生化资料
生化资料
一、名词解释:(一)1、血糖:血液中的单糖,主要是葡萄糖。
(或通过各种途径进入血液的葡萄糖。
)2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成。
(除了葡萄糖之外,果糖和半乳糖等其他单糖也可以合成糖原)糖原分解成葡萄糖的过程叫糖原分解。
3、糖异生:由非糖物质合成葡萄糖的过程。
能生成糖的非糖物质主要有氨基酸、甘油和有机酸(乳酸、丙酮酸和三羧酸循环中间产物)。
4、血脂:血浆中的脂类,包括甘油三酯、磷脂、胆固醇酯和脂肪酸。
5、三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸缩合生成柠檬酸,柠檬酸在经过一系列酶促反应之后又生成草酰乙酸,形成一个反应循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环或柠檬酸循环。
6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。
7、有氧氧化:在供氧充足时,葡萄糖在细胞液中分解生成的丙酮酸进入线粒体,彻底氧化成CO2和H2O,并释放大量能量,称为有氧氧化途径。
8、血浆脂蛋白:脂类在血浆中的存在形式和转运形式。
包括脂类和载脂蛋白。
9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。
10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。
11、氮平衡:摄入氮与排出氮之间的平衡关系,它反映出体内蛋白质的代谢情况。
包括氮总平衡、氮正平衡、氮负平衡。
12、必需氨基酸:有8种体内需要而自身又不能合成、必须由食物供给的氨基酸称为必需氨基酸,包括异亮氨酸(Ile)、苯丙氨酸(Phe)、色氨酸(Trp)、苏氨酸(Thr)、亮氨酸(Leu)、甲硫氨酸(Met)、赖氨酸(Lys)和缬氨酸(Val)。
13、蛋白质互补作用:将不同种营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。
14、转氨基作用:指由氨基转移酶催化,将氨基酸的α-氨基转移到另一个α-酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。
生化实验期末考资料
●氨基酸的分离鉴定(纸层析法)分配层析: 是一种连续抽提法。
一种溶剂通常是被结合在固定的惰性支持物(柱、膜、纸)上的水, 另外一相由流动的被水饱和的有机溶剂构成, 它流过固定相。
如果某一混合物的各组分在这两相中的分配系数有足够的差异, 它们就可以被分离。
(固定相和流动相)分配系数:在一定条件下, 某一组分在固定相和流动相中含量(浓度)的比值。
纸层析法: 是用滤纸作为惰性支持物的分配层析法。
层析溶剂由有机溶剂和水组成。
物质被分离后在纸层析图谱上的位置使用Rƒ值(比移)来表示:影响Rf值的因素: 在一定的条件下某种物质的Rf值是常数。
Rf值的大小与物质的结构、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。
纸层析过程: 点样, 扩展, 显色, 计算扩展剂(展层剂):4份水饱和的正丁醇和1份醋酸的混合物。
将20mL正丁醇和5mL冰醋酸放入分液漏斗中, 与15mL水混合, 充分振荡, 静置后分层, 放出下层水层, 上层即为扩展剂。
●显色剂: 0.1%水合茚三酮正丁醇溶液●蛋白质的性质实验(等电点测定和显色反应)等电点: 蛋白质分子的解离状态和解离程度受溶液的酸碱度影响。
当溶液的pH达到一定数值时, 蛋白质颗粒上正负电荷的数目相等, 在电场中, 蛋白质既不向阴极移动, 也不向阳极移动, 此时溶液的pH值称为此种蛋白质的等电点(pI)。
蛋白质颗粒可因失去电荷和脱水而沉淀。
(水化层和双电层)蛋白质的沉淀反应可分为两类: 可逆的沉淀反应(蛋白质分子的结构尚未发生变化。
如盐析作用或在低温下用乙醇(或丙酮)短时间作用于蛋白质。
)不可逆的沉淀反应(蛋白质分子内部结构发生重大改变, 蛋白质常变性而沉淀, 如加热引起的蛋白质沉淀与凝固, 蛋白质与重金属离子或某些有机酸的反应都属于此类)●0.4%酪蛋白醋酸钠溶液: 称取0.4g酪蛋白(干酪素), 加少量水在乳钵中仔细地研磨, 将所得的蛋白质悬浮液移入200mL锥形瓶内,用少量40~50℃的温水洗涤乳钵, 将洗涤液也移入锥形瓶内。
生化复习资料-名词解释
1.反馈抑制——终点产物对该途径的酶的活性调节,所引起的抑制作用。
2.反馈阻遏——操纵子编码的阻遏蛋白是酶活性的,需与辅阻遏物,即终产物或其衍生物结合才能阻止编码合成途径中的第一个酶的基因的转录。
3.Monod方程——(P202)(ppt10)存在抑制剂时描述限制性基质浓度影响细胞比生长速度的经验方程。
4.单位重量的菌体每小时消耗氧的量,单位为mmol(O2)/g(干菌体)∙h。
5.恒化法,也称连续培养系统,是通过控制培养基中营养物,主要是生长限制因子的浓度,来调控微生物生长繁殖与代谢速度的连续培养方式。
6.恒浊法,是以培养器中微生物细胞的密度为监控对象,用光电控制系统来控制流入培养器的新鲜培养液的流速,同时使培养器中的含有细胞与代谢产物的培养液也以基本恒定的流速流出,从而使培养器中的微生物在保持细胞密度基本恒定的条件下进行培养的一种连续培养方式。
7.包涵体,由外源基因在宿主细胞中表达的不溶性蛋白聚合体称为包涵体8.分叉中间体,糖代谢中间体既可以用来合成初级代谢产物, 也可以用来合成次级代谢产物9.临界氧浓度,当溶氧浓度达到某一值后,呼吸强度不再随溶解氧浓度的增强而变化,此时的溶解氧浓度称为呼吸临界氧浓度,以C表示。
10.呼吸熵,营养物质氧化过程中生成的二氧化碳与所消耗的氧量的容积比值11.生理酸性物质,无机氮源被菌体作为氮源利用后,培养液中就留下了酸性或碱性物质,这种经微生物生理作用(代谢)后能形成酸性物质的无机氮源叫生理酸性物质,如硫酸胺,12.生理碱性物质,若菌体代谢后能产生碱性物质的则此种无机氮源称为生理碱性物质,如硝酸钠。
13.生物密封:要求用只有在特殊培养条件下才能生存的宿主,同时用不能转移至其它活细胞的载体,通过这样组合的宿主载体系统,可以防止重组菌向外扩散(工程菌采用采用物理密封和生物学密封两种方法。
生化复习资料ygl
生物化学复习资料一、生化复习中常见名词总结:1.蛋白质一级结构:指蛋白质多肽链中氨基酸的排列顺序。
主要由肽键维持。
2.蛋白质二级结构:指多肽链主链原子的局部空间排布,不包括侧链的构象。
主要由氢键维持。
3.蛋白质三级结构:蛋白质三级结构是指整条多肽链中全部氨基酸残基的相对空间位置,也即整条多肽链所有原子在三维空间的排布位置。
4.蛋白质四级结构:数个具有三级结构的多肽链在三维空间的特定排布,每一条多肽链称为亚基。
这种蛋白质分子中各个亚基的空间排布及亚基间的相互作用,称为蛋白质的四级结构。
5.蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
6.肽键:一个氨基酸的α¬羧基与另一个氨基酸的α¬氨基脱水缩合形成的酰胺键称为肽键7.蛋白质的两性解离:由于所有的蛋白质都含有碱性的α-氨基和酸性的α-羧基,既可以在酸性溶液中与H+结合成带正电的阳离子,也可以在碱性溶液中与—OH结合成带负电的阴离子,即蛋白质的两性解离。
8.碱基互补规律:在DNA 双链结构中两条链的碱基之间以氢键相连,产生了固有的配对方式,即腺嘌呤与胸腺嘧啶、鸟嘌呤与胞嘧啶配对存在,这种配对方式称为碱基互补。
9.DNA的变性: 在某些理化因素作用下,DNA双链解开成两条单链的过程。
10.增色效应:在DNA解链过程中,由于更多的共扼双键得以暴露,DNA在紫外线区260nm处的吸光值增加,并与解链程度有一定的比例关系,这种关系称为DNA的增色效应。
11.Tm值:DNA变性过程中,紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm)。
在Tm时,DNA分子内50%的双链结构被解开。
Tm值与DNA的分子大小和所含碱基中的G、C所占比例相关。
12.酶:是由活细胞合成的,对其特异性底物起高效催化作用的蛋白质,是机体内催化多种代谢反应最主要的催化剂。
生物化学复习资料
生物化学复习资料1。
氨基酸的结构特点:在20种标准氨基酸中只有脯氨酸为亚基氨酸,其他氨基酸都是α-氨基酸,除了甘氨酸之外,其他氨基酸的α—碳原子都结合了4个不同的原子或基团(羧基、氨基、R基和一个氢原子)。
所以α—碳原子是一个手性碳原子,氨基酸是手性分子,有L—氨基酸与D—氨基酸之分,标准氨基酸均为L—氨基酸。
2。
酸性氨基酸:天冬氨酸、谷氨酸(R基所含的羧基在生理条件下可以给出H+的带负电荷)碱性氨基酸:赖氨酸、精氨酸、组氨酸(R基所含的咪唑基在生理条件下可以给出H+的带负电荷)芳香族氨基酸:色氨酸、苯丙氨酸、酪氨酸3。
氨基酸的两性电离:氨基酸都含有氨基和羧基,氨基可以结合H+而带正电荷,羧基可以给出H+而带负电荷,所以氨基酸是两性电解质,氨基酸的这种解离特征成为两性解离.等电点:氨基酸在溶液中的解离程度受ph影响,在某一ph值条件下,氨基酸解离成阴离子和阳离子的趋势和程度相同,溶液中氨基酸的静电荷为0,此时溶液的ph值称为该氨基酸的等电点.4。
试比较蛋白质和多肽的区别:多肽链是蛋白质的基本结构,实际上蛋白质就是具有特定构象的多肽,但多肽并不都是蛋白质(①分子量<10kDa的是多肽<不包含寡肽〉,分子量>10kDa的是蛋白质,胰岛素例外,它是蛋白质②一个多肽分子只有一条肽链,而一个蛋白质分子通常含有不止一条肽链③多肽的生物活性可靠与其构象无关,而蛋白质则不然,改变蛋白质的构象会改变其生物活性④许多蛋白质含有辅基,而多肽一般不含辅基5。
简述蛋白质的一二三四级结构,常见的二级结构有哪些?一:蛋白质分子内氨基酸的排列顺序称为蛋白质的一级结构,包括二硫链的位置二:蛋白质多肽链局部片段的构象,不涉及侧链的空间排布:α螺旋、β折叠、β转角、无规则卷曲。
三:在一级结构中相隔较远的一些氨基酸依靠非共价键及少量共价键相互结合,使多肽链在二级结构基础上进一步折叠,形成特定的空间结构,这就是蛋白质的三级结构。
四:多亚基蛋白的亚基按特定的空间排布结合在一起,构成该蛋白质的四级结构6。
生化复习资料--有答案
⽣化复习资料--有答案第34章 DNA的复制与修复⼀判断1、所谓半保留复制就是以DNA亲本链作为合成新⼦链DNA的模板,这样产⽣的新的双链DNA分⼦由⼀条旧链和⼀条新链组成。
()2、在先导链上DNA沿5’-3’⽅向合成,在后随链上则沿3’-5’⽅向合成。
()3、复制叉上的单链结合蛋⽩通过覆盖碱基使DNA的两条单链分开,这样就避免了碱基配对。
4、只要⼦链和亲本链中的⼀条或两条都被甲基化,⼤肠杆菌中的错配校正系统就可以把它们区别开来,但如果两条链都没有甲基化则不⾏。
()5、单个核苷酸通过磷酸⼆酯键连接到DNA⾻架上。
()6、DNA的复制需要DNA聚合酶和RNA聚合酶。
()7、基因是⼀段DNA序列,这段序列只负责编码⼀个蛋⽩质或⼀条多肽。
()8、嘧啶⼆聚体可以通过重组修复除去()9、直接修复是通过⼀种可连续扫描DNA,并识别出损伤部位的蛋⽩质,将损伤部位直接修复的⽅法。
该⽅法不⽤切断DNA或切除碱基。
()10、SOS修复是细胞DNA受到损伤的紧急情况下,为求得⽣存⽽出现的应急修复。
常缺乏准确性。
()⼆单选1.DNA复制时,下列哪⼀种酶是不需要的?()A.DNA指导的DNA聚合酶 B.DNA连接酶 C.拓朴异构酶D.解链酶 E.限制性内切酶2.下列关于DNA复制的叙述,哪⼀项是错误的?()A.半保留复制 B.两条⼦链均连续合成 C.合成⽅向5′→3′D.以四种dNTP为原料 E.有DNA连接酶参加3.DNA复制时,模板序列5′—TAGA—3′,将合成下列哪种互补结构?()A.5′—TCTA—3′ B.5′—ATCA—3′ C.5′—UCUA—3′D.5′—GCGA—3′ E.5′—TCTA—3′4.遗传信息传递的中⼼法则是:()A.DNA→RNA→蛋⽩质 B.RNA→DNA→蛋⽩质 C.蛋⽩质→DNA→RNA D.DNA→蛋⽩质→RNA E.RNA→蛋⽩质→DNA 5.DNA复制中的引物是:()A.由DNA为模板合成的DNA⽚段 B.由RNA为模板合成的RNA⽚段C.由DNA为模板合成的RNA⽚段 D.由RNA为模板合成的RNA⽚段E.引物仍存在于复制完成的DNA链中6.DNA复制时,⼦链的合成是:()A.⼀条链5′→3′,另⼀条链3′→5′ B.两条链均为3′→5′C.两条链均为5′→3′ D.两条链均为连续合成 E.两条链均为不连续合成7.冈崎⽚段是指:()A.DNA模板上的DNA⽚段 B.引物酶催化合成的RNA⽚段C.随从链上合成的DNA⽚段 D.前导链上合成的DNA⽚段E.由DNA连接酶合成的DNA8.合成DNA的原料是:()A.dAMP dGMP dCMP dTMP B.dATP dGTP dCTP dTTPC.dADP dGDP dCDP dTDP D.ATP GTP CTP UTP E.AMP GMP CMP UMP 9.逆转录过程中需要的酶是:()A.DNA指导的DNA聚合酶 B.核酸酶 C.RNA指导的RNA聚合酶D.DNA指导的RNA聚合酶 E.RNA指导的DNA聚合酶10.某⽣物细胞的DNA分⼦中,碱基A的数量占38%,则C和G之和占全部碱基的()A.76%B.62%C.24%D.12%11.DNA复制的基本条件是()A.模板,原料,能量和酶 B.模板,温度,能量和酶C.模板,原料,温度和酶 D.模板,原料,温度和能量12.DNA分⼦的⼀条单链中(A+G)/(T+C)=0.5,则另⼀条链和整个分⼦中上述⽐例分别等于()A.2和1 B 0.5和0.5 C.0.5和1 D.1和113 .DNA分⼦在复制时要先解旋,这时下述哪⼀对碱基将从氢键连接处断开()A.腺嘌呤与尿嘧啶B.腺嘌呤与胸腺嘧啶C.鸟嘌呤与胸腺嘧啶D.腺嘌呤与胞嘧啶14 . 噬菌体侵染细菌的实验中,噬菌体复制DNA的原料是()A.噬菌体的核糖核苷酸B.噬菌体的脱氧核苷酸C.细菌的核糖核苷酸D.细菌的脱氧核苷酸15.DNA分⼦结构具有多样性的原是()A.碱基和脱氧核糖排列顺序千变万化 B.四种碱基的配对⽅式千变万化C.两条长链的空间结构千变万化 D.碱基对的排列顺序千变万化16.⼀条肽链上有100个肽键,那么控制这条肽链合成的基因所含的碱基数⽬⾄少有A、100个B、 101个C、303个D、606个17.遗传信息是指()A.有遗传效应的脱氧核苷酸序列 B.脱氧核苷酸C.氨基酸序列 D.核苷酸18.已知⼀段mRNA含有30个碱基,其中A和G有12个,转录该段mRNA的DNA 分⼦中应有C和T的个数是()A.12 B.24 C.18 D.3019 .与RNA分⼦结构相⽐DNA分⼦结构中没有的碱基是()A、腺嘌呤B、尿嘧啶C、鸟嘌呤D、胞嘧啶20.蛋⽩质中含S不含P,⽽核酸中含P不含S,现⽤放射性同位素35S和32P 标记的噬体去侵染⽆任何标记的⼤肠杆菌,然后进⾏测定,在⼦代噬菌体中()A.可以检测到35SB.可以检测到35S和32PC.可以检测到32PD.不可能检测到35S和32P21.下列有关DNA的叙述中,正确的是()①在⼈体的⽩细胞中,DNA上含有⼈的全部遗传信息②同种个体之间的DNA是完全相同的③DNA是⼀切⽣物的遗传物质④DNA的⼀个分⼦可以控制许多性状⑤转录时是以DNA的⼀条链的模板的()A.②③④B. ①③④⑤C.①③⑤D.①④⑤22. 如果把细胞中的⼀个DNA分⼦⽤15N进⾏标记,然后将其放在含14N的细胞培养基中连续复制四次,则最后含有标记15N 的细胞占细胞总数的()A.1/32 B.1/16 C.1/8 D.1/423.在下列过程中,发⽣碱基互补配对关系是①复制②转录③翻译④逆转录A.①B.①②C.①②③D.①②③④24.下列制作DNA螺旋模型中,连接正确的是()25. 不需要DNA连接酶参与的过程是()A.DNA复制B.DNA体外重组C.DNA损伤的切除修复D.RNA逆转录26、DNA损伤的光修复作⽤是⼀种⾼度专⼀的修复⽅式,它只作⽤于紫外线引起的()A.嘧啶⼆聚体B. 嘌呤⼆聚体C.嘧啶-嘌呤⼆聚体D.为两个单独的嘧啶碱基27、 SOS修复是()A.是准确性差的修复⽅式B.可以完全修复DNA的损伤C.需要DNA聚合酶D.专⽤于嘧啶⼆聚体的修复三填空1.DNA复制时,连续合成的链称为__________链;不连续合成的链称为__________链。
生化复习资料
第七章糖类化合物代谢1.名词解释限速酶:对反应速度的快慢起决定性的酶EMP:糖酵解途径:在无氧条件下,葡萄躺糖转变为丙酮酸并形成ATP的一系列反应糖异生作用:指生物体利用非碳水化合物的前体(如丙酮酸或草酰乙酸)合成葡萄糖的过程。
糖核苷酸:UDPG的中文名称是尿苷二磷酸葡萄糖,而ADPG的中文名称是腺苷二磷酸葡萄糖,它们是重要的活化单糖,称为糖核苷酸。
底物水平磷酸化:在底物氧化过程中,形成某些高能中间产物或某种高能状态,再通过酶的作用促使其将能量转给ADP生成ATP的过程。
2.什么是乙醛酸循环?其有什么生物学意义?乙醛酸循环glyoxylate cycle 存在于微生物和植物的以乙酸作为碳源,并作为能源来利用时所进行的代谢途径。
另外也是种子在靠贮藏脂肪发芽时,把腈肪酸分解成乙酰辅酶A的循环代谢过程。
其特点是异柠檬酸通过异柠檬酸酶(isocitratas EC.4.1.3.1)分解成琥珀酸和乙醛酸以及乙醛酸和乙酰辅酶A(CoA)结合而形成苹果酸。
其生物学意义:除了提供能量及中间产物外,更重要的是它使萌发的种子将贮存的三酰甘油通过乙酰CoA转变葡萄糖。
3.何谓TCA,它有何特点,有什么生物学意义?(Tricarboxylic acid cycle)是需氧生物体内普遍存在的环状代谢途径。
因为此代谢途径中有几个中间代谢物具有三个羧基,故称三羧酸循环。
又因此循环由柠檬酸开始,故也称柠檬酸循环。
乙酰CoA+2H2O +3NAD++FAD+GDP+Pi——>2CO2+3NADH+3H++FADH2+CoA-SH+GTP(总反应式) 主要事件顺序为:(1)乙酰CoA与草酰乙酸结合,生成六碳的柠檬酸,放出CoA(2)柠檬酸先失去一个H2O而成顺乌头酸,再结合一个H2O转化为异柠檬酸(3)异柠檬酸发生脱氢、脱羧反应,生成5碳的a-酮戊二酸,放出一个CO2,生成一个NADH+H+(4)a-酮戊二酸发生脱氢、脱羧反应,并和CoA结合,生成含高能硫键的4碳琥珀酰CoA,放出一个CO2,生成一个NADH+H+(5)碳琥珀酰CoA脱去CoA和高能硫键,放出的能通过GTP转入ATP(6)琥珀酸脱氢生成延胡索酸,生成1分子FADH2,(7)延胡索酸和水化合而成苹果酸(8)苹果酸氧化脱氢,生成草酸乙酸,生成1分子NADH+H+小结:一次循环,消耗一个2碳的乙酰CoA,共释放2分子CO2,8个H,其中四个来自乙酰CoA,另四个来自H2O,3个NADH+H+,1FADH2。
生化复习资料
蛋白质化学一、名词解释1、基本氨基酸:是指构成蛋白质最常见的20种氨基酸,分别为:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、酪氨酸、色氨酸、丝氨酸、苏氨酸、半胱氨酸、甲硫氨酸、天门冬氨酸、谷氨酸、天门冬酰胺、谷氨酰胺、精氨酸、赖氨酸、组氨酸、脯氨酸2、α-碳原子:在氨基酸中,与羧基相邻的碳原子称为α-碳原子3、两性电解质:既含有酸性基团,又含有碱性基团的电解质。
氨基酸即为一种两性电解质4、氨基酸的等电点:当在某一pH值时,氨基酸所带正电荷和负电荷相等,即净电荷为零,此时的pH值称为氨基酸的等电点5、肽:由两个以上的氨基酸通过肽键连接起来的化合物,称为肽6、肽键:由1个氨基酸的α-氨基与另1个氨基酸的α-羧基缩合失去1分子水而形成的化学键叫做肽键7、二肽:两个氨基酸由1个肽键连接而成的化合物称为二肽8、多肽:含有10个以上氨基酸的肽称为多肽9、蛋白质的两性解离:与氨基酸相似,蛋白质既可以在酸性溶液中解离,也可以在碱性溶液中解离,但其解离情况比氨基酸复杂,可解离基团包括末端的α-NH2、α-COOH及可解离的侧链R基10、蛋白质的等电点:对某一蛋白质而言,当在某一pH值时,其所带的正、负电荷恰好相等(净电荷为零),这一pH值就称为该蛋白的等电点11、蛋白质的沉淀反应:蛋白质的稳定性是相对的、暂时的、是有条件的。
当改变条件时,稳定性就会被破坏,蛋白质就从溶液中沉淀出来,这就是蛋白质的沉淀作用12、盐溶:中性盐对蛋白质的溶解度有显著的影响,这种影响具有双重性。
低浓度的中性盐可以增加蛋白质的溶解度,称为盐溶13、盐析:高浓度的中性盐可降低蛋白质的溶解度,使蛋白质发生沉淀,这种由于在蛋白质溶液中加入大量中性盐,使蛋白质沉淀析出的作用称为盐析14、蛋白质的变性:在某些物理化学因素影响下,可使蛋白质分子的空间结构解体,从而使其活性丧失,这称为变性15蛋白质的复性:当变性因素除去后,变性蛋白质重新回复到天然结构的现象二、简述和论述1、酸碱性质氨基酸可分为哪几大类?分别包括哪些氨基酸?中性氨基酸可分为五类:脂肪族氨基酸:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸芳香族氨基酸:苯丙氨酸、酪氨酸、色氨酸含羟基氨基酸:丝氨酸、苏氨酸含硫基氨基酸:半胱氨酸、甲硫氨酸亚氨基酸:脯氨酸酸性氨基酸:天门冬氨酸、谷氨酸碱性氨基酸:精氨酸、赖氨酸、组氨酸2、蛋白质的α—螺旋结构模型。
生化资料
SD序列:原核细胞mRNA上的用于结合原核生物核糖体的一段序列,为与密码子上游。
单链结合蛋白SSB:一种鱼单链DNA紧密结合的蛋白,它的结构可以防止复制叉处单链DNA 本身重新折叠回双链区,并避免被核酸酶的降解。
内含子和外显子:真核生物的基因通常都是断裂基因,保留在成熟RNA中的序列称为外显子,插入的非编码序列称为内含子。
辅阻遏物:能够与失活的阻遏蛋白结合,阻遏蛋白与操纵基因结合能力的物质。
一般为酶反应的产物。
DNA的复性:再适当条件下,变性DNA两条核苷酸链靠氢键配对能重新形成双螺旋,同时物理、化学及生物活性得到恢复,这个过程称为核酸复性。
增色效应:当DNA双螺旋变性是,260nm处紫外吸收急剧增加的现象。
减色效应:随着核酸复性,紫外吸收急剧降低的现象。
底物水平磷酸化:在底物氧化过程中,形成了某些高能中间代谢物,在通过酶促磷酸基因转移反应,直接连偶A TP的形成的过程。
邻近效应:在酶促反应中,由于酶和底物分子间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物再酶活性中心的有效浓度大大增加的效应。
定向效应:当专一性底物向酶活性中心靠近时,会诱导酶分子构象发生改变,是酶活性中心的相关基因和底物的反应基因团定向排列,同时是反应基因之间的分子轨道以正确方向严格定位,使酶促反应易于进行。
补救途径:与从头合成途径不同,生物分子可以有该类分子降解形成的中间代谢物来合成。
是一个再循环途径。
磷酸戊糖途径:在细胞溶胶内进行的以6-磷酸葡萄糖为起始物,在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程。
盐析:高浓度的中性盐使蛋白质从溶液中析出的现象盐溶:低浓度的中性盐促进蛋白的溶解的现象前馈激活和反馈抑制:在系列反应中,前面的反应物对催化后面反应的酶的激活作用叫前馈激活;终产物对前面的限速酶的抑制作用叫反馈抑制。
转氨基作用:由转氨酶催化某一氨基酸的α-氨基转移到另一种α-酮酸上的酮基上,生存相应的氨基酸,原来的氨基酸则转变为α-酮酸,反应可逆。
生化复习资料
判断题1、所有单糖均有还原性。
( √ )2、淀粉,糖原,与维生素又有均具有与还原端,所以它们都有还原性。
( × )3、脂类就是脂肪酸与甘油醇形成的脂类及其衍生物。
( × )4、氨基酸与茚三酮反应都会产生蓝紫色化合物。
( × )5、因为羟基碳和亚氨基氮之间的部分双键性质,所以肽键不能自由旋转。
( √ )6、在具有四级结构的蛋白质分子中每个具有三级结构的多肽键是一个亚基。
( √ )7、维持蛋白质三机结构物的主要作用力是氢键。
( × )8、蛋白质在等电点时,净电荷为零,溶解度最小。
(√)9、蛋白质分子中个别氨基酸的取代未必会引起蛋白质分子活性的改变。
(√ )10、在蛋白质分子和多肽中,只有一种连接氨基酸残基的共价键,即肽键。
( × )11、双缩脲反应是肽和蛋白质特有的反应。
( √)12、蛋白质的亚基(亚单位)和肽链是同义的。
( ×)13、蛋白质的α-螺旋结构通过侧链之间形成氢键而稳定。
(×)14、酶的Km值是酶的特征常数,它不能随PH和温度的改变而改变。
(×)15、别构酶动力学曲线的特点都是S形曲线。
(×)16、对一个酶而言,其过度态的底物类似物与底物类似物相比较,是更有效的竞争性抑制剂。
(√)17、蛋白酶对变性后的蛋白质水解作用更有效。
( √)18、酶与底物作用时,酶的构像会发生一定程度的改变,从某种意义上说,底物可诱导酶产生活性中心。
( × )19、酶原激活的过程实际上是酶活性中心形成或暴漏的过程。
( √ )没种酶只有与一个Km值。
( × )20、如果加入足够多的底物,即使存在非竞争性抑制剂,酶催化反应也能达到正常的Vmax。
(×)21、一种酶有几种底物就有几种Km值。
( √ )22、可将基因定意为DNA分子中核酸的特定序列。
(×)23、维持DNA分子稳定的化学键是氢键。
生化类化学知识点总结
生化类化学知识点总结一、生化类化学概述生化类化学是研究生物体内各种物质的化学组成和相互作用的科学,主要包括生物大分子(蛋白质、核酸、多糖和脂类)的结构及其相互作用、生物催化(酶)、代谢物质的转化等内容。
生化类化学在医学、农学、动植物生长、发育及各种生理生化过程的研究中有着重要的应用价值。
二、蛋白质1. 蛋白质的结构蛋白质是生命物质中含量最多、功能最多样的一类化合物。
它是由α-氨基酸或无规则氨基酸组成的天然高聚物,在生物中担任构成细胞器、激素、酶、抗体、抗凝剂等重要物质的先天主要筑成元素。
蛋白质的空结构容许它能便捷地与其它生物大分子及无机分子发生作用。
2. 氨基酸α-氨基酸是构成蛋白质的最基本单元,它具有一定的组成结构(组合、立体构象、物理性质、化学性质),对蛋白质的功能具有决定作用。
氨基酸的基本结构包括α-C、α-氨基和α-羧基。
3. 蛋白质的空间结构蛋白质的空间结构是指蛋白质中α-氨基酸残基之间的空间排列位置及其相互作用关系。
蛋白质的空间结构对蛋白质的功能至关重要。
4. 蛋白质的生物学功能蛋白质是生命体内最为丰富、基本且复杂的大分子化合物,也是细胞构成和生理功能活动中至关重要的物质。
蛋白质的主要功能包括结构功能、酶功能、激素功能、运输功能、抗体功能等。
三、核酸1. DNA的结构DNA是脱氧核糖核酸的简称,是一类由脱氧核酸核苷酸构成的高分子化合物,是生物体内存储遗传信息的重要物质。
DNA的基本结构包括磷酸基、脱氧核糖糖类和氮碱基。
2. RNA的结构RNA是核糖核酸的简称,是一类由核糖核苷酸构成的高分子化合物。
RNA在细胞内有多种功能,包括RNA的结构、RNA的遗传信息传递、RNA的功能。
3. DNA的生物学功能DNA是生物体内的遗传物质,其主要功能包括储存、传递和表达遗传信息,参与细胞生长和分裂等。
四、多糖1. 多糖的结构多糖是一类由多种糖单元连接而成的高分子化合物,包括淀粉、糖原、纤维素、果胶等。
生化复习资料
14.关于三羧酸循环那个是错误的
A.是糖、脂肪及蛋白质分解的最终途径
B.受ATP/ADP比值的调节
C.NADH可抑制柠檬酸合酶
D.NADH氧经需要线粒体穿梭系统。
15.三羧酸循环中哪一个化合物前后各放出一个分子CO2:
A.柠檬酸 B.乙酰CoA C.琥珀酸 D.α-酮戊二酸
23.下面哪种酶在糖酵解和糖异生中都起作用:
A.丙酮酸激酶 B.丙酮酸羧化酶
C.3-磷酸甘油醛脱氢酶 D.己糖激酶 E.果糖1,6-二磷酸酯酶
24.原核生物中,有氧条件下,利用1摩尔葡萄糖生成的净ATP摩尔数与在无氧条件下利用1摩尔生成的净ATP摩尔数的最近比值是:
A.2:1 B.9:1 C.18:1 D.19:1 E.25:1
A.丙酮酸 B.3-磷酸甘油醛
C.6-磷酸果糖 D.1,3-二磷酸甘油酸 E.6-磷酸葡萄糖酸
12.糖蛋白中蛋白质与糖分子结合的键称:
A.二硫键 B.肽键
C.脂键 D.糖肽键 ? E.糖苷键,
13.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是:
A.糖异生 B.糖酵解
9.丙酮酸羧化酶是那一个途径的关键酶:
A.糖异生 B.磷酸戊糖途径
C.胆固醇合成 D.血红素合成 E.脂肪酸合成
10.动物饥饿后摄食,其肝细胞主要糖代谢途径:
A.糖异生 B.糖有氧氧化
C.糖酵解 D.糖原分解 E.磷酸戊糖途径
11.下列各中间产物中,那一个是磷酸戊糖途径所特有的?
2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP
3.糖酵解过程中有3个不可逆的酶促反应,这些酶是__________、 ____________ 和_____________。
生化复习资料带答案
氨基酸代谢1.体内氨基酸脱氨的主要方式是(C )A.氧化脱氨B.转氨基C.联合脱氨D.非氧化脱氨E.脱水脱氨2.肌肉中氨基酸脱氨基的主要方式是( D )A.氨基酸氧化酶氧化脱氨基作用B.转氨基作用 D.嘌呤核苷酸循环E.转氨酶和L-谷氨酸脱氢酶的联合氨作用3.苯丙氨酸羟化酶先天缺乏,易患( C )A.白化病B.尿黑酸症C.苯丙酮尿症D.痛风症E.乳清酸尿病4.合成尿素时,线粒体外合成步骤中直接提供的氨来自( C )5.芳香族必需氨基酸是( D )A.蛋氨酸B.酪氨酸C.亮氨酸D.苯丙氨酸E.脯氨酸6.体内氨最主要的去路是( A )A.合成尿素B.合成谷氨酰胺C.生成按离子D.合成非必需氨基酸E.合成蛋白质7.体内生酮兼生糖的氨基酸有(E )A.精氨酸B.赖氨酸C.丝氨酸D.蛋氨酸E.苯丙氨酸8.体内一碳单位不包括( D )A.—CH3B.—CH2—C. —CH= E. —CH=NH9.S-腺苷蛋氨酸的主要作用是( E )A.合成同型半胱氨酸B.补充蛋氨酸C.合成四氢叶酸D.生成腺苷酸E.提供活性甲基A.赖氨酸B.缬氨酸C.蛋氨酸D.色氨酸E.组氨酸1.生酮氨基酸是( A )2.生糖兼生酮氨基酸是( D )1.下列哪些氨基酸属人体营养必需氨基酸( ABCD )A.苯丙氨酸B.赖氨酸C.异亮氨酸D.亮氨酸E.丙氨酸2.转氨基作用的下列描述,错误的是( BE )A.参与机体合成非必需氨基酸B.脯氨酸参与转氨基作用C.转氨基作用是可逆反应D.与维生素B6有关E.转氨基作用是体内氨基酸主要的脱氨基方式二、填空题1.SAM的含义名称是_____S—腺苷蛋氨酸_______________________________。
2.营养必需氨基酸的概念是_______________________________。
3.合成尿素时,线粒体外合成步骤中,___________是直接提供的。
4.维生素______________________是转氨酶的辅酶组成成分。
生化复习资料全
生化复习资料(一)1、糖蛋白:由糖同蛋白质以共价键连接而成的结合蛋白质。
2、糖胺聚糖:含己糖胺和糖醛酸的杂多糖,是由多个二糖单位形成的长链多聚糖。
3、糖苷键:一个单糖或糖链还原端半缩醛上的羟基与另一个分子的羟基、胺基或巯基之间缩合形成的缩醛键或缩酮键。
4、等电点:在适当的酸碱度时,氨基酸的氨基和羧基的解离度可能完全相等。
净电荷为零,在电场中既不向阳极移动,也不向阴极移动,成为两性离子。
这时氨基酸所处溶液中的PH就称为该氨基酸的等电点。
8、酶活性中心:酶分子中能同底物结合并起催化反应的空间部位。
由自由部位和催化部位组成。
9、核酶:是具有催化功能的RNA分子,是生物催化剂.10、辅酶:作为酶的辅因子的有机分子,本身无催化作用,但一般在酶促反应中有传递电子、原子或某些功能基团的作用。
11、辅基:酶的辅因子或结合蛋白质的非蛋白部分。
12、糖异生:非糖物质转变成葡萄糖或糖原的过程。
13、氧化磷酸化:指生物氧化的过程中伴随着ADP磷化成ATP的作用。
有代物连接的磷酸化和呼吸链连接的磷酸化两种类型。
14、底物水平磷酸化:(也称代物连接的氧化磷酸化)代物脱氢后,分子部能量重新分布,使无机磷酸酯化。
15、顺反子:通过顺反试验所确定的遗传单元,本质上与一个基因相同,可编码一种多肽链。
16、信号假说:分泌蛋白质N端系列作为信号肽,指导分泌性蛋白质到质网膜上合成,在蛋白质合成结束之前被切除。
17、化学渗透学说:在呼吸链电子传递过程中,质子在线粒体膜外两侧的浓度梯度所产生的化学电位差是合成ATP的基本动力。
18、酶原激活:有的酶在分泌时是无活性的酶原,需要经某种酶或酸将其分子作适当的改变或切去一部分才能呈现活性。
21.转录:转录(Transcription)是遗传信息从DNA到RNA的转移。
即以双链DNA中的一条链为模板,A、U、G、C4种核苷三磷酸为原料,在RNA聚合酶催化下合成RNA的过程。
22.酶原激活:某些酶在细胞合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原(zymogen),使酶原转变为有活性酶的作用称为酶原激活23.酶的活性中心:酶分子中能与底物结合并起催化作用的空间部位,酶活性部位是由结合部位和催化部位所组成。
生化课本知识点总结归纳
生化课本知识点总结归纳1. 蛋白质蛋白质是生命活动中功能最为丰富的一类大分子化合物,是细胞的主要结构和功能单位。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、抗体、激素、载体等。
在生化课本中,学生需要了解蛋白质的组成、结构和功能,以及蛋白质的合成、降解和修饰等过程。
2. 核酸核酸是生物体内的重要大分子化合物,包括DNA和RNA。
在生化课本中,学生需要了解核酸的结构、功能和代谢途径。
此外,还需要了解DNA的复制、转录和翻译等过程,以及RNA的功能和合成过程。
3. 碳水化合物碳水化合物是生物体内的主要能量来源,也是细胞壁的主要组成成分之一。
在生化课本中,学生需要了解碳水化合物的结构、分类、代谢途径和生物学意义等知识点。
4. 脂质脂质是生物体内的重要大分子化合物,包括脂肪、磷脂和固醇等。
在生化课本中,学生需要了解脂质的结构、分类、功能和代谢途径,以及脂质在生物体内的生物学意义。
5. 酶酶是生物体内的重要催化剂,可以加快化学反应的速率,降低活化能。
在生化课本中,学生需要了解酶的结构、功能、酶促反应机制、酶与底物的结合方式、酶的特性和分类等知识点。
6. 代谢途径代谢途径是生物体内大量生化反应的有机组织,包括糖代谢途径、脂质代谢途径、蛋白质代谢途径和核酸代谢途径等。
在生化课本中,学生需要了解代谢途径的整体组织结构和相互关系,以及代谢途径中各种酶的作用和调节机制等知识点。
综上所述,生化课本的知识点涉及的内容非常丰富,需要学生具备扎实的化学和生物学基础,才能更好地理解和掌握其中的知识。
通过对生化知识点的总结归纳,可以帮助学生更好地理解生物化学的基本概念和原理,从而更好地应用于相关领域的学习和研究中。
生化课本知识点总结大全
生化课本知识点总结大全一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子之一,对细胞结构和功能的维持起着关键作用。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构等,不同的结构决定了蛋白质的特定功能。
2. 脂质:脂质是生物体内的重要结构材料,也是细胞膜的主要组成部分。
脂质分为甘油三酯、磷脂和类固醇等,它们在生物体内起到能量储存、细胞保护和信号传递等重要作用。
3. 碳水化合物:碳水化合物是生物体内的重要营养物质,包括单糖、双糖和多糖等。
它们在细胞内能够提供能量,并且作为细胞壁的主要组成物质。
4. 核酸:核酸包括DNA和RNA,它们是遗传信息的储存和传递分子。
DNA是细胞的遗传物质,RNA在蛋白质合成过程中起着重要作用。
二、细胞内代谢过程1. 细胞呼吸:细胞通过细胞呼吸将有机物氧化成二氧化碳和水,产生大量的能量(ATP)。
细胞呼吸过程包括糖解、三羧酸循环和氧化磷酸化等。
2. 光合作用:植物细胞通过光合作用将二氧化碳和水合成有机物,同时释放氧气。
光合作用分为光反应和暗反应两个阶段,叶绿体是光合作用的主要场所。
3. 代谢调控:细胞代谢过程受到多种调节因素的影响,包括激素、神经系统、温度和能量等。
代谢调控保持细胞内代谢的平衡状态,确保细胞正常工作。
三、酶的作用1. 酶的作用原理:酶是生物体内的催化剂,能够加速化学反应的速率。
酶对底物具有高度专一性,能够选择性地促进底物的转化。
2. 酶的结构:酶分为蛋白质酶和核酸酶两种,它们在结构上具有特定的活性中心和底物结合位点。
酶的活性受到温度、pH值、金属离子和抑制剂等影响。
3. 酶促反应:酶促反应是一种高效、特异性和可逆的化学转化过程,酶可用于医药、工业和生化研究等领域。
四、遗传信息的传递和表达1. DNA复制:DNA复制是遗传信息传递的基础,它是双链DNA分离后每一链合成一新链的生物过程。
DNA复制由一系列酶和辅因子协同作用完成。
2. 转录:转录是DNA合成mRNA的过程,在细胞核内进行。
生物化学复习资料(全)
生物化学复习资料第一章蛋白质化学第一节蛋白质的基本结构单位——氨基酸凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25氨基酸结构通式:蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。
氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。
蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。
这就是氨基酸的两性性质。
氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。
蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。
镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。
第二节肽肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。
肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。
少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。
谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。
参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。
化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应第三节蛋白质的分子结构蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。
蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释:亲和层析:蛋白质分子能对配基专一性地结合成复合物,改变条件,又能分离,利用这种特性而设计的一种层析技术。
蛋白质完全水解:即将所有的肽键都打断,使蛋白质完全裂解为氨基酸。
蛋白质部分水解:即将蛋白质的部分肽键打开,进而部分地分离出所需氨基酸。
高效液相层析:采用大幅度降低支持物的颗粒度,同时增加压力,以维持必要的流速,而设计的层析方法。
超二级结构:由若干相邻的二级结构单元结合在一起,彼此相互作用,形成有规则的在空间上能辨认的二级结构组合体,充当三级结构的构件。
结构域:对于较大的蛋白质分子或亚基,多肽链在超二级结构的基础上组装成两个或两个以上的相对独立的三维实体,再缔合成三级结构,这种相对独立的三维实体即…蛋白质的盐溶:中性盐对蛋白质的溶解度可产生两种影响,低浓度时可增加蛋白质的溶解度,这种现象称为盐溶。
盐析:当盐的浓度增高时,如饱和和半饱和状态,蛋白质溶解度降低,从水溶液中沉淀出来。
密度梯度区带离心:蛋白质颗粒的沉降速度与分子大小和密度相关,在具有密度梯度的介质中离心时。
质量和密度大的颗粒比质量和密度小的颗粒沉降的快,并且每种蛋白质颗粒沉降到与自身密度相等的介质密度梯度中。
蛋白质组:一个细胞或组织或机体所包含的所有蛋白质,现定义为基因组表达的全部蛋白质。
具有三种含义:一个基因组、一种生物、一种细胞所表达的全部蛋白质。
蛋白质组学:以蛋白质组为研究对象,分析细胞内动态变化的蛋白质组成成分、表达水平和修饰状态,了解蛋白质间的相互作用与联系,在整体水平上研究蛋白质的组成与调控的活动规律。
噬菌体展示技术:是将外源的DNA通过基因工程技术克隆到噬菌体载体上,使外源DNA片段对应的表达产物融合在噬菌体的衣壳蛋白上形成融合蛋白,呈现在噬菌体表面,被展示的多肽或蛋白可保持相对的空间结构和生物活性。
外源基因产物在过柱时,如柱上含有目的蛋白质,则可特异性结合相应抗体。
生物信息学:在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴交差学科。
是为理解各种数据的生物意义,运用数学和计算机科学手段进行生物信息的收集、加工、存储、传播和解析的科学。
使蛋白质沉淀的方法:1)、盐析法:中性盐对球状蛋白质的溶解度可能产生两种影响,低浓度时可增加蛋白质的溶解度,这种现象称为盐溶。
当盐浓度增大时,如饱和或不饱和状态,蛋白质溶解度降低,从水溶液中沉淀出来,这种现象称为盐析。
盐析的而主要作用是由于大量的中性盐的加入,盐离子与水这种偶极分子作用,使水分子活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水,导致蛋白质水合程度的减少,从而使蛋白质溶解度降低。
2)、有机溶剂法:有机溶剂中有较低的介电常数,根据库伦定律,介电常数降低,将增加两个相反电荷之间的吸引力。
在等电点附近,蛋白质分子主要以偶极离子形式存在,这时如果添加有机溶剂,使蛋白质溶液的介电常数减小,增强偶极离子间的静电引力,从而使蛋白质分子聚合而沉淀。
有机溶剂自身的水合作用会破坏蛋白质表面的水合层,也使蛋白质分子变得不稳定而沉淀出来。
3)、蛋白质沉淀剂法:向蛋白质水溶液中加入沉淀剂,使一些杂蛋白或粘多糖发生沉淀,这些沉淀物可以通过离心分离而除去。
4)、等电点沉淀:不同的蛋白质有不同的等电点,利用不同蛋白质等电点的差异,调节溶液pH等于所需蛋白质的等电点,则所需蛋白质结絮沉淀。
氨基酸个性研究的重要性解释蛋白质结构与功能的关系,从一级结构预测高级结构氨基酸个性了解得越深刻,在根据一级结构预测蛋白质的立体结构时,考虑问题也就越全面,预测的正确性也就越高。
维持空间构象的因素1 共价键蛋白质分子中的共价键有肽键和二硫键。
是生物大分子分子之间最强的作用力,化学物质(药物、毒物等)可以与生物大分子(受体蛋白或核酸)构成共价键,共价键除非被体内的特异性酶催化断裂以外,很难恢复原形,是不可逆过程,对酶来讲就是不可逆抑制作用。
2 非共价键生物体系中分子识别的过程不仅涉及到化学键的形成,而且具有选择性的识别。
共价键存在于一个分子或多个分子的原子之间,决定分子的基本结构,是分子识别的一种方式。
而非共价键(又称为次级键或分子间力)决定生物大分子和分子复合物的高级结构,在分子识别中起着关键的作用。
1)静电作用静电作用是指荷电基团、偶极以及诱导偶极之间的各种静电吸引力。
酶、核酸、生物膜、蛋白质等生物大分子的表面都具有可电离的基团和偶极基团存在,很容易与含有极性基团的底物或抑制剂等生成离子键和其它静电作用(1)离子键生物大分子表面的带电基团可以与药物或底物分子的带电基团形成离子键。
这种键可以解离。
(2)离子-偶极作用分子中O、S、N和C原子的电负性均不相等,这些原子形成的键由于电负性差值可以产生偶极现象。
这种偶极部分与永久电荷可以形成静电作用.离子-偶极相互作用一般比离子键小得多,键能与距离的平方差成反比,由于偶极矩是个向量,电荷与偶极的取向会影响作用强度。
(3)偶极-偶极相互作用两个原子的电负性不同,产生价键电子的极化作用,成为持久的偶极两个偶极间的作用。
偶极—偶极相互作用的大小,取决于偶极的大小、它们之间的距离和相互位置。
这种相互作用在水溶液中普遍存在。
它的作用强度比离子—偶极作用小,但比偶极—诱导偶极作用大2)氢键氢键的形成氢键是由两个负电性原子对氢原子的静电引力所形成,是一种特殊形式的偶极—偶极键。
它是质子给予体X-H和质子接受体Y之间的一种特殊类型的相互作用。
氢键的大小和方向氢键的键能比共价键弱,比范德华力强3)范德华力这是一种普遍存在的作用力,是一个原子的原子核吸引另一个原子外围电子所产生的作用力。
它是一种比较弱的、非特异性的作用力。
这种作用力非常依赖原子间的距离,当相互靠近到大约0.4—0.6nm时,这种力就表现出较大的集合性质。
范德华力包括引力和排斥力。
4)疏水作用疏水作用是指极性基团间的静电力和氢键使极性基团倾向于聚集在一起,因而排斥疏水基团,使疏水基团相互聚集所产生的能量效应和熵效应。
蛋白质和酶的表面通常具有极性链或区域,这是由构成它们的氨基酸侧链上的烷基链或苯环在空间上相互接近时形成的。
高分子的蛋白质可形成分子内疏水链、疏水腔或疏水缝隙,可以稳定生物大分子的高级结构蛋白质的时空特性1.蛋白质的空间性信号肽对蛋白质或肽链的定向传送已成为蛋白质研究的一个很重要的方面。
特征结构:溶酶体酶分子中的甘露糖-6-磷酸酶原及酶原激活同形异位突变2.蛋白质的时间性肿瘤发生时出现胚胎分化早期所出现的Pr,如肝癌出现的甲胎蛋白。
细胞周期不同时期蛋白质表达的调控是又一个重要研究领域。
分离纯化依据的性质1 大小蛋白质的大小各不相同,可从含几个氨基酸的小肽(几百个Da)至含10 000多个氨基酸(上百万个Da)的巨大蛋白质不等。
多数蛋白质的分子量在10 000—150 000Da之间。
2 形状蛋白质形状有近似球形的,也有很不对称的。
在离心、凝胶过滤或凝胶电泳过程中都会受到形状的影响。
3 电荷蛋白质的静电荷取决于氨基酸残基所带正、负电荷的总和。
一蛋白质中,若天冬氨酸和谷氨酸残基占优势,在pH7.0时带净负电荷,则称之为酸性蛋白;若赖氨酸和精氨酸残基占优势,则认为是碱性蛋白质。
4 等电点等电点(pI)是蛋白质上净电荷为零时的pH值,由蛋白质上带正、负电荷的氨基酸残基数目和滴定曲线所决定。
5 电荷分布电荷的氨基酸可均匀地分布于蛋白质的表面,亦可成簇地分布,使某一区域带强的正电荷而另一区域带强负电荷。
这种非随机的电荷分布可用来通过离子交换层析来分离蛋白质。
6 疏水性多数疏水性氨基酸残基藏在蛋白质的内部,但也有一些可见于表面。
蛋白质表面的疏水性氨基酸残基的数目和空间分布决定了该蛋白质是否具有与疏水柱填料结合从而利用它来进行分级分离的能力。
7 溶解度蛋白质在不同溶剂中的溶解度有很大不同,从基本不溶(<10mg/ml)直至极易溶解(>300 m g/ml)不等。
影响蛋白质溶解度的因素包括pH、离子强度、离子的性质、温度和溶剂的极性。
蛋白质在其等电点处一般较不易溶解8 密度多数蛋白质的密度在1.3—1.4g/cm3之间。
分级分离蛋白质时一般不用这个性质。
但是,在含有大量磷酸盐(如卵黄高磷蛋白,密度为1.8)或脂质部分(如脂蛋白,密度为1.03)的蛋白质,与一般蛋白质在密度上确有不同,可用密度梯度法将它们从大部分蛋白质中分离出来。
9 配体结合能力有许多酶能相当紧地域底物、效应分子、辅助因子和DNA模板。
可利用亲和层析分离10 金属结合能力有许多酶能与某些金属离子(如Cu2+、Zn2+、Ca2+、Co2+和Ni2+)紧密结合。
主要是其半胱氨酸或组氨酸残基可与金属离子作用,可通过金属离子螯合柱将酶固定11 可逆性缔合在某些溶液条件下,有一些酶能聚集成二聚体、四聚体等。
如大肠杆菌RNA聚合酶在0.05mol/L NaCl溶液中形成二聚体,在0.3mol/L NaCl溶液中为单体,可利用这一性质,相继在不同条件下按大小进行分级分离。
12. 翻译后修饰许多蛋白质在合成后要通过加入糖基、酰基、磷酸基团或种种其他部分来进行修饰。
这些修饰提供了可用于分级分离的依据。
如糖蛋白能与含有外援凝集素的柱子结合,外源凝集素是一类能牢固地与某些糖基部分结合的分子。
13. 特异性序列或结构氨基酸残基在蛋白质表面上的精确的几何表象可用来作为分离方法的基础。
例如,常可得到只能识别蛋白质上的特定部位(表位)的抗体。
把只能与待分离蛋白质结合的单特异性抗体连接于填料上,可制备成免疫亲和柱。
14. 非寻常性质除上述各种性质外,某些蛋白质还有一些不寻常的性质,如不寻常的热稳定性、抗蛋白酶解的抗性等。
例如大肠杆菌碱性磷酸酯酶的纯化,将细胞提取物加热后离心去除凝结的蛋白质,然后用蛋白酶处理含有磷酸酯酶的上清液,该酶消化剩余的杂蛋白,留下基本纯净的碱性磷酸酯酶。
15.基因工程构建的纯化标记随着基因工程技术的进步,克隆编码某一蛋白质的cDNA已变得比较容易。
通过改变cDNA而在被表达蛋白质的氨基端或羧基端加入少许几个额外氨基酸,这个加入的‚标记‛可用来作为一种有些的纯化依据。
最通行的标记之一是在蛋白质的氨基端加上6—10个组氨酸,这样可以使肽链能与Ni2+螯合柱紧密结合,经洗脱,再用游离咪唑洗脱或通过将pH降至5.9,使组氨酸充分质子化,与Ni2+分离而使蛋白质得以纯化。
分离纯化的一般步骤(一)前处理1、选材2、破碎3、混合物的分离植物组织和细胞,由于具有由纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用与石英砂或玻璃粉和适当的提取液一起研磨的方法破碎或用纤维素酶处理也能达到目的。
细菌整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽肽聚糖囊状大分子,非常坚韧。
破碎细菌细胞壁的常用方法有超声波震荡,与砂研磨、高压挤压或溶菌酶处理(以分解肽聚糖)等。