2019中考数学专题复习资料--几何最值问题

合集下载

2019届中考数学综合题型专题复习卷:最值问题

2019届中考数学综合题型专题复习卷:最值问题
一、单选题
最值问题
1.对于实数 a,b,定义符号 min{a,b},其意义为:当 a≥b 时,min{a,b}=b;当 a<b 时,min{a,b}=a.例如:
min={2,–1}=–1,若关于 x 的函数 y=min{2x–1,–x+3},则该函数的最大值为( )
A.
B.1 C.
D.
【答案】D
2.在平面直角坐标系内,以原点 O 为圆心,1 为半径作圆,点 P 在直线
⊥AB,垂足为点 F,连接 AC,OC,则下列结论正确的是______.(写出所有正确结论的序号)


②扇形 OBC 的面积为 π;
③△OCF∽△OEC; ④若点 P 为线段 OA 上一动点,则 AP•OP 有最大值 20.25.
【答案】①③④. 30.如图,等腰△ABC 的底边 BC=20,面积为 120,点 F 在边 BC 上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为__.
A.3 B.4 C.5 D.6 【答案】C 23.如图,∠AOB=60°,点 P 是∠AOB 内的定点且 OP= ,若点 M、N 分别是射线 OA、OB 上异于点 O 的动点, 则△PMN 周长的最小值是( )
A.
B.
C.6 D.3
【答案】D
24.如图,直线
与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(﹣1,0)为圆心,1 为半径的圆上一点,
半径的⊙C 上,Q 是 AP 的中点,已知 OQ 长的最大值为 ,则 k 的值为( )
A.
B.
C.
D.
【答案】C
22.已知抛物线 y= x2+1 具有如下性质:该抛物线上任意一点到定点 F(0,2)的距离与到 x 轴的距离始终相等,

专题13 几何中的最值与定值问题 -突破中考数学压轴题学霸秘笈大揭秘(学生版)

专题13 几何中的最值与定值问题 -突破中考数学压轴题学霸秘笈大揭秘(学生版)

专题13 几何中的最值与定值问题【类型综述】线段和差的最值问题,常见的有两类:第一类问题是“两点之间,线段最短”.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”第二类问题是“两点之间,线段最短”结合“垂线段最短”.【方法揭秘】两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.图1 图2 图3如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ 周长的最小值是多少呢?如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊.第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ 的最小值是线段FQ.第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的.图4 图5 图6【典例分析】例1 如图1,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ; (2)求证:AD AE为定值;(3)设该二次函数的图像的顶点为F .探索:在x 轴的负半轴上是否存在点G ,联结GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.图1例2如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1例3 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;图1例4如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?图1例5如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC . (1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为 54 ,求a 的值;(3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图【变式训练】一、单选题1.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A.3B.1+C.1+3D.1+2.如图,已知,以为圆心,长为半径作,是上一个动点,直线交轴于点,则面积的最大值是()A.B.C.D.3.如图,矩形ABCD 中,AB=4,AD=3,P 是边CD 上一点,将△ADP沿直线AP对折,得到△APQ.当射线BQ交线段CD于点F时,DF的最大值是()A.3B.2C.47--D.454.如图,由两个长为,宽为的全等矩形叠合而得到四边形,则四边形面积的最大值是()A.15B.16C.19D.205.如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC于D,点E,F分别在AD,AB是,则BE+EF的最小值是A.4B.4.8C.5D.5.46.如图,在菱形ABCD中,AB=6,∠A=135°,点P是菱形内部一点,且满足,则PC+PD 的最小值为()A.B.C.6 D.7.在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的动点,连接CD,DE则CD+DE的最小值为()A.8B.C.D.二、解答题8.问题发现:()如图①,中,,,,点是边上任意一点,则的最小值为__________.()如图②,矩形中,,,点、点分别在、上,求的最小值.()如图③,矩形中,,,点是边上一点,且,点是边上的任意一点,把沿翻折,点的对应点为点,连接、,四边形的面积是否存在最小值,若存在,求这个最小值及此时的长度;若不存在,请说明理由.9.问题提出:如图1,在Rt△AB C中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.10.已知二次函数y=x2+2bx+c(b、c为常数).(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.11.已知四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图1,若P 为AB 边上一点以PD ,PC 为边作平行四边形PCQD ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.(2)若P 为AB 边上任意一点,延长PD 到E ,使DE=PD ,再以PE ,PC 为边作平行四边形PCQE ,请问对角线PQ 的长是否也存在最小值?如果存在,请直接写出最小值,如果不存在,请说明理由.(3)如图2,若P 为直线DC 上任意一点,延长PA 到E ,使AE=AP ,以PE 、PB 为边作平行四边形PBQE ,请问对角线PQ 的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.12.(本题满分12分)(1)【问题】如图1,点A 为线段BC 外一动点,且BC a =, 6AB =.当点A 位于__________时线段AC 的长取得最大值,且最大值为__________(用含a 、b 的式子表示).(2)【应用】点A 为线段B 除外一动点,且3BC =, 1AB =.如图2所示,分别以AB 、AC 为边, 作等边三角形ABD 和等边三角形ACE ,连接CD 、BE . ①请找出图中与BE 相等的线段,并说明理由. ②直接写出线段BE 长的最大值.(3)【拓展】如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =, PM PB =, 90BPM ∠=︒.请直接写出线段AM 长的最大值及此时点P 的坐标.13.如图,已知中,,边上的高,四边形为内接矩形.当矩形是正方形时,求正方形的边长.设,矩形的面积为,求关于的函数关系式,当为何值时有最大值,并求出最大值.14.如图,抛物线与坐标轴相交于、、三点,是线段上一动点(端点除外),过作,交于点,连接.直接写出、、的坐标;求抛物线的对称轴和顶点坐标;求面积的最大值,并判断当的面积取最大值时,以、为邻边的平行四边形是否为菱形.15.如图,抛物线过O、A、B三点,A(4,0)B(1,-3),P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)直线PQ与x轴所夹锐角的度数,并求出抛物线的解析式.(2)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PD.DQ的最大值.16.问题提出(1)如图1,点A 为线段BC 外一动点,且BC=a ,AB=b ,填空:当点A 位于 时,线段AC 的长取得最大值,且最大值为 (用含a ,b 的式子表示). 问题探究(2)点A 为线段BC 外一动点,且BC=6,AB=3,如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE ,找出图中与BE 相等的线段,请说明理由,并直接写出线段BE 长的最大值. 问题解决:(3)①如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=90°,求线段AM 长的最大值及此时点P 的坐标.②如图4,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若对角线BD ⊥CD 于点D ,请直接写出对角线AC 的最大值.17.如图14,AB 是O 的直径,,2AC BC AB ==,连接AC .(1)求证:045CAB ∠=; (2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使,BD AB BD =所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由. 18.如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .(1)探究:如左图,当M 动点在AF 上运动时; ①判断OEM MDN ∆∆是否成立?请说明理由;②设ME NCk MN+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由; (2)拓展:如右图,当动点M 在FB 上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由) 19.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A . (1)求该抛物线的解析式和顶点坐标;(2)P(m ,t)为抛物线上的一个动点,P 关于原点的对称点为'P . ①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.20.如图,在平面直角坐标系中,抛物线12++=bx ax y 交y 轴于点A ,交x 轴正半轴于点)0,4(B ,与过A 点的直线相交于另一点)25,3(D ,过点D 作x DC ⊥轴,垂足为C .11(1)求抛物线的表达式;(2)点P 在线段OC 上(不与点O 、C 重合),过P 作x PN ⊥轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求PCM ∆面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为,是否存在,使以点N D C M 、、、为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.。

中考数学几何最值问题题型梳理

中考数学几何最值问题题型梳理

中考数学几何最值问题题型梳理专题1 单线段最值之单动点型例题.如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【解析】ABCD 为矩形,AB DC ∴= 又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +=====巩固1.如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )ABC .1D .2【解析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC =BC=2AB,∠A =∠B =45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC =OA =OB =1,∴∠OCB =45°, ∵∠POQ =90°,∠COA =90°,∴∠AOP =∠COQ ,在Rt △AOP 和△COQ 中,A OCQ AO COAOP COQ ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴Rt △AOP ≌△COQ ,∴AP =CQ , 易得△APE 和△BFQ 都为等腰直角三角形,∴PE=2AP=2CQ ,QF2BQ , ∴PE +QF=2,CQ +BQ,=2BC=2∵M 点为PQ 的中点, ∴MH 为梯形PEFQ 的中位线,∴MH =12,PE +QF ,=12,即点M 到AB 的距离为12, 而CO =1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB =1,选C , 巩固2.如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______,【解析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt,ABC′中,易知AB=BC′=6,∠ABC′=90°,,EE′=AC巩固3.如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.【解析】(1)补全图形如图1所示,AD=BE,理由如下:∵∵ABC是等边三角形,∵AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∵∠ACD=∠BCE,∵∵ACD≌∵BCE(S A S),∵AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵∵ACD≌∵BCE,∵∠CBE=∠A=60°,∵点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∵AC∥EF,又∵AF⊥BE,∵AF⊥AC,在Rt∵ACF中,∵CF∵CD=CF=.例题.如图,点D 在半圆O 上,半径5OB =,4=AD ,点C 在弧BD 上移动,连接AC ,作DH AC ⊥,垂足为H ,连接BH ,点C 在移动的过程中,BH 的最小值是______.【解析】如图,设AD 的中点为点E ,则114222EA ED AD ===⨯= 由题意得,点H 的运动轨迹在以点E 为圆心,EA 为半径的圆上由点与圆的位置关系得:连接BE ,与圆E 交于点H ,此时BH 取得最小值,2EH = 连接BDAB 为半圆O 的直径,90ADB ∴∠=︒BD ∴===BE ∴===2BH BE EH ∴=-=巩固1.如图,长方形ABCD 中,AB =6,BC =4,在长方形的内部以CD 边为斜边任意作Rt ∵CDE ,连接AE ,则线段AE 长的最小值是_____.【解析】如图,点E '在以点F 为圆心,DF 为半径的圆上运动,当A ,E ,F 三点共线时,AE 值最小,DF =12×6=3,在长方形ABCD 中,AD =BC =4,由勾股定理得:AF . ∵EF =12CD =12×6=3,∵AE =AF ﹣EF =5﹣3=2,即线段AE 长的最小值是2.巩固3.如图,Rt ABC △中,AB BC ⊥,6AB =,4BC =,P 是ABC △内部的一个动点,且满足90PAB PBA ︒∠+∠=,则线段CP 长的最小值为________.【解析】∵∠P AB +∠PBA =90°,∵∠APB =90°,∵点P 在以AB 为直径的弧上(P 在∵ABC 内),设以AB 为直径的圆心为点O ,如图,接OC ,交∵O 于点P ,此时的PC 最短∵AB =6,∵OB =3,∵BC =4,∵5OC ==,∵PC =5-3=2巩固4.如图,在Rt ABC ∆中,90︒∠=C ,4AC =,3BC =,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8【解析】如图,设∵O 与AC 相切于点D ,连接OD ,作OP BC ⊥垂足为P 交∵O 于F , 此时垂线段OP 最短,PF 最小值为OP OF -,∵4AC =,3BC =,∵5AB =,∵90OPB ︒∠=,∵OP AC ∥∵点O 是AB 的三等分点,∵210533OB =⨯=,23OP OB AC AB ==,∵83OP =, ∵∵O 与AC 相切于点D ,∵OD AC ⊥,∵OD BC ∥,∵13OD OA BC AB ==,∵1OD =, ∵MN 最小值为85133OP OF -=-=, 如图,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长, MN 最大值1013133=+=,513+=633,∵MN 长的最大值与最小值的和是6.选B . 巩固5.如下图所示,在矩形纸片ABCD 中,2AB =,3AD =,点E 是AB 的中点,点F 是AD 边上的一个动点,将AEF 沿EF 所在直线翻折,得到'A EF △,则'A C 的长的最小值是( )A .2B .3C 1D 1【解析】以点E 为圆心,AE 长度为半径作圆,连接CE ,当点'A 在线段CE 上时,A'C 的长取最小值,如图所示,根据折叠可知:112A'E AE AB ===.在Rt BCE △中,112BE AB ==,3BC =,90B ∠=,CE ∴,A'C ∴的最小值1CE A'E =-=.选D .技法1:借助直角三角形斜边上的中线例题1.如图,在∵ABC 中,∠C =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是( )A .6B .C .D .【解析】如图,取CA 的中点D ,连接OD 、BD ,则OD =CD =AC =×4=2,由勾股定理得,BD ==2,当O 、D 、B 三点共线时点B 到原点的距离最大,所以,点B 到原点的最大距离是2+2.技法2:借助三角形两边之和大于第三边,两边之差小于第三边例题2.如图,已知等边三角形ABC 边长为A 、B 分别在平面直角坐标系的x 轴负半轴、轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 长的最小值是( )A 1B .3C .3D 【解析】如图所示:过点C 作CE ⊥AB 于点E ,连接OE ,∵∵ABC 是等边三角形,∵CE =AC ×si n 60°=3=,AE =BE ,∵∠AOB =90°,∵EO 12=AB =∵EC -OE ≥OC , ∵当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3B .巩固1.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2.运动过程中点D 到点O 的最大距离是______.【解析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE +DE ,∵当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB =4,BC =2,∵OE =AE =12AB =2,DE=∵OD 的最大值为,巩固2.如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为( )A .4B .8C .D .6【解析】连接CN ,∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∵''=90A CB ACB ∠=∠︒,''460'B C BC A B C ABC ==∠=∠=︒,,∵'30A ∠=︒,''8A B =,∵N 是''A B 的中点,∵1''42CN A B ==, ∵在△CMN 中,MN <CM +CN ,当且仅当M ,C ,N 三点共线时,MN =CM +CN =6, ∵线段MN 的最大值为6.选D .技法3:借助构建全等图形例题3.如图,在∵ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边∵BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【解析】如图,取AB 的中点E ,连接CE ,PE .∵∠ACB =90°,∠A =30°,∵∠CBE =60°, ∵BE =AE ,∵CE =BE =AE ,∵∵BCE 是等边三角形,∵BC =BE ,∵∠PBQ =∠CBE =60°, ∵∠QBC =∠PBE ,∵QB =PB ,CB =EB ,∵∵QBC ≌∵PBE (S A S ),∵QC =PE ,∵当EP ⊥AC 时,QC 的值最小,在Rt ∵AEP 中,∵AE =52,∠A =30°,∵PE =12AE =54,∵CQ 的最小值为54.巩固4.如图,边长为12的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .6B .3C .2D .1.5【解析】如图,取BC 的中点G ,连接M G ,∵旋转角为60°,∵∠MBH +∠HBN =60°, 又∵∠MBH +∠MBC =∠ABC =60°,∵∠HBN =∠G BM ,∵CH 是等边∵ABC 的对称轴,∵HB =12AB ,∵HB =B G ,又∵MB 旋转到BN ,∵BM =BN , 在∵MB G 和∵NBH 中,BG BH MBG NBH MB NB =⎧⎪∠=∠⎨⎪=⎩,∵∵MB G ≌∵NBH (S A S ),∵M G=NH ,根据垂线段最短,当M G ⊥CH 时,M G 最短,即HN 最短,此时∠BCH =12×60°=30°,C G=12AB =12×12=6,∵M G=12C G=12×6=3,∵HN =3;选B . 技法4:借助中位线例题4.如图,在等腰直角∆ABC 中,斜边AB 的长度为 8,以AC 为直径作圆,点P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为( )A. B.CD.【解析】连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,,EM 、FM 和EF 分别是,ABP 、,CBP 和,ABC 的中位线,EM ∥AP ,FM ∥CP ,EF ∥AC ,EF =12AC ,,∠EFC =180°-∠ACB =90° ,AC 为直径,,∠APC =90°,即AP ⊥CP ,,EM ⊥MF ,即∠EMF =90°,点M 的运动轨迹为以EF 为直径的半圆上,取EF 的中点O ,连接OC ,点O即为半圆的圆心,当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长,,等腰直角∆ABC 中,斜边 AB 的长度为 8,,AC =BC AB =,EF =12AC =FC =12BC =,OM 1=OF =12EF根据勾股定理可得OC =,CM 1=OC -OM 1即CM ,选C .巩固5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .2C .52D .3 【解析】∵2119y x =-,∵当0y =时,21019x =-,解得:=3x ±, ∵A 点与B 点坐标分别为:(3-,0),(3,0),即:AO =BO =3,∵O 点为AB 的中点,又∵圆心C 坐标为(0,4),∵OC =4,∵BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∵OE 为∵ABD 的中位线,即:OE =12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∵BD 的最小值为4,∵OE =12BD =2,即OE 的最小值为2,选A . 专题2 单线段最值之双动点型技法1借助等量代换实现转化例题1.如图,ABC ∆中,90B ︒∠=,4AB =,3BC =,点D 是AC 上的任意一点,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F ,连接EF ,则EF 的最小值是_________.【解析】连接BD ,90,B DE AB DF BC ︒∠=⊥⊥,∴四边形BEDF 是矩形。

2019中考数学专题复习 几何变换几何综合题 解析版

2019中考数学专题复习  几何变换几何综合题  解析版

几何变换几何综合题1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DC所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为;∠DFE度数为;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=;16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.17.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.19.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).解析一.解答题(共14小题)1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线OE时,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.【解答】解:(1)如图1,∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为:AD=BE.(2)AD=BE成立,∠APE不随着∠ACB的大小发生变化,始终是60°.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴∠CEB=∠CAD;如图2,设BE与AC交于Q,又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;如图3,在PE上截取PH=PC,连接HC,则△PCH为等边三角形,∴HC=PC,∠CHP=60°,∴∠CHE=120°;又∵∠APE=∠CPE=60°,∴∠CPA=120°,∴∠CPA=∠CHE;在△CPA和△CHE中,,∴△CPA≌△CHE(AAS),∴AP=EH,∴PB+PC+PA=PB+PH+EH=BE.若∠ABC=60°,AB=6,BC=4,则PA+PB+PC=2.理由:如图,过D作DG⊥AB,交AB的延长线于G,当∠ABC=60°=∠CBD时,将DBG=60°,∴∠BDG=30°,∴BG=BD=2,AG=6+2=8,DG=2,∴Rt△ADG中,AD==2,∴BE=2,即PA+PB+PC的值为2.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为BE=AD;∠DFE 度数为60°;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是45°;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.【解答】解:(1)∵△ABC和△ECD是等边△,∴∠ACB=∠DCE=60°,∴∠BCD=60°,∴△ACD是△BCE顺时针旋转60°来的,∴△ACD≌△BCE,∴BE=AD,∴∠CAD=∠CBE,∴∠DFE=∠CAD+∠CEB=∠CBE+∠CEF=∠ACB=60°;故答案为BE=AD,∠DFE=60°;(2)连接EM,则△CEM是等腰直角三角形,∴CE=CM,∵∠ACB=45°=∠ECM,∴∠BCE=∠ACM,∵BC=AC,∴==,∴△BCE∽△ACM,∴==,∠CBE=∠CAM,∵∠BFM=∠BAF+∠ABF=∠BAC+∠CAM+∠ABF=90°+∠CBE+∠ABF=90°+∠ABC=135°,∴∠MFE=45°;故答案为,45°;(3)取BC中点F,取CD中点M,连接MN,AF,NF,EM,∴NF,NM是△BCD的中位线,∴NF=CD=EM,NM=BC=AF,∵NF∥CD,NM∥BC,∴四边形NFCM是平行四边形,∴∠NFC=∠NMC,∵∠AFC=90°=∠EMC,∴∠AFN=∠EMN,∵在△AFN和△NME中,,∴△AFN≌△NME,(SAS)∴AN=EN,∠NAF=∠ENM,∵MN∥BC,AF⊥BC,∴MN⊥AF,∴∠NAF+∠ANM=90°,∴∠ENM+∠ANM=90°,即∠ANE=90°,∴AN⊥EN.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.【解答】解:(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD;(2)不变,∠AMB=60°,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BEC≌△ADC,∴∠EBC=∠DAC,∵∠EBC+∠ABM=60°∴∠MAC+∠ABM=60°,∴∠AMB=180°﹣(∠ABM+∠BAM)=60°.(3)如图3,∵当B、C、D三点在同一条直线上,∴∠ACB=∠DCE=60°,∴∠ACE=60°,∴∠BCE=120°,∵△ABC与△CDE是共顶点的等边三角形,且BC=CD,∴BC=CE,∴∠CBE=∠BEC=30°,∵∠BCF=60°,∴∠BFC=90°,∵BC=EC,∴BE=2BF,在Rt△BFC中,∠BCF=30°,∴BF=BC,∴BE=2BF=BC,∵BE=BM+ME,∴BM+ME=BC.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.【解答】解:(1)猜想:AD=BE,证明:∵△ABC和△CDE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD∠BCD,即∠ACD=BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如下图1所示,当△CDE旋转到BC与C到DE到高在同一条直线上时,△BDE面积最大,此时,DE边上的高为∴△BDE面积最大值为.(3)①如图3,∵DE∥AB,∴△CDE∽△CAB,∴∵△CD'E'由△CDE绕C点旋转得到∴CE'=CE,CD'=CD,∠DCE=∠D'CE'=60°∴,则又∵∠DCE+∠BCD'=∠D'CE'+∠BCD',即∠ACD'=∠BCE'∴△ACD'∽△BCE'∴由△ACD'∽△BCE'得∠CBE'=∠CAF∴∠BFA=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠ABC+∠FAC)=180°﹣120°=60°②如图4所示,当D'与点O重合时,△AOC的面积最大过点O作OG⊥AC于G,∴∴△AOC的面积的最大值为.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°;②请直接写出点D到PC的距离为或.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=,即点D到PC的距离为:或.故答案为:或.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为AE=BD,AE、BD所在直线的位置关系为AE⊥BD;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为或7﹣3.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.∵AE=AB=7,∴BE==7,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.故答案为或7﹣3.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=120°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.故答案为:120.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB===17;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=4,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=8+4=12,在Rt△BDE中,,即BD的长为13.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为60°;②线段AE,CD之间的数量关系为AE=CD.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.【解答】解:(1)①∵△ACB和△DBE均为等边三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=60°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠BEA.∵△DBE为等边三角形,∴∠CDB=∠BED=60°.故答案为:60°.②∵△BCD≌△BAE,∴CD=AE,故答案为:CD=AE,(2))∠CDB=45°,CD=AD+2BF理由:∵△ACB和△DBE均为等腰直角三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=90°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠AEB,CD=AE∵BF是△DBE均为等腰直角三角形,∴∠CDB=∠AEB=45,DE=2BF,∴CD=AE=AD+DE=AD+2BF.∴∠CDB=45°,CD=AD+2BF;(3)①如图,连接EB,ED,作BH⊥CE,BP⊥BE,∵四边形ABCD是正方形,∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,∴CD=2,∴AC=2,∵AE=1,∴CE=,∵A,E,B,C四点共圆,∴∠BCE=∠CAB=45°,∴△PBE是等腰直角三角形,∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,∴由(2)的结论可得,CE=AE+2BH,∴=2BH+1,∴BH=.②同①的方法可得,CE=2BH﹣AE,∴=2BH﹣1,∴BH=,∴点B到CE的距离为或.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE;(2)①∠AEB=90°证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°;②延长BE交AC的延长线于点G,由①可知∠CAD=∠CBE,∠AEB=90°,在△ACF和△BCG中,,∴△ACF≌△BCG,∴AF=BG,∵∠CAF=∠BAF,∠AEB=90°,∴E是BG的中点,∵BE=2,∴BG=4,∴AF=4,∴S==4.△ABF12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;②由①知,△CDA≌△CEB,∴AD=BE;故答案为:60°,AD=BE(2)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;结论:AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.(3)如图3,∵点P到点B的距离是3,∴点P是以点B为圆心,3为半径的圆,当B、D、A三点在同一条直线上时,BD有最小值,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,,∴△ACD≌△BCP(SAS),∴∠PBC=∠A=45°,AD=BP=3,在Rt△ABC中,AC=BC=5,∴AB=5∴BD=AB﹣AD=5﹣3此时∠PBC=45°时,BD的最小值为5﹣3,同理可得:如图4,当B、D、A三点在同一条直线上时,BD的最大值为:AB+AD=AB+BP=5+3,14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=6;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=4或16;【分析】(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC∥PA.只要证明PA⊥BE,EC⊥BE即可解决问题.(3)分两种情形分别求解即可解决问题.【解答】解:(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.在Rt△ADE中,∵∠D=90°,AE=AB=10,AD=8,∴DE===6,故答案为6.②如图2中,结论:EC∥PA.理由:由翻折不变性可知:AE=AB,PE=PB,∴PA垂直平分线段BE,即PA⊥BE,∵PB=PC=PE,∴∠BEC=90°,∴EC⊥BE,∴EC∥PA.(2)①如图3﹣1中,当点Q在线段CD上时,设DQ=QD′=x.在Rt△AD′B中,∵AD′=AD=8,AB=10,∠AD′B=90°,∴BD′==6,在Rt△BQC中,∵CQ2+BC2=BQ2,∴(10﹣x)2+82=(x+6)2,∴x=4,∴DQ=4.②如图3﹣2中,当点Q在线段DC的延长线上时,∵DQ∥AB,∴∠DQA=∠QAB,∵∠DQA=∠AQB,∴∠QAB=∠AQB,∴AB=BQ=10,在Rt△BCQ中,∵CQ==6,∴DQ=DC+CQ=16,综上所述,满足条件的DQ的值为4或16.故答案为4和16.16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长。

中考数学----几何最值

中考数学----几何最值

中考数学————几何最值【知识梳理】1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等2.几何最值问题的基本原理。

①两点之间线段最短②垂线段最短 ③利用函数关系求最值一般处理方法:常用定理:两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时)线段和(周长)最小 转化构造三角形两点之间,线段最短 垂线段最短 线段差最大 线段最大(小)值三角形三边关系定理 三点共线时取得最值平移 对称 旋转使点在线异侧(如下图)使点在线同侧(如下图) 使目标线段与定长线段构成三角形平移 对称 旋转P A +PB 最小,需转化,使点在线异侧|P A -PB |最大,需转化,使点在线同侧lB'ABPl B'BA P构建“对称模型”实现转化一次对称1. 如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.2、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。

1题图 2题图 3题图 4题图 3.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ︵的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.4.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁AC正方形中的对称变换1、如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。

2019年中考数学一轮复习 第八章 专题拓展 8.3 几何最值问题课件真题考点复习解析

2019年中考数学一轮复习 第八章 专题拓展 8.3 几何最值问题课件真题考点复习解析

.
答案 2-1
解析 延长CB至L,使BL=DN, 则Rt△ABL≌Rt△ADN,故AL=AN, ∵CM+CN+MN=2,CD+CB=CM+CN+DN+MB=1+1=2, ∴MN=DN+MB,又DN=BL,∴MN=BL+BM=ML,
AN AL,
在△AMN和△AML中,
A
M
∴ △A MA,MN≌△AML,
AB OA
∴ 4 =C D ,∴CD=1 6 .
54
5
∴S△PAB的最大值= 1
2
×5× 1 6
5
=1
,故2 1 选C.
2
2.(2016山东东营,14,3分)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角
线的所有平行四边形ADCE中,DE的最小值是
.
答案 4 解析 ∵四边形ADCE是平行四边形,∴AE∥DC.易知当DE⊥BC时,DE最短,此时DE=AB=4.
腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0°<α≤180°),记直线BD1与CE
1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于
,线段CE1的长等于
;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;
(3)①设BC的中点为M,则线段PM的长为
∴z≥2 -2,当且仅当x=y=2- 时等号成立,
2
2
此时S△AMN=S△AML=
1 2
ML·AB=1
2
z.
因此,当z=2 2-2,x=y=2- 时2 ,S△AMN取到最小值 -1.2

初中几何最值问题类型

初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。

求抛物线的最高点或最低点,即顶点的坐标。

2.极值问题:
求函数图像与坐标轴的交点。

求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。

3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。

4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。

5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。

这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。

对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。


过多做练习和思考,培养几何思维和解决问题的能力。

初中数学几何最值存在性问题(word版+详解答案)

初中数学几何最值存在性问题(word版+详解答案)

几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。

几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。

【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

中考数学点对点-最值问题(解析版)

中考数学点对点-最值问题(解析版)

中考数学最值问题专题知识点概述在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

中考数学总复习考前冲刺-第1关 以几何图形中的动点最值问题为背景的选择填空题

中考数学总复习考前冲刺-第1关 以几何图形中的动点最值问题为背景的选择填空题

第1关 以几何图形中的动点最值问题为背景的选择填空题【考查知识点】 “两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

原型----“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

【解题思路】找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.求线段和的最小值需要用到三个基本知识:两点之间,线段最短;轴对称的性质;线段垂直平分线上的点到线段两端点的距离相等.常见情况有三种:“两点一线”型、“一点两线”型和“两点连线” 型. 平面上最短路径问题:(1)归于“两点之间的连线中,线段最短”。

凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。

(2)归于“三角形两边之差小于第三边”。

凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。

(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题。

【典型例题】【例1】如图,ABC ∆是等边三角形,13AD AB =,点E 、F 分别为边AC 、BC 上的动点,当DEF ∆的周长最小时,FDE ∠的度数是______________.【名师点睛】关于最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点(注:本题C,D位于OB的同侧).如下图,解决本题的关键:一是找出最短路线,二是根据一次函数与方程组的关系,将两直线的解析式联立方程组,求出交点坐标.【例2】如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊙OC交⊙O于点D,则CD的最大值为___.【名师点睛】本题考查了垂径定理:垂直于弦的直径平分弦,且平分弦所对的弧.也考查了勾股定理,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.【方法归纳】在平面几何的动态问题中,求几何量的最大值或最小值问题常会运用以下知识:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点之间线段最短;③连接直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长;⑤利用对称的性质求两条线段之和最小的问题,解决此类问题的方法为:如图,要求线段l上的一动点P 到点A、B距离和的最小值,先作点A关于直线L的对称点A′,连接A′B,则A′B与直线L的交点即为P 点,根据对称性可知A′B的长即为PA+PB的最小值,求出A′B的值即可.【针对练习】1.如图,∠AOB=60°,点P是∠AOB内的定点且M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()A B C.6D.32.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°3.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().A .B .C .D .4.如图,已知直线142y x =+与x 轴、y 轴分别交于A , B 两点,将△AOB 沿直线AB 翻折,使点O 落在点C 处, 点P ,Q 分别在AB , AC 上,当PC +PQ 取最小值时,直线OP 的解析式为( )A .y=-34x B .y=-12x C .y=-43x D .23y x =5.如图:等腰△ABC 的底边BC 长为6,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .9D .106.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .C .9D .7.如图,在Rt ABO 中,90OBA ∠=︒,()4,4A ,点C 在边AB 上,且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .()2,2B .55,22⎛⎫⎪⎝⎭C .88,33⎛⎫⎪⎝⎭D .()3,38.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm9.如图,周长为16的菱形ABCD 中,点E ,F 分别在边AB ,AD 上,AE =1,AF =3,P 为BD 上一动点,则线段EP +FP 的长最短为( )A .3B .4C .5D .610.在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴和y 轴上,OA=3,OB=4.把△AOB 绕点A 顺时针旋转120°,得到△ADC .边OB 上的一点M 旋转后的对应点为M′,当AM′+DM 取得最小值时,点M 的坐标为( )A .(0)B .(0,34) C .(0 D .(0,3)11.如图,已知点A 是以MN 为直径的半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的点.若⊙O 的半径为l ,则AP+BP 的最小值为( )A .2B CD .112.直线y =x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( ).A .(-3,0)B .(-6,0)C .(-,0)D .(-,0)13.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是( )A .30°B .15°C .20°D .35°14.如图,AC 是O 的弦,5AC =,点B 是O 上的一个动点,且45ABC ∠︒=,若点,M N 分别是,AC BC 的中点,则MN 的最大值是_____.15.如图,∠AOB =60°,点M ,N 分别是射线OA ,OB 上的动点,OP 平分∠AOB ,OP =8,当△PMN 周长取最小值时,△OMN 的面积为_____.16.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数是________17.如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是__________.18.如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,当△PMN 的周长取最小值时,四边形PMON 的面积为 .19.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为______.20.如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为__cm;连接BD,则△ABD的面积最大值为___cm2.21.如图,Rt△ABC中,∠BAC=90°,AB=3,,点D,E分别是边BC,AC上的动点,则DA+DE 的最小值为_____.第1关 以几何图形中的动点最值问题为背景的选择填空题【考查知识点】 “两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

中考数学专题复习-例说线段的最值问题 (共62张)

中考数学专题复习-例说线段的最值问题  (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y

2019届中考数学(通用版)复习专题学案:几何综合题

2019届中考数学(通用版)复习专题学案:几何综合题

几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2019·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1. (2019·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2019·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC, ∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2. (2019·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4)(第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2019·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三, 由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2019·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2. (2019·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2019·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4. (2019·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2019·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).(第5题)6. (2019·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2)) 由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16, 设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形, ∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G, ∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为(8-2)=6, 则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。

中考数学专题复习题8 几何最值问题解法探讨

中考数学专题复习题8 几何最值问题解法探讨

几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。

解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。

下面通过近年全国各地中考的实例探讨其解法。

一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1BC .5 5 D .52 【答案】A 。

【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。

【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。

DE====,∴OD 1。

故选A 。

例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。

【答案】4。

【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,在BA 上截取BE=BN ,连接EM 。

∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。

在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,∴△BME≌△BMN(SAS )。

2019中考数学专题复习(七) 函数与几何综合探究题

2019中考数学专题复习(七) 函数与几何综合探究题

专题复习(七) 函数与几何综合探究题如图,对称轴为直线x =12的抛物线经过B(2,0),C(0,4)两点,抛物线与x 轴的另一交点为A.(1)求抛物线的解析式;【思路点拨】 已知对称轴,可设顶点式y =a(x -12)2+k ,然后将点B ,C 的坐标代入,解方程组即可得到抛物线的解析式.(一题多解)【答题示范】 解法一:∵抛物线的对称轴为直线x =12,∴设抛物线的解析式为y =a(x -12)2+k(a ≠0).∵抛物线经过点B(2,0),C(0,4), ∴⎩⎨⎧94a +k =0,14a +k =4,解得⎩⎪⎨⎪⎧a =-2,k =92.∴抛物线的解析式为y =-2(x -12)2+92,即y =-2x 2+2x +4.解法二:∵抛物线的对称轴为直线x =12,A ,B 两点关于直线x =12对称且B(2,0),∴A(-1,0).∴设抛物线的解析式为y =a(x +1)(x -2)(a ≠0). ∵抛物线经过点C(0,4), ∴-2a =4,解得a =-2.∴抛物线的解析式为y =-2(x +1)(x -2), 即y =-2x 2+2x +4.解法三:设抛物线的解析式为y =ax 2+bx +c(a ≠0). ∵抛物线的对称轴为直线x =12且经过点B(2,0),C(0,4),∴⎩⎪⎨⎪⎧-b 2a =12,4a +2b +c =0,c =4,解得⎩⎪⎨⎪⎧a =-2,b =2,c =4.∴抛物线的解析式为y =-2x 2+2x +4. 方法指导二次函数的解析式的确定:1.确定二次函数的解析式一般用待定系数法,由于二次函数解析式有三个待定系数a ,b ,c(a ,h ,k 或a ,x 1,x 2),因而确定二次函数的解析式需要已知三个独立的条件:(1)已知抛物线上任意三个点的坐标时,选用一般式,即y =ax 2+bx +c(a ≠0);(2)已知抛物线的顶点坐标和另外一点的坐标时,选用顶点式,即y =a(x -h)2+k(a ≠0);(3)已知抛物线与x 轴的两个交点(或横坐标x 1,x 2)时,选用交点式,即y =a(x -x 1)(x -x 2)(a ≠0). 2.用待定系数法求二次函数解析式的步骤: (1)设二次函数的解析式;(2)根据已知条件,得到关于待定系数的方程(组);(3)解方程(组),求出待定系数的值,从而写出函数的解析式.(2)若点P 为第一象限内抛物线上一点,设四边形COBP 的面积为S ,求S 的最大值;【思路点拨】 先设点P 的坐标,再利用割补法将四边形COBP 的面积表示成几个容易计算的图形面积的和差,然后根据二次函数的性质求最值.(一题多解)【答题示范】 解法一:如图1,连接BC ,过点P 作PF ⊥x 轴于点F ,交BC 于点E.图1设直线BC 的解析式为y =dx +t(d ≠0). ∵直线经过点B(2,0),C(0,4),∴⎩⎪⎨⎪⎧2d +t =0,t =4,解得⎩⎪⎨⎪⎧d =-2,t =4. ∴直线BC 的解析式为y =-2x +4. ∵P 为第一象限内抛物线上一点,设P 点坐标为(n ,-2n 2+2n +4)(0<n<2), 则E 点坐标为(n ,-2n +4).∴PE =PF -EF =|-2n 2+2n +4|-|-2n +4|=-2n 2+2n +4+2n -4=-2n 2+4n. ∵S △BPC =S △BPE +S △CPE =12PE·BF +12PE·OF =12PE·(BF +OF)=12PE·OB =-2n 2+4n.∴S =S △BPC +S △OCB =-2n 2+4n +4=-2(n -1)2+6.∴当n =1时,S 最大=6.解法二:①当点P 位于点C 下方时,如图2, 过点P 作PE ⊥y 轴于E.图2∵P 为第一象限内抛物线上一点, 设P 点坐标为(n ,-2n 2+2n +4), 则E 点坐标为(0,-2n 2+2n +4),∴PE =n ,CE =4+2n 2-2n -4=2n 2-2n. ∵S △PEC =12n(2n 2-2n)=n 3-n 2,S 四边形OBPE =12(n +2)(-2n 2+2n +4)=-n 3-n 2+4n +4,∴S =S △PEC +S 四边形OBPE =n 3-n 2-n 3-n 2+4n +4=-2n 2+4n +4=-2(n -1)2+6. ∴当n =1时,S 最大=6;②当点P 位于点C 上方时,过P′作P′H ⊥OB 于H.同①可设P′(m ,-2m 2+2m +4),则H(m ,0). ∴P′H =-2m 2+2m +4,BH =2-m. ∴S =S 四边形OCP ′H +S △P ′HB=12(4-2m 2+2m +4)·m +12(2-m )·(-2m 2+2m +4) =-2m 2+4m +4 =-2(m -1)2+6.∴当m =1时,S 最大 =6. 综上可知,S 的最大值为6. 方法指导1.探究面积最值的存在性:第(2)问是与抛物线有关的三角形或四边形,抛物线三角形就是三角形的三个顶点都在抛物线上,同样,抛物线四边形就是四边形的四个顶点都在抛物线上,要求三角形或四边形的面积的最大值或最小值.K解决这类问题的基本步骤:(1)首先要确定所求三角形或四边形面积最值,可设动点运动的时间t 或动点的坐标(t ,at 2+bt +c);(2)①求三角形面积最值时要用含t 的代数式表示出三角形的底和高,此时就应先证明涉及底和高的三角形与已知线段长度的三角形相似,从而求得用含t 的代数式表示的底和高;②求四边形的面积最值时,常用到的方法是利用割补法将四边形分成两个三角形,从而利用三角形的方法求得用含t的代数式表示的线段;(3)用含有未知数的代数式表示出图形的面积;(4)用二次函数的知识来求最大值或最小值.(如P206T1(3)、P206T2(2)、P208T3(2)2.探究面积等量关系的存在性问题:对于图形的运动产生的相等关系问题,解答时应认真审题,仔细研究图形,分析动点的运动状态及运动过程,解题过程的一般步骤:(1)弄清其取值范围,画出符合条件的图形;(2)确定其存在的情况有几种,然后分别求解,在求解计算中一般由函数关系式设出图形的动点坐标并结合作辅助线,画出所求面积为定值的三角形;(3)过动点作有关三角形的高或平行于x轴、y轴的辅助线,利用面积公式或三角形相似求出有关线段长度或面积的代数式,列方程求解,再根据实际问题确定方程的解是否符合题意,从而证得面积等量关系的存在性.(如P206T2(3))3.探究线段最值问题:无论是线段和的最小值或是周长的最小值,还有两条线段差的最大值等,解决这类问题最基本的定理就是“两点之间线段最短”,最常见的基本图形就是“将军饮马问题”,即已知一条直线和直线同旁的两个点,要在直线上找一点,使得这两个点与这点连接的线段之和最小,解决问题的方法就是通过轴对称作出对称点来解决.(如P203T1(3),P203T2(3),P208T1(2),P209T2(2)),(3)若M是线段BC上一动点,在x轴上是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.【思路点拨】在探究同时存在两个结论时,通常先假设一个结论成立,然后探究另一个结论是否也成立,方法一般也不唯一,详见解答中的一题多解.【答题示范】存在点Q,使△MQC为等腰三角形且△MQB为直角三角形.理由如下:分以下两种情况:图3 (ⅰ)解法一:如图3所示:当∠BQM=90°时,∵∠CMQ>90°,∴只能CM=MQ.由(2)的解法一得:直线BC的解析式为y=-2x+4.设M点坐标为(m,-2m+4)(0<m<2),则Q点坐标为(m,0),MQ=-2m+4,OQ=m,BQ=2-m. 在Rt△OBC中,BC=OB2+OC2=22+42=2 5.∵MQ∥OC,∴△BMQ∽△BCO.∴BMBC=BQBO,即BM25=2-m2.∴BM=25-5m.∴CM=BC-BM=25-(25-5m)=5m.∵CM=MQ,∴-2m+4=5m,m=45+2=45-8.∴Q(45-8,0).解法二:由(2)的解法一得:直线BC的解析式为y=-2x+4.设M(m,-2m+4)(0<m<2),则MQ=-2m+4,OQ=m,BQ=2-m.在Rt△OBC中,BC=OB2+OC2=2 5.在Rt△MBQ中,BM=MQ2+BQ2=(-2m+4)2+(2-m)2=5|m-2|=5(2-m)=25-5m. ∴CM=BC-BM=25-(25-5m)=5m.∵CM=MQ,∴-2m+4=5m,m=45+2=45-8.∴Q(45-8,0).解法三:如图4所示:当∠BQM=90°时,图4 ∵∠CMQ>90°,∴只能CM=MQ.由(2)的解法一得:直线BC的解析式为y=-2x+4.设M 点坐标为(m ,-2m +4)(0<m <2),过点M 作MD ⊥y 轴于点D , 则Q 点坐标为(m ,0),DM =m ,CD =4-(-2m +4)=2m ,BQ =2-m . 在Rt △CDM 中,CM =CD 2+DM 2=5m . ∴CM =MQ =5m . ∵tan ∠CBO =OCOB=2,∴tan ∠MBQ =MQ BQ =2,即5m2-m=2.∴m =45-8.∴Q (45-8,0).(ⅱ)解法一:如图5所示:当∠QMB =90°时,图5∵∠CMQ =90°, ∴只能CM =MQ .过点M 作MN ⊥x 轴于点N ,设M (m ,-2m +4)(0<m <2), 则ON =m ,MN =-2m +4,NB =2-m . 由(ⅰ)得:BM =25-5m ,CM =5m . ∵∠QBM =∠OBC ,∠QMB =∠COB =90°, ∴Rt △BOC ∽Rt △BMQ . ∴BO BM =OC MQ ,即225-5m =4MQ . ∴MQ =2(25-5m )=45-25m . ∵CM =MQ ,CM =5m , ∴5m =45-25m . ∴m =43.∴M (43,43).∵MN ⊥x 轴于点N ,MQ ⊥BC , ∠QMN +∠NMB =90°,∠NMB +∠NBM =90°, ∴∠QMN =∠MBN .又∵∠BNM =∠MNQ =90°, ∴Rt △BNM ∽Rt △MNQ . ∴BN MN =NMNQ ,即2-4343=43NQ. ∴NQ =83.∴OQ =NQ -ON =83-43=43.∴Q (-43,0).解法二:如图6所示:当∠QMB =90°时,图6∵∠CMQ =90°, ∴只能CM =MQ .设M 点坐标为(m ,-2m +4)(0<m <2). 在Rt △COB 和Rt △QMB 中, ∵tan ∠CBO =tan ∠MBQ =OC OB =42=2,又∵tan ∠MBQ =MQBM,由(ⅰ)知BM =25-5m ,MQ =CM =5m . ∴tan ∠MBQ =MQ BM =5m25-5m =2.∴5m =45-25m . ∴m =43.∴M (43,43).此时,BM =25-5m =235,MQ =43 5.∴BQ =BM 2+MQ 2=1009=103. ∴OQ =BQ -OB =103-2=43.∴Q (-43,0).综上所述,满足条件的点Q 的坐标为(45-8,0)或(-43,0).方法指导1.在解答直角三角形的存在性问题时,具体方法如下: (1)先假设结论成立,根据直角顶点的不确定性,分情况讨论;(2)找点:当所给定长未说明是直角三角形的斜边还是直角边时,需分情况讨论,具体方法如下:①当定长为直角三角形的直角边时,分别以定长的某一端点作定长的垂线,与坐标轴或抛物线有交点时,此交点即为符合条件的点;②当定长为直角三角形的斜边时,以此定长为直径作圆,圆弧与所求点满足条件的坐标轴或抛物线有交点时,此交点即为符合条件的点;(3)计算:把图形中的点坐标用含有自变量的代数式表示出来,从而表示出三角形的各边(表示线段时,还要注意代数式的符号),再利用相似三角形的性质得出比例式,或者利用勾股定理进行计算,或者利用三角函数建立方程求点的坐标.(如P207T2(2)②)2.除了探究直角三角形外,还常常探究等腰三角形的存在性,这个和直角三角形的方法类似:(1)假设结论成立;(2)找点:当所给定长未说明是等腰三角形的底还是腰时,需分情况讨论,具体方法如下:①当定长为腰时,找已知直线或抛物线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与坐标轴或抛物线有交点且交点不是定长的另一端点时,交点即为符合条件的点;②当定长为底边时,根据尺规作图作出定长的垂直平分线,若作出的垂直平分线与坐标轴或抛物线有交点,则交点即为所求的点,若作出的垂直平分线与坐标轴或抛物线无交点,则满足条件的点不存在;以上方法即可找出所有符合条件的点;(3)计算:在求点的坐标时,大多时候利用相似三角形求解,如果图形中没有相似三角形,可以通过添加辅助线构造直角三角形,有时也可利用直角三角形的性质进行求解.(如P207T1(3),P208T3(3))如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线的解析式;【思路点拨】由直线y=2x+2可求出B点的坐标,把B,D两点代入y=-x2+bx+c中即可求出抛物线解析式,由B,D两点可求出直线BD的解析式.【答题示范】 ∵y =2x +2, ∴当x =0时,y =2. ∴B (0,2).∵当y =0时,x =-1, ∴A (-1,0).∵抛物线y =-x 2+bx +c 过点B (0,2),D (3,-4),∴⎩⎪⎨⎪⎧2=c ,-4=-9+3b +c .解得⎩⎪⎨⎪⎧b =1,c =2. ∴抛物线的解析式为y =-x 2+x +2.设直线BD 的解析式为y =kx +m ,由题意,得⎩⎪⎨⎪⎧m =2,-4=3k +m ,解得⎩⎪⎨⎪⎧k =-2,m =2. ∴直线BD 的解析式为y =-2x +2.(2)在第一象限内的抛物线上,是否存在点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;【思路点拨】 与△BOC 相似的△MON ,只有两个直角顶点可以确定对应,所以要分两种情况讨论,再利用△MON 的两条直角边长恰好是点M 的坐标,与△BOC 的两直角边对应成比例,便可列出方程,求解即可,注意是否符合条件.【答题示范】 存在.由(1)知C (1,0),设M (a ,-a 2+a +2). ∵MN ⊥x 轴,∴∠BOC =∠MNO =90°,即点O 与点N 对应,可分两种情况讨论: ①如图1,当△BOC ∽△MNO 时,BO MN =OC NO .∴2-a 2+a +2=1a,解得a 1=1,a 2=-2(舍).∴M (1,2);②如图2,当△BOC ∽△ONM 时,BO ON =OCNM.∴2a =1-a 2+a +2,解得a 1=1+334,a 2=1-334(舍). ∴M (1+334,1+338).∴符合条件的点M 的坐标为(1,2)或(1+334,1+338).,方法指导探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论的思想以及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:(1)假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应顶点(尤其是以文字形式出现让证明两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,分情况讨论;(2)确定分类标准:在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;(3)建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.(如P208T(3)①,P210T1(2))(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H ,是否存在点P ,使四边形BOHP 是平行四边形,若存在,求出点P 的坐标;若不存在,请说明理由.【思路点拨】 点P 在抛物线上,可设出点P 的坐标,从而可表示出点H 的坐标,因为作PH ⊥x 轴,所以可得PH ∥OB .要证四边形BOHP 是平行四边形,只需证PH =OB ,再利用PH 的长可列方程求出P 点的坐标.【答题示范】 存在.设P (t ,-t 2+t +2),H (t ,-2t +2).如图3, ∵四边形BOHP 是平行四边形, ∴BO =PH =2.∵PH=-t2+t+2+2t-2=-t2+3t.∴2=-t2+3t,解得t1=1,t2=2.当t=1时,P(1,2);当t=2时,P(2,0).∴存在点P(1,2)或(2,0),使四边形BOHP为平行四边形.方法指导在解答平行四边形的存在性问题时,具体方法如下:(1)假设结论成立;(2)探究平行四边形通常有两类,一类是已知两定点去求未知点的坐标,一类是已知给定的三点去求未知点的坐标.第一类,以两定点连线所成的线段作为要探究平行四边形的边或对角线,画出符合题意的平行四边形;第二类,分别以已知三个定点中的任意两个定点确定的线段为探究平行四边形的边或对角线,画出符合题意的平行四边形;(3)建立关系式,并计算.根据以上分类方法画出所有符合条件的图形后,可以利用平行四边形的性质进行计算,也可利用全等三角形、相似三角形或直角三角形的性质进行计算,要具体情况具体分析,有时也可以利用直线的解析式联立方程组,由方程组的解为交点坐标求解.(如P208T1(3))类型1探究线段最值问题1.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由;(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB.抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.图1图2解:(1)设抛物线的表达式为y=a(x-1)2+4,把(0,3)代入,得3=a(0-1)2+4,解得a=-1.∴抛物线的表达式为y=-(x-1)2+4=-x2+2x+3.(2)存在.作点E关于对称轴的对称点E′,连接E′F交对称轴于G,此时EG+FG的值最小.∵E(0,3),抛物线对称轴为直线x=1,∴E′(2,3).易得直线E′F的解析式为y=3x-3.当x=1时,y=3×1-3=0.∴G(1,0).(3)∵A(1,4),B(3,0),易得直线AB的解析式为y=-2x+6.过点N作NH⊥x轴于点H,交AB于点Q,设N(m,-m2+2m+3),则Q(m,-2m+6)(1≤m≤3).∴NQ=(-m2+2m+3)-(-2m+6)=-m2+4m-3.∵AD∥NH,∴∠DAB=∠NQM.∵∠ADB=∠QMN=90°,∴△QMN∽△ADB.∴QNMN=ABDB.∴-m2+4m-3MN=252.∴MN=-55(m-2)2+55.∵-55<0,∴当m=2时,MN有最大值.过点N作NG⊥y轴于点G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB.∴PGNG=BDAD=24=12.∴PG=12NG=12m.∴OP =OG -PG =-m 2+2m +3-12m =-m 2+32m +3.∴S △PON =12OP·GN =12(-m 2+32m +3)·m.当m =2时,S △PON =12×2(-4+3+3)=2.2.(2018·柳州)如图,抛物线y =ax 2+bx +c 与x 轴交于A(3,0),B 两点(点B 在点A 的左侧),与y 轴交于点C ,且OB =3OA =3OC ,∠OAC 的平分线AD 交y 轴于点D ,过点A 且垂直于AD 的直线l 交y 轴于点E ,点P 是x 轴下方抛物线上的一个动点,过点P 作PF ⊥x 轴,垂足为F ,交直线AD 于点H.(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当FH =HP 时,求m 的值;(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ +EQ 的最小值.解:(1)由题意,得A(3,0),B(-33,0),C(0,-3),设抛物线的解析式为y =a(x +33)(x -3), 把C(0,-3)代入得到a =13,∴抛物线的解析式为y =13x 2+233x -3.(2)在Rt △AOC 中,tan ∠OAC =OCOA=3, ∴∠OAC =60°.∵AD 平分∠OAC ,∴∠OAD =30°. ∴OD =OA·tan 30°=1.∴D(0,-1). ∴直线AD 的解析式为y =33x -1. 由题意,得P(m ,13m 2+233m -3),H(m ,33m -1),F(m ,0).∵FH =PH ,∴1-33m =33m -1-(13m 2+233m -3),解得m =-3或3(舍去). ∴当FH =HP 时,m 的值为- 3.(3)如图,∵PF 是对称轴,∴F(-3,0),H(-3,-2). ∵AH ⊥AE ,∴∠EAO =60°.EA =2OA =2 3. ∵C(0,-3),∴HC =(3)2+12=2,AH =2FH =4. ∴QH =12CH =1.在HA 上取一点K ,使得HK =14.AK =AH -HK =154. ∵HQ 2=1,HK·HA =1, ∴HQ 2=HK·HA ,可得△QHK ∽△AHQ. ∴KQ QA =HQ HA =14,即KQ =14AQ. ∴14AQ +QE =KQ +EQ. ∴当E ,Q ,K 共线时,14AQ +QE 的值最小,最小值为EK =AE 2+AK 2=(23)2+(154)2=4174.类型2 探究角度问题1.(2018·莱芜)如图,抛物线y =ax 2+bx +c 经过A(-1,0),B(4,0),C(0,3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于点E.(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D,使得△CDE 中有一个角与∠CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.图1 图2解:(1)由题意,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3.∴抛物线的函数表达式为y =-34x 2+94x +3.(2)设直线BC 的解析式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =-34,b =3.∴y =-34x +3.设D(a ,-34a 2+94a +3)(0<a <4),过点D 作DM ⊥x 轴交BC 于点M ,则M(a ,-34a +3),DM =(-34a 2+94a +3)-(-34a +3)=-34a 2+3a.∵∠DME =∠OCB ,∠DEM =∠BOC , ∴△DEM ∽△BOC.∴DE DM =BOBC.∵OB =4,OC =3,∴BC =5.∴DE =45DM.∴DE =-35a 2+125a =-35(a -2)2+125.∴当a =2时,DE 取最大值,最大值是125.(3)假设存在这样的点D ,使得△CDE 中有一个角与∠CFO 相等. ∵点F 为AB 的中点, ∴OF =32,tan ∠CFO =OCOF=2.过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H ,①若∠DCE =∠CFO ,∴tan ∠DCE =GBBC =2.∴BG =10.∵△GBH ∽BCO ,∴GH BO =HB OC =GBBC .∴GH =8,BH =6.∴G(10,8). 设直线CG 的解析式为y =k 1x +b 1,∴⎩⎪⎨⎪⎧b 1=3,10k 1+b 1=8,解得⎩⎪⎨⎪⎧k 1=12,b 1=3. ∴直线CG 的解析式为y =12x +3.∴⎩⎨⎧y =12x +3,y =-34x 2+94x +3,解得x =73或x =0(舍).②若∠CDE =∠CFO ,同理可得,BG =52,GH =2,BH =32,∴G(112,2).同理可得,直线CG 的解析式为y =-211x +3.∴⎩⎨⎧y =-211x +3,y =-34x 2+94x +3,解得x =10733或x =0(舍).综上所述,存在点D ,使得△CDE 中有一个角与∠CFO 相等,点D 的横坐标为73或10733.2.(2018·扬州)如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点C 的坐标为(0,6),点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 出发,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当t =2时,线段PQ 的中点坐标为(52,2);(2)当△CBQ 与△PAQ 相似时,求t 的值;(3)当t =1时,抛物线y =x 2+bx +c 经过P ,Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示,问该抛物线上是否存在点D ,使∠MQD =12∠MKQ ?若存在,求出所有满足条件的D 的坐标;若不存在,说明理由.图1 图2解:(2)如图1,∵当点P 与点A 重合时运动停止,且△PAQ 可以构成三角形,∴0<t <3. ∵四边形OABC 是矩形,∴∠B =∠PAQ =90°. ∴当△CBQ 与△PAQ 相似时,存在两种情况: ①当△PAQ ∽△QBC 时,PA AQ =QBBC .∴3-t 2t =6-2t 3.解得t 1=3(舍),t 2=34. ②当△PAQ ∽△CBQ 时,PA AQ =CB BQ .∴3-t 2t =36-2t .解得t =9±352. ∵0<t <3,∴x =9+352不符合题意,舍去.综上所述,当△CBQ 与△PAQ 相似时,t 的值是34或9-352.(3)当t =1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y =x 2+bx +c 中,得⎩⎪⎨⎪⎧1+b +c =0,9+3b +c =2,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴抛物线解析式y =x 2-3x +2=(x -32)2-14.∴顶点K(32,-14).∵Q(3,2),M(0,2),∴MQ ∥x 轴.作抛物线对称轴,交MQ 于点E , ∴KM =KQ ,KE ⊥MQ. ∴∠MKE =∠QKE =12∠MKQ.如图2,∠MQD =12∠MKQ =∠QKE.设DQ 交y 轴于点H. ∵∠HMQ =∠QEK =90°,∴△KEQ ∽△QMH. ∴KE EQ =QM MH .∴2+1432=3MH. ∴MH =2.∴H(0,4).易得HQ 的解析式为y =-23x +4.则⎩⎪⎨⎪⎧y =-23x +4,y =x 2-3x +2,解得x 1=3(舍),x 2=-23.∴D(-23,409).同理,在M 的下方,y 轴上存在点H ,如图3,使∠HQM =12∠MKQ =∠QKE ,图3由对称性得,H(0,0),易得OQ 的解析式为y =23x.则⎩⎪⎨⎪⎧y =23x ,y =x 2-3x +2,解得x 1=3(舍),x 2=23.∴D(23,49).综上所述,点D 的坐标为(-23,409)或(23,49).类型3 探究面积问题1.(2018·菏泽)如图,在平面直角坐标系中,抛物线y =ax 2+bx -5交y 轴于点A ,交x 轴于点B(-5,0)和点C(1,0),过点A 作AD ∥x 轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E 是抛物线上一点,且点E 关于x 轴的对称点在直线AD 上,求△EAD 的面积;(3)若点P 是直线AB 下方的抛物线上一动点,当点P 运动到某一位置时,△ABP 的面积最大,求出此时点P 的坐标和△ABP 的最大面积.解:(1)∵抛物线y =ax 2+bx -5交x 轴于点B(-5,0)和点C(1,0),∴⎩⎪⎨⎪⎧25a -5b -5=0.a +b -5=0, 解得⎩⎪⎨⎪⎧a =1,b =4.∴此抛物线的表达式是y =x 2+4x -5.(2)∵抛物线y =x 2+4x -5交y 轴于点A , ∴点A 的坐标为(0,-5).∵AD ∥x 轴,点E 是抛物线上一点,且点E 关于x 轴的对称点在直线AD 上, ∴点E 的纵坐标是5,点E 到AD 的距离是10. 当y =-5时,-5=x 2+4x -5,得x =0或x =-4. ∴点D 的坐标为(-4,-5).∴AD =4. ∴S △EAD =4×102=20.(3)设点P 的坐标为(p ,p 2+4p -5),设直线AB 的函数解析式为y =mx +n ,由题意,得⎩⎪⎨⎪⎧n =-5,-5m +n =0,解得⎩⎪⎨⎪⎧m =-1,n =-5. 即直线AB 的函数解析式为y =-x -5. 当x =p 时,y =-p -5.∵OB =5,∴S △ABP =(-p -5)-(p 2+4p -5)2·5=52[-(p +52)2+254].∵点P 是直线AB 下方的抛物线上一动点, ∴-5<p <0.∴当p =-52时,S 取得最大值,此时S =1258,点P 的坐标是(-52,-354).即点P 的坐标是(-52,-354)时,△ABP 的面积最大,此时△ABP 的面积是1258.2.(2018·内江)如图,已知抛物线y =ax 2+bx -3与x 轴交于点A(-3,0)和点B(1,0),交y 轴于点C ,过点C 作CD ∥x 轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y =m(-3<m <0)与线段AD ,BD 分别交于G ,H 两点,过点G 作EG ⊥x 轴于点E ,过点H 作HF ⊥x 轴于点F ,求矩形GEFH 的最大面积;(3)若直线y =kx +1将四边形ABCD 分成左、右两个部分,面积分别为S 1,S 2,且S 1∶S 2=4∶5,求k 的值.备用图 解:(1)∵抛物线y =ax 2+bx -3与x 轴交于点A(-3,0)和点B(1,0),∴⎩⎪⎨⎪⎧9a -3b -3=0,a +b -3=0,解得⎩⎪⎨⎪⎧a =1,b =2. ∴抛物线的解析式为y =x 2+2x -3.(2)由(1)知,抛物线的解析式为y =x 2+2x -3, ∴C(0,-3).由x 2+2x -3=-3,得x =0或x =-2. ∴D(-2,-3).∵A(-3,0)和点B(1,0),∴直线AD 的解析式为y =-3x -9,直线BD 的解析式为y =x -1. ∵直线y =m(-3<m <0)与线段AD ,BD 分别交于G ,H 两点, ∴G(-13m -3,m),H(m +1,m).∴GH =m +1-(-13m -3)=43m +4.∴S 矩形GEFH =-m(43m +4)=-43(m 2+3m)=-43(m +32)2+3.∴当m =-32时,矩形GEFH 有最大面积为3.(3)∵A(-3,0),B(1,0),∴AB =4.∵C(0,-3),D(-2,-3),∴CD =2. ∴S 四边形ABCD =12×3×(4+2)=9.∵S 1∶S 2=4∶5,∴S 1=4.设直线y =kx +1与线段AB 相交于点M ,与线段CD 相交于点N , ∴M(-1k ,0),N(-4k ,-3).∴AM =-1k +3,DN =-4k +2.∴S 1=12(-1k +3-4k +2)×3=4.∴k =157.类型4 探究特殊三角形的存在性问题1.(2018·赤峰)已知抛物线y =-12x 2-32x 的图象如图所示:(1)将该抛物线向上平移2个单位长度,分别交x 轴于A ,B 两点,交y 轴于点C ,则平移后的解析式为y =-12x 2-32x +2;(2)判断△ABC 的形状,并说明理由;(3)在抛物线对称轴上是否存在一点P ,使得以A ,C ,P 为顶点的三角形是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:(2)当y =0时,-12x 2-32x +2=0,解得x 1=-4,x 2=1,即B(-4,0),A(1,0).当x =0时,y =2,即C(0,2).AB =1-(-4)=5,AB 2=25,AC 2=(1-0)2+(0-2)2=5,BC 2=(-4-0)2+(0-2)2=20, ∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形.(3)y =-12x 2-32x +2的对称轴是直线x =-32,设P(-32,n),AP 2=(1+32)2+n 2=254+n 2,CP 2=94+(2-n)2,AC 2=12+22=5,当AP =AC 时,AP 2=AC 2,254+n 2=5,方程无解; 当AP =CP 时,AP 2=CP 2,254+n 2=94+(2-n)2,解得n =0,即P 1(-32,0). 当AC =CP 时AC 2=CP 2,94+(2-n)2=5,解得n 1=2+112,n 2=2-112,P 2(-32,2+112),P 3(-32,2-112).综上所述:使得以A ,C ,P 为顶点的三角形是等腰三角形,点P 的坐标(-32,0),(-32,2+112),(-32,2-112).2.(2018·临沂)如图,在平面直角坐标系中,∠ACB =90°,OC =2OB ,tan ∠ABC =2,点B 的坐标为(1,0).抛物线y =-x 2+bx +c 经过A ,B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE =12DE.①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.解:(1)∵B(1,0), ∴OB =1.∵OC =2OB =2, ∴C(-2,0).在Rt △ABC 中,tan ∠ABC =2, ∴ACBC=2.∴AC =6.∴A(-2,6). 把A(-2,6)和B(1,0)代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-4-2b +c =6,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-3,c =4. ∴抛物线的解析式为y =-x 2-3x +4.(2)①∵A(-2,6),B(1,0),易得AB 的解析式为y =-2x +2. 设P(x ,-x 2-3x +4),则E(x ,-2x +2).∵PE =12DE ,∴-x 2-3x +4-(-2x +2)=12(-2x +2),解得x =1(舍)或-1.∴P(-1,6).②∵M 在直线PD 上,且P(-1,6),设M(-1,y), ∴AM 2=(-1+2)2+(y -6)2=1+(y -6)2. BM 2=(1+1)2+y 2=4+y 2. AB 2=(1+2)2+62=45. 分三种情况: i)当∠AMB =90°时,有AM 2+BM 2=AB 2, ∴1+(y -6)2+4+y 2=45,解得y =3±11. ∴M(-1,3+11)或(-1,3-11). ii)当∠ABM =90°时,有AB 2+BM 2=AM 2, ∴45+4+y 2=1+(y -6)2,解得y =-1. ∴M(-1,-1). iii)当∠BAM =90°时,有AM 2+AB 2=BM 2, ∴1+(y -6)2+45=4+y 2,解得y =132. ∴M(-1,132).综上所述,点M 的坐标为(-1,3+11)或(-1,3-11)或(-1,-1)或(-1,132).3.(2018·眉山)如图1,已知抛物线y =ax 2+bx +c 的图象经过点A(0,3),B(1,0),其对称轴为直线l :x =2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连接PE ,PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图2,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.图1 图2解:(1)设抛物线与x 轴的另一个交点为D ,由对称性,得D(3,0). 设抛物线的解析式为y =a(x -1)(x -3). 把A(0,3)代入,得3=3a ,a =1. ∴抛物线的解析式为y =x 2-4x +3. (2)设P(m ,m 2-4m +3),∵OE 平分∠AOB ,∠AOB =90°,∴∠AOE =45°. ∴△AOE 是等腰直角三角形. ∴AE =OA =3.∴E(3,3). 易得OE 的解析式为y =x.过P 作PG ∥y 轴,交OE 于点G ,∴G(m ,m). ∴PG =m -(m 2-4m +3)=-m 2+5m -3.∴S 四边形AOPE =S △AOE +S △POE =12×3×3+12PG·AE =92+12×3×(-m 2+5m -3)=-32m 2+15m 2=-32(m -52)2+758.∵-32<0,∴当m =52时,S 有最大值是758.(3)当点P 在对称轴左侧时,过点P 作MN ⊥y 轴,交y 轴于点M ,交l 于点N , ∵△OPF 是等腰直角三角形,且OP =PF , 易得△OMP ≌△PNF ,∴OM =PN.∵P(m ,m 2-4m +3),则-m 2+4m -3=2-m , 解得m =5+52或5-52.∴P 的坐标为(5+52,5+12)或(5-52,1-52).当P 在对称轴右侧时,过P′作M′N′⊥x 轴于点N′,过F′作F′M′⊥M′N′于点M′,同理得,△ON′P′≌△P′M′F′,∴P′N′=F′M′. 则-m 2+4m -3=m -2,解得x =3+52或3-52;P′的坐标为(3+52,1-52)或(3-52,1+52).综上所述,点P 的坐标是:(5+52,5+12)或(5-52,1-52)或(3+52,1-52)或(3-52,1+52).类型5 探究特殊四边形存在性问题1.(2018·自贡)如图,抛物线y =ax 2+bx -3过A(1,0),B(-3,0),直线AD 交抛物线于点D ,点D 的横坐标为-2,点P(m ,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长? (3)在平面内是否存在整点R(横、纵坐标都为整数),使得P ,Q ,D ,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.解:(1)把A(1,0),B(-3,0)代入抛物线解析式,得⎩⎪⎨⎪⎧a +b -3=0,9a -3b -3=0.解得⎩⎪⎨⎪⎧a =1,b =2. ∴抛物线的解析式为y =x 2+2x -3.∴当x =-2时,y =-3,即D(-2,-3).设AD 的解析式为y =kx +b ,将A(1,0),D(-2,-3)代入,得⎩⎪⎨⎪⎧k +b =0,-2k +b =-3,解得⎩⎪⎨⎪⎧k =1,b =-1. ∴直线AD 的解析式为y =x -1.(2)设P 点坐标为(m ,m -1),Q(m ,m 2+2m -3), ∴l =(m -1)-(m 2+2m -3)=-(m +12)2+94.∴当m =-12时,l 最大=94,即PQ 长度最长为94.(3)由(2)可知,0<PQ ≤94.当PQ 为边时,DR ∥PQ 且DR =PQ.∵R 是整点,D(-2,-3),∴PQ 是正整数. ∴PQ =1或2.当PQ =1时,DR =1.此时点R 的横坐标为-2,纵坐标为-3+1=-2或-3-1=-4, ∴R(-2,-2)或R(-2,-4). 当PQ =2时,DR =2.此时点R 的横坐标为-2,纵坐标为-3+2=-1或-3-2=-5. ∴R(-2,-1)或R(-2,-5).当QR 为边时,QR ∥DP ,且QR =DP.设点R 的坐标为(n ,n +m 2+m -3),则QR 2=2(m -n)2. 又∵P(m ,m -1),D(-2,-3),∴PD 2=2(m +2)2.∴(m +2)2=(m -n)2,解得n =-2(不合题意,舍去)或n =2m +2. ∴点R 的坐标为(2m +2,m 2+3m -1). ∵R 是整点,-2<m <1,∴当m =-1时,点R 的坐标为(0,-3); 当m =0时,点R 的坐标为(2,-1).综上所述,存在满足R 的点,它的坐标为(-2,-2)或(-2,-4)或(-2,-1)或(-2,-5)或(0,-3)或(2,-1).2.(2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A(-4,0),与y 轴交于点C ,抛物线y =-x 2+bx +c 经过点A ,C.(1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,求CE +OE 的最小值;(3)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P ,N.①若以C ,P ,N 为顶点的三角形与△APM 相似,则△CPN 的面积为92或4;②若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.注:二次函数y =ax 2+bx +c(a ≠0)的顶点坐标为(-b 2a ,4ac -b24a)图1 图2解:(1)将A(-4,0)代入y =x +c ,∴c =4. 将A(-4,0)和c =4代入y =-x 2+bx +c , ∴b =-3.∴抛物线解析式为y =-x 2-3x +4.(2)作点C 关于抛物线的对称轴直线l 的对称点C′,连接OC′,交直线l 于点E.连接CE ,此时CE +OE 的值最小.∵抛物线对称轴为直线x =-32,∴CC′=3.由勾股定理,得OC′=5,∴CE +OE 的最小值为5. ②存在.设M 坐标为(a ,0),则N 为(a ,-a 2-3a +4). 则P 点坐标为(a ,-a 2-3a +42).把点P 坐标代入y =x +4.解得a 1=-4(舍去),a 2=-1,则P(-1,3).当PF =FM 时,点D 在PM 的垂直平分线上,则D(12,32).当PM =PF 时,由菱形性质得,点D 坐标为(-1+322,322)或(-1-322,-322).当MP =MF 时,M ,D 关于直线y =x +4对称,点D 坐标为(-4,3).类型6 探究全等、相似三角形的存在性问题1.(2018·衡阳)如图,已知直线y =-2x +4分别交x 轴,y 轴于点A ,B ,抛物线过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D.(1)若抛物线的解析式为y =-2x 2+2x +4,设其顶点为M ,其对称轴交AB 于点N. ①求点M ,N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B ,P ,D 为顶点的三角形与△AOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.解:(1)①如图1,图1∵y =-2x 2+2x +4=-2(x -12)2+92,∴顶点为M 的坐标为(12,92).当x =12时,y =-2×12+4=3,则点N 坐标为(12,3).②不存在.理由如下: MN =92-3=32.设P 点坐标为(m ,-2m +4),则D(m ,-2m 2+2m +4), ∴PD =-2m 2+2m +4-(-2m +4)=-2m 2+4m. ∵PD ∥MN ,当PD =MN 时,四边形MNPD 为平行四边形,即-2m 2+4m =32,解得m 1=12(舍去),m 2=32.此时P 点坐标为(32,1).∵PN =(12-32)2+(3-1)2=5,∴PN ≠MN. ∴平行四边形MNPD 不为菱形.∴不存在点P ,使四边形MNPD 为菱形. (2)存在.如图2,OB =4,OA =2,则AB =22+42=2 5.图2当x =1时,y =-2x +4=2,则P(1,2).∴PB =12+(2-4)2= 5.设抛物线的解析式为y =ax 2+bx +4.把A(2,0)代入,得4a +2b +4=0,解得b =-2a -2. ∴抛物线的解析式为y =ax 2-2(a +1)x +4.当x =1时,y =ax 2-2(a +1)x +4=a -2a -2+4=2-a ,则D(1,2-a). ∴PD =2-a -2=-a.∵DC ∥OB ,∴∠DPB =∠OBA.∴当PD BO =PB BA 时,△PDB ∽△BOA ,即-a 4=525,解得a =-2,此时抛物线解析式为y =-2x 2+2x +4.当PD BA =PB BO 时,△PDB ∽△BAO ,即-a 25=54,解得a =-52,此时抛物线解析式为y =-52x 2+3x +4. 综上所述,满足条件的抛物线的解析式为y =-2x 2+2x +4或y =-52x 2+3x +4.2.如图,抛物线y =ax 2+c(a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H.(1)求a ,c 的值;(2)连接OF ,试判断△OEF 是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P ,是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.图1 图2图3 图4。

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。

中考数学专题复习几何中的最值与定值问题公开课PPT课件

中考数学专题复习几何中的最值与定值问题公开课PPT课件

A
A
P
图(2-1) P
图(2-2)
P1
BC BC源自解:把△APB绕点A顺时针旋转600,使AB与AC重合,得△ACP1,连结 PP1,则△APP1是正三角形,PP1=AP=AP1=2,P1C=PB=3,当P、P1、 C不在一直线上时, PC<PP1+P1C=2+3=5,只有当P、P1、C在一直线 上时,PC之间的距离在到最大值,这个最大值是PP1+P1C=5。
例5. 如图,在ΔABC中,D、E分别是BC、
AB上的点,且∠1=∠2=∠3 ,如果ΔABC、
求Δ证E:BD的、最Δ小A值DC是的5周。长依次为m,m1,m2,
4
A
E
3
2
1
j
B
D
C
图(1-1)
课后练习
1.如图,在Rt△ABC中,∠ACB=90°,AC =BC=2,以BC为直径的半圆交AB于 点D,P是CD上的一个动点,连结AP, 则AP的最小值是_______.
例 3. 如图,在△ABC中,BC=5,AC=12, AB=13,在边AB、AC上分别取点D、E,使 线段DE将△ABC分成面积相等的两部分,试求 这样线段的最小长度.
例4.已知△XYZ是直角边长为1的等腰直角三角形 (∠Z=90°),它的三个顶点分别在等腰 Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的 最大可能值.
D B
E
当C、A、E三点共线 时,CD的值最大。 CD的最大值是a+b.
A
图(6-1)
D
C
F E
k O
A
图 ( 6-2)
j
B
C
例2 如图,正方形ABCD的边长为1,•点P为边BC上任意 一点(可与点B或点C重合),分别过点B、C、D作射线AP 的垂线,•垂足分别为点B′、C′、D′.求BB′+CC′+DD′的 最大值和最小值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何最值问题复习
本内容全部需要在做讲义题目之前进行 一、 读一读下面的内容,想一想 1. 解决几何最值问题的理论依据
①两点之间,线段最短(已知两个定点);
②_______________(已知一个定点、一条定直线); ③三角形三边关系(已知两边长固定或其和、差固定). 2. 几何最值问题常见的基本结构
①利用几何变换进行转化——在右侧一栏中画出相关分析的辅助线,找到最终时刻点P 的位置
l
l
求min ()PA PB +,异侧和最小
l
l
MN 为固定线段长,求min ()AM BN +
l
l
求max PB PA -,同侧差最大 ②利用图形性质进行转化
D
C
A
B O N
M
求max OD
不变特征:Rt △AOB 中,直角与斜边长均不变,取斜边中点进行分析.
二、 还原自己做最值问题的过程(从拿到题目读题开始),与下面小明的动作对标,补充或调
整与自己不一样的地方.
①研究背景图形,相关信息进行标注;
②分析考查目标中的定点、动点及图形特征,利用几何变换或图形性质对问题进行分析; ③封装常见的几何结构,当成一个整体处理,后期直接调用分析.
三、 根据最值问题做题的思考过程,思考最值问题跟存在性问题、动点问题在分析过程中有什
么样的区别和联系,简要写一写你的看法. 答:
下面是小明的看法:
①都需要分层对问题分析,一层层,一步步进行分析;
②都需要研究基本图形,目标,条件,相关信息都需要有
标注;
③在画图分析时,都会使用与之有关的性质,判定,定理
及公理.
如存在性问题需要用四边形的判定;最值问题需要回到问题处理的理论依据.
四、借助对上述问题的思考,做讲义的题目.
几何最值问题(讲义)
一、知识点睛
解决几何最值问题的通常思路:
1.分析定点、动点,寻找不变特征.
2.若属于常见模型、结构,调用模型、结构解决问题;
若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.
转化原则:尽量减少变量,向定点、定线段、定图形靠拢.
二、精讲精练
1.如图,在△ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,PE⊥AB于点E,PF⊥
AC于点F.若M为EF的中点,则AM长度的最小值为____________.
M F
E P
C
B
A
O
E
D C
B
A
第1题图 第2题图
2. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 边上,则以AC 为对角线的所
有□ADCE 中,DE 长度的最小值为_____________.
3. 若点D 与点A (8,0),B (0,6),C (a ,a )是一平行四边形的四个顶点,则CD 长度的最小
值为_____________.
4. 如图,已知AB =2,C 是线段AB 上任一点,分别以AC ,BC 为斜边,在AB 的同侧作等腰
直角三角形ACD 和等腰直角三角形BCE ,则DE 长度的最小值为_____________.
E
D B C
A
第4题图 第5题图
5. 如图,已知AB =10,C 是线段AB 上任一点,分别以AC ,BC 为边,在AB 的同侧作等边三
角形ACP 和等边三角形BCQ ,则PQ 长度的最小值为_____________.
6. 动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示,折叠纸片,使点A 落在BC
边上的A ′处,折痕为PQ ,当点A ′在BC 边上移动时,折痕的端点P ,Q 也随之移动.若限定点P ,Q 分别在AB ,AD 边上移动,则点A ′在BC 边上可移动的最大距离为________________.
Q
P
A'
D C
B A
D C
B
A
7. 如图,在直角梯形纸片ABCD 中,AD ⊥AB ,AB =8,AD =CD =4,点E ,F 分别在线段AB ,
AD 上,将△AEF 沿EF 翻折,点A 的对应点记为P .
Q
P
C
B
A
(1)当点P 落在线段CD 上时,PD 的取值范围是_______.
(2)当点P 落在直角梯形ABCD 内部时,PD 长度的最小值为_____________.
P F E
D C B A
P
F
E D
C
B
A
D
C
B
A
D
C
B
A
8. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC
=BC 的中点为D .将△ABC 绕点
C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG ,则在旋转过程中,DG 长度的最大值为____________.
9. 如图,已知△ABC 是边长为2的等边三角形,顶点A 的坐标为(0,6),BC 的中点D 在点A
下方的y 轴上,E 是边长为2且中心在坐标原点的正六边形的一个顶点,把这个正六边形绕其中心旋转一周,则在旋转过程中DE 长度的最小值为_________.
10. 探究:如图1,在等边三角形ABC 中,AB =6,AH ⊥BC 于点H ,则AH =_______,△ABC
的面积ABC S △__________.
发现:如图2,在等边三角形ABC 中,AB =6,点D 在AC 边上(可与点A ,C 重合),分别过点A ,C 作直线BD 的垂线,垂足分别为点E ,F ,设BD =x ,AE =m ,CF =n .
D
G
F
E
C
B A F
A
图1 图2
(1)用含x ,m ,n 的代数式表示ABD S △及CBD S △;
(2)求(m n +)与x 之间的函数关系式,并求出(m n +)的最大值和最小值.
应用:如图,已知正方形ABCD 的边长为1,P 是BC 边上的任一点(可与点B ,C 重合),分别过点B ,C ,D 作射线AP 的垂线,垂足分别为点B′,C′,D′,则BB′+CC′+DD′的最大值为______,最小值为______.
三、回顾与思考
________________________________________________ ________________________________________________ ________________________________________________ 【参考答案】
精讲精练 1.
125
2.3
H
B
A
D'
B'C'
P D C
B
A
3.4.1 5.5 6.2
7.(1)84PD -≤;(2)8 8.6
9.4
10.探究:发现:(1)12ABD S xm =
△,1
2
CBD S xn =△
(2)m n +=m +n 的最大值为6,最小值为
应用:2。

相关文档
最新文档