北京中考真题)正五边形的外角和为()A.180°B.360°C.540°D.720°3.(2020·贵州黔东南中考真题)如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于()A.25°B.30°C.50°D.60°4.(2020·浙江温州中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为()A.40°B.50°C.60°D.70°5.(2020·山东德州中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A .80米B .96米C .64米D .48米6.(2020·江苏无锡中考真题)正十边形的每一个外角的度数为( )A .36︒B .30C .144︒D .150︒7.(2020·江苏连云港中考真题)如图,将矩形纸片ABCD 沿BE 折叠,使点A 落在对角线BD 上的A '处.若24DBC ︒∠=,则'∠A EB 等于( ).A .66︒B .60︒C .57︒D .48︒8.(2020·山东泰安中考真题)将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于( )A .80°B .100°C .110°D .120°9.(2020·四川南充中考真题)如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112SD .116S 10.(2020·四川泸州中考真题)下列命题是假命题的是( )A .平行四边形的对角线互相平分B .矩形的对角线互相垂直C .菱形的对角线互相垂直平分D .正方形的对角线互相垂直平分且相等11.(2020·山东临沂中考真题)如图,P 是面积为S 的ABCD 内任意一点,PAD △的面积为1S ,PBC 的面积为2S ,则( )A .122S S S +> B .122S S S +< C .122S S S += D .12S S +的大小与P 点位置有关12.(2020·山东菏泽中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A .互相平分B .相等C .互相垂直D .互相垂直平分13.(2020·湖南衡阳中考真题)如图,在四边形ABCD 中,AC 与BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥DC ,AB =DC B .AB =DC ,AD =BCC .AB ∥DC ,AD =BC D .OA=OC ,OB =OD14.(2020·河南中考真题)如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为( )A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,215.(2020·贵州贵阳中考真题)菱形的两条对角线长分别是6和8,则此菱形的周长是( )A .5B .20C .24D .3216.(2020·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,617.(2020·山东青岛中考真题)如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF ,EF 与AC 交于点.O 若5AE =,3BF =,则AO 的长为( )A 5B 352C .25D .4518.(2020·贵州黔东南中考真题)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E、F为圆心,1为半径作圆弧BO、OD,则图中阴影部分的面积为()A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π19.(2020·贵州黔东南中考真题)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16 B.24 C.16或24 D.4820.(2020·新疆中考真题)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线,交AC 于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.5B.5 C.45D.1021.(2020·贵州铜仁中考真题)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF2,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为172;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是()A.①②③B.①③C.①②D.②③22.(2020·贵州铜仁中考真题)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.23.(2020·浙江宁波中考真题)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2 B.2.5 C.3 D.424.(2020·浙江台州中考真题)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CAD B .CD 平分∠ACBC .AB ⊥CD D .AB=CD25.(2020·浙江台州中考真题)下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A .由②推出③,由③推出①B .由①推出②,由②推出③C .由③推出①,由①推出②D .由①推出③,由③推出②26.(2020·浙江衢州中考真题)如图,把一张矩形纸片ABCD 按所示方法进行两次折叠,得到等腰直角三角形BEF ,若BC =1,则AB 的长度为( )A .2B .212+C .512+D .4327.(2020·浙江金华中考真题)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCDEFGH S S 正方形正方形的值是( )A .12B .22+C .52D .15428.(2020·四川乐山中考真题)如图,在菱形ABCD 中,4AB =,120BAD ∠=︒,O 是对角线BD 的中点,过点O 作OE CD ⊥ 于点E ,连结OA .则四边形AOED 的周长为( )A .923+B .93+C .723+D .829.(2020·四川乐山中考真题)如图,在平面直角坐标系中,直线y x =-与双曲线k y x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14- 30.(2020·四川遂宁中考真题)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( )A .12B .13C .23D .3431.(2020·四川遂宁中考真题)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =2,则图中阴影部分面积为( )A .4﹣2πB .2﹣2πC .2﹣πD .1﹣4π 32.(2020·山东德州中考真题)下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形; ②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是( )A .1B .2C .3D .4 33.(2020·江苏无锡中考真题)如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=︒,3AB =,3BC =,把Rt ABC ∆沿着AC 翻折得到Rt AEC ∆,若3tan 2AED ∠=,则线段DE 的长度为( )A 6B 7C 3D 27 34.(2020·四川自贡中考真题)如图,在平行四边形ABCD 中,==AD 2,AB 6B 是锐角,AE BC ⊥于点E ,F 是AB 的中点,连接DF EF 、;若90EFD ∠=,则AE 的长为( )A .2B .5C .322D .33235.(2020·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A .6B .12C .18D .2436.(2020·江苏苏州中考真题)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A .1π-B .12π-C .12π-D .122π- 37.(2020·黑龙江绥化中考真题)如图,四边形ABCD 是菱形,E 、F 分别是BC 、CD 两边上的点,不能..保证..ABE △和ADF 一定全等的条件是( )A .BAF DAE ∠=∠B .EC FC = C .AE AF =D .BE DF =38.(2020·黑龙江绥化中考真题)如图,在Rt ABC 中,CD 为斜边AB 的中线,过点D 作DE AC ⊥于点E ,延长DE 至点F ,使EF DE =,连接,AF CF ,点G 在线段CF 上,连接EG ,且180,2,3CDE EGC FG GC ∠+∠=︒==.下列结论:①12DE BC =;②四边形DBCF 是平行四边形;③EF EG =;④25BC =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个39.(2020·四川甘孜中考真题)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .640.(2020·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( )A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC41.(2020·山东聊城中考真题)如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A .3213⎛⎫+ ⎪ ⎪⎝⎭B .313+C .31-D .31+42.(2020·山东菏泽中考真题)如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于( )A .2αB .23αC .αD .180α︒-43.(2020·湖南怀化中考真题)在矩形ABCD 中,AC 、BD 相交于点O ,若AOB 的面积为2,则矩形ABCD 的面积为( )A .4B .6C .8D .1044.(2020·黑龙江中考真题)如图,菱形ABCD 的两个顶点A ,C 在反比例函数k y x=的图象上,对角线AC ,BD 的交点恰好是坐标原点O ,已知()1,1B -,120ABC ∠=︒,则k 的值是( )A .5B .4C .3D .245.(2020·黑龙江中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH AB ⊥于点H ,连接OH ,若6OA =,48ABCD S =菱形,则OH 的长为( )A .4B .8C .13D .646.(2020·湖北襄阳中考真题)已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( )A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形47.(2020·黑龙江牡丹江中考真题)如图,在平面直角坐标系中,O 是菱形ABCD 对角线BD 的中点,//AD x 轴且4=AD ,60A ∠=︒,将菱形ABCD 绕点O 旋转,使点D 落在x 轴上,则旋转后点C 的对应点的坐标是( )A .(0,23)B .(2,4)-C .(23,0)D .(0,23)或(0,23)-48.(2020·黑龙江牡丹江中考真题)如图,在矩形ABCD 中,3AB =,10BC =,点E 在BC 边上,DF AE ⊥,垂足为F .若6DF =,则线段EF 的长为( )A .2B .3C .4D .549.(2020·江苏南京中考真题)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D ,若⊙P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)50.(2020·湖南湘西中考真题)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x51.(2020·山东潍坊中考真题)如图,点E 是ABCD 的边AD 上的一点,且12DE AE =,连接BE 并延长交CD 的延长线于点F ,若3,4DE DF ==,则ABCD 的周长为( )A .21B .28C .34D .4252.(2020·浙江温州中考真题)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .83D .6553.(2020·浙江台州中考真题)把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( )A .732+B .742+C .832+D .82+54.(2020·浙江中考真题)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD 变为菱形ABC ′D ′.若∠D ′AB =30°,则菱形ABC ′D ′的面积与正方形ABCD 的面积之比是( )A .1B .12C .22D .32 55.(2020·浙江嘉兴中考真题)已知二次函数y =x 2,当a ≤x ≤b 时m ≤y ≤n ,则下列说法正确的是( ) A .当n ﹣m =1时,b ﹣a 有最小值B .当n ﹣m =1时,b ﹣a 有最大值C .当b ﹣a =1时,n ﹣m 无最小值D .当b ﹣a =1时,n ﹣m 有最大值56.(2020·山东泰安中考真题)如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A 21B 122C .221D .122257.(2020·山东泰安中考真题)如图,矩形ABCD 中,,AC BD 相交于点O ,过点B 作BF AC ⊥交CD 于点F ,交AC 于点M ,过点D 作//DE BF 交AB 于点E ,交AC 于点N ,连接,FN EM .则下列结论: ①DN BM =;②//EM FN ;③AE FC =;④当AO AD =时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个58.(2020·江苏无锡中考真题)如图,等边ABC ∆的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =,有下列结论:①CP 与QD 可能相等;②ΔAQD 与BCP ∆可能相似;③四边形PCDQ 面积的最大值为31316;④四边形PCDQ 周长的最小值为3732+.其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③59.(2020·四川达州中考真题)如图,45BOD ∠=︒,BO DO =,点A 在OB 上,四边形ABCD 是矩形,连接AC 、BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE 平分BOD ∠;②OF BD =;③2DF AF =;④若点G 是线段OF 的中点,则AEG △为等腰直角三角形.正确判断的个数是( )A .4B .3C .2D .1二、填空题60.(2020·甘肃兰州中考真题)如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是______.61.(2020·西藏中考真题)如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAB 的内部相交于点G ,画射线AG 交DC 于H .若∠B =140°,则∠DHA =_____.62.(2020·西藏中考真题)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE △沿PE 折叠,得到PBE △,连接CF .若AB =10,BC =12,则CF 的最小值为_____.63.(2020·广西河池中考真题)如图,菱形ABCD 的周长为16,AC ,BD 交于点O ,点E 在BC 上,OE ∥AB ,则OE 的长是_____.64.(2020·辽宁大连中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 与D 在函数(0)k y x x=>的图象上,AC x ⊥轴,垂足为C ,点B 的坐标为(0,2),则k 的值为______.65.(2020·辽宁大连中考真题)如图,矩形ABCD 中,6,8AB AD ==,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x 时,y 关于x 的函数解析式为_____.66.(2020·辽宁鞍山中考真题)如图,在菱形ABCD 中,60ADC ∠=︒,点E ,F 分别在AD ,CD 上,且AE DF =,AF 与CE 相交于点G ,BG 与AC 相交于点H .下列结论:①ACF CDE △≌△;②2CG GH BG =⋅;③若DF 2CF =,则7CE GF =;④234ABCG S BG =四边形.其中正确的结论有_______.(只填序号即可)67.(2020·辽宁鞍山中考真题)如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.68.(2020·辽宁铁岭中考真题)如图,以AB 为边,在AB 的同侧分别作正五边形ABCDE 和等边ABF ,连接,FE FC ,则EFA 的度数是____________.69.(2020·辽宁铁岭中考真题)如图,45MON ︒∠=,正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,正方形3343A B B C ,…,的顶点123,,,,⋯A A A A ,在射线OM 上,顶点1234,,,,,⋯B B B B B ,在射线ON 上,连接2AB 交11A B 于点D ,连接13A B 交22A B 于点1D ,连接24A B 交33A B 于点2D ,…,连接11B D 交2AB 于点E ,连接22B D 交13A B 于点1E ,…,按照这个规律进行下去,设ACD △与1B DE 的面积之和为1111,S AC D 与211B D E 的面积之和为2222,S A C D 与322B D E 的面积之和为3S ,…,若2AB =,则n S 等于__________.(用含有正整数n 的式子表示)70.(2020·辽宁铁岭中考真题)一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为____________cm . 71.(2020·江苏泰州中考真题)如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 、在直角坐标系中的坐标分别为()3,6,()3,3-,()7,2-,则ABC 内心的坐标为______.72.(2020·辽宁丹东中考真题)如图,在四边形ABCD 中,AB BC ⊥,AD AC ⊥,AD AC =,105BAD ∠=︒,点E 和点F 分别是AC 和CD 的中点,连接BE ,EF ,BF ,若8CD =,则BEF ∆的面积是_________.73.(2020·辽宁丹东中考真题)如图,在矩形1OAA B 中,3OA =,12AA =,连接1OA ,以1OA 为边,作矩形121OA A B 使12123A A OA =,连接2OA 交1A B 于点C ;以2OA 为边,作矩形232OA A B ,使23223A A OA =,连接3OA 交21AB 于点1C ;以3OA 为边,作矩形343OA A B ,使34323A A OA =,连接4OA 交32AB 于点2C ;…按照这个规律进行下去,则201920202022C C A ∆的面积为_________.74.(2020·黑龙江鹤岗中考真题)在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE a =,连接AE ,将ABE ∆沿AE 折叠.若点B 的对应点B '落在矩形ABCD 的边上,则折痕的长为______. 75.(2020·黑龙江鹤岗中考真题)如图,在边长为4的正方形ABCD 中将ABD ∆沿射线BD 平移,得到EGF ∆,连接EC 、GC .求EC GC +的最小值为______.76.(2020·内蒙古呼伦贝尔中考真题)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的正半轴上.直线1y x =-分别与边,AB OA 相交于,D M 两点,反比例函数(0)ky x x=>的图象经过点D 并与边BC 相交于点N ,连接MM .点P 是直线DM 上的动点,当时,点P的坐标是________________.CP MN77.(2020·山东滨州中考真题)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为23,2,4则正方形ABCD的面积为________78.(2020·内蒙古鄂尔多斯中考真题)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点△平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:A重合),且AM<AB,△CBE由DAM①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=2HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有_____(把所有正确结论的序号都填上).79.(2020·内蒙古鄂尔多斯中考真题)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=3S阴影=_____.80.(2020·内蒙古鄂尔多斯中考真题)如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为_____.81.(2020·云南中考真题)已知四边形ABCD 是矩形,点E 是矩形ABCD 的边上的点,且EA EC =.若6AB =,210AC =,则DE 的长是___.82.(2020·辽宁营口中考真题)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,其中OA =1,OB =2,则菱形ABCD 的面积为_____.83.(2020·湖南益阳中考真题)若一个多边形的内角和是540°,则该多边形的边数是_____. 84.(2020·内蒙古赤峰中考真题)一个n 边形的内角和是它外角和的4倍,则n =______. 85.(2020·湖南湘西中考真题)若多边形的内角和是外角和的2倍,则该多边形是_____边形. 86.(2020·江苏淮安中考真题)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为__________.87.(2020·四川凉山中考真题)如图,ABCD ◊的对角线AC 、BD 相交于点O ,//OE AB 交AD 于点E ,若OA=1,AOE ∆的周长等于5,则ABCD ◊的周长等于__________.88.(2020·浙江舟山中考真题)如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:,使得平行四边形ABCD为菱形.89.(2020·江苏镇江中考真题)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC 的度数为_____°.∠=_____°.90.(2020·辽宁大连中考真题)如图,菱形ABCD中,40ACD︒∠=,则ABC91.(2020·四川凉山中考真题)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是∆沿EF对折后,点B落在点P处,则点P到点D的最短距为.BC上一动点,若将EBF92.(2020·四川绵阳中考真题)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=kx(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.93.(2020·四川绵阳中考真题)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.94.(2020·江苏宿迁中考真题)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB 的中点,若BC=12,AD=8,则DE的长为_____.95.(2020·江苏宿迁中考真题)如图,在矩形ABCD中,AB=1,AD3P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为_____.96.(2020·辽宁沈阳中考真题)如图,在矩形ABCD 中,6AB =,BC B =,对角线,AC BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若PDF 为直角三角形,则DP 的长__________.97.(2020·辽宁沈阳中考真题)如图,在平行四边形ABCD 中,点M 为边AD 上一点,2AM MD =,点E ,点F 分别是,BM CM 中点,若6EF =,则AM 的长为__________.。
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
中考四边形证明与计算(含答案)
中考四边形证明与计算一.解答题(共16小题)1.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.2.如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF ∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.3.如图,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.4.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.5.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.6.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)7.如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.8.如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.9.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.10.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.11.如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.12.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=4,AD=7,求tan∠ADP的值.13.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?14.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.15.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.16.在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1)(1)求证:EO平分∠AEB.(2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明.(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.。
中考专题复习四边形
基础知识点练习:1.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.2.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.3.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.4.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是___________.(一)例题讲解例1 等腰△ABC中AB=AC,D为BC上的一动点,DE∥AC,DF∥AB,则DE+DF是否随D点变化而变化?若不变化请证明.例2. 如图,在ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F ,求证:S △ABF=S平行四边形ABCD.例3如图,已知在□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.例4.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P•从A开始沿AD边向D以1cm/s 的速度运动,动点Q从点C开始沿CB以3cm/s的速度向点B运动.P、Q同时出发,当其中一点到达顶点时,另一点也随之停止运动,设运动时间为ts,•问t为何值时.四边形PQCD是平行四边形.例5.图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作□CDFE,过点C作CG∥AB 交EF与点G.连接BG、DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由.(2)求证:△BCG≌△DCE.练习1如图,在ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. OE=OFB. DE=BFC. ∠ADE=∠CBFD. ∠ABE=∠CDFAB D CEF2如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB•的周长为15, AB =6,那么对角线AC +BD =_______. 矩形、菱形、正方形1.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 2.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( ) A .4 B .3 C .2 D .13.如图在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( )A .16aB .12aC .8aD .4a4.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为5.如图在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==,,则AC 的长为. (一)例题讲解例1已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说明理由.例2如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是 BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形;(2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.1.对角线互相垂直平分的四边形是( )A .平行四边形、菱形B .矩形、菱形C .矩形、正方形D .菱形、正方形D B O A A B C D O A B DA B C DA B CD E F E ' GB G A E FH D C2.顺次连接菱形各边中点所得的四边形一定是( )A.等腰梯形B.正方形C.平行四边形D.矩形3.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是( ) A .四边形AEDF 是平行四边形B .如果90BAC ∠=,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形5.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于( ) A .43.33 C .42.86.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( ) A .5cm B .8cm C .9cm D .10cm7.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.8.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.9.如图,将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是________cm .第3题 D A A F C D B E 第4 题B FC E D A 第5题 A O B E 第6题 F D OCBEAA BCE F M NOFE MD CB A10如图,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB =4,BC =3,则图①和图②中,点B 的坐标为________,点C 的坐标为______.11如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F . (1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.12 已知:如图,D是△ABC 的边。
四边形经典中考题
四边形经典考点1 特殊的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。
(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。
矩形具有________的一切性质。
矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。
矩形被对角线分成了____________个等腰三角形。
(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线__ ___的平行四边形是矩形。
温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再一个角为直角或对角线相等。
很多同学容易忽视这个问题。
2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。
(2)菱形的性质菱形的_______都相等;菱形的对角线互相____ ___,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。
菱形即是轴对称图形也是中心对称图形,对称轴有__ __条。
(3)菱形的面积菱形的面积=底×高,菱形的面积=21ab ,其中a ,b 分别为菱形两条对角线的长。
菱形被对角线分成了4个全等的直角三角形。
(4)菱形的判定:_______都相等的四边形是菱形;对角线______的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。
温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。
3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。
2023中考数学专题复习——第七章 四边形
2023中考专题复习——第七章四边形时间:45分钟满分:80分一、选择题(每题4分,共32分)1.下列各组条件中,不能判断一个四边形是平行四边形的是() A.两组对边分别平行的四边形B.两组对角分别相等的四边形C.两条对角线互相平分的四边形D.一组对边平行另一组对边相等的四边形2.如图,在△ABC中,∠A=90°,点M,N分别为边AB和AC的中点,若AB =2,AC=4,则MN的长度为()A.2 3 B. 3 C.2 5 D. 5(第2题)(第3题)3.如图,在▱ABCD中,连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=()A.80°B.100°C.120°D.140°4.如图,四边形ABCD是菱形,其中A,B两点的坐标分别为A(0,3),B(4,0),则点D的坐标为()A.(0,1) B.(0,-1)C.(0,2) D.(0,-2)(第4题)(第5题)5.如图,在正方形ABCD的外侧作等边三角形CDE,连接AE,则∠DAE的度数是()A.15°B.20°C.12.5°D.10°6.如图,在矩形ABCD中,AB=4,BC=8,对角线AC,BD相交于点O,过点O作OE⊥AC交AD于点E,则DE的长是()A.3 B.5 C.2.4 D.2.5(第6题)(第7题)7.如图,在▱ABCD中,AB=BC=5,对角线BD=8,则▱ABCD的面积为() A.20 B.24 C.40 D.488.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C. △BEF的面积D. △AEH的面积(第8题)(第9题)二、填空题(每题4分,共16分)9.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有________条.10.在平面直角坐标系xOy中,已知点A(2,0),B(5,4),若四边形OABC是平行四边形,则▱OABC的周长等于________.11.如图,在Rt△ABC中,AC=3,BC=4,点D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E,F,则线段EF的最小值为________.(第11题)(第12题)12.如图,四边形ABCD是菱形,点E,F分别在边AB,AD上,且AE=DF,连接BF与DE相交于点G,已知AF=2DF,若FG =3,则GB=________.三、解答题(共32分)13.(8分)如图,在四边形ABCD中,BE⊥AC,DF⊥AC,垂足分别为E,F,且BE=DF,AF=CE.求证:四边形ABCD为平行四边形.(第13题)14.(24分)如图,已知在矩形ABCD中,点M,N分别是边AD,BC的中点,点P,Q分别是边BM,DN的中点.(1)求证:BM∥DN;(2)求证:四边形MPNQ是菱形;(3)当矩形ABCD的边AB与AD满足什么数量关系时,四边形MPNQ为正方形?请说明理由.3(第14题)答案一、1.D 2.D 3.C 4.D 5.A 6.A7.B8.C二、9.410.1411.12 512. 63点拨:如图,过点F作FP∥AB,交DE于点P,则△DFP∽△DAE.∵AF=2DF,∴FPAE=DFDA=13.∵四边形ABCD是菱形,∴AB=AD.∵AE=DF,∴BE=AF,∴BE=2AE,∴FPBE=FP2AE=16.∵FP∥AB,∴△FPG∽△BEG,∴GFGB=FPBE=16,∴GB=6GF=6 3.(第12题)三、13.证明:∵AF=CE,∴AF-EF=CE-EF,即AE=CF.∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.∵BE=DF,∴△ABE≌△CDF.∴AB=CD,∠BAE=∠DCF.∴AB∥CD.∴四边形ABCD为平行四边形.14.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=BN,∴四边形DMBN是平行四边形.∴BM∥DN.(2)证明:由(1)可知四边形DMBN是平行四边形,∴BM=DN,BM∥DN.5∵点P,Q分别为边BM,DN的中点,∴MP=NQ.∴四边形MPNQ是平行四边形.如图,连接MN.(第14题)由(1)可知AD∥BC,AD=BC.∵点M,N分别为边AD,BC的中点,∴DM=CN,∴四边形DMNC是平行四边形.由题可知∠C=90°,∴四边形DMNC是矩形,∴∠DMN=∠C=90°.∵点Q是边DN的中点,∴MQ=NQ,∴四边形MPNQ是菱形.(3)解:当矩形ABCD的边AB与AD满足AB=12AD时,四边形MPNQ为正方形.理由:∵AB=12AD,点M是边AD的中点,∴AB=AM.易得矩形ABNM是正方形.∵P为正方形ABNM对角线BM的中点,∴∠NPM=90°.由(2)知四边形MPNQ是菱形,∴四边形MPNQ是正方形.。
专题05 四边形中考1年模拟数学真题分项汇编
专题05四边形5年中考真题一、单选题1.【2018年】下列图形具有稳定性的是()A .B .C .D .2.【2022年】如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是()A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.【2021年】如图1,ABCD 中,AD AB >,ABC ∠为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是4.【2020年】如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵CB AD =,”和“∴四边形……”之间作补充.下列正确的是()A .嘉淇推理严谨,不必补充B .应补充:且AB CD =,C .应补充:且//AB CD D .应补充:且OA OC =,5.【2022年】依据所标数据,下列一定为平行四边形的是()A .B .C .D .6.【2019年】如图,菱形ABCD 中,150D ︒∠=,则1∠=()A .30︒B .25︒C .20︒D .15︒7.【2018年】用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加()A .4cmB .8cmC .(a+4)cmD .(a+8)cm 8.【2021年】如图,点O 为正六边形ABCDEF 对角线FD 上一点,8AFO S =△,2CDO S =△,则ABCDEF S 正六边形的值是()A .20B .30C .40D .随点O 位置而变化9.【2019年】对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =.乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图4,思路是当x 13n =.下列正确的是()A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题10.【2020年】正六边形的一个内角是正n边形一个外角的4倍,则n _________.11.【2021年】如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.1年模拟新题一、单选题1.(2022·河北·模拟预测)若过多边形的一个顶点作一条直线,把这个多边形截掉两个角,它的内角和变为1260°,则这个多边形原来的边数为()A.12B.10C.11D.10或112.(2022·河北邯郸·二模)如图,一个正多边形纸片不小心被撕去一块,则这个正多边形纸片是()A.正八边形B.正六边形C.正五边形D.正方形3.(2022·河北·石家庄市第四十一中学模拟预测)如图,是一块电脑主板的示意图(单位:mm),其中每个角都是直角,则这块主板的周长是()A .48mmB .80mmC .96mmD .100mm4.(2022·河北石家庄·三模)春节将至,为活跃节日气氛,某同学设计了一个简单霓虹灯图案,如图,矩形内镶嵌一个菱形,菱形各顶点在矩形各边的中点上,则设计该霓虹灯最少需要购买多长的灯管线路()A .9mB .10mC .11mD .12m5.(2022·河北邯郸·二模)两个相同的菱形如图所示拼接在一起,若15ABD ∠=︒,则BCF ∠的度数为()A .75︒B .60︒C .45︒D .30°6.(2022·河北石家庄·三模)如图,边长相等的正八边形和正方形部分重叠摆放在一起,已知正方形面积是2,那么非阴影部分面积是()A .6B .6C .2+D .87.(2022·河北石家庄·三模)下面是幻灯片中关于三角形中位线定理的证明,需要补充横线上的语言和符号.已知:如图1,在△ABC 中,D ,E 分别是边AB ,AC 的中点,求证∶DE //BC ,且DE =12BC .证明:如图2,延长DE 到点F ,使※,连接CF ,∵AE CE =,AED CEF ∠=∠,∴△ADE ≌△CFE (◎)∴AD CF =,A ∠=*,∴AD //CF ,即BD //CF ,又∵BD AD CF ==,∴四边形DBCF 是⊙,∴DF //BC ,即DE //BC ,2DF BC DE ==,∴DE //BC ,且12DE BC =.其中填写正确的是()A .※代表EF DE=B .◎代表ASA C .*代表∠EFC D .⊙代表菱形8.(2022·河北·平泉市教育局教研室二模)如图,在ABCD 中,对角线AC 与BD 相交于点O .嘉嘉说:“作DP OC ∥,CP OD ∥,DP 与CP 相交于点P ,则由O ,C ,D ,P 四点构成的四边形是平行四边形.”;琪琪说:“作DQ OC =,CQ OD =,DQ 与CQ 相交于点Q ,则由O ,C ,D ,Q 四点构成的四边形是平行四边形.”则下列判断正确的是()A .两人的说法都正确B .嘉嘉的说法正确,琪琪的说法不正确C .嘉嘉的说法不正确,琪琪的说法正确D .两人的说法都不正确9.(2022·河北·石家庄市第四十一中学模拟预测)ABCD 中,EF 经过两条对角线的交点O ,分别交AB ,CD 于点E ,F ,在C 上通过作图得到点M ,N 如图1,图2,下面关于以点F ,M ,E ,N 为顶点的四边形的形状说法正确的是()A .都为矩形B .都为菱形C .图1为矩形,图2为平行四边形D .图1为矩形,图2为菱形10.(2022·河北唐山·三模)问题背景:如图,AD 是ABC 的中线,四边形ADCE 是平行四边形.讨论交流:小明说:“若AB AC =,则四边形ADCE 是矩形.”小强说:“若90BAC ∠=︒,则四边形ADCE 是菱形.”下列说法中正确的是()A .小明不对,小强对B .小明对,小强不对C .小明和小强都对D .小明和小强都不对11.(2022·河北石家庄·二模)如图,在ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 的相同长度为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .下列说法正确的是:()①12∠=∠;②四边形ABEF 是平行四边形但不是菱形;③四边形ABEF 是菱形;④若四边形ABEF 的周长为16,AE =60C ∠=°.A .①②B .①③C .①③④D .①②④12.(2022·河北·石家庄市第四十一中学模拟预测)对于题目“如图,在四边形ABCD 中,AB AD ⊥,AD BC ∥,4AB BC ==,2AD =,点E 是BC 上一个动点,过点E 作直线EF BC ⊥,交AD (或其延长线)于点F .以EF 为折线,将四边形ABCD 折叠,若重叠的部分的面积为4,确定满足条件的所有BE 的长”,甲的结果是:1BE =,乙的结果是:2BE =,则()A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确,因为还有其他的取值13.(2022·河北保定·二模)有三个角是直角的四边形是矩形.已知:如图,90A B C ∠=∠=∠=︒.求证:四边形ABCD 是矩形.证明:∵90A B C ∠=∠=∠=︒,∴180A B ∠+∠=︒,180C B ∠+∠=︒,∴AD BC ∥,AB DC ∥(①),∵90B ∠=︒,∴四边形ABCD是矩形(②),在证明过程中,依据①、②分别表示()A.①表示同旁内角互补,两直线平行;②表示对角线相等的平行四边形是矩形B.①表示同旁内角互补,两直线平行;②表示有一个角是直角的平行四边形是矩形C.①表示两直线平行,同旁内角互补;②表示有一个角是直角的平行四边形是矩形D.①表示两直线平行,同旁内角互补;②表示对角线相等的平行四边形是矩形二、填空题(共0分)14.(2022·河北保定·二模)一机器人以3m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所行走的路程为___________m,共需时间___________s.15.(2022·河北廊坊·一模)如图,平面内将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠1、∠2、∠3三个角存在的等量关系为________.16.(2022·河北保定·一模)如图,正方形ABCD和正六边形ADEFGH有一边重合.则DFA∠的度数为________,当AB=时,DF=________.17.(2022·河北唐山·二模)阅读下面材料:在数学课上,老师提出如下问题:已知:Rt△ABC,∠ABC=90°.求作:矩形ABCD .小敏的作法如下:①作线段AC 的垂直平分线交AC 于点O ;②连接BO 并延长,在延长线上截取OD =BO ;③连接DA ,DC .则四边形ABCD 即为所求.老师说:“小敏的作法正确.”依其作法,先得出▱ABCD ,再得出矩形ABCD .请回答:以上两条结论的依据是_____,_____.18.(2022·河北保定·二模)如图,在平行四边形ABCD 中,M 为对角线BD 上一点,连接AM 、MC ,过点M 作EF BC ∥,已知6MF =,4BM =,30ADB ∠=︒.(1)则AEM MCF S S +=△△______.(2)若:1:3BM MD =,则ABCD S = ______.19.(2022·河北·平泉市教育局教研室二模)如图,在矩形ABCD 中,AB =3,BC =4,点P 是对角线AC 上任意一点,过点P 作PQ ⊥PD ,PQ 交BC 于点Q .(1)sin ∠CAD =______;(2)连接DQ ,把△DCQ 沿DQ 折叠,当点C 与点P 重合时,AP =______.20.(2022·河北石家庄·二模)如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线,AC OB 交于点M ,函数(0)k y x x=>的图象经过点(3,4)A 和点M ,与BC 交于点N .则点M 的坐标为_________,点N 的坐标分别为____________.21.(2022·河北·二模)如图,将几个全等的正八边形进行拼接,相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形.设正方形的边长为1,则该图形外轮廓的周长为______;若n 个全等的正多边形中间围成的图形是正三角形,且相邻的两个正多边形有一条公共边,设正三角形的边长为1,则该图形外轮廓的周长是______.22.(2022·河北保定·模拟预测)矩形纸片ABCD 的长、宽分别为8,6,点P ,Q 分别在边AD ,AB 上,将该纸片沿PQ 折叠,点A 落在点M 处.(1)如图1,若点M在边CD上,且点B与Q重合,则AP的长为____________;(2)如图2,若2AP ,且点M在矩形ABCD内部,连接DM,BM,则四边形DMBC的面积S的取值范围为_______.三、解答题(共0分)∠ACB=120°,在△ADE中,∠DAE=90°,∠AED=30°,23.(2022·河北·一模)在△ABC中,AC=BCAD=1,连接BD,BE,点F是BD的中点,连接CF.(1)如图1,当顶点D在边AB上时,BE与线段CF的数量关系是,线段BE与线段CF的位置关系是;(2)将△ADE绕点A旋转,转到图2的位置时,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由;(3)在△ADE绕点A旋转的过程中,线段AF的最大值为;当DE∥CF时,线段CF的长为.tan A M是BC的中点,24.(2022·河北唐山·三模)如图,在▱ABCD中,BC=8,S▱ABCD点P从点M出发沿MB以每秒1个单位长度的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长度的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作等边△EPQ,使它和▱ABCD在射线BC的同侧,点P,Q同时出发,点P返回到点M时终止运动,点Q 也随之停止,设点P,Q运动时间是t秒(t>0).(1)①当t =1秒时,S △PQE =______;②当t =______秒时,点E 刚好落在边AD 上;(2)当PM =2时,求△EPQ 与▱ABCD 重叠部分面积;(3)随着时间t 的变化,△EPQ 的外心是否一直在▱ABCD 内部?如果在,请说明理由;如果不在,直接写出△EPQ 的外心在▱ABCD 内部时t 的取值范围.25.(2022·河北·石家庄市第四十一中学一模)图,在ABC 中,90ABC ∠=︒,5AC =,4AB =.动点P 从点C 出发,沿CA 以每秒3个单位长度的速度向终点A 匀速运动.过点P 作CA 的垂线交射线CB 于点M ,当点M 不和点B 重合时,作点M 关于AB 的对称点N .设点P 运动时间为t 秒(0t >).(1)求BC 的长;(2)求MN 的长;(用含t 的代数式表示)(3)取PC 的中点Q .①连接MQ 、PN ,当点M 在边BC 上,且MQ PN ∥时,求MN 的长;②连接NQ ,当CNQ A ∠=∠时,直接写出t 的值.26.(2022·河北·石家庄市第四十一中学模拟预测)如图,正方形ABCD 的边长为3,点P 是射线DA 上的一点,连接CP ,将CP 绕点P 顺时针旋转90°,得到PQ ,连接CQ ,AQ ,设DP x =.(1)当1x =时,PQ 交AB 于点E ,求AE 的长;(2)当点P 在边DA 上时(可与点D ,A 重合),求点Q 经过的路径的长;(3)若15PQA ∠=︒,求x 的值;(4)当1x =时,经过AD 的中点且垂直于AD 的直线被CPQ 截出一条线段,设这条线段的长为l ,直接写出l 的长.27.(2022·河北邯郸·三模)已知△CAB 和△CDE 均为等腰直角三角形,∠DCE =∠ACB =90°.发现:如图1.点D 落在AC 上,点E 落在CB 上,则直线AD 和直线BE 的位置关系是______;线段AD 和线段BE 的数量关系是______.探究:在图1的基础上,将△CDE 绕点C 逆时针旋转,得到图2.求证:(1)AD =BE ,(2)BE ⊥AD .应用:如图3,四边形ABCD 是正方形,E 是平面上一点,且AE =3,DE =,直接写出CE 的取值范围.28.(2022·河北唐山·一模)已知:如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,AP =PO ;(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.29.(2022·河北石家庄·二模)如图1,在矩形ABCD 中,E ,F ,G 分别为边BC ,AB ,AD 的中点,连接DF,EF,H为DF的中点,连接GH,将△BEF绕点B旋转.(1)当△BEF旋转到如图2所示位置,且AB=BC时,猜想GH与CE之间的关系,并证明你的猜想.(2)已知AB=6,BC=8,①当△BEF旋转到如图3所示位置时,猜想GH与CE之间的数量关系,并说明理由.②射线GH,CE相交于点Q,连接BQ,在△BEF旋转过程中,BQ有最小值,请直接写出BQ的最小值.30.(2022·河北唐山·二模)问题情境:在数学课上,老师给出了这样一道题:如图1,在△ABC中,AB=AC=6,∠BAC=30°,求BC的长.探究发现:(1)如图2,勤奋小组经过思考后发现:把△ABC绕点A顺时针旋转90°得到△ADE,连接BD,BE,利用直角三角形的性质可求BC的长,其解法如下:==-.过点B作BH⊥DE交DE的延长线于点H,则BC DE DH HE△ABC绕点A顺时针旋转90°得到△ADE,AB=AC=6,∠BAC=30°,∴……请你根据勤奋小组的思路,完成求解过程.拓展延伸:(2)如图3,缜密小组的同学在勤奋小组的启发下,把△ABC绕点A顺时针旋转120°后得到△ADE,连接BD,CE交于点F,交AB于点G,请你判断四边形ADFC的形状并证明;(3)奇异小组的同学把图3中的△BGF绕点B顺时针旋转,在旋转过程中,连接AF,发现AF的长度不断变化,直接写出AF的最大值和最小值.31.(2022·河北·邯郸市邯山区芳园实验中学一模)已知在矩形ABCD 中,E ,F 是边AB ,AD 上的点,过点F 作EF 的垂线交边DC 于点H .(1)【发现】如图1,以EF 为直径作⊙O ,点A (填“在”或“不在”)⊙O 上;当»AE =AF 时,tan ∠AEF 的值是;(2)【论证】如图1,当FE =FH 时,求证:AD =AE +DH ;(3)【探究】如图2.当E ,F 是边AB ,AD 的中点时,若AB =8,DH =2,求EH 的长;(4)【拓展】如图3.将矩形换为平行四边形,在平行四边形ABCD 中,AB =10,AD =15,tan A =43,F 是边AD 上的动点,过点F 在BF 的右侧作BF 的垂线FG ,且有BF =FG ,当点G 落在平行四边形ABCD 的边所在的直线上时,直接写出BG 的长.。
2020年九年级数学中考三轮冲刺复习:《四边形综合训练》(含解析)
中考三轮冲刺复习:《四边形综合训练》1.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P 从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t2﹣64t+256=0.解得t1=,t2=16(舍去)综合上面的讨论可知:当t=秒或t=秒时,以B、P、Q三点为顶点的三角形是等腰三角形.(3)设存在时刻t,使得PQ⊥BD.如图2,过点Q作QE⊥AD于E,垂足为E.∵AD∥BC∴∠BQF=∠EPQ,又∵在△BFQ和△BCD中∠BFQ=∠C=90°,∴∠BQF=∠BDC,∴∠BDC=∠EPQ,又∵∠C=∠PEQ=90°,∴Rt△BDC∽Rt△QPE,∴=,即=,解得t=9.所以,当t=9秒时,PQ⊥BD.2.综合与实践在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).(1)操作发现:如图①,当AC=BC=8时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为45°;②当BE=4时,四边形CDBE为正方形;(2)探究证明:如图②,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE,连接DE,BE.①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形.解:(1)①∵∠ACB=90°,AC=BC,∴∠A=∠CBA=45°,∵∠ACB=90°,∠DCE=90°,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS)∴∠CBE=∠A=45°,故答案为:45°;②∵∠ACB=90°,AC=BC=8,∴AB==8,当四边形CDBE为正方形时,CD⊥AB,BE=BD=AD,∴BE=AB=4,故答案为:4;(2)①∠CBE=∠A.理由如下:∵BC=2AC,CE=2CD,∴==,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴∠CBE=∠A;②证明:∵∠CBE=∠A,∠DBC+∠A=90°,∴∠DBE=∠DBC+∠CBE=∠DBC+∠A=90°,∵CD⊥AB,∴∠CDB=90°,又∵∠DCE=90°,∴四边形CDBE是矩形.3.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合)EF⊥CE,且与正方形外角平分线AG 交于点P.(1)求证:CE=EP(2)若点E坐标为(3、0)时.①在y轴上是否存在点M使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.②在平面内是否存在点Q,使四边形CEPQ为正方形,若存在,请直接写出Q点坐标,若不存在,说明理由.(1)证明:如图1,在OC上截取OK=OE.连接EK,∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°,∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA,∵EC⊥EP,∴∠CEF=∠COE=90°,∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA,在△CKE和△EAP中,,∴△CKE≌△EAP(ASA),∴EC=EP;(2)①解:y轴上存在点M,使得四边形BMEP是平行四边形.如图2,过点B作BM∥PE交y轴于点M,连接BP,EM,则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ,∵在△BCM和△COE中,∵,∴△BCM≌△COE(ASA),∴BM=CE,∵CE=EP,∴BM=EP.∵BM∥EP,∴四边形BMEP是平行四边形,∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.故点M的坐标为(0,2).②如图3,存在点Q使四边形CEPQ是正方形,过点Q作QH⊥y轴于点Q,则∠QHC=∠COE=90°,∴∠HQC+∠HCQ=90°,∴∠HCQ+∠ECO=90°,∴∠ECO=∠CHQ,∵四边形CEPQ是正方形,∴CQ=EC,∴△HCQ≌△OEC(AAS),∴HC=OE=2,HQ=OC=5,则HO=7,∴点Q的坐标为(5,7).4.如图,正方形ABCD中,E为BC边上任意点,AF平分∠EAD,交CD于点F.(1)如图1,若点F恰好为CD中点,求证:AE=BE+2CE;(2)在(1)的条件下,求的值;(3)如图2,延长AF交BC的延长线于点G,延长AE交DC的延长线于点H,连接HG,当CG=DF时,求证:HG⊥AG.解:(1)如图1,延长BC交AF的延长线于点G,∵AD∥CG,又∵AF平分∠DAE,∴∠DAF=∠EAF,∴∠G=∠EAF,∴EA=EG,∵点F为CD的中点,∴CF=DF,又∵∠DFA=∠CFG,∠FAD=∠G,∴△ADF≌△GCF(AAS),∴AD=CG,∴CG=BC=BE+CE,∴EG=BE+CE+CE=BE=2CE=AE;(2)设CE=a,BE=b,则AE=2a+b,AB=a+b,在Rt△ABE中,AB2+BE2=AE2,即(a+b)2+b2=(2a+b)2,解得b=3a,b=﹣a(舍),∴==;(3)如图2,连接DG,∵CG=DF,DC=DA,∠ADF=∠DCG,∴△ADF≌△DCG(SAS),∴∠CDG=∠DAF,∴∠HAF=∠FDG,又∵∠AFH=∠DFG,∴△AFH∽△DFG,∴=,又∵∠AFD=∠HFG,∴△ADF∽△HGF,∴∠ADF=∠FGH,∵∠ADF=90°,∴∠FGH=90°,∴AG⊥GH.5.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,将∠MBN绕点B旋转,它的两边分别交边AD、DC(或它们的延长线)于点E、F.(1)当∠MBN绕点B旋转到AE=CF时(如图1),①求证:△ABE≌△CBF;②求证:AE+CF=EF;(2)当∠MBN绕点B旋转到如图2所示的位置时,AE≠CF,此时,(1)中的两个结论是否还成立?请直接回答.(1)①证明;∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);②证明:∵△ABE≌△CBF,∴BE=BF,∠ABE=∠CBF,∵∠MBN=60°,∴△BEF是等边三角形.∠ABE=∠CBF=(∠ABC﹣∠MBN)=(120°﹣60°)=30°.∴BE=BF=EF,AE=BE,CF=BF,∴AE+CF=BE+BF=EF;(2)解:①△ABE≌△CBF不成立;②AE+CF=EF成立,理由如下:∵AE≠CF,∴△ABE≌△CBF不成立延长DC至点K,使CK=AE,连接BK,如图2所示:在△BAE与△BCK中,,∴△BAE≌△BCK(SAS),∴BE=BK,∠ABE=∠CBK,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠CBK=60°,∴∠KBF=∠FBE=60°,在△KBF与△EBF中,,∴△KBF≌△EBF(SAS),∴KF=EF,∴AE+CF=KC+CF=KF=EF.6.已知:如图①,在矩形ABCD中,AB=3,AD=4,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AF和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.解:(1)∵四边形ABCD是矩形,∴∠BAD=90°,在Rt△ABD中,AB=3,AD=4,由勾股定理得:BD===5,=BD•AE=AB•AD,∵S△ABD∴AE===,∵点F是点E关于AB的对称点,∴AF=AE=,BF=BE,∵AE⊥BD,∴∠AEB=90°,在Rt△ABE中,AB=3,AE=,由勾股定理得:BE===.(2)设平移中的三角形为△A′B′F′,如图①﹣1所示:由对称点性质可知,∠1=∠2.BF=BE=,由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=,即m=;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=,∴BB′=BD﹣B′D=5﹣=,即m=.(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如图③﹣1所示,点Q落在BD延长线上,且PD=DQ,则∠Q=∠DPQ,∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=3,∴F′Q=F′A′+A′Q=+3=.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣5;②如图③﹣2所示,点Q落在BD上,且PQ=DQ,则∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:()2+(﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=5﹣=;③如图③﹣3所示,点Q落在BD上,且PD=DQ,则∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,∴F′Q=A′Q﹣A′F′=3﹣=.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=5﹣;④如图④﹣4所示,点Q落在BD上,且PQ=PD,则∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=3,∴DQ=BD﹣BQ=5﹣3=2.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为2或或或.7.如图,在Rt△ABD中,∠BAD=90°,AB=5,过点A作AC⊥BD,垂足为C,且AC=4,E是线段CD上一点,过E作EF⊥AD,垂足为F﹒(1)请直接写出AD的长为;(2)如图1,若点F在∠ABD的角平分线上,求DF的长;(3)如图2,连接CF,点G为点A关于CF的对称点.①连结DG,CG,当四边形CGDF中有两边互相平行时,求CE的长;②连结AG交BD于点H,点H在点E的上方,若∠BAC﹣∠EAH=30°,则=.解:(1)∵AC⊥BD,∴∠ACB=90°,∵AB=5,AC=4,∴BC===3,∵∠ABC=∠ABD,∠ACB=∠BAD=90°,∴△BAC∽△BDA,∴==,∴==,∴BD=,AD=.故答案为.(2)如图1中,作FH⊥BD于H.∵∠FAB=∠FHB=90°,∠FBA=∠FBH,BF=BF,∴△FBA≌△FBH(AAS),∴AF=FH,BA=BH=5,∵BD=,∴DH=﹣5=,设AF=FH=x,则DF=﹣x,在Rt△DFH中,∵DF2=DH2+FH2,∴(﹣x)2=()2+x2,∴x=,∴DF=﹣=.(3)①如图2﹣1中,当DG∥CF时,设CF交AG于P.∵A,G关于CF对称,∴CF垂直平分线段CF,∴AP=PG,∠APF=90°,∵PF∥DG,AP=PG,∴AF=DF,∵EF∥AB,∴DE=BE=,∴EC=BE﹣CB=﹣3=.如图2﹣2中,当DF∥CG时,∵CG∥AD,∴∠AFC=∠FCG,∵∠FCG=∠FCA,∴∠AFC=∠ACF,∴AF=AC=4,∵EF∥AB,∴=,∴=,∴BE=5,∴EC=BE﹣BC=5﹣3=2,综上所述,满足条件的EC的值为2或.②如图3中,设CF交AG于P.∵∠ACH=∠APC=90°,∴∠PCH+∠ACP=90°,∠ACP+∠PAC=90°,∴∠PCH=∠PAC,设∠PAC=∠PCH=α,∵∠AFE=90°,∴∠AFE+∠PCE=180°,∴A,F,E,C四点共圆,∴∠FAE=∠ECF=α,设∠CAB=β,∵∠DAB=90°,∴α﹣∠EAG+α+β=90°,∵β﹣∠EAG=30°,∴2α=60°,∴α=30°,设PC=k,则AP=PG=k,PH=k,∴GH=k﹣k=k,AH=k+k=k,∴==.故答案为.8.问题背景:峰兄在探究几何图形的时候,发现了一组非常神奇的性质:如图1,等边三角形△ABC,△CDE中,连接AD,BE可以得到△ACD≌△BCE,好学的他发问取AD,BE的中点,得到的△CMN是特殊三角形吗?请说明理由;迁移应用:如图2,在正方形ABCD中,点O为CB的中点,构造正方形EHMF绕O点进行旋转,OE=OF,连接AH,BE,DM,求的值;联系拓展:如图3,等腰Rt△ABC,△BDE中,AB=AC,BD=DE,∠BDE=∠BAC=90°,当△BDE绕B点旋转的过程中取AD,CE的中点M,N,连接MN,若AB=BD,且∠ABD=30°,BD=1时,直接写出MN的长度.解:问题背景:如图1中,△CMN是等边三角形.理由如下:∵△ACB,△DCE都是等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵AM=AD,BN=BE,∴AM=AN,∵AC=CB,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∴∠ACB=∠MCN=60°,∴△MCN是等边三角形.迁移应用:如图2中,连接AO,OH.∵四边形ABCD,四边形EFMH是正方形,∴∠ABO=∠HEO=90°,AB=BC,HE=,∵OB=OC,OE=OF,∴AB=2BO,EH=2OE,OA=OB,OH=OE,∴=,∴=,∴△ABO∽△HEO,∴∠AOB=∠HOE,∴∠BOE=∠AOH,∵==,∴△AOH∽△BOE,∴==.联系拓展:如图3中,连接BM,延长BM到K,使得MK=BM,连接DK,AK,BN,作KJ⊥BD交BD的延长线于J.∵AB=BD,BD=1,∴AB=,∵AM=DM,BM=MK,∴四边形ABDK是平行四边形,∴AB=DK=,AB∥DK,∴∠KDJ=∠ABD=30°,∵KJ⊥BJ,∴∠J=90°,∴KJ=DK=,DJ=KJ=,BJ=BD+DJ=1+=,∴BK===,∴BM=MK=BK=,∵△BDE,△ABC都是等腰直角三角形,∴∠ABC=∠DBE=45°,BC=AB,BE=BD,∴=,∠CBE=∠ABD,∴△ABD∽△CBE,∴∠ADB=∠CEB,=,∵AM=DM,EN=CN,∴=,∵∠BDM=∠BEN,∴△BDM∽△BEN,∴∠MBD=∠EBN,==,∴∠MBN=∠DBE=45°,作NM′⊥BK于M′,在Rt△BNM′中,BM′=BN•cos45°=BN,∵BM=BN,∴BM=BM′,∴M与M′重合,∴△BMN是等腰直角三角形,∴MN=BM=.9.如图,在长方形OABC中,O为平面直角坐标系的原点,点A,点C分别在x轴,y轴上,点B坐标为(4,6),点P从点O出发,以每秒2个单位长度的速度沿O→C→B 方向运动,到点B停止设点P运动的时间为t(秒).(1)点A的坐标为(4,0);(2)当t=1秒时,点P的坐标(0,2);(3)当点P在OC上运动,请直接写出点P的坐标(用含有t的式子表示);(4)在移动过程中,当点P到y轴的距离为1个单位长度时,求t的值.解:(1)∵四边形OABC是矩形,∴∠OAB=90°,∵B(4,6),∴AB=6,OA=4,∴A(4,0),故答案为(4,0).(2)t=1时,OP=2×1=2,∴OP=2,此时点P在线段OC上,∴P(0,2),故答案为(0,2).(3)当点P在OC上运动时,P(0,2t).(4)当点P到y轴的距离为1个单位长度时,可知点P在BC上,∴点P的坐标为(2t﹣6,6),∴2t﹣6=1,解得:t=3.5.答:当点P到y轴的距离为1个单位长度时,t的值为3.5.10.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G ∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC 于点Q,设OC与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF ∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴i )若S △OMH =2S △ONH ,且两三角形都以OH 为底∴MP =2NQ =8x ∴解得:x =∴CN = ii )若2S △OMH =S △ONH ,则MP =NQ =2x ∴解得:x =∴CN =综上所述,CN 的长为或.11.如图,菱形ABCD 中,BE ⊥AD ,且BE =,∠ABE =30°,连接BD 、CE ,作DF ⊥CE ,垂足为F . (1)判断△BCD 的形状(直接写出即可);(2)求DF 的长度.(3)若动点P ,Q 同时从点B 出发,在△ABD 边上运动,P 沿B →A →D 路径匀速运动,Q 沿B →D +A 路径匀速运动,当两点相遇时运动停止,已知点P 的运动速度为2单位/秒,点Q 的运动速度为1单位/秒,设运动时间为x 秒,△PBQ 的面积为y ,求当x 为何值时,y取得最大值?最大值为多少?解:(1)∵BE⊥AD,∴∠BEA=90°,∵∠ABE=30°,∴∠A=60°,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠BCD=∠A=60°,∴△BCD是等边三角形;(2)在Rt△ABE中,∵BE=,∠A=60°,∴AB===4,∵∠ABE=30°,∴AE=AB=×4=2,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∵BE⊥AD,∴DE=AE=2,∵四边形ABCD是菱形,∴AD∥BC,∴S=DE•BE=×2×2=2,△CED∵AD∥BC,BE⊥AD,∴BC⊥BE,在Rt△BCE中,CE===2,∵DF⊥CE,∴S=DF•EC=DF,△CED∴DF=2,∴DF=;(3)∵AB=AD=4,点P的运动速度为2单位/秒,点Q的运动速度为1单位/秒,∴P到达A点时为2s,到达D得时为4s,则Q在BQ上;P到达D时,Q也到达D;①当0<x≤2时,P在BA上运动,Q在BD上运动,过点Q作QG⊥AB于G,如图1所示:则QG=BQ•sin60°=x,∴y=BP•QG=×2x×x=x2,∴x=2时,y有最大值,最大值为2;②2≤x<4时,P在AD上运动,Q在BD上运动,过点P作PH⊥BD于H,如图2所示:∵DP=8﹣2x,∴PH=DP•sin60°=(8﹣2x)=4﹣x,∴y=PH•BQ=(4﹣x)x=﹣x2+2x=﹣(x2﹣4x)=﹣(x﹣2)2+2,∴当x=2时,y取最大值,最大值为2;综上所述,当x=2时,y有最大值,最大值为2.12.如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.解:(1)设点M到BC的距离为h,由S△ABC =S△ABM+S△BCM,即×5×4=×5×+×5h,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣t+(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t﹣(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.13.如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.已知,OA=2,OC=4,点D为x轴上一动点,以BD为一边在BD右侧作正方形BDEF.(1)若点D与点A重合,请直接写出点E的坐标;(2)若点D在OA的延长线上,且EA=EB,求点E的坐标;(3)若OE=2,求点E的坐标.解:(1)当点D与点A重合时,如图1,∴BD=OC=4,∵四边形BDFE是正方形,∴BD=DE=4,∠BDE=90°,∵OA=2,∴OE=OA+AE=2+4=6,∴E(6,0);(2)如图2,过E作EG⊥AB于G,作EH⊥x轴于H,∵EB=EA,∴AG=BG=2,∵∠AGC=∠GAH=∠AHE=90°,∴四边形AGEH是矩形,∴EH=AG=2,∵四边形BDEF是正方形,∴BD=DE,∠BDE=90°,∴∠ADB+∠EDH=∠ADB+∠ABD=90°,∴∠EDH=∠ABD,∵∠BAD=∠DHE=90°,∴△BAD≌△DHE(ASA),∴DH=AB=4,AD=EH=2,∴OH=8,∴E(8,2);(3)分两种情况:①D在点A的右侧时,如图3,过E作EH⊥x轴于H,由(2)知:△BAD≌△DHE,∴DH=AB=4,AD=EH,设AD=x,则EH=x,OH=2+4+x=6+x,在Rt△OEH中,由勾股定理得:OE2=OH2+EH2,∴,解得:x=2或﹣8(舍),∴E(8,2);②D在点A的左侧时,如图4,过E作EH⊥x轴于H,由(2)知:△BAD≌△DHE,∴DH=AB=4,AD=EH,设AD=x,则EH=x,OH=x﹣2﹣4=x﹣6,在Rt△OEH中,由勾股定理得:OE2=OH2+EH2,∴=x2+(x﹣6)2,解得:x=﹣2或8(舍),∴OH=﹣2﹣6=﹣8,∴E(﹣2,﹣8);综上,点E的坐标是(8,2)或(﹣2,﹣8).14.如图,已知点B(a,b),且a,b满足|2a+b﹣13|+=0.过点B分别作BA⊥x 轴、BC⊥y轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边OA上的一个动点(不与点A重合),∠CMA的角平分线交射线CB于点N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由;(3)在四边形OABC的边上是否存在点P,使得BP将四边形OABC分成面积比为1:4的两部分?若存在,请直接写出点P的坐标;若不存在,说明理由.解:(1)∵|2a+b﹣13|+=0.∴,∴,∴B(5,3);(2)的值不变,其值为1,理由:∵BC⊥y轴,∴BC∥x轴,∴∠CNM=∠AMN,∵MN是∠CMA的平分线,∴∠CMN=∠AMN,∴∠CNM=∠CMN,∴=1;(3)由(1)知,B(5,3),∵BA⊥x轴、BC⊥y,∴A(5,0),C(0,3),∵BA⊥x轴、BC⊥y,∴∠OCB=∠OAB=90°=∠AOC,∴四边形AOBC是矩形,∴AB=OC=3,BC=OA=5,∴S四边形OABC=OA•OC=15,当点P在OC上时,设P(0,m),∴CP=3﹣m,∴S△BPC=BC•CP=×5(3﹣m)=(3﹣m),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPC =S四边形OABC=3,∴(3﹣m)=3,∴m=,∴P(0,)当点P在OA上时,设P(0,n),∴AP=5﹣n,∴S△BPC=AB•AP=×3(5﹣n)=(5﹣n),∵BP将四边形OABC分成面积比为1:4的两部分,∴S△BPA =S四边形OABC=3,∴(5﹣n)=3,∴n=3,∴P(3,0),即:满足条件的点P的坐标为(0,)或(3,0).15.如图1,正方形ABCD中,O是对角线BD的中点,点E在边AB上,点F在边AD上,且OE⊥OF(1)求证:BE=AF;(2)如图2,延长FO交BC于H,连结EH,若BE=12,DF=5,求EH的长;(3)如图3,连结EF,若AB=16,求△AEF的面积的最大值.解:(1)如图1,连接AO,∵四边形ABCD是正方形,且O是BD中点,∴OA=OB,∠OBE=∠OAF=45°,∠AOB=90°,即∠BOE+∠AOE=90°,又∵OE⊥OF,即∠AOF+∠AOE=90°,∴∠BOE=∠AOF,∴△BOE≌△AOF(ASA),∴BE=AF;(2)∵∠OBH=∠ODF=45°,OB=OD,∠BOH=∠DOF,∴△BHO≌△DFO(ASA),∴BH=DF=5,∵BE=12,∠EBH=90°,∴EH=13;(3)如图3,作ON⊥AD于N,则ON=8,∵S △AEF =S 四边形AEOF ﹣S △EOF ,又S 四边形AEOF =S △AOE +S △AOF =S △AOE +S △BOE =S △BOA =64, ∴S △AEF =64﹣OF 2, ∵OF ≥ON ,∴S △AEF ≤64﹣×82=32, ∴△AEF 面积的最大值为32.16.在综合与实践课上,老师组织同学们以“矩形纸片的折叠”为主题开展数学活动. (1)奋进小组用图1中的矩形纸片ABCD ,按照如图2所示的方式,将矩形纸片沿对角线AC 折叠,使点B 落在点B ′处,则△ADC 与△AB ′C 重合部分的三角形的形状是 等腰三角形 .(2)勤学小组将图2中的纸片展平,再次折叠,如图3,使点A 与点C 重合,折痕为EF ,然后展平,则以点A 、F 、C 、E 为顶点的四边形是什么特殊四边形?请说明理由. (3)创新小组用图4中的矩形纸片ABCD 进行操作,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折,点C 落在点C '的位置,BC ′交AD 于点G ,再按照如图5所示的方式折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M ,则EM 的长为cm .解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,由折叠知,∠BAC=∠B'AC,∴∠B'AC=∠DAC,∴AM=CM∴△MAC是等腰三角形,故答案为:等腰三角形;(2)菱形,理由:如图3,连接AE,CF,设EF与AC的交点为M,由折叠知,∠AME=∠CME=90°,AM=CM,∴AE=CE,AF=CF,∵四边形ABCD是矩形,∴EC∥AF,∴∠ECM=∠FAM,∠CEM=∠AFM,∴△ECM≌△FAM(AAS),∴EC=FA,∴AE=EC=FC=FA,∴以点A,F,C,E为顶点的四边形是菱形;(3)∵AD=8cm,AB=6cm,∴BD==10cm由(1)可知BG=GD,∵BG2=AB2+AG2,∴BG2=36+(8﹣BG)2,∴BG=cm∴AG=cm由折叠的性质可得AM=MD=4cm,EM⊥AD∵∠BAD=∠BC'D=90°,∠AGB=∠C'GD∴∠ABG=∠C'DG,且∠BAG=∠EMD=90°∴△ABG∽△EMD∴∴∴EM=cm故答案为:17.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.(1)该学习小组成员意外的发现图①中(三角板一边与OC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(1)证明:连结AN,∵矩形ABCD∴AO=CO,∠ABN=90°,AB=CD,∵ON⊥AC,∴NA=NC,∵∠ABN=90°,∴NA2=BN2+AB2,∴CN2=BN2+CD2.(2)如图2,连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.(3)CM2+CN2=DM2+BN2理由如下:延长MO交AB于E,∵矩形ABCD,∴BO=DO,∠ABC=∠DCB=90°,AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO(AAS),∴OE=OM,BE=DM,∵NO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE2=BE2+BN2,NM2=CN2+CM2,∴CN2+CM2=BE2+BN2 ,即CN2+CM2=DM2+BN2 .18.如图,在平面直角坐标系中,边长为3的正方形OABC的边OC落在x轴的正半轴上,边OA落在y轴的正半轴上,点E从点A出发以每秒1个单位长度的速度沿着射线AB 的方向运动,点A关于OE的对称点为点F.运动时间为t秒,连接OF、EF、BF、CF.(1)如图1、当∠AOE=30°时,求∠CFB的度数;(2)如图2,当t=1时,求证:BF⊥CF.(3)如图3,过点F作FG⊥CF,且FG=CF,连接AG.M为AG的中点,连接CM.则当t=(3+3)s时,CM有最小值,CM的最小值为3﹣.解:(1)如图1中,连接AF.由翻折想性质可知:∠AOE=∠EOF=30°,OA=OF,∴∠AOF=60°,∴△AOF是等边三角形,∴AF=FO,∠OAF=60°,∵四边形OABC是正方形,∴AB=OC,∠OAB=∠AOC=∠ABC=∠OCB=90°,∴∠BAF=∠COF=30°,∵AB=AF=OF=OC,∴∠ABF=∠AFB=∠OCF=∠OFC=75°,∴∠FCB=∠FBC=15°,∠CFB=180°﹣15°﹣15°=150°.(2)如图2中,作FM⊥AB于M,交OC于N.设FM=x,EM=y.∵∠OAM=∠AMN=∠AON=90°,∴四边形AMNO是矩形,∴MN=AO=3,AM=ON=1+y,FN=3﹣x,在Rt△EFM和Rt△OFM中,则有,解得,∴BM=CN=3﹣1﹣=,∴BF==,CF==,∴CF2+BF2=+=9=BC2,∴∠CFB=90°,∴CF⊥BF.(3)如图3中,AO的延长线上截取OK=OC,连接KC,KG,OM.∵OC=OF=OK,∠COK=90°,∴∠CFK=135°,∵CF⊥FG,∴∠CFG=90°,∴∠KFG=360°﹣135°﹣90°=135°,∴∠KFC=∠KFG,∵KF=KF,FC=FG,∴△KFC≌△KFG(SAS),∴KC=KG=3,∵OA=OC=OK,AM=MG,∴OM=KG=,∴点M的运动轨迹是以O为圆心,OM长为半径的圆弧,∴当点M落在线段OC上时,CM定值最小,最小值=3﹣,此时易证:∠AOE=∠EOF=67.5°,可得BE=OB=3,∴AE=3+3,∴t=(3+3)s.故答案为:3+3,3﹣.19.如图,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA ﹣AB﹣BC以5cm/s的速度运动,当点P与点B不重合时,连结PB,以线段PB为对角线作正方形PDBE,设点P的运动时间为t(s),正方形PDBE的面积为S(cm2).(1)当正方形PDBE有两边同时落在△ABC的边上时,求t的值;(2)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式以及自变量t的取值范围;(3)在整个运动过程中,正方形PDBE至少有一个顶点落在∠A的平分线上时,直接写出t的值.解:(1)当正方形PDBE有两边同时落在△ABC的边上时,设正方形的边长为x,如图1所示:∵PE∥AB,∴=,即:=,解得:x=,∴PE=,∴EC=BC﹣BE=4﹣=,∴PC===,∴t==s;(2)①当0≤t≤1时,作PH⊥BC于H,如图2所示:则PH∥AB,∴△CPH∽△CAB,∴==,∵∠ABC=90°,AB=3cm,BC=4cm,∴AC===5(cm),∵CP=5t,∴HC=4t,PH=3t,∴BH=BC﹣HC=4﹣4t,在Rt△PHB中,PB2=PH2+BH2=(3t)2+(4﹣4t)2=25t2﹣32t+16,∴S=PB2=t2﹣16t+8;②当1<t<时,如图3所示:∵PB=8﹣5t,∴S=PB2=(8﹣5t)2=t2﹣40t+32,综上所述,S=;(3)①当D、E在∠BAC的平分线上时,如图4所示:∵AH⊥PB,PH=BH,∴△ABP是等腰三角形,∴AB=AP=3,∴PC=AC﹣AP=5﹣3=2,∴t=s;②当点P运动到点A时,满足条件,此时t=1s;③当点E在∠BAC的平分线上时,作EH⊥BC于H,如图5所示:∵四边形PDBE是正方形,∴∠EBP=45°,∴EB平分∠ABC,∴点E是△ABC的内心,四边形EOBH是正方形,∴OB=EH=EO=BH===1,∴PB=2OB=2,∴AP=1,∴CA+AP=6,∴t=s;④当点P在边BC上,点D在∠BAC的平分线上时,作DN⊥BC于N,作DM⊥AB于M,如图6所示:∵四边形PDBE是正方形,∴∠DBP=45°,∴DB平分∠ABC,∴点D是△ABC的内心,四边形DMBN是正方形,四边形PDBE是正方形,∴DM=BN=PN==1,∴CA+AB+BP=5+3+1+1=10,∴t=2s;⑤当点P在边BC上,且AP是∠BAC的平分线时,作CM∥AP交BA的延长线于M,如图7所示:则∠ACM=∠PAC,∠M=∠BAP,∵AP是∠BAC的平分线,∴∠BAP=∠PAC,∴∠ACM=∠M,∴AM=AC,∵CM∥AP,∴=,∴==,∴BP=BC=,∴CA+AB+BP=5+3+=,∴t=÷5=;综上所述:在整个运动过程中,正方形PDBE至少有一个顶点落在∠A的平分线上时,t 的值为s或1s或s或2s或s.20.如图1,在三角形△ABC中,BA=BC,△ADC和△ABC关于AC对称(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;(2)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB和CC′,得到四边形BCC′D,请判断四边形BCC′D的形状,并说明理由;(3)如图3中,BC=,AC=10,将△AC′D沿着射线DB方向平移a,得到△A′C″D′,進接BD′,CC″,使四边形BCC″D′恰好为正方形,请直接写出a的值.解:(1)∵△△ADC和△△ABC关于AC对称,∴DC=BC,DA=AB,∠BAC=∠DAC,∠BCA=∠DCA,∵BA=BC,∴DC=BC=DA=AB,∠BAC=∠DAC=∠BCA=∠DCA,∵△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到△AC′D,∴∠CAC′=∠BAC=∠AC′D=∠BCA,∴AC∥DE,AC′∥BE,∴四边形ACEC′是平行四边形,由旋转可得:AC=AC′,∴四边形ACEC′是菱形,故答案为:菱形;(2)四边形BCC′D是矩形;理由如下:过点A作AE⊥C′C于点E,如图3所示:由旋转的性质,得AC′=AC,∴∠CAE=∠C′AE=α=∠ABC,∠AEC=90°,∵BA=BC,∴∠BCA=∠BAC∴∠CAE=∠BCA,∴AE∥BC.同理,AE∥DC′,∴BC∥DC′,∵BC=DC′,∴四边形BCC′D是平行四边形,∵AE∥BC,∠AEC′=90°,∴∠BCC′=90°,∴四边形BCC′D是矩形;(3)过点B作BF⊥AC于F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF=10,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=4,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×4=8,。
2021年九年级中考数学复习:四边形专练
11.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BO的长为( )
A.5B.8C.10D.11
12.如图,在 中, ,点 是斜边 的中点,分别以点 , 为圆心,以 的长为半径画弧,两弧交于点 ,连接 , , 得到四边形 ,依次连接四边形 四条边中点得到四边形 ,若 ,那么四边形 的周长为()
A. B. C. D.
13.如图,菱形 的边长为 ,对角线 , 交于点 , ,则菱形 的面积为()
A. B. C.2D.4
14.如图,在菱形 中, ,E、F分别是边 、 的中点, 于点P,则 的度数是().
A.50°B.45°C.40°D.30°
15.如图,在矩形 中, 平分 交 于点 , 交 于点 ,若 , ,则 等于()
A.5B.6C.7D.8
16.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为2的等边三角形,则正方形的边长是( )
A. B. +1C. D.
17.如图,边长为 的正方形 的对角线 与 交于点 ,将正方形 沿直线 折叠,点 落在对角线 上的点 处,折痕 交 于点 ,则 长是().
A.①②B.③④C.①③④D.①②③④
23.如图,在平面直角坐标系中,菱形 的顶点A,D在反比例函数 的图象上,对角线 平行x轴,点O在 上,且 ,连接 , ,若 ,则k的值为()
A.25B. C.45D.
24.如图,在平面直角坐标系中,平行四边形 的边 在y轴的正半轴上,反比例函数 的图像分别交 于中点D,交 于点E,且 ,连接 ,若 ,则k的值为()
21.如图,在平面直角坐标系中,四边形OABC是菱形,∠AOC=120°,点B的坐标为(6,0),点D是边BC的中点,现将菱形OABC绕点O顺时针旋转,每秒旋转60°,则第2021秒时,点D的坐标为( )
中考数学总复习——四边形证明(含答案)
专题. 四边形1、平行四边形1.如图,已知:▱ABCD中,∠ABC的平分线BG,交AD于G,∠BCD的平分线CE,交BG于F,交AD于E.(1)求证:BG⊥CE.(2)若AB=3,BC=4,求EG的长.2.如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)若∠BFA=40°,求∠BAF的度数.3.如图,在△ABC中,∠ACB=90°,AC=2,BC=3.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF ∥AB交直线DE于F.设CD=x.(1)当x=1时,求四边形EACF的面积;(2)当x为何值时,四边形EACF是菱形?请说明理由.4.如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.2、菱形1.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,连接EB,GD.且∠DAB=∠EAG。
(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.2.如图,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G.(1)求证:△ACE≌△CBD;(2)求∠CGE的度数.3.菱形ABCD中,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=60°(1)如图1,当点E是CB上任意一点时(点E不与B、C重合),求证:BE=CF;(2)如图2,当点E在CB的延长线上时,且∠EAB=15°,求点F到BC的距离.4.如图1,菱形ABCD中,∠BAD=60°,点E、F分别是边AB、AD上两个动点,满足AE=DF,连接BF与DE相交于点G.(1)如图2,连接BD,求∠BGD的度数;(2)如图3,作CH⊥BG于H点,求证:2GH=DG+BG.5.如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.6.如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若BD=4,AC=3,求cos∠CDE的值.7.如图,已知ABCD是菱形,△EFP的顶点E,F,P分别在线段AB,AD,AC上,且EP=FP.(1)证明:∠EPF+∠BAD=180°;(2)若∠BAD=120°,证明:AE+AF=AP;(3)若∠BAD=θ,AP=a,求AE+AF.8.如图.在菱形ABCD中,BC边的中垂线EF交AD边于F,G是CD中点.(1)求证:EG=FG;(2)若△DFG为等腰三角形,求∠D的度数.9.如图1,四边形ABCD为菱形,E为对角线AC上的一个动点,连接DE并延长交射线AB于点F,连接BE.(1)求证:∠F=∠EBC;(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠F的度数(如图2).10.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.15.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.16.如图①,已知点O为菱形ABCD的对称中心,∠A=60°,将等边△OEF的顶点放在点O处,OE,OF分别交AB,BC于点M,N.(1)求证:OM=ON;(2)将图①中的△OEF绕O点顺时针旋转至图②所示的位置,请写出线段BM,BN与AB之间的数量关系,并进行证明.17.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.3、矩形1.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.2.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,连接CE,求CE的长.3.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.4.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?4、正方形6.已知:如图,在△ABC中,∠A>90°.以AB、AC为边分别在△ABC形外作正方形ABDE和正方形ACFG,EB、BC、CG、GE的中点分别是P、Q、M、N.(1)若连接BG、CE,求证:BG=CE.(2)试判断四边形PQMN为怎样的四边形,并证明你的结论.7.已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?8.在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为;位置关系为.9.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.10.猜想与证明:如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.(1)试猜想写出DM与EM的数量关系,并证明你的结论.拓展与延伸:(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结论是否仍然成立?请直接写出你的判断.11.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.12.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连接CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE=时,求CG的长.13.如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出的值为(不必写出计算过程).14.(1)如图1,在正方形ABCD中,点O是对角线AC的中点,点E是边BC上一点,连接OE,过点O 作OE的垂线交AB于点F.求证:OE=OF.(2)若将(1)中,“正方形ABCD”改为“矩形ABCD”,其他条件不变,如图2,连接EF.▱)求证:∠OEF=∠BAC.▱)试探究线段AF,EF,CE之间数量上满足的关系,并说明理由.15.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.(1)求证:△CAN为直角三角形.(2)若AN=4,正方形的边长为6,求BE的长.16.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.17.如图,正方形ABCD的对角线AC、BD相交于点O,延长CB至点F,使CF=CA,∠ACF的平分线分别交AF、AB、BD于点E、N、M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.18.如图,点E为正方形ABCD外一点,点F是线段AE上一点,在△EBF中,∠EBF=90°,BF=BE,连接CE、CF.(1)求证:△ABF≌△CBE;(2)填空:用等式表示线段FA、FE、FC之间的数量关系为.19.已知O为正方形ABCD的中心,M为射线OD上一动点(M与点O,D不重合),以线段AM为一边作正方形AMEF,连接FD.(1)当点M在线段OD上时(如图1),线段BM与DF有怎样的数量及位置关系?请说明理由;(2)当点M在线段OD的延长线上时(如图2),(1)中的结论是否仍然成立?请结合图2说明理由.20.如图,点B在线段AF上,分别以AB、BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF和DE,CF交EG于H.(1)若E是BC的中点,求证:DE=CF;(2)若∠CDE=30°,求的值.参考答案四边形1.【解答】(1)证明:∵▱ABCD,∴AB∥CD,∴∠ABC+∠BCD=180°,又∵BG、CE分别是∠ABC和∠BCD的角平分线,∴∠ABG=∠CBG,∠BCE=∠DCE,又∵∠ABG+∠CBG+∠BCE+∠DCE=180°,∴∠CBG+∠BCE=90°,在△BCF中,∠BFC=180°﹣∠CBF﹣∠BCF=90°;即BG⊥CE;(2)解:∵▱ABCD,∴AD∥BC,AB=CD=3,AD=BC=4,∴∠AGB=∠CBG,又∵BG是∠ABC的角平分线,∴∠ABG=∠CBG,∴∠AGB=∠ABG,∴AB=AG=3,∴GD=AD﹣AG=4﹣3=1,同理:AE=1,∴EG=AD﹣AE﹣GD=4﹣1﹣1=2.2.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵BE=CF,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS);(2)解:∵△ABF≌△DCE,∴∠B=∠C,∵AB∥DC,∴∠B+∠C=180°,∴∠B=90°,∴∠BAF=90°﹣∠BFA=90°﹣40°=50°.3.【解答】解:(1)∵DE⊥BC,∠ACB=90°;∴EF∥AC∵CF∥AB;∴▱EACF的面积=2×1=2(2)由(1)可知四边形EACF是平行四边形,则∠A=∠CFD,EF∥AC,故∠ACB=∠FDC,故△ABC∽△FCD,即AB:CF=BC:CD又∵AB==(勾股定理),BC=3所以当CF=AC=2时,四边形EACF是菱形.∴:2=3:CD所以x=CD=时,▱EACF是菱形.4.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即:∠EAB=∠DAC,∴△ABE≌△ACD(SAS);(2)证明:∵△ABE≌△ACD,∴BE=DC,∠EBA=∠DCA,又∵BF=DC,∴BE=BF.∵△ABC是等边三角形,∴∠DCA=60°,∴△BEF为等边三角形.∴∠EFB=60°,EF=BF∵△ABC是等边三角形,∴∠ABC=60°,∴∠ABC=∠EFB,∴EF∥BC,即EF∥DC,∵EF=BF,BF=DC,∴EF=DC,∴四边形EFCD是平行四边形.菱形1.【解答】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2 ,∴EB===,∴GD=.2.【解答】解:(1)∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AD,∴BE+BC=AD+AB,即CE=BD,在△ACE和△CBD中,,∴△ACE≌△CBD(SAS);(2)如图,连接AC,易知△ABC是等边三角形,由(1)可知△ACE≌△CBD,∴∠E=∠D,∵∠BAE=∠DAG,∴∠E+∠BAE=∠D+∠DAG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.3.【解答】(1)证明:连接AC,如图1中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(2)解:如图2中,过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°,AB=4,∴BG=AB=2,AG=BG=2 ,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2 ,∴EB=EG﹣BG=2 ﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2 ﹣2,在RT△CHF中,∵∠HCF=180°﹣∠BCD=60°,CF=2 ﹣2,∴FH=CF•sin60°=(2 ﹣2)•=3﹣.∴点F到BC的距离为3﹣.4.【解答】(1)解:如图2中,∵四边形ABCD是菱形,∴AD=AB,∵∠A=60°,∴△ABD是等边三角形,∴AB=DB,∠A=∠FDB=60°,在△DAE和△BDF中,,∴△DAE≌△BDF,∴∠ADE=∠DBF,∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,∴∠BGD=180°﹣∠BGE=120°.(2)证明:如图3中,延长GE到M,使得GM=GB,连接BD、CG.∵∠MGB=60°,GM=GB,∴△GMB是等边三角形,∴∠MBG=∠DBC=60°,∴∠MBD=∠GBC,在△MBD和△GBC中,,∴△MBD≌△GBC,∴DM=GC,∠M=∠CGB=60°,∵CH⊥BG,∴∠GCH=30°,∴CG=2GH,∵CG=DM=DG+GM=DG+GB,∴2GH=DG+GB.5.【解答】(1)证明:∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,,∴△CFD≌△CEB(SSS);(2)解:∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°.∵∠FCE=60°,∵CF=CE,∴∠CFE=∠CEF=60°.6.【解答】(1)证明:∵四边形ABCD是菱形;∴AD∥BC,∠BOC=90°,∵DE⊥BD,∴∠BDE=90°,∴∠BDE=∠BOC,∴AC∥DE,∴四边形ACED是平行四边形.(2)解:∵四边形ACED是平行四边形,∴AD=CE,∵AD=BC,∴BC=CE,∵∠BDE=90°,∴DC=CE,∴∠CDE=∠E,∴cos∠CDE=cos∠E,∵BD=4,AC=3,∠BDE=90°,∴BE=5,∴cos∠E==,∴cos∠CDE=cos∠E=.7.【解答】解:(1)如图1中,作PM⊥AD于M,PN⊥AC于N.∵四边形ABCD是菱形,∴∠PAM=∠PAN,∴PM=PN,∵PE=PF,∴Rt△PMF≌Rt△PNE,∴∠MPF=∠NPE,∴∠EPF=∠MPF,∵∠BAD+∠MPN=360°﹣∠AMP﹣∠ANP=180°,∴∠EPF+∠BAD=180°.(2)如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=120°,∴∠PAM=60°,易知PA=2AM,∴AE+AF=PA.(3)结论:AF+AE=PA•cos.理由:如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=θ,∴∠PAM=,易知AM=PA•cos,∴AF+AE=PA•cos.8.【解答】(1)证明:如图1中,延长FH交BC的延长线于M/∵四边形ABCD是菱形,∴AD∥BM,∴∠DFH=∠M,在△FDH和△MCH中,‘,∴△FDH≌△MCH,∴FH=HM,∵FE⊥BC,∴∠FEM=90°,∴EH=FH=HM,∴EH=FH.(2)解:如图2中,①当FD=FH时,设∠M=∠DFH=x,∵BE=EC,CH=DH,BC=CD,∴EC=CH,∴∠CEH=∠CHE,∵HE=HM,∴∠CEH=∠CHE=∠M=x,∴∠HCM=∠ECH+∠EHC=2x=∠D=∠FHD,∵∠DFH+∠D+∠FHD=180°,∴x+2x+2x=180°,∴5x=180°,∴x=36°,∴∠D=72°.②当∠D=90°时,易知DF=DH,△DEF是等腰直角三角形,综上所述,当△DFH是等腰三角形时,∠D=72°或90°.9.【解答】(1)证明:∵四边形ABCD是菱形,∴CD=AB,∠ACD=∠ACB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE,∵CD∥AB,∴∠CDE=∠AFD,∴∠EBC=∠AFD,即∠F=∠EBC;(2)解:分两种情况:①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,解得:x=30,∴∠EFB=30°;②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠F=30°或120°.10.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF;(2)解:结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)解:结论成立.证明如下:过点E作EG∥BC交AB延长线于点G,如图3所示:∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.11.【解答】解:拓展:∵四边形ABCD、四边形CEFG均为菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD﹣∠ECD=∠ECG﹣∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG.(6分)应用:∵四边形ABCD为菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=2ED,∴S△CDE=×8=,∴S△ECG=S△CDE+S△CDG=,∴S菱形CEFG=2S△ECG=.故答案为:.(9分)12.【解答】(1)证明:取BC的中点G,连接OG∵四边形ABCD是菱形,∠A=60°∴∠A=∠C=∠ABD=60°,AB=BC=CD=DA,∵点O为菱形ABCD的对称中心,∴OD=OB∴OG∥CD ∴∠BGO=∠C=60°,OG=OB∵△OEF是等边三角形,∴∠EOF=60°,∴∠BOM=∠NOG又∵∠BGO=∠ABD=60°在△OBM和△OGN中,,∴△OBM≌△OGN(ASA),∴OM=ON;(2)证明:取BC中点G,同理可证:△OBM≌△OGN,∴BM=GN,∴BG=BN﹣NG,∴BN﹣BM=BG=AB.17.【解答】解:(1)如图,连接AC与BD相交于点G,在菱形ABCD中,AC⊥BD,BG=BD=×16=8,由勾股定理得,AG===6,∴AC=2AG=2×6=12,菱形ABCD的面积=AC•BD=×12×16=96;故答案为:12;96;(2)如图1,连接AO,则S△ABD=S△ABO+S△ADO,所以,BD•AG=AB•OE+AD•OF,即×16×6=×10•OE+×10•OF,解得OE+OF=9.6是定值,不变;(3)如图2,连接AO,则S△ABD=S△ABO﹣S△ADO,所以,BD•AG=AB•OE﹣AD•OF,即×16×6=×10•OE﹣×10•OF,解得OE﹣OF=9.6,是定值,不变,所以,OE+OF的值变化,OE、OF之间的数量关系为:OE﹣OF=9.6.3、矩形1.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.2.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,又∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是矩形.(2)解:∵∠BCD=120°,四边形ABCD是菱形,∴∠BAD=∠BCD=120°,∠CAB=∠CAD=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=2,OB=OD=AE=3,在Rt△AEC中,EC===.3.【解答】(1)证明:∵把纸片ABCD折叠,使点B恰好落在CD边上,∴AE=AB=10,AE2=102=100,又∵AD2+DE2=82+62=100,∴AD2+DE2=AE2,∴△ADE是直角三角形,且∠D=90°,又∵四边形ABCD为平行四边形,∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF=x,则EF=BF=x,EC=CD﹣DE=10﹣6=4cm,FC=BC﹣BF=8﹣x,在Rt△EFC中,EC2+FC2=EF2,即42+(8﹣x)2=x2,解得x=5,故BF=5cm;(3)解:在Rt△ABF中,由勾股定理得,AB2+BF2=AF2,∵AB=10cm,BF=5cm,∴AF==5cm.4.【解答】证明:(1)∵AB∥CD,且FC=AB,∴四边形ABCF为平行四边形,∵∠B=90°,∴四边形ABCF是矩形;(2)∵EA=EG,∴∠EAG=∠EGA=∠FGC,∵四边形ABCF为矩形,∴∠AFC=∠AFD=90°,∴∠D+∠DAF=∠FGC+∠ECD=90°,∴∠D=∠ECD,∴ED=EC.5.【解答】(1)证明:∵AO=CO,BO=DO;∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.6.【解答】(1)证明:连接BG和CE交于O,∵四边形ABDE和四边形ACFG是正方形,∴AB=AE,AC=AG,∠EAB=∠GAC,∴∠EAB+∠EAG=∠GAC+∠EAG,∴∠GAB=∠EAC,在△BAG和△EAC中,,∴△BAG≌△EAC(SAS),∴BG=CE.(2)四边形PQMN为正方形,证明:∵EB、BC、CG、GE的中点分别是P、Q、M、N,∴PN∥BG,MN=CE,MN∥CE,PQ=CE,PQ∥CE,PN=BG,∵BG=CE,∴PN=MN,MN=PQ,MN∥PQ,∴四边形PQMN是菱形,∵△BAG≌△EAC,∴∠GBA=∠AEC,∵四边形ABDE是正方形,∴∠EAB=90°,∴∠ABG+∠BWA=90°,∵∠BWA=∠GWE,∴∠GWE+∠AEC=90°,∴∠EOW=180°﹣90°=90°,∵MN∥CE,PN∥BG,∴∠NZO=∠EOW=90°,∠NIO=90°,∴∠MNP=360°﹣90°﹣90°﹣90°=90°;∴菱形PQMN是正方形,即四边形PQMN为正方形.7.【解答】(1)答:AB=AH,证明:延长CB至E使BE=DN,连接AE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠2+∠3=90°﹣∠MAN=45°,∴∠1+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是对应边,∴AB=AH(全等三角形对应边上的高相等);(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又∵AE=AD=AF∴四边形AEGF是正方形,由(1)、(2)知:EB=DB=2,FC=DC=3,设AD=x,则EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52;解得x1=6,x2=﹣1,故AD的长为6.8.【解答】(1)解:由题意得:∠BAC=∠BCA=45°,AO=PA,∠AEO=∠AFO,在△AEO和△CFO中,∴△AEO≌△CFO(AAS)∴OE=OF(相等);(1分)(2)解:OE=OF,OE⊥OF;(3分)证明:连接BO,∵在正方形ABCD中,O为AC中点,∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)∵PF⊥BC,∠BCO=45°,∴∠FPC=45°,PF=FC.∵正方形ABCD,∠ABC=90°,∵PF⊥BC,PE⊥AB,∴∠PEB=∠PFB=90°.∴四边形PEBF是矩形,∴BE=PF.(5分)∴BE=FC.∴△OBE≌△OCF,∴OE=OF,∠BOE=∠COF,(7分)∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE⊥OF.(8分)(3)OE=OF(相等),OE⊥OF(垂直).(10分)9.【解答】(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.10.【解答】解:(1)结论:DM=EM.理由:如图1,延长EM交AD于点H,∵四边形ABCD和ECGF是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,,∴△FME≌△AMH,∴HM=EM,在直角△HDE中,HM=EM,∴DM=HM=EM,∴DM=EM.(2)成立.(证明方法类似),11.【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)答:四边形ABNE是正方形;理由如下:证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD△AEF≌△ABD(SAS),∴BD=EF;∵CD=CB,∠BCD=90°,∴∠CBD=45°,∵∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.12.【解答】证明:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴,由(1)知,△CDE≌△CBF,∴BF=DE=,∵正方形的边长为1,∴AF=AB+BF=,AE=AD﹣DE=,∴,∴BG=,∴CG=BC﹣BG=13.【解答】(1)证明:∵四边形ABCD和AEFG都是正方形,∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°,∴BE=AB﹣AE,DG=AD﹣AG,∴BE=DG,在△BEF和△DGF中,,∴△BEF≌△DGF(SAS),∴BF=DF;(2)解:∵BF=DF;∴点F在对角线AC上,∵AD∥EF∥BC,∴CF:BE=AF:AE=AE:AE=,∴CF:BE=.14.【解答】证明:(1)连接OB,∵在正方形ABCD中,O是AC的中点,∴OB=OA,∠OAB=∠OBA=∠OBC=45°,∴∠AOB=90°,又∵OE⊥OF,∴∠AOF=∠BOE,在△AOF和△BOE中,,∴△AOF≌△BOE,∴OE=OF;(2)①∵∠EOF=∠FBE=90°,∴O,E,F,B四点共圆,∴∠OBA=∠OEF,∵在矩形ABCD中,O是AC的中点,∴OA=OB,∠OAB=∠OBA,∴∠OEF=∠BAC;②如图,连接BD,延长EO交AD于G,∵BD与AC交于O,则△OGD≌△DEB,∴OG=OE,∴AG=CE,∵OF⊥GE,∴FG=EF,在Rt△AGF中,GF2=AG2+AF2,即EF2=CE2+AF2.15.【解答】解:(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和∠CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(2)∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.16.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为:FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.17.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)EM=CN.理由如下:连接FN,∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴BF=BN,∴∠CBN=∠FNB=45°,∵四边形ABCD是正方形,∴∠DBC=45°,∵EO∥BC,∴∠EOM=∠DBC=45°,∠OEM=∠FCN,∴∠CFN=∠EOM,∴△CFN∽△EOM,∴,即.∴EM=CN.18.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,,∴△ABF≌△CBE(SAS).(2)解:结论:FE2=FA2+FC2.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形,∵FE2=FC2+EC2,∵△ABF≌△CBE,∴AF=EC,∴FE2=FA2+FC2.故答案为FE2=FA2+FC2.20.【解答】解:(1)BM=DF,BM⊥DF.理由:∵四边形ABCD、AMEF是正方形,∴AF=AM,AD=AB,∠FAM=∠DAB=90°,∴∠FAM﹣∠DAM=∠DAB﹣∠DAM,即∠FAD=∠MAB,∵在△FAD和△MAB中,,∴△FAD≌△MAB,∴BM=DF,∠FDA=∠ABD=45°,∵∠ADB=45°,∴∠FDB=45°+45°=90°,∴BM⊥DF,即BM=DF,BM⊥DF.(2)BM=DF,BM⊥DF都成立,理由是:∵四边形ABCD和AMEF均为正方形,∴AB=AD,AM=AF,∠BAD=∠MAF=90°,∴∠FAM+∠DAM=∠DAB+∠DAM,即∠FAD=∠MAB,∵在△FAD和△MAB中,,∴△FAD≌△MAB,∴BM=DF,∠ABM=∠ADF,由正方形ABCD知,∠ABM=∠ADB=45°,∴∠BDF=∠ADB+∠ADF=90°,即BM⊥DF,∴(1)中的结论仍成立.21.【解答】(1)证明:∵E是BC的中点,∴BE=CE,在正方形ABCD和正方形BFGE中,BC=CD,BE=BF,∴BF=CE,在△BCF和△CDE中,,∴△BCF≌△CDE(SAS),∴DE=CF;(2)解:设CE=x,∵∠CDE=30°,∴tan∠CDE==,∴CD=x,∵正方形ABCD的边BC=CD,∴BE=BC﹣CE=x﹣x,∵正方形BFGE的边长BF=BE,∴tan∠BCF===,∵正方形BGFE对边BC∥GF,∴∠BCF=∠GFH,∵tan∠GFH=,∴=.。
2021年全国各省市中考真题汇总:四边形压轴(解析版)
2021年全国各省市中考真题汇总:四边形压轴1.(2021•枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.2.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.3.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s 的速度运动,过点P作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.4.(2021•贺州)如图,在四边形ABCD中,AD∥BC,∠C=90°,∠ADB=∠ABD=∠BDC,DE交BC于点E,过点E作EF⊥BD,垂足为F,且EF=EC.(1)求证:四边形ABED是菱形;(2)若AD=4,求△BED的面积.5.(2021•福建)如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;6.(2021•长春)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B 落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为.7.(2021•绥化)如图所示,四边形ABCD为正方形,在△ECH中,∠ECH=90°,CE=CH,HE的延长线与CD的延长线交于点F,点D、B、H在同一条直线上.(2)当时,求的值;(3)当HB=3,HG=4时,求sin∠CFE的值.8.(2021•安顺)(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE的中心O,作FG⊥HP,将它分成4份,所分成的四部分和以BC为边的正方形恰好能拼成以AB为边的正方形.若AC=12,BC=5,求EF的值;(3)拓展探究如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形A,B,C,D的边长分别为a,b,c,d.已知∠1=∠2=∠3=α,当角α(0°<α<90°)变化时,探究b与c的关系式,并写出该关系式及解答过程(b与c的关系式用含n的式子表示).9.(2021•齐齐哈尔)综合与实践数学实践活动,是一种非常有效的学习方式,通过活动可以激发我们的学习兴趣,提高动手动脑能力,拓展思维空间,丰富数学体验,让我们一起动手来折一折、转一转、剪一剪,体会活动带给我们的乐趣.折一折:将正方形纸片ABCD折叠,使边AB、AD都落在对角线AC上,展开得折痕AE、AF,连接EF,如图1.(1)∠EAF=°,写出图中两个等腰三角形:(不需要添加字母);转一转:将图1中的∠EAF绕点A旋转,使它的两边分别交边BC、CD于点P、Q,连接PQ,如图2.(2)线段BP、PQ、DQ之间的数量关系为;(3)连接正方形对角线BD,若图2中的∠PAQ的边AP、AQ分别交对角线BD于点M、点N,如图3,则=;剪一剪:将图3中的正方形纸片沿对角线BD剪开,如图4.(4)求证:BM2+DN2=MN2.10.(2021•广西)如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l 分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.11.(2021•玉林)如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.12.(2021•海南)如图1,在正方形ABCD中,点E是边BC上一点,且点E不与点B、C重合,点F是BA的延长线上一点,且AF=CE.(1)求证:△DCE≌△DAF;(2)如图2,连接EF,交AD于点K,过点D作DH⊥EF,垂足为H,延长DH交BF 于点G,连接HB,HC.①求证:HD=HB;②若DK•HC=,求HE的长.13.(2021•无锡)已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连结CF,①当m=时,求线段CF的长;②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.14.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.15.(2021•盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.16.(2021•广西)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.17.(2021•黑龙江)如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE =,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;(3)当点F落在线段OB上时,坐标平面内是否存在一点P,使以M、A、O、P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.18.(2021•衢州)【推理】如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.(1)求证:△BCE≌△CDG.【运用】(2)如图2,在【推理】条件下,延长BF交AD于点H.若,CE=9,求线段DE的长.【拓展】(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,H两点,若=k,=,求的值(用含k的代数式表示).19.(2021•宿迁)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.20.(2021•广元)如图,在平行四边形ABCD中,E为DC边的中点,连接AE,若AE 的延长线和BC的延长线相交于点F.(1)求证:BC=CF;(2)连接AC和BE相交于点为G,若△GEC的面积为2,求平行四边形ABCD的面积.21.(2021•十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.22.(2021•宜昌)如图,在矩形ABCD中,E是边AB上一点,BE=BC,EF⊥CD,垂足为F.将四边形CBEF绕点C顺时针旋转α(0°<α<90°),得到四边形CB'E'F′,B′E′所在的直线分别交直线BC于点G,交直线AD于点P,交CD于点K.E′F′所在的直线分别交直线BC于点H,交直线AD于点Q,连接B′F′交CD于点O.(1)如图1,求证:四边形BEFC是正方形;(2)如图2,当点Q和点D重合时.①求证:GC=DC;②若OK=1,CO=2,求线段GP的长;(3)如图3,若BM∥F′B′交GP于点M,tan∠G=,求的值.23.(2021•山西)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.24.(2021•陕西)问题提出(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC 上,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.25.(2021•岳阳)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,点D为AB的中点,连接CD,将线段CD绕点D顺时针旋转α(60°<α<120°)得到线段ED,且ED交线段BC于点G,∠CDE的平分线DM交BC于点H.(1)如图1,若α=90°,则线段ED与BD的数量关系是,=;(2)如图2,在(1)的条件下,过点C作CF∥DE交DM于点F,连接EF,BE.①试判断四边形CDEF的形状,并说明理由;②求证:=;(3)如图3,若AC=2,tan(α﹣60°)=m,过点C作CF∥DE交DM于点F,连接EF,BE,请直接写出的值(用含m的式子表示).26.(2021•菏泽)在矩形ABCD中,BC=CD,点E、F分别是边AD、BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,点C落在点G处,点D落在点H处.(1)如图1,当EH与线段BC交于点P时,求证:PE=PF;(2)如图2,当点P在线段CB的延长线上时,GH交AB于点M,求证:点M在线段EF的垂直平分线上;(3)当AB=5时,在点E由点A移动到AD中点的过程中,计算出点G运动的路线长.27.(2021•新疆)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:(1)△ABE≌△DCF;(2)四边形AEFD是平行四边形.28.(2021•株洲)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=,求线段BG的长度.29.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).参考答案1.解:(1)四边形ABCD是垂美四边形.理由如下:如图2,连接AC、BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)AB2+CD2=AD2+BC2,理由如下:如图1中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(3)如图3,连接CG、BE,∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵CG===4,BE===5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.2.解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.3.解:(1)如图,在Rt△PDQ中,AD=,∠PQD=60°,∴tan60°==,∴DQ=AD=1.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PE⊥CD于点E,同(1)可得EQ=AD=1.∴DQ=DE+EQ=AP+EQ=x+1,当x+1=3时x=2,∴y=DQ•AD=×(x+1)=x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2),∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=x2﹣2x+2,∴y=S△PDQ﹣S△CQF=x+﹣(x2﹣2x+2)=﹣x2x﹣(2<x≤3).综上所述,y=.4.(1)证明:∵∠C=90°,∴EC⊥DC,∵EF⊥BD,EF=EC,∴DE是∠BDC的平分线,∴∠EDB=∠EDC,∵∠ADB=∠BDC,∴∠ADB=∠EDB,∵∠ADB=∠ABD,∴∠ABD=∠EDB,∴AB∥DE,∵AD∥BC,∴AD∥BE,∴四边形ABED是平行四边形,∵∠ADB=∠ABD,∴AB=AD,∴四边形ABED是菱形;(2)解:由(1)知,四边形ABED是菱形,∴DE=BE=AD=4,∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠EDB=∠EDC=∠ADB,∴∠EDC=30°,∴CD=DE•cos30°=4×=2,∴S△BED=BE•CD=×4×2=4.5.证明:(1)如图,设AG与DE的交点为O,连接GF,∵点A关于DE的对称点为A′,∴AO=A'O,AA'⊥DE,∵E,F为边AB上的两个三等分点,∴AE=EF=BF,∴DE∥A'F;(2)∵AA'⊥DE,∴∠AOE=90°=∠DAE=∠ABG,∴∠ADE+∠DEA=90°=∠DEA+∠EAO,∴∠ADE=∠EAO,在△ADE和△BAG中,,∴△ADE≌△BAG(ASA),∴AE=BG,∴BF=BG,∴∠GFB=∠FGB=45°,∵∠FA'G=∠FBG=90°,∴点F,点B,点G,点A'四点共圆,∴∠GA'B=∠GFB=45°;(3)设AE=EF=BF=BG=a,∴AD=BC=3a,FG=a,∴CG=2a,在Rt△ADE中,DE===a=AG,∵sin∠EAO=sin∠ADE,∴,∴,∴OE=a,∴AO===a=A'O,∴A'G=,∵AO=A'O,AE=EF,∴A'F=a=a,∵∠FA'G=∠FBG=90°,∴∠A'FB+∠A'GB=180°,∵∠A'GC+∠A'GB=180°,∴∠A'FB=∠A'GC,又∵==,∴△A'FB∽△A'GC,∴,∴A′C=2A′B.6.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.7.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCB=90°,∵∠ECH=90°,∴∠DCB﹣∠BCE=∠ECH﹣∠BCE,即∠DCE=∠BCH,在△CDE和△CBH中,,∴△CDE≌△CBH(SAS);(2)解:由(1)得:△ACDE≌△CBH,∴∠CDE=∠CBH,DE=BH,∵四边形ABCD是正方形,∴∠CDB=∠DBC=45°,∴∠CDE=∠CBH=180°﹣45°=135°,∴∠EDH=135°﹣45°=90°,∵BH:DH=1:5,∴设BH=a,则DH=5a,∴DE=BH=a,在Rt△HDE中,EH===a,过C作CM⊥EH于M,过D作DN⊥FH于N,如图1所示:则DN∥CM,∵△DEH的面积=DN×EH=DE×DH,∴DN×a=×a×5a,解得:DN=a,∵CE=CH,∠ECH=90°,∴CM=EH=a,∵DN∥CM,∴△FDN∽△FCM,∴===;(3)解:过点E作PE∥DH交CF于P,过点E作EQ⊥CF于Q,如图2所示:∵PE∥DH,∴∠BHG=∠PEF,∠FPE=∠FDH=135°,∵四边形ABCD是正方形,∴AB∥CD,∴∠HBG=∠FDH=135°,∴∠HBG=∠EPF=135°,∵∠CDE=135°,∴∠EDQ=45°,∠EPQ=45°,∴△PED为等腰直角三角形,∴DE=PE,由(1)得:△CDE≌△CBH,∴DE=BH,∴DE=BH=PE=3,在△BHG和△PEF中,,∴△BHG≌△PEF(ASA),∴HG=EF=4,∵△PED是等腰直角三角形,∴PD=DE=3,∵EQ⊥PD,∴QE=PD=,在Rt△FEQ中,sin∠CFE===.8.解:(1)a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方),证明如下:∵如图①是由直角边长分别为a,b的四个全等的直角三角形与中间一个边长为(b﹣a)的小正方形拼成的一个边长为c的大正方形,∴4△ADE的面积+正方形EFGH的面积=正方形ABCD是面积,即4×ab+(b﹣a)2=c2,整理得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF=a,FD=b,∴a+b=12①,∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,∴E'F'=EF,KF'=FD,E'K=BC=5,∵E'F'﹣KF'=E'K,∴a﹣b=5②,由①②得:,解得:a=,∴EF=;(3)c+b=n,理由如下:如图③所示:设正方形E的边长为e,正方形F的边长为f,∵∠1=∠2=∠3=α,∠PMQ=∠D'OE'=∠B'C'A'=90°,∴△PMQ∽△D'OE'∽△B'C'A',∴=,=,即=,=,∴e2=cn,f2=bn,在Rt△A'B'C'中,由勾股定理得:e2+f2=n2,∴cn+bn=n2,∴c+b=n.9.(1)解:如图1中,∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠BAD=90°,∴ABC,△ADC都是等腰三角形,∵∠BAE=∠CAE,∠DAF=∠CAF,∴∠EAF=(∠BAC+∠DAC)=45°,∵∠BAE=∠DAF=22.5°,∠B=∠D=90°,AB=AD,∴△BAE≌△DAF(ASA),∴BE=DF,AE=AF,∵CB=CD,∴CE=CF,∴△AEF,△CEF都是等腰三角形,故答案为:45,△AEF,△EFC,△ABC,△ADC.(2)解:结论:PQ=BP+DQ.理由:如图2中,延长CB到T,使得BT=DQ.∵AD=AB,∠ADQ=∠ABT=90°,DQ=BT,∴△ADQ≌△ABT(SAS),∴AT=AQ,∠DAQ=∠BAT,∵∠PAQ=45°,∴∠PAT=∠BAP+∠BAT=∠BAP+∠DAQ=45°,∴∠PAT=∠PAQ=45°,∵AP=AP,∴△PAT≌△PAQ(SAS),∴PQ=PT,∵PT=PB+BT=PB+DQ,∴PQ=BP+DQ.故答案为:PQ=BP+DQ.(3)解:如图3中,∵四边形ABCD是正方形,∴∠ABM=∠ACQ=∠BAC=45°,AC=AB,∵∠BAC=∠PAQ=45°,∴∠BAM=∠CAQ,∴△CAQ∽△BAM,∴==,故答案为:.(4)证明:如图4中,将△ADN绕点A顺时针旋转90°得到△ABR,连接RM.∵∠BAD=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∵∠DAN=∠BAR,∴∠BAM+∠BAR=45°,∴∠MAR=∠MAN=45°,∵AR=AN,AM=AM,∴△AMR≌△AMN(SAS),∴RM=MN,∵∠D=∠ABR=∠ABD=45°,∴∠RBM=90°,∴RM2=BR2+BM2,∵DN=BR,MN=RM,∴BM2+DN2=MN2.10.解:(1)设EF=m.∵BC=14,BD=6,∴CD=BC﹣BD=14﹣6=8,∵AD=8,∴AD=DC=8,∵AD⊥BC,∴∠ADC=90°,∴AC=AD=8,∵四边形EFGH是正方形,∴EH=FG=GH=EF=m,∠EHG=∠FGH=90°,∴∠AHE=∠FGC=90°,∵∠DAC=∠C=45°,∴∠AEH=∠EAH=45°,∠GFC=∠C=45°,∴AH=EH=x,CG=FG=x,∴3m=8,∴m=,∴EF=.(2)∵DE=DF=x,DA=DC=8,∴AE=CF=8﹣x,∴EH=AE=(8﹣x),EF=DE=x,∴y===,∴y=(0<x<8).(3)如图③中,由(2)可知点P在y=上,当OP最小时,点P在第一象限的角平分线时,此时P(,),当直线MN⊥OP时,△OMN的面积最小,此时OM=ON=2,∴△MON的面积的最小值=×2×2=6.11.(1)证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠CDB,在△BOE和△DOF中,,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵EF⊥BD,∴四边形DEBF是菱形;(2)过点F作FG⊥AB于点G,如图,∵AD∥EF,EF⊥BD,∴∠ADB=90°,∴在Rt△ABD中,AD2+BD2=AB2,∵AD+AB=12,BD=4,∴AD2+(4)2=(12﹣AD)2,解得AD=4,AB=8,∴∠ABD=30°,∵四边形DEBF是菱形,∴∠EBF=2∠ABD=60°,∴△BEF是等边三角形,∵OB=OD,EF∥AD,∴AE=BE=4,∵FG⊥BE,∴EG=BG=2,在Rt△BGF中,BF=4,BG=2,根据勾股定理得,FG=,在Rt△AGF中,AG=6,根据勾股定理得,AF===4.12.解:(1)∵四边形ABCD为正方形,∴CD=AD,∠DCE=∠DAF=90°,∵CE=AF,∴△DCE≌△DAF(SAS);(2)①∵△DCE≌△DAF,∴DE=DF,∠CDE=∠ADF,∴∠DE=∠ADF+∠ADE=∠CDE+∠ADE=∠ADC=90°,∴△DFE为等腰直角三角形,∵DH⊥EF,∴点H是EF的中点,∴DH=EF,同理,由HB是Rt△EBF的中线得:HB=EF,∴HD=HB;②∵四边形ABCD为正方形,故CD=CB,∵HD=HB,CH=CH,∴△DCH≌△BCH(SSS),∴∠DCH=∠BCH=45°,∵△DEF为等腰直角三角形,∴∠DFE=45°,∴∠HCE=∠DFK,∵四边形ABCD为正方形,∴AD∥BC,∴∠DKF=∠HEC,∴△DKF∽△HEC,∴,∴DK•HC=DF•HE,在等腰直角三角形DFH中,DF=HE=HE,∴DK•HC=DF•HE=HE2=,∴HE=1.13.解:(1)①过F作FG⊥BC于G,连接CF,如图:∵四边形ABCD是正方形,∠AEF=90°,∴∠BAE=90°﹣∠AEB=∠EFG,∠B=∠G=90°,∵等腰直角三角形AEF,∴AE=EF,在△ABE和△EGF中,,∴△ABE≌△EGF(AAS),∴FG=BE=,EG=AB=BC,∴EG﹣EC=BC﹣EC,即CG=BE=,在Rt△CGF中,CF==;②△ABE绕A逆时针旋转90°,得△ADE',过P作PH⊥EQ于H,如图:∵△ABE绕A逆时针旋转90°,得△ADE',∴△ABE≌△ADE',∠B=∠ADE'=90°,∠BAE=∠DAE',∠AEB=∠E',AE=AE',BE=DE',∴∠ADC+∠ADE'=180°,∴C、D、E'共线,∵∠BAE+∠EAD=90°,∴∠DAE'+∠EAD=90°,∵∠EAF=45°,∴∠EAF=∠E'AF=45,在△EAQ和△E'AQ中,,∴△EAQ≌△E'AQ(SAS),∴∠E'=∠AEQ,EQ=E'Q,∴∠AEB=∠AEQ,EQ=DQ+DE'=DQ+BE,∴∠QEP=90°﹣∠AEQ=90°﹣∠AEB=∠CEP,即EF是∠QEC的平分线,又∠C=90°,PH⊥EQ,∴PH=PC,∵∠BAE=∠CEP,∠B=∠C=90°,∴△ABE∽△ECP,∴=,即=,∴CP=m(1﹣m),∴PH=h=﹣m2+m=﹣(m﹣)2+,∴m=时,h最大值是;(2)①当m<时,如图:∵∠BAE=90°﹣∠AEB=∠HEG,∠B=∠HGE=90°,∴△ABE∽△ECP,∴=,即=,∴HG=﹣m2+m,∵MG∥CD,G为BC中点,∴MN为△ADQ的中位线,∴MN=DQ,由(1)知:EQ=DQ+BE,设DQ=x,则EQ=x+m,CQ=1﹣x,Rt△EQC中,EC2+CQ2=EQ2,∴(1﹣m)2+(1﹣x)2=(x+m)2,解得x=,∴MN=,∴y=NH=MG﹣HG﹣MN=1﹣(﹣m2+m)﹣=1﹣m﹣+m2,②当m>时,如图:∵MG∥AB,∴=,即=,同①可得MN=DQ=,∴HN=MG﹣HG﹣MN=1﹣﹣=,∴y=,综上所述,y=1﹣m﹣+m2或y=.14.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∵AB=5,∴CE=4.15.解:(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,根据三角形中位线定理,∴DE∥AC,且DE==AF.即DE∥AF,DE=AF,∴四边形ADEF为平行四边形.(2)证明:选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠FAE,又∵ADEF为平行四边形,∴EF∥DA,∴∠DAE=∠AEF,∴∠FAE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.选③AB=AC,∵EF∥AB且EF=,DE∥AC且DE=,又∵AB=AC,∴EF=DE,∴平行四边形ADEF为菱形.16.解:【类比探究】过点E作EF⊥CD于点F,连接AF,∵四边形ABCD是正方形,∴AD=CD=4,∠ADC=90°,∵DE=CE,EF⊥CD,∴DF=CF=CD=2,∠ADC=∠EFD=90°,∴AD∥EF,∴S△ADE=S△ADF,∴S△ADE=×AD×DF=×4×2=4;【拓展应用】如图③,连接CF,∵四边形ABCD和四边形CGFE都是正方形,∴∠BDC=45°,∠GCF=45°,∴∠BDC=∠GCF,∴BD∥CF,∴S△BDF=S△BCD,∴S△BDF=BC×BC=8.17.解:(1)由x2﹣4x﹣5=0,解得x=5或﹣1,∵OA是方程的根,∴OA=5,∴AB=OA=5,在Rt△ABE中,tan∠BAE==,AB=5,∴BE=4,AE=5,∴OE=OA+AE=5+3=8,∴B(8,4).(2)如图1中,当点F落在OB上时,AN=t,DM=t.AD=t,∵FM∥OA,∴=,∴=,∴t=.如图2中,当0<t≤时,重叠部分是四边形ACFM,S=•(AC+FM)•DM=•(t+t﹣t)•t=t2.如图3中,当<t≤5时,重叠部分是五边形ACHGM,S=S梯形ACFM﹣S△FGH=t2﹣××[﹣(5﹣t)]2=﹣t2+t﹣.综上所述,S=.(3)如图4中,满足条件的点P如图所示:∵点F落在OB上时,t=,∵DM=FM=,AD=,AC=,∴PF=PM﹣FM=5﹣=,OC=5﹣=,∴F(,),M(,).∴P(,),P″(﹣,﹣),P′(,).18.(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.。
2023年中考数学(人教版)总复习训练:四边形综合问题
2023年中考数学(人教版)总复习训练:四边形综合问题一、选择题(本大题共10道小题)1. [2021·无锡]下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直2. (2020•丹东)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是()A.正方形B.矩形C.菱形D.梯形3. (2021·无锡中考)如图,D,E,F分别是△ABC各边中点,则以下说法错误的是( )A.△BDE和△DCF的面积相等B.四边形AEDF是平行四边形C.若AB=BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形4. (2020•台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②5. (2022·湖北襄阳)如图,▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形6. (2021•安徽模拟)如图,Rt△ABC≌Rt△DCB,其中∠ABC=90°,AB=3,BC=4,M为BC中点,EF 过点M交AC、BD于点E、F,连接BE、CF,则下列结论错误的是()A.四边形BECF为平行四边形B.当BF=3.5时,四边形BECF为矩形C.当BF=2.5时,四边形BECF为菱形D.四边形BECF不可能为正方形7. (2020秋•魏县月考)如图,在任意四边形ABCD中,AC,BD是对角线,E,F,G,H分别是线段AB,BC,CD,AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形C.当E,F,G,H是各条线段的中点时,且AC=BD,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH不可能为菱形8. (2020•盐田区二模)如图,在正方形ABCD中,点M是AB上一动点,点E是CM的中点,AE 绕点E顺时针旋转90o得到EF,连接DE,DF.给出结论:①DE=EF;②∠CDF=45o;③=;④若正方形的边长为2,则点M在射线AB上运动时,CF有最小值2.其中结论正确的是( )A.①②③B.①②④C.①③④D.②③④9. (2020•庆云县一模)如图,Rt△ABE中,∠B=90o,AB=BE,将△ABE绕点A逆时针旋转45o,得到△AHD,过D作DC⊥BE交BE的延长线于点C,连接BH并延长交DC于点F,连接DE交BF 于点O.下列结论:①DE平分∠HDC;②DO=OE;③H是BF的中点;④BC-CF=2CE;⑤CD=HF,其中正确的有( )A.5个B.4个C.3个D.2个10. (2020·四川眉山中考)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH•AC;④DG⊥AC其中正确的个数为( )A.1个B.2个C.3个D.4个二、填空题(本大题共8道小题)11. (2021•济南)如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE=.12. (2020•道里区二模)在平行四边形ABCD中,∠A=30o,AD=2,BD=,则平行四边形ABCD的面积为___.13. (2022春•西城区校级期中)如图,已知四边形ABCD满足AB=CD=1,AB⊥CD,E、F分别为AD和BC的中点,则EF=.14. (2020·四川中考真题)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=_____.15. (2020•温州模拟)如图,四边形ABCD,CEFG均为菱形,A F∠=∠,连结BE,EG,EG//BC,EB⊥BC,若sin∠EGD=,菱形ABCD的周长为12,则菱形CEFG的周长为__________.16. (2020•顺德区三模)如图,分别以△ABC的边AB、AC为一边向外做正方形ABDE和正方形ACFG,连结CE、BG交于点P,连结AP和EG.在不添加任何辅助线和字母的前提下,写出四个不同类型的结论__________.17. (2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.18. (2020·江苏连云港·中考真题)如图,正六边形A1A2A3A4A5A6内部有一个正五形B1B2B3B4B5,且A3A4//B3B4,直线l经过B2、B3,则直线l与A1A2的夹角a=________ .三、解答题(本大题共6道小题)19. (2020秋•肇源县期末)如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH.求证:四边形EFGH是平行四边形.20. (2020春•秦淮区期末)如图,四边形ABCD是菱形,E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.求证:四边形EFGH是矩形.21. (2022·贵州铜仁)如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=150°,∠BDC=2∠1,求∠DBC的度数.22. (2020春•阳西县期末)如图,在矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,DG=2.求证:四边形EFGH为正方形.23. (2020春•海陵区)如图,O为∠BAC内一点,E、F、G、H分别为AB,AC,OC,OB的中点.(1)求证:四边形EFGH为平行四边形;(2)当AB=AC,AO平分∠BAC时,求证:四边形EFGH为矩形.24. (2020年湖北省中考数学模拟题)如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.(1)填空:∠ADE=____;(2)求证:AB=BC;的值.(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求AEEC。
中考数学第一轮复习四边形专项练习
中考数学第一轮复习四边形专项练习一、单选题1.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC⊥AB,AC=6,BD=8,则AB的长为()A.10B.2√7C.5D.√72.如图,在直角坐标系xOy中,菱形ABCD的周长为16,点M是边AB的中点,⊥BCD=60°,则点M的坐标为()A.(- √3,-2)B.(- √3,-1)C.(-1,- √3)D.(- √3,2)3.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.√5B.√6C.√7D.√84.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若⊥CEF的周长为18,则OF的长为()A.3.2B.3.5C.3.6D.3.75.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.26.一个多边形的内角和等于1080°,这个多边形的边数为()A.6B.7C.8D.97.如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,P,Q两点同时从点O 出发,以厘米/秒的速度在菱形的对角线及边上运动.P,Q的运动路线:点P为O−A−D−O,点Q为O−C−B−O.设运动的时间为x秒,P,Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,则菱形ABCD的面积为()图1 图2A.2√3cm2B.2cm2C.√3cm2D.√2cm28.如图,▱ABCD中,E,F分别是AB,CD的中点,则图中有()个平行四边形.A.7个B.8个C.9个D.10个9.顺次连接菱形四边中点得到的四边形是()A.矩形B.菱形C.正方形D.等腰梯形10.如图,在矩形ABCD中,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为()A.2B.3C.4D.511.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定12.已知等边ΔABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边ΔCDE,连接BE和AE,下列结论:①AE=BD;②AE与AB的所夹锐角为60°;③当D在线段AB或BA延长线上时,总有∠BED−∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的结论序号有()A.①②B.①②③C.①②④D.①②③④二、填空题13.若一个正多边形的外角与其相邻的内角之比为1:5,则该正多边形的内角和的度数为.14.一个n边形的内角和是1080°,那么n=.15.如图,在⊥ABC中,AB=AC,延长CB至点E,点D在AC边上,以CE,CD为边作▱DCEF.若⊥F=70°,则⊥A的度数为度.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 √5cm,且tan⊥EFC= 34,那么矩形ABCD的周长为cm.17.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m+n=.18.如图,对折矩形纸片ABCD,使AD与BC重合得到折痕EF,将纸片展平,再一次折叠,使点A落到EF上的点G处,并使折痕经过点B,交EF于点H,交AD于点M.已知AB=2,则线段HG的长度为.三、综合题19.如图,在矩形ABCD中,点O为对角线AC的中点,点E是CD上一点,连接EO并延长交AB于点F,连接AE、CF.(1)求证:ΔCOE≅ΔAOF;(2)当∠DEA=2∠CAB时,试判断四边形AECF的形状,并说明理由.20.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.21.如图,以BC为底的等腰△ABC的三个顶点都在⊙O上,过点A作AD//BC交BO的反向延长线于点D.(1)求证:AD是⊙O的切线;(2)若四边形ADBC是平行四边形,且BC=12,求⊙O的半径.22.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= k x,直线AC解析式为y2=ax+b.(1)求反比例函数解析式;(2)当y1<y2时,求x的取值范围;(3)求⊥CDE的面积.23.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF平行BE,交线段ED的延长线于点F,连接AE、CF .(1)求证:AF=CE;(2)若AF=CF=4,∠AFD=30°,求EF的长.24.在Rt△ABC中,∠ACB=90°点D是边AB上的一个动点,连接CD.作AE∥DC,CE∥AB,连接ED.(1)如图1,当CD⊥AB时,求证:AC=ED;(2)如图2,当D是AB的中点时,①四边形ADCE的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE的面积为.答案解析部分1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】A10.【答案】C11.【答案】C12.【答案】C13.【答案】1800°14.【答案】815.【答案】4016.【答案】3617.【答案】318.【答案】2√3319.【答案】(1)证明:∵四边形ABCD是矩形∴AB//CD,∠D=90°∴∠OCE=∠OAF,∠OEC=∠OFA ∵点O是对角线AC的中点∴OC=OA在△COE和△AOF中,{∠OCE=∠OAF ∠OEC=∠OFA OC=OA∴△COE≅△AOF(AAS);(2)解:四边形AECF是菱形,理由如下:由(1)已证:△COE≅△AOF∴OE=OF,CE=AF又∵AB//CD,即CE//AF∴四边形AECF是平行四边形∵AB//CD∴∠DEA=∠BAE=∠CAB+∠CAE∵∠DEA=2∠CAB∴∠CAE=∠CAB,即OA是∠EAF的角平分线∴OA⊥EF(等腰三角形的三线合一)∴平行四边形AECF是菱形∵点E是CD上一点,∠D=90°∴∠DEA≠90°,即∠CEA≠90°∴菱形AECF不是正方形综上,四边形AECF是菱形.20.【答案】(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,∵G为BC的中点,∴BG=CG,∵四边形ABCD是矩形,∴⊥ABG=⊥DCB=90°,∴⊥ABG=⊥MCG=90°,在⊥ABG和⊥MCG中,{∠ABG=∠MCGBG=CG∠AGB=∠MGC,∴⊥ABG⊥⊥MCG(ASA),∴GA=GM,∵F为AE的中点,∴FA=FE,∴FG是⊥AEM的中位线,∴FG⊥EM,∴⊥HGE=⊥MEC,在⊥DCE和⊥MCE中,{CD=CM∠DCE=∠MCECE=CE,∴⊥DEC⊥⊥MEC(SAS),∴⊥DEC=⊥MEC,∵⊥HGE=⊥MEC,∴⊥HEG=⊥HGE,∴HE=HG(2)答:PQ =√2PB理由:过点B作BQ⊥BP交DE于Q,则⊥QBP=90°,∵AP⊥DE,四边形ABCD是矩形,∴⊥APE=⊥ABE=90°,∵⊥APO+⊥AOP+⊥BAP=180°,⊥EOB+⊥ABE+⊥BEP=180°,⊥AOP=⊥EOB,∴⊥BEQ=⊥BAP,∵⊥QBP=⊥ABE=90°,∴⊥EBQ=⊥ABP=90°﹣⊥ABQ,在⊥ABP和⊥EBQ中,{∠BAP=∠BEQAB=EB∠ABP=∠EBQ,∴⊥BEQ⊥⊥BAP(ASA),∴BQ=BP,PA=QE,∴⊥PBQ是等腰直角三角形,∴PQ =√2PB.21.【答案】(1)证明:如图,连接OA,∵ΔABC是以BC为底的等腰三角形;∴AB=AC,∴BC⊥OA,∵AD//BC,∴AD⊥OA,∵OA是⊙O的半径,∴AD是⊙O的切线(2)解:如图,设OA与BC交于E,∵四边形ADBC是平行四边形,∴AC//OD,∴∠C=∠CBO,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠CBO,∵OA⊥BC,∴BA=BO,∵AO=BO,∴ΔABO是等边三角形,∵BC=12,∴BE=12BC=6,,∴OB=BEsin60°=4√3∴⊙O的半径为4√322.【答案】(1)解:∵A(0,﹣3),B(4,0),∴AB= √32+42 =5=BC ,∴C (4,5),∵反比例函数y 1= k x图象经过点C , ∴k=4×5=20,∴反比例函数解析式为y 1= 20x(2)解:把A (0,﹣3),C (4,5)代入y 2=ax+b 得, {b =−34a +b =5 ,解得 {a =2b =−3直线AC 解析式为y 2=2x ﹣3,解 {y =2x −3y =20x 得 {x 1=4y 1=5 , {x 2=−52y 2=−8, ∴E (﹣ 52,﹣8) 当y 1<y 2时,x >4或﹣ 52<x <0 (3)解:S ⊥CDE =S ⊥ADE +S ⊥ADC = 12 ×× 5×52+ 12 ×5×4= 654 23.【答案】(1)证明: ∵D 点为 AC 的中点, ∴AD =CD ,∵AF//BE ,∴∠FAD =∠ECD ,在 △ADF 和 △CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE(AAS) ,∴AF =CE(2)解: ∵AF//BE ,AF =CE , ∴四边形 AFCE 为平行四边形, ∵AF =CF =4 ,∴四边形 AFCE 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD=30°,∴AD=12AF=2,∴FD=√AF2−AD2=√42−22=2√3,∴EF=2FD=4√3 24.【答案】(1)证明:∵AE//DC,CE//AB,∴四边形AECD是平行四边形,又∵CD⊥AB,⊥⊥ADC=90°,⊥四边形AECD是矩形,⊥AC=ED;(2)菱形;6。
中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案
中考专题复习——与四边形有关的综合题集(含压轴题)带答案一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD 一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•D G,其中正确结论的个数为()A .2B .3C .4D .54.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .15.如图,在矩形ABCD 中,BC=AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH (3)OH=AE (4)BC ﹣BF=EH其中正确命题的序号( )A .(1)(2)(3)B .(2)(3)(4)C .(2)(4)D .(1)(3)6.如图,在边长为1的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),过点P 作PM ∥CD 交BC 于M 点,PN ∥BC 交CD 于N 点,连接MN ,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH,其中正确的结论有()A.2个 B.3个 C.4个 D.5个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△AEF,其中正确的结论有()个.A .①②B .①②③C .①②④D .①②③④9.如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH 、EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE ∽△GMF . 其中正确的结论有( )A .1个B .2个C .3个D .4个评卷人 得 分二.填空题(共7小题)10.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .11.如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE=BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 .(把你认为正确的说法的序号都填上)12.如图,在菱形ABCD 中,AB=6,∠DAB=60°,AE 分别交BC 、BD 于点E 、F ,CE=2,连接CF ,以下结论:①△ABF ≌△CBF ;②点E 到AB 的距离是2;③tan ∠DCF=;④△ABF 的面积为.其中一定成立的是 (把所有正确结论的序号都填在横线上).13.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC .若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论:①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC ;④S 矩形ABCD =4S △BPF ;⑤△AEB是正三角形.其中正确结论的序号是 .14.如图,在矩形ABCD 中,AD=AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论: ①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有 .15.如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F 到BC的距离为;③BE+EC=EF;④;⑤.其中正确的是.16.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q 从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC﹣CB﹣BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0),则当t=秒时,四边形BQDE为直角梯形.评卷人得分三.解答题(共34小题)17.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.18.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD ⊥AB于点D,以AP、AD为邻边作▱PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).(1)求线段PE的长(用含x的代数式表示).(2)当点E落在边BC上时,求x的值.(3)求y与x之间的函数关系式.(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.19.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.20.如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N 分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.21.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ :S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.23.已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC 于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.24.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.25.已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.28.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.29.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.30.已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为(直接写出答案).31.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD 上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M 作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.32.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC 的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC 的长度.33.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.34.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.35.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.36.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.37.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.38.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B 点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?39.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.40.如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.41.如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案)42.如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E 处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论;(3)若AB=5,BC=3,直接写出BG的长.43.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥AO交E′F于T点,交OC于G点,求证:TG=AE′;(3)在(2)的条件下,设T(x,y).①探求:y与x之间的函数关系式.②指出变量x的取值范围.44.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A 出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.45.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.46.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.47.如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm.(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP,请说明理由;(3)如图②,当点P从点B开始运动时,点Q从点C出发,以acm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由.48.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S=,试判断△AOE与△AOD是否相似?并△AOE说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.49.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=l0cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.50.如图,点E为正方形ABCD的边BC所在直线上的一点,连接AE,过点C作CF⊥AE于F,连接BF.(1)如图1,当点E在CB的延长线上,且AC=EC时,求证:BF=;(2)如图2,当点E在线段BC上,且AE平分∠BAC时,求证:AB+BE=AC;(3)如图3,当点E继续往右运动到BC中点时,过点D作DH⊥AE于H,连接BH.求证:∠BHF=45°.四边形综合题集参考答案与试题解析一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:=CG2;③若AF=2DF,则BG=6GF;④CG与BD ①△AED≌△DFB;②S四边形BCDG一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形BCDG,易求后者的面积;四边形CMGN③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°=∠BCD ,即∠BGD +∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG ×CG=CG 2,故本选项错误;③过点F 作FP ∥AE 交DE 于P 点(如图2),∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=FP :2AE=1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG=FP :BE=1:6,即BG=6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选:B.【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.5【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;≠1,错误;③可以直接求出FC的长,计算S△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=CN=AF;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.【点评】本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.4.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF ;②AE ⊥BF ;△BCF 沿BF 对折,得到△BPF ,利用角的关系求出QF=QB ,解出BP ,QB ,根据正弦的定义即可求解;根据AA 可证△BGE 与△BCF 相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF=BE ,在△ABE 和△BCF 中,,∴Rt △ABE ≌Rt △BCF (SAS ),∴∠BAE=∠CBF ,AE=BF ,故①正确;又∵∠BAE +∠BEA=90°,∴∠CBF +∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF ,故②正确;根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90°∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴x 2=(x ﹣k )2+4k 2,∴x=,∴sin=∠BQP==,故③正确; ∵∠BGE=∠BCF ,∠GBE=∠CBF ,∴△BGE ∽△BCF ,∵BE=BC ,BF=BC , ∴BE :BF=1:,∴△BGE 的面积:△BCF 的面积=1:5,∴S 四边形ECFG =4S △BGE ,故④错误.故选:B.【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.5.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)【分析】(1)根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确;(2)设DH=1,则AH=DH=1,AD=DE=,求出HE=﹣1,得到2HE≠1,所以(2)不正确;(3)通过角的度数求出△AOH和△OEH是等腰三角形,从而得到(3)正确;(4)由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)不正确.【解答】解:(1)在矩形ABCD中,AD=BC=AB=CD,∠ADC=∠BCD=90°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AH,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=∠AEB,所以(1)结论正确;(2)设DH=1,则AH=DH=1,AD=DE=,∴HE=DE﹣DH=﹣1,∴2HE=2(﹣1)=4﹣2≠1,所以(2)结论不正确;(3)∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=∠OHA=22.5°,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE=OA,∴OH=AE,所以(3)正确;(4)∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在Rt△ABE与Rt△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,所以(2)不正确,故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC 于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个。
中考数学专题训练:特殊平行四边形(附参考答案)
中考数学专题训练:特殊平行四边形(附参考答案)1.如图,在矩形ABCD和△BDE中,点A在BE上.若矩形ABCD的面积为20,△BDE的面积为24,则△ADE的面积为( )A.10 B.12C.14 D.162.如图,矩形ABCD的对角线AC,BD交于点O,AB=3,BC=4,过点O作OM⊥AC,交BC于点M,过点M作MN⊥BD,垂足为点N,则OM+MN的值为( )A.245B.165C.125D.653.如图,在四边形ABCD中,AB∥CD,AB⊥BD,AB=5,BD=4,CD=3,E是AC 的中点,则BE的长为( )A.2 B.52C.√5D.34.关于菱形的性质,以下说法不正确的是( )A.四条边相等B.对角线相等C.对角线互相垂直D.是轴对称图形5.下列选项中能使□ABCD成为菱形的是( )A.AB=CD B.AB=BCC.∠BAD=90°D.AC=BD6.如图,在菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC-CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形7.如图,菱形ABCD的对角线AC与BD相交于点O,E为边BC的中点,连接OE.若AC=6,BD=8,则OE=( )A.2 B.52C.3 D.48.如图,在菱形ABCD中,E,F分别是边BC,CD的中点,连接AE,AF,EF.若菱形ABCD的面积为8,则△AEF的面积为( )A.2 B.3C.4 D.59.如图,将矩形ABCD对折,使边AB与DC,BC与AD分别重合,展开后得到四边形EFGH.若AB=2,BC=4,则四边形EFGH的面积为( )A.2 B.4C.5 D.610.一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等;b.一组对边平行且相等;c.一组邻边相等;d.一个角是直角.顺次添加的条件:①a→c→d ②b→d→c ③a→b→c,则正确的是( )A.仅①B.仅③C.①②D.②③11.如图,在正方形ABCD中,点E,F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则CG的长是( )A.2 B.√5C.3√22D.12512.如图,已知F,E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P,则下列结论成立的是( )A.BE=12AE B.PC=PDC.∠EAF+∠AFD=90°D.PE=EC13.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是( )A.1 B.√2C.√3D.214.如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.√6B.√62C.2√2D.2√315.如图,在△ABC中,D,E,F分别是边AB,BC和AC的中点,请添加一个条件________________________,使四边形BEFD为矩形.(填一个即可)16.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.若AC=12,BD=16,则OE的长为______.17.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点,点FAC,连接EF.若AC=10,则EF=______.在对角线AC上,且AF=1418.如图,E是矩形ABCD边AD上一点,F,G,H分别是BE,BC,CE的中点,AF=3,则GH的长为_____.19.如图,菱形ABCD的对角线AC,BD相交于点O,OE⊥AD,垂足为点E,AC=8,BD=6,则OE的长为______.20.如图,菱形ABCD的边长为6 cm,∠BAD=60°,将该菱形沿AC方向平移2√3 cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为_____cm.21.如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE 的中点,AF与DE相交于点G,则GF的长等于______.22.如图,将边长为1的正方形ABCD绕点A顺时针旋转30°得到正方形AB1C1D1,则阴影部分的面积是_________.23.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于______.24.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是_______.参考答案1.C 2.C 3.C 4.B 5.B 6.C 7.B 8.B 9.B 10.C 11.D 12.C 13.C 14.B15.AB⊥BC(答案不唯一) 16.10 17.52 18.3 19.12520.221.√19422.2-2√3323.2α 24.8√5。
中考复习之四边形专题(精)
四边形复习讲义知识点回顾 【性质】【判定】⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎧⎨⎪⎩⎪⎪⎪⎪⎩两组对边分别平行的四边形边两组对边分别相等的四边形一组对边平行且相等的四边形平行四边形对角相等的四边形角邻角互补的四边形对角线对角线互相平分的四边形⎧⎪⎨⎪⎩平行四边形+一组邻边相等菱形平行四边形+对角线相等四边形+四条边相等⎧⎪⎨⎪⎩平行四边形+一个直角矩形平行四边形+对角线相等四边形+三个角是直角+⎧⎧⎪⎨⎩⎪⎪⎧⎪+⎨⎨⎪⎩⎪⎪⎪⎩一组邻边相等矩形+对角线互相垂直一个直角正方形菱形对角线相等平行四边形一个菱形特征+一个矩形特征四边形+对角线相等且互相垂直平方【平行四边形性质】1.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC +BD =24厘米,△OAB 的周长是20厘米,则EF = 厘米.2.如图2,在平行四边形ABCD ,∠B =110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F 的度数为( )A .110°B .30°C .50°D .70°3.如图3,已知□ABCD 中,AB =3,AD =2,∠B =150°,则□ABCD 的面积为( )A .2B .3 C.D .6FEODCBAFEDCBA图1图2图34.如图4,在□ABCD 中,AC ⊥BD ,若AB =6,则BC =_____________.5.如图5,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .图4图5图66.如图6,在矩形ABCD 中,AB =3cm ,AD =9cm ,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则AE = ,EF = .7.如图7,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4).点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是等腰三角形时,点P 的坐标为 .8.如图8,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,则菱形ABCD 的高DH 为______.9.如图9,在菱形ABCD 中,∠A =110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =______10.菱形的周长为16cm ,一条对角线长为4cm ,则菱形的面积是( )cm 2. A .B .C .D .11.菱形ABCD 中,AB =4,高DE 垂直平分边AB ,则BD = ,AC =12.正方形ABCD 的边长为1cm ,以对角线AC 为一边作等边△ACE ,则BE 的长为 cm 13.如图10,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形;④∠PFE =∠BAP ;⑤PD .其中正确的结论的序号是 .14.如图11,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若AM =10cm ,则GH =______15.如图12,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+ S 3;③若S 3=2S 1,则S 4=2S 2;④若S 1=S 2,则P 点在矩形的对角线上,其中正确的结论的序号是______________.P F EDCBA图10图11图12【平行四边形判定与证明】1.用两个全等的三角形按照不同的拼法,可以拼成平行四边形的个数是( ) A .1个 B .2个 C .3个 D .4个2.如图1,要使□ABCD 成为菱形,可添加一个条件: .(请填一个你认为正确的条件,不再添加其他辅助线)3.如图,在平行四边形ABCD 中,AC 与BD 交与E 点,不再添加辅助线,请你补充一个条件:当 时,平行四边形ABCD 是矩形.A4.(6分)如图,四边形ABCD 是平行四边形,E ,F 是对角线AC 上的两点,∠1=∠2,求证;四边形EBFD 是平行四边形.21F E DCBA5.(6分)如图,M ,N 分别是平行四边形ABCD 的对边AD ,BC 的中点,且AD =2AB ,求证;四边形PMQN 为矩形.QM DCPN BA6.(8分)已知:如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.B7.如图,在□ABCD 中,E 、F 分别为AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1) 求证:AD =BG ;(2) 若四边形BEDF 是正方形,则四边形AGBD 是什么特殊四边形?并证明你的结论.A8.将矩形OABC置于平面直角系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E,随着m的变化,试探索;点E能否恰好在x轴上?若能,请求出m的值;若不能,请说明理由.9.如图,在四边形ABCD中,AB=AD,∠A=∠C=90°.(1)若CD=3,CB=5,求四边形ABCD的面积;(2)过点C作CE∥BD,交AD的延长线于E点,若BC+CD=a,△ABE的面积为9,求a的值.【综合提高】1.如图,矩形ABCD的两边AB=4,BC=3,P是AD上任一点,PE⊥AC于点E,PF⊥BD于点F。
中考体系-74.四边形综合-3(最全,含答案)
四边形综合-3一、 性质综合 二、 判定及综合 三、 中位线 四、 中点四边形 五、 剪拼五、 剪拼1. 【易】(沈阳八年级)以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是( ) A .2个 B .3个 C .4个 D .5个 【答案】B2. 【易】(沈阳八年级)用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有( ) A .1个 B .2个 C .3个 D .4个 【答案】C3. 【易】(沈阳八年级)用两个能够完全重合的非等腰三角形拼成四边形则拼成平行四边形的最多个数有( ) A .1个 B .2个 C .3个 D .4个 【答案】C4. 【易】(初二下期末复习五)用两个能够完全重合的不等边三角形按不同的方式拼成的各种不同的四边形中,平行四边形有( ) A .1个 B .2个 C .3个 D .4个 【答案】C5. 【易】(沈阳初二)把两个全等的边长分别是6,7,8的三角形拼成平行四边形,则拼成的平行四边形的周长为___________. 【答案】26,28或306. 【易】(2011年南平中考)有一等腰梯形纸片ABCD (如图),AD BC ∥,1AD =,3BC =,沿梯形的高DE 剪下,由DEC △与四边形ABED 不一定能拼成的图形是( )A .直角三角形B .矩形C .平行四边形D .正方形【答案】D7. 【易】(20届希望杯初二2试)将一张四边形纸片沿两组对边的中点连线剪开,得到四张小纸片,如图3所示.用这四张小纸片一定可拼成一个( )A .梯形B .矩形C .菱形D .平行四边形【答案】D8. 【中】(2012深圳初三月考)如果把左图的正方形纸板剪成四块恰好能拼成右图的矩形,则a 等于( )A .51- B .51+ C .53+D .21+【答案】B9. 【中】(河南省实验中学2011年内部中考数学第一轮复习资料4)如图,沿虚线将平行四边形剪开,则得到的四边形是( )A .梯形B .平行四边形C .矩形D .菱形【答案】A10. 【中】(石景山区2010年初三第一次统一练习暨毕业考试)⑴ 如图1,把边长是3的等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到图2,再把图2中图形各边三等分,分别ECBDA aa111EF ABCD ABFE D CF BAE以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个新图形,则这个新图形的周长是____________;⑵ 如图3,在的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为斜边向外作等腰直角三角形,去掉居中的那条线段,得到图4,请把图4中的图形剪拼成正方形,并在图4中画出剪裁线,在图5中画出剪拼后的正方形.【答案】⑴16⑵11. 【中】(2011年天津市南开区初中毕业生学业水平质量调查(二))图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等,如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8-则图3中线段AB 的长为________.112. 【中】(北大附中2012-2013学年度第二学期期中考试初二年级数学试卷)操作与探究邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二操作;……依此类图2图155⨯图5图4图3推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形.如图1,ABCD 中,若1AB =,2BC =,则ABCD 为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_____阶准菱形(填空); ②小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F ,得到四边形ABFE .请证明四边形ABFE 是菱形.(2)操作、探究与计算:①已知ABCD 的邻边长分别为1,()1a a >,且是3阶准菱形,请画出ABCD 及裁剪线的示意图,并在图形下方写出a 的值;②已知ABCD 的邻边长分别为a ,()b a b >,满足6a b r =+,5b r =,则ABCD 是______阶准菱形(填空) 【答案】(1)①2②略(2)①4②1013. 【中】(延庆县2012学年第一学期期末试卷)如图1,若将AOB △绕点O 逆时针旋转180︒得到COD △,则AOB COD △≌△.此时,我们称AOB △与COD △为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,ABC △是锐角三角形且AC AB >,点E 为AC 中点,F 为BC 上一点且BF FC ≠(F 不与B .C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.请分别按下列要求用直线将图2中的ABC △重新进行分割,画出分割线及拼接后的图形.⑴ 在图3中将ABC △沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形; ⑵ 在图4中将ABC △沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;图1DCBA图2FEABCD图1 图2②②①E CFB AA B OC D⑶ 在图5中将ABC △沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为锐角三角形.【答案】⑴⑵⑶14. 【中】(北京师大附中2012年第二学期期中考试·初二数学)动手做一做有一块形状如图的木板,经过适当的剪切后,拼成一块面积最大的正方形板材,请在图中画出剪切线,并把拼成的正方形在图中画出(保留剪切的痕迹,不写画法)【答案】图3 图4 图5AAB C B CB CA③③②①①CBA15. 【中】(2013年广东省佛山市高中阶段招生考试数学试题)我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识. 已知平行四边形ABCD ,60A ∠=︒,2AB a =,AD a =.⑴ 把所给的平行四边形ABCD 用两种方式分割并作说明(见题答卡表格里的示例); 要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.⑵ 图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度. 要求:计算对角线BD 长的过程中要有必要的论证;直接写出对角线AC 的长.【答案】⑴①分割成两个等腰梯形.两个等腰梯形的腰长都为a ,上底长都为2a,下底长都为32a ,上底角都为120°,下底角都为60°. ②分割成一个等边三角形、一个等腰三角形、一个直角三角形.等边三角形的边长为a ,等腰三角形的腰长为a ,顶角为120°.直角三角形两锐角为30°、60°,三边为a、2a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 暑 假 作 业 18
一、选择题
1.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )
A.50°
B.55°
C.60°
D.65°
2.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A. AB=CD B. AD=BC C. AB=BC D.AC=BD
3.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC
的面积为S ,则 ( )
A .S=2
B .S=2.4
C .S=4
D .S 与B
E 长度有关 4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )
A.当AB =BC 时,它是菱形
B.当AC ⊥BD 时,它是菱形
C.当∠ABC =90°时,它是矩形
D.当AC =BD 时,它是正方形
5.如图,矩形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处, D 点落在D 1处,若∠1=40°,则∠BMC=( ).
A.135°
B.120°
C.100°
D. 110° 6.已知下列命题:
①若00a b >>,,则0a b +>; ②若a b ≠,则2
2
a b ≠; ③直角三角形斜边上的中线等于斜边的一半. ④菱形的对角线互相垂直. 其中原命题与逆命题均为真命题的个数是( ) A.4个 B.3个 C.2个 D.1个
7.如图所示,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 中点E 处, 点A 落在F 处,折痕为MN ,则线段CN 的长是( )
A. 2
B. 3
C. 4
D. 5
8.如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5.DE ⊥CD ,且DE =CD ,连AE ,则△ADE 的面积为( ) A .1 B .2 C .3 D .4
9.如图□ABCD 中,AE ⊥BC 于E ,AE =EB =EC =a ,且a 为一元二次方程0322=-+x x 的根,则□ABCD 的周长为( )
A .224+
B .2612+
C .22+
D .261222++或
二、填空题
10.如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o
,, 则PFE ∠的度数是 .
11.如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D =120?,则该零件另一腰AB 的长是 m. 12.在如图所示的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1, 则该菱形的面积为 .
13.如图,梯形ABCD 中,AB ∥CD , AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35?,则∠D = ____.
14.如图,正方形ABCD 的面积为1, M 是AB 的中点,连接AC 、DM ,则图中阴影部分的面积是 . 15.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2。
三、解答题
第1题图
E
B
C ′ F C
D
65° D ′
A 第5题图 第7题 C
F
D B
E A
P
第10题图 第3题
M
A D C
B 第14题A B
C D 第11
第12题图
A B C D 第13题图
(1)求证:AF=BE ;(2)请你猜测∠BPF 的度数,并证明你的结论 .
17.如图,在梯形ABCD 中AD//BC,BD=CD,且∠ABC 为锐角,若AD=4 ,BC=12, E 为
BC 上的一点,当CE 分别为何值时,四边形ABED 是等腰梯形?直角梯形?写出 你的结论,并加以证明。
18.已知,在Rt △ABC 中,∠C=90°,∠A=30°,CD 是AB 边的中线,若将△ABC 沿
CD 折叠,使CA 到A C '的位置,连结A 'B .(1)求证:四边形BCD A '是菱形; (2)若BC =2,试求四边形BCD A '是菱形的面积S .
19.(1)如图1,已知∠AOB ,OA =OB ,点E 在OB 边上,四边形AEBF 是平行四边形,请你 只用无刻度的直尺........在图中画出∠AOB 的平分线.(保留作图痕迹,不要求写作法) (2)如图2,在10×10的正方形网格中,点A (0,0)、B (5,0)、C (3,6)、D (-1,3),
①依次连结A 、B 、C 、D 四点得到四边形ABCD ,四边形ABCD 的形状是 . ②在x 轴上找一点P ,使得△PCD 的周长最短(直接画出图形,不要求写作法); 此时,点P 的坐标为 ,最短周长为 .
20.如图,将矩形ABCD 沿MN 折叠,使点B 与点D 重合.(1)求证:DN DM =; (2)当AD AB 和满足什么数量关系时,DMN ∆是等边三角形?并说明你的理由. A
D (B )
M
N
C
A B C D E C
D
A A F 图1 图2 AO
B x y D O E B C
21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边
AB上,点G在边BC上.(1)求证AE=BF;(2)若BC=2cm,求正方形DEFG的边长.
22.如图,在□ABCD中,E、F为BC两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
23.如图,在直角梯形纸片ABCD中,AB∥DC,︒
CD>,将纸片沿过点D的
A,AD
∠90
=
直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.
(1)求证:四边形ADEF是正方形;
(2)取线段AF的中点G,连接EG,如果CD
BG=,试说明四边形GBCE是等腰梯形.
24.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请以F为一个端点,
和图中已标明字母的某一点连成一条新的线段.
(1)请你猜想图中与点F有关的三个不同类型的新的正确结论.
(2)针对(1)猜想的结论,请你选择一个加以说明.
25.如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.(1)求证:CE=CF;
∠=80°,试问BC=CE吗?请说明理由.
(2)若∠ECF=60°,B
26.如图,E 、F 是平行四边形ABCD 的对角线AC 上的点,CE=AF ,请你猜想:BE 与DF 有怎样的位置关系和数量关系? 对你的猜想加以证明。
A
B
D
E
F
E
C
B
D
A
G F。