(完整word版)高三数学文科模拟试题

合集下载

(完整word版)2018-2019高三第一次模拟试题文科数学

(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。

高三文科数学模拟题七

高三文科数学模拟题七

高三数学模拟试题(七)一、选择题(5×10=50分)1.已知a +2ii=b +i(a ,b ∈R ),则a +b =( )A .-1B .1C .2D .32.如果命题“非p 或非q ”是假命题,则在下列各结论中正确的是( ) ① 命题“p 且q ”是真命题; ② 命题“p 且q ”是假命题;③ 命题“p 或q ”是真命题; ④ 命题“p 或q ”是假命题;A .① ③B .② ④C .② ③D .① ④3.在等比数列{}n a 中,5113133,4a a a a ⋅=+=,则155aa =( )A .3B .13C .3或13D .133--或4.若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线12222=-by a x 的渐近线方程为( ) A .x y 2±= B .x y 41±= C .x y 4±= D . x y 21±=5.若⎪⎭⎫ ⎝⎛∈20πα,,且412cos sin 2=+αα,则αtan 的值等于( )A .22 B .33 C .2 D .36.已知a ,b ,c 满足c <b <a ,且ac <0.那么下列选项中一定成立的是( ) A .cb 2<ab 2 B .c (b -a )<0 C .ab >ac D .ac (a -c )>07.函数⎪⎭⎫⎝⎛+=34cos πx y 的图象的两条相邻对称轴间的距离为( ) A .8π B .4π C .2πD .π 8.直线1y kx =+与曲线3y x ax b =++相切于点(1,3),A 则b 的值为( )A .3B .3-C .5D .5-9.在正方体1111ABCD A BC D -中,1A B 与平面11BB D D 所成的角的大小是( )A .90°B .30°C .45°D .60°10. 已知y x 、满足约束条件500,3x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则23x y z x ++=+的最小值为( )A .13 B .136 C .4 D .23- 二、填空题(5×5=25分)11.已知平面向量(1,2),(1,)//,23a b m a b a b ==-+=且则 12.已知()x f 是定义在[]2,2-上的函数,且对任意实数)(,2121x x x x ≠,恒有1212()()0f x f x x x -<-,且()x f 的最大值为1,则满足()1log 2<x f 的解集为 13.若某程序框图如图所示,则该程序运行后输出的值是 14.已知直线:30l x y +-=与圆22:(1)(2)2,C x y -++= 则圆C 上各点到l 距离的最大值为____ 15.设562)(sin ),2,0(+-=∈x xy θπθ且函数 的最大值为16,则=θ三、解答题(75分)16.(本题满分13分)春节期间,小乐对家庭中的六个成员收到的祝福短信数量进行了统计:(1)若,138=x 求a(2)在六位家庭成员中任取两位,收到的短信数均超过100的概率为多少?(第13题图)17.(本小题满分13分)已知三次函数()c bx ax x x f +++=23在1=x 和1-=x 时取极值, 且()42-=-f(1)求函数()x f y =的表达式 (2)求函数()x f y =的单调区间和极值18.(本小题满分13分)在ABC ∆中,已知点(5,2),(7,3)A B -,且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上. (1)求点C 的坐标;(2)求直线MN 的方程.19.(本小题满分12分)已知等差数列}{n a 的前n 项和为n S ,且.62,546-=-=S a(1)求}{n a 通项公式;(2)求数列|}{|n a 的前n 项和.n T20.(本小题满分12分)已知四边形ABCD 为直角梯形,090,//,2,1ABC AD BC AD AB BC ∠====.沿AC 将ABC ∆折起,使点B 到点P 的位置,且平面PAC ⊥平面ACD .(1)证明:DC ⊥平面APC ;(2)求棱锥A PBC -的高.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>1F ,2F 是它的左,右焦点.(1)若P C ∈,且021=⋅PF PF ,12||||4PFPF ⋅=,求1F 、2F 的坐标; (2)在(1)的条件下,过动点Q 作以2F 为圆心、以1为半径的圆的切线QM (M 是切点),且使1QF =,求动点Q 的轨迹方程高三数学模拟试题(七)参考答案BACDD CBABA 11.(1,2)-- 12.⎥⎦⎤⎝⎛4,41 13.910 14.15.6π16.(1)60 (2)1517.(1)()232--=x x x f (2)增区间:(]1,-∞-,[)+∞,1;减区间:[]1,1-。

高三文科数学模拟题一

高三文科数学模拟题一

高三数学模拟试题(一)一、选择题(5×10=50分)1. 设集合{}2|230A x x x =--<,{}|14B x x =≤≤,则AB =( )A .{}|13x x ≤<B .{}|13x x ≤≤C .{}|34x x <≤D . {}|34x x ≤≤ 2.若命题:|1|4p x +≤,命题2:56q x x <-,则p q ⌝⌝是的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3.已知向量(1,),(1,),a n b n a b b ==--若2与垂直,则||a =( ) A .1B .2C .2D .44.过点)2,1(与圆221x y +=相切的直线方程是( ) A .1x =B .3450x y -+=C .34501x y x -+==或D .54301x y x -+==或5.已知函数⎩⎨⎧=x x x f 3log )(2 00≤>x x ,则))41((f f = ( )A .9B .19C .9-D .91-6.ABC ∆中,三边之比4:3:2::=c b a ,则最大角的余弦值等于( ) A .41 B .87 C .21- D .41-7.已知焦点在x 轴上的椭圆22219x y a +=的离心率是12e =,则a 的值为( ) A .23 B .3 C .32 D .12 8.若不等式4)2(2)2(2<-+-x a x a 的解集为R ,则实数a 的取值范围是( ) A .)2,2(- B .]2,2(- C .),2()2,(+∞--∞ D .)2,(-∞9.函数236()(04)1x x f x x x ++=≤≤+的最小值为( ) A .2 B .1 C .6 D .510. 已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( )A .13 B .1 C .32D .2二、填空题(5×5=25分)11.若点(),9a 在函数3xy =的图象上,则tan6a π= 12.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是13.设y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-≥+,1,1,1x y x y x 则y x z 2-=的最小值是_______14.已知数列{}n a 为等差数列,且28143,a a a ++=则()2313log a a +=_______ 15.若扇形的面积和弧长都是10,则这个扇形中心角的弧度数是____三、解答题(75分)16.(本题满分13分)已知集合{}|||2A x x a =-<,26|12x B x x +⎧⎫=>⎨⎬+⎩⎭. (1)求集合A 和集合B(2)若A B R =,求a 的取值范围17.(本小题满分13分)等比数列{}n a 中,已知142,16a a == (1)求数列{}n a 的通项公式(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S18.(本小题满分12分)已知向量a =(sin ,cos())x x π-,b =(2cos ,2cos )x x ,函数()1f x =⋅a b+.(1)求π()4f -的值;(2)求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值,并求出相应的x 的值.19.(本小题满分13分)如图所示,已知三棱锥BPC A -中,,,AP PC AC BC M ⊥⊥为AB 中点D 为PB 中点,且PMB ∆为正三角形。

安徽省安庆市2022届高三上学期摸底数学试卷(文科) Word版含解析

安徽省安庆市2022届高三上学期摸底数学试卷(文科) Word版含解析

2021-2022学年安徽省安庆市高三(上)摸底数学试卷(文科)一、选择题1.已知A={x|﹣2<x<4},B={x|x>3},则A∩B=( )A.{x|﹣2<x<4} B.{x|x>3} C.{x|3<x<4} D.{x|﹣2<x<3}2.若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是( )A.2 B.3 C.4 D.53.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( )A.y=x2 B.y=﹣x3C.y=﹣lg|x| D.y=2x4.已知{a n}各项为正的等比数列,其前n项和为Sn,若a3=4,S3=7,则公比q等于( )A .B .C.2 D.35.在样本颇率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于它8个长方形的面积和的,且样本容量为140,则中间一组的频数为( )A.28 B.40 C.56 D.606.在△ABC中,sinA=,,则△ABC的面积为( )A.3 B.4 C.6 D .7.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的( )A.充要条件 B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件8.已知f(x)=2cos2x﹣6sinxcosx,则函数f(x)的最大值是( )A.3 B . C .+1 D .﹣19.下列说法中正确的有(1)命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠l,则x2﹣3x+2≠0”;(2)“x>2”是“x2﹣3x+2>0”的充分不必要条件;(3)对于命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0(4)若P∧q为假命题,则P、q均为假命题.( )A.1个B.2个C.3个D.4个10.一个几何体的三视图如图所示,则该几何体的表面积是( ) A.4+2B.4+C.4+2D.4+11.已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为( )A .+2B .+1C .+1D .+112.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为( )A.20+8B.44 C.20D.46二、填空题13.若tan(θ+)=,则tanθ=__________.14.若函数f(x)=4x﹣2x﹣a,x∈[﹣1,1]有零点,则实数a的取值范围是__________.15.已知程序框图如图,若a=0.62,b=30.5,c=log0.55,则输出的数是__________16.在边长为2的正方形ABCD中有一个不规章的图形M,用随机模拟方法来估量不规章图形的面积.若在正方形ABCD中随机产生了10000个点,落在不规章图形M内的点数恰有2000个,则在这次模拟中,不规章图形M 的面积的估量值为__________.三、解答题17.己知等差数列{a n}满足a1=1,a4=7.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设c n=,数列{c n}的前n项和为T n,证明:≤T n.18.某中学作为蓝色海洋训练特色学校,随机抽取100名同学,进行一次海洋学问测试,按测试成果分组如下:第一组[65,70),其次组[70,75),第三组[75,80),第四组[80,85),第五组[85,90)(假设考试成果均在[65,90)内),得到频率分布直方图如图:(1)求测试成果在[80,85)内的频率;(2)从第三、四、五组同学中用分层抽样的方法抽取6名同学组成海洋学问宣讲小组,定期在校内进行义务宣讲,并在这6名同学中随机选取2名参与市组织的蓝色海洋训练义务宣讲队,求第四组至少有一名同学被抽中的概率.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q 为AD的中点.(1)求证:AD⊥平面PQB;(2)若平面PAD⊥平面ABCD,且,求四棱锥M﹣ABCD的体积.20.己知椭圆C:+=1(a>b>0)的两个焦点和短轴的两个端点都圆x2+y2=1上.(Ⅰ)求椭圆C的方程;(Ⅱ)若斜率为k的直线经过点M(2,0),且与椭圆C相交于A,B两点,摸索讨k为何值时,OA⊥OB.21.已知函数,其中k∈R且k≠0.(1)求函数f(x)的单调区间;(2)当k=1时,若存在x>0,使1nf(x)>ax成立,求实数a的取值范围.平面几何选讲22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.坐标系与参数方程23.已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的一般方程;(2)若点A在曲线C′上,点B(3,0),当点A在曲线C′上运动时,求AB中点P的轨迹方程.不等式选讲24.函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设a,b∈(﹣1,1),证明:<|1+|.2021-2022学年安徽省安庆市高三(上)摸底数学试卷(文科)一、选择题1.已知A={x|﹣2<x<4},B={x|x>3},则A∩B=( )A.{x|﹣2<x<4} B.{x|x>3} C.{x|3<x<4} D.{x|﹣2<x<3}【考点】交集及其运算.【专题】计算题.【分析】直接利用交集的概念求解.【解答】解:由A={x|﹣2<x<4},B={x|x>3},则A∩B={x|﹣2<x<4}∩{x|x>3}={x|3<x<4}.故选C.【点评】本题考查了交集及其运算,是基础的概念题.2.若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是( )A.2 B.3 C.4 D.5【考点】复数求模;复数相等的充要条件.【专题】数系的扩充和复数.【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选D.【点评】娴熟把握复数的运算法则和模的计算公式是解题的关键.3.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是( )A.y=x2 B.y=﹣x3C.y=﹣lg|x| D.y=2x【考点】函数单调性的推断与证明;函数奇偶性的推断.【专题】函数的性质及应用.【分析】依据函数的奇偶性和单调性加以判定.【解答】解:四个函数中,A,C是偶函数,B是奇函数,D是非奇非偶函数,又A,y=x2在(0,+∞)内单调递增,故选:C.【点评】本题主要考查函数的奇偶性和单调性,属于基础题.4.已知{a n}各项为正的等比数列,其前n项和为Sn,若a3=4,S3=7,则公比q等于( )A .B .C.2 D.3【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】利用等比数列的通项公式及其前n项和公式即可得出.【解答】解:设等比数列{a n}的公比为q>0,由已知可得:q≠1.∵a3=4,S3=7,∴,简洁a1=1,q=2.故选:C.【点评】本题考查了等比数列的通项公式及其前n项和公式,考查了推理力量与计算力量,属于中档题.5.在样本颇率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于它8个长方形的面积和的,且样本容量为140,则中间一组的频数为( )A.28 B.40 C.56 D.60【考点】频率分布直方图.【专题】概率与统计.【分析】设中间一组的频数为x,利用中间一个小长方形的面积等于它8个长方形的面积和的,建立方程,即可求x.【解答】解:设中间一组的频数为x,由于中间一个小长方形的面积等于它8个长方形的面积和的,所以其他8组的频数和为,由x+=140,解得x=40.故选B.【点评】本题主要考查频率直方图的应用,比较基础.6.在△ABC中,sinA=,,则△ABC的面积为( )A.3 B.4 C.6 D .【考点】平面对量数量积的运算.【专题】平面对量及应用.【分析】由题意结合数量积的运算可得,而△ABC的面积S=,代入数据计算可得.【解答】解:由题意可得,又sinA=,故可得cosA=,故=10故△ABC的面积S===3故选A【点评】本题考查平面对量的数量积的运算,涉及三角形的面积公式,属中档题.7.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,l⊥b”是“l⊥α”的( )A.充要条件 B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【考点】必要条件、充分条件与充要条件的推断.【专题】常规题型.【分析】由题意a,b是平面α内两条不同的直线,l是平面α外的一条直线,若a∥b,l与a垂直,且斜交,推不出l肯定垂直平面α,利用此对命题进行推断;【解答】解:∵a、b是平面α内两条不同的直线,l是平面α外的一条直线,“∵l⊥a,l⊥b”,若a∥b,l可以与平面α斜交,推不出l⊥α,若“l⊥α,∵a,b是平面α内两条不同的直线,l是平面α外的一条直线,∴l⊥a,l⊥b,∴“l⊥a,l⊥b”是“l⊥α”的必要而不充分的条件,故选C.【点评】此题以平面立体几何为载体,考查了线线垂直和线面垂直的判定定了,还考查了必要条件和充分条件的定义,是一道基础题.8.已知f(x)=2cos2x﹣6sinxcosx,则函数f(x)的最大值是( )A.3 B . C .+1 D .﹣1【考点】两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;正弦函数的定义域和值域.【专题】三角函数的图像与性质.【分析】f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理后再利用两角和与差的余弦函数公式化为一个角的余弦函数,依据余弦函数的值域即可确定出最大值.【解答】解:f(x)=2cos2x﹣6sinxcosx=1+cos2x﹣3sin2x=(cos2x ﹣sin2x)+1=cos(2x+α)(其中cosα=,sinα=),∵cos(2x+α)∈[﹣1,1],即cos(2x+α)∈[﹣,],∴f(x )的最大值为+1.故选C.【点评】此题考查了两角和与差的余弦函数公式,二倍角的正弦、余弦函数公式,以及余弦函数的定义域与值域,娴熟把握公式是解本题的关键.9.下列说法中正确的有(1)命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠l,则x2﹣3x+2≠0”;(2)“x>2”是“x2﹣3x+2>0”的充分不必要条件;(3)对于命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0 (4)若P∧q为假命题,则P、q均为假命题.( )A.1个B.2个C.3个D.4个【考点】命题的真假推断与应用.【专题】简易规律.【分析】(1)由逆否命题的意义即可推断出正误;(2)由x2﹣3x+2>0解得x>2或x<1,即可推断出结论;(3)由¬p的定义即可推断出正误;(4)若P∧q为假命题,则P、q至少有一个为假命题,即可推断出正误.【解答】解:(1)命题“若x2﹣3x+2=0,则x=1”,由逆否命题的意义可得:其逆否命题为“若x≠l,则x2﹣3x+2≠0”,正确;(2)由x2﹣3x+2>0解得x>2或x<1,∴“x>2”是“x2﹣3x+2>0”的充分不必要条件,正确;(3)对于命题p:∃x∈R,x2+x+1<0,由¬p的定义可知¬p:∀x∈R,x2+x+1≥0,正确;(4)若P∧q为假命题,则P、q至少有一个为假命题,因此不正确.综上可得:正确命题的个数为3.故选:C.【点评】本题考查了简易规律的判定方法,考查了推理力量与计算力量,属于中档题.10.一个几何体的三视图如图所示,则该几何体的表面积是( )A.4+2B.4+C.4+2D.4+【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC都是底边长为2,高为2的等腰三角形.据此可计算出表面积.【解答】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC都是底边长为2,高为2的等腰三角形,过D作AB的垂线交AB于E,连SE,则SE⊥AB,在直角三角形ABD中,DE==,在直角三角形SDE中,SE===,于是此几何体的表面积S=S△SAC+S△ABC+2S△SAB =×2×2+×2×2+2×××=4+2.故选A.【点评】由三视图正确恢复原几何体是解决问题的关键,属于基础题.11.已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为( )A .+2B .+1C .+1D .+1【考点】抛物线的简洁性质;双曲线的简洁性质.【专题】圆锥曲线的定义、性质与方程.【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A的坐标,将A代入抛物线方程求出双曲线的三参数a,b,c的关系,则双曲线的渐近线的斜率可求.【解答】解:抛物线的焦点坐标为(,0);双曲线的焦点坐标为(c,0),∴p=2c,∵点A 是两曲线的一个交点,且AF⊥x轴,将x=c代入双曲线方程得到A(c ,),将A 的坐标代入抛物线方程得到=2pc,即4a4+4a2b2﹣b4=0.解得,∴,解得:.故选:D.【点评】本题考查由圆锥曲线的方程求焦点坐标、考查双曲线中三参数的关系及由双曲线方程求双曲线的离心率,是中档题.12.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为( )A.20+8B.44 C.20D.46【考点】球内接多面体;棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积.【解答】解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.【点评】本题是基础题,考查球内几何体的体积的计算,考查计算力量,空间想象力量,常考题型.二、填空题13.若tan(θ+)=,则tanθ=.【考点】两角和与差的正切函数.【专题】三角函数的求值.【分析】利用两角和的正切函数公式及特殊角的三角函数值即可得解.【解答】解:∵tan(θ+)===,∴解得:tan.故答案为:.【点评】本题主要考查了两角和的正切函数公式及特殊角的三角函数值在化简求值中的应用,娴熟把握公式是解题的关键,属于基础题.14.若函数f(x)=4x﹣2x﹣a,x∈[﹣1,1]有零点,则实数a 的取值范围是.【考点】根的存在性及根的个数推断.【专题】计算题;函数的性质及应用.【分析】由题意可得方程4x﹣2x﹣a=0在[﹣1,1]上有解,从而化为求函数a=4x﹣2x=(2x ﹣)2﹣,x∈[﹣1,1]上的值域.【解答】解:∵函数f(x)=4x﹣2x﹣a,x∈[﹣1,1]有零点,∴方程4x﹣2x﹣a=0在[﹣1,1]上有解,即a=4x﹣2x=(2x ﹣)2﹣,∵x∈[﹣1,1],∴2x∈[,2],∴(2x ﹣)2﹣∈;故答案为:.【点评】本题考查了函数的零点与方程的根的关系应用及函数的值域的求法.15.已知程序框图如图,若a=0.62,b=30.5,c=log0.55,则输出的数是【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再依据流程图所示的挨次,可知:该程序的作用是输出a,b,c 中最大的数,结合指数运算和对数运算的性质,a,b,c与1,0比较后易得到答案.【解答】解:分析程序中各变量、各语句的作用,再依据流程图所示的挨次,可知:该程序的作用是:输出a,b,c中最大的数,∵a=0.62=0.36<1,0<b=30.5=>1,c=log0.55=﹣<0,∴输出的数为.故答案为:.【点评】依据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.16.在边长为2的正方形ABCD中有一个不规章的图形M,用随机模拟方法来估量不规章图形的面积.若在正方形ABCD中随机产生了10000个点,落在不规章图形M内的点数恰有2000个,则在这次模拟中,不规章图形M 的面积的估量值为.【考点】模拟方法估量概率.【专题】概率与统计.【分析】先利用古典概型的概率公式求概率,再求不规章图形M的面积的估量值.【解答】解:由题意,∵在正方形ABCD中随机产生了10000个点,落在不规章图形M内的点数恰有2000个,∴概率P==,∵边长为2的正方形ABCD的面积为4,∴不规章图形M 的面积的估量值为=.故答案为:【点评】本题考查古典概型概率公式,考查同学的计算力量,属于中档题.三、解答题17.己知等差数列{a n}满足a1=1,a4=7.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设c n =,数列{c n}的前n项和为T n ,证明:≤T n.【考点】数列的求和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】(I)利用等差数列的通项公式即可得出;(II ),利用“裂项求和”即可证明右边;利用单调性即可证明左边.【解答】解:(I)设{a n}的公差为d,a1=1,b4=1+3d=7,∴d=2.∴a n=1+(n﹣1)×2=2n﹣1.(II ),∴,∵n∈N*,∴;,∴数列{T n}是一个递增数列,∴.综上所述,.【点评】本题考查了等差数列的通项公式、“裂项求和”、数列的单调性,考查了推理力量与计算力量,属于中档题.18.某中学作为蓝色海洋训练特色学校,随机抽取100名同学,进行一次海洋学问测试,按测试成果分组如下:第一组[65,70),其次组[70,75),第三组[75,80),第四组[80,85),第五组[85,90)(假设考试成果均在[65,90)内),得到频率分布直方图如图:(1)求测试成果在[80,85)内的频率;(2)从第三、四、五组同学中用分层抽样的方法抽取6名同学组成海洋学问宣讲小组,定期在校内进行义务宣讲,并在这6名同学中随机选取2名参与市组织的蓝色海洋训练义务宣讲队,求第四组至少有一名同学被抽中的概率.【考点】列举法计算基本大事数及大事发生的概率;频率分布直方图.【专题】概率与统计.【分析】(1)设测试成果在[80,85)内的频率为x,依据全部直方图的面积之和等于1求得x的值.(2)先求得抽取的这6名同学中,第三、四、五组同学的数量分别为3,2,1.在这6名同学中随机选取2名参与市组织的蓝色海洋训练义务宣讲队,全部的抽法共有种,而第四组至少有一名同学被抽中的抽法有•+=9种,由此求得第四组至少有一名同学被抽中的概率.【解答】解:(1)设测试成果在[80,85)内的频率为x,依据所给的频率分布直方图可得,0.01×5+0.07×5+0.06×5+x+0.02×5=1,解得x=0.2.(2)第三、四、五组同学的数量之比为0.3:0.2:0.1=3:2:1,故抽取的这6名同学中,第三、四、五组同学的数量分别为3,2,1.在这6名同学中随机选取2名参与市组织的蓝色海洋训练义务宣讲队,全部的抽法共有=15种,而第四组至少有一名同学被抽中的抽法有•+=9种,第四组至少有一名同学被抽中的概率为=.【点评】本题主要考查频率分步直方图的性质,分层抽样的定义和方法,古典概率及其计算公式,属于基础题.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.(1)求证:AD⊥平面PQB;(2)若平面PAD⊥平面ABCD ,且,求四棱锥M﹣ABCD的体积.【考点】平面与平面垂直的性质;直线与平面垂直的判定.【专题】计算题;空间位置关系与距离.【分析】(1)连接BD,等边三角形PAD中,中线PQ⊥AD;由于菱形ABCD中∠BAD=60°,所以AD⊥BQ,最终由线面垂直的判定定理即可证出AD⊥平面PQB;(2)连接QC,作MH⊥QC于H.由于平面PAD⊥平面ABCD,PQ⊥AD,结合面面垂直性质定理证出PQ⊥平面ABCD.而平面PQC中,PQ∥MH,可得MH⊥平面ABCD,即MH就是四棱锥M﹣ABCD的高线.最终利用锥体体积公式结合题中数据即可算出四棱锥M﹣ABCD的体积.【解答】解:(1)连接BD∵PA=PD=AD=2,Q为AD的中点,∴PQ⊥AD又∵∠BAD=60°,底面ABCD为菱形,∴△ABD是等边三角形,∵Q为AD的中点,∴AD⊥BQ∵PQ、BQ是平面PQB内的相交直线,∴AD⊥平面PQB.(2)连接QC,作MH⊥QC于H.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD∴PQ⊥平面ABCD,结合QC⊂平面ABCD,可得PQ⊥QC∵平面PQC中,MH⊥QC且PQ⊥QC,∴PQ∥MH,可得MH⊥平面ABCD,即MH就是四棱锥M﹣ABCD的高线∵,可得,∴四棱锥M﹣ABCD的体积为V M﹣ABCD ==.【点评】本题给出特殊四棱锥,求证线面垂直并求锥体体积,着重考查了直线与平面垂直的判定、平面与平面垂直的性质和体积公式等学问,属于中档题.20.己知椭圆C :+=1(a>b>0)的两个焦点和短轴的两个端点都圆x2+y2=1上.(Ⅰ)求椭圆C的方程;(Ⅱ)若斜率为k的直线经过点M(2,0),且与椭圆C相交于A,B两点,摸索讨k为何值时,OA⊥OB.【考点】椭圆的简洁性质.【专题】方程思想;待定系数法;直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)由题意可得焦点为(±1,0),短轴的端点为(0,±1),可得b=c=1,求得a,进而得到椭圆方程;(II)设A(x1,y1),B(x2,y2),直线AB的方程为:y=k(x﹣2),代入椭圆方程,消去y,可得x的方程,运用韦达定理和两直线垂直的条件:斜率之积为﹣1,化简计算即可得到所求k的值.【解答】解:(I)依题意椭圆的两个焦点和短轴的两个端点都圆x2+y2=1上,可得b=1,c=1所以a2=2,所以椭圆C 的方程;;(II)设A(x1,y1),B(x2,y2),直线AB的方程为:y=k(x﹣2),由消去y得:(1+2k2)x2﹣8k2x+8k2﹣2=0,所以,由于OA⊥OB ,所以,即x1x2+y1y2=0,而,所以,所以,解得:,此时△>0,所以.【点评】本题考查椭圆的方程的求法,考查直线方程和椭圆方程联立,运用韦达定理和两直线垂直的条件,考查运算力量,属于中档题.21.已知函数,其中k∈R且k≠0.(1)求函数f(x)的单调区间;(2)当k=1时,若存在x>0,使1nf(x)>ax成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数争辩函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导函数,对k争辩,利用导数的正负,可得函数的单调区间;(2)分别参数,构造新函数,g(x)=(x>0),存在x>0,使1nf(x)>ax成立,等价于a<g(x)max,由此可求实数a的取值范围.【解答】解:(1)函数的定义域为R,求导函数可得f′(x)=当k<0时,令f′(x)>0,可得x<0或x>2;令f′(x)<0,可得0<x<2∴函数f(x)的单调增区间为(﹣∞,0),(2,+∞),单调减区间为(0,2);当k>0时,令f′(x)<0,可得x<0或x>2;令f′(x)>0,可得0<x<2∴函数f(x)的单调增区间为(0,2),单调减区间为(﹣∞,0),(2,+∞);(2)当k=1时,,x>0,1nf(x)>ax成立,等价于a <设g(x)=(x>0)存在x>0,使1nf(x)>ax成立,等价于a<g(x)max,,当0<x<e时,g′(x)>0;当x>e时,g′(x)<0∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减∴g(x)max=g(e)=∴a <.【点评】本题考查导数学问的运用,考查函数的单调性与最值,考查存在性问题,考查分类争辩的数学思想,属于中档题.平面几何选讲22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.【考点】圆的切线的性质定理的证明;圆內接多边形的性质与判定.【专题】综合题.【分析】(Ⅰ)连接OC,由于OA=OC,所以∠OAC=∠OCA,再证明OC∥AD,即可证得AC平分∠BAD.(Ⅱ)由(Ⅰ)知,从而BC=CE,利用ABCE四点共圆,可得∠B=∠CED ,从而有,故可求BC的长.【解答】(Ⅰ)证明:连接OC,由于OA=OC,所以∠OAC=∠OCA,由于CD为半圆的切线,所以OC⊥CD,又由于AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.(Ⅱ)解:由(Ⅰ)知,∴BC=CE,连接CE,由于ABCE四点共圆,∠B=∠CED,所以cosB=cos∠CED,所以,所以BC=2.【点评】本题考查圆的切线,考查圆内接四边形,解题的关键是正确运用圆的切线性质及圆内接四边形的性质.坐标系与参数方程23.已知曲线C 的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C′.(1)求曲线C′的一般方程;(2)若点A在曲线C′上,点B(3,0),当点A在曲线C′上运动时,求AB中点P的轨迹方程.【考点】参数方程化成一般方程.【专题】坐标系和参数方程.【分析】(1)利用坐标转移,代入参数方程,消去参数即可求曲线C′的一般方程;(2)设P(x,y),A(x0,y0),点A在曲线C′上,点B(3,0),点A在曲线C′上,列出方程组,即可求AB中点P的轨迹方程.【解答】解:(1)将代入,得C'的参数方程为∴曲线C'的一般方程为x2+y2=1.…(2)设P(x,y),A(x0,y0),又B(3,0),且AB中点为P所以有:又点A在曲线C'上,∴代入C'的一般方程得(2x﹣3)2+(2y)2=1∴动点P 的轨迹方程为.…【点评】本题考查参数方程和直角坐标的互化,利用直角坐标方程与参数方程间的关系,点到直线的距离公式的应用,考查计算力量.不等式选讲24.函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设a,b∈(﹣1,1),证明:<|1+|.【考点】函数的定义域及其求法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)把a=5代入,然后由根式内部的代数式大于等于0,求解确定值的不等式得答案;(Ⅱ)把要证的不等式转化为2|a+b|<|4+ab|,然后利用平方作差证得答案.【解答】(Ⅰ)解:由|x+1|+|x+2|﹣5≥0,得x≤﹣4或x≥1.∴A={x|x≤﹣4或x≥1};(Ⅱ)证明:∵,而4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=4a2+4b2﹣a2b2﹣16=a2(4﹣b2)+4(b2﹣4)=(b2﹣4)(4﹣a2),又∵a,b∈(﹣1,1),∴(b2﹣4)(4﹣a2)<0,∴4(a+b)2<(4+ab)2,故.【点评】本题考查函数的定义域及其求法,考查了确定值不等式的解法,训练了利用作差法证明不等式,是中档题.。

四川省成都市2021届高三上学期摸底数学试卷(文科) Word版含解析

四川省成都市2021届高三上学期摸底数学试卷(文科) Word版含解析

四川省成都市2021届高三上学期摸底数学试卷(文科)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠54.(5分)计算21og63+log64的结果是()A.l og62 B.2C.l og63 D.35.(5分)已知实数x,y 满足,则z=4x+y的最大值为()A.10 B.8C.2D.06.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般状况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z9.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线与圆(x﹣3)2+y2=9相交于A,B两点,若|AB|=2,则该双曲线曲离心率为()A.8B.C.3D .10.(5分)已知定义在R上的函数f (x)的周期为4,且当x∈(﹣1,3]时,f (x)=,则函数g(x)=f(x)﹣1og6x的零点个数为()A.4B.5C.6D.7二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.12.(5分)当x>1时,函数的最小值为.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是.14.(5分)运行如图所示的程序框图,则输出的运算结果是.15.(5分)已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的全部可能取值构成集合A;P(x,y )是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的全部可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n =,求数列{b n}的前n项和T n.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c ,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.18.(12分)某地区为了解2022-2021学年高二同学作业量和玩电脑玩耍的状况,对该地区内全部2022-2021学年高二同学接受随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数宠爱电脑玩耍72名36名108名不宠爱电脑玩耍32名60名92名(I)已知该地区共有2022-2021学年高二同学42500名,依据该样本估量总体,其中宠爱电脑玩耍并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名同学中,但有A,B两名同学认为作业多假如从速六名同学中随机抽取两名,求至少有一名同学认为作业多的概率.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面V AC;(Ⅱ)若AC=1,求二面角M﹣V A﹣C的余弦值.20.(13分)已知椭圆F :﹣=1(a>b>0)经过D(2,0),E(1,)两点.(I)求椭圆F的方程;(Ⅱ)若直线l:y=kx+m与F交于不同两点A,B,点G是线段AB中点,点O为坐标原点,设射线OG交F 于点Q ,且=2.①证明:4m2=4k2+1;②求△AOB的面积.21.(14分)巳知函数f(x)=ax2﹣bx﹣1nx,其中a,b∈R.(Ⅰ)当a=3,b=﹣1时,求函数f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(e,f(e)处的切线方程为2x﹣3y﹣e=0(e=2.71828…为自然对数的底数),求a,b的值;(Ⅲ)当a>0,且a为常数时,若函数h(x)=x[f(x)+1nx]对任意的x1>x2≥4,总有>﹣1成立,试用a表示出b的取值范围.四川省成都市2021届高三上学期摸底数学试卷(文科)参考答案与试题解析一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知向量=(5,﹣3),=(﹣6,4),则+=()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)考点:平面对量数量积的运算.专题:平面对量及应用.分析:利用向量的坐标运算即可得出.解答:解:=(5,﹣3)+(﹣6,4)=(﹣1,1).故选:D.点评:本题考查了向量的坐标运算,属于基础题.2.(5分)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T等于()A.{2,4} B.{4} C.∅D.{1,3,4}考点:交、并、补集的混合运算.专题:集合.分析:利用集合的交、并、补集的混合运算求解.解答:解:∵全集U={1,2,3,4},集合S={l,3},T={4},∴(∁U S)∪T={2,4}∪{4}={2,4}.故选:A.点评:本题考查集合的交、并、补集的混合运算,是基础题,解题时要认真审题.3.(5分)已知命题p:∀x∈R,2x=5,则¬p为()A.∀x∉R,2x=5 B.∀x∈R,2x≠5C.∃x0∈R,2=5 D.∃x0∈R,2≠5考点:全称命题;命题的否定.专题:简易规律.分析:依据全称命题的否定是特称命题,即可得到结论.解答:解:∵命题是全称命题,∴依据全称命题的否定是特称命题得:¬p为∃x0∈R,2≠5,故选:D.点评:本题主要考查含有量词的命题的否定,要求娴熟把握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.4.(5分)计算21og63+log64的结果是()A.l og62 B.2C.l og63 D.3考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数性质求解.解答:解:21og63+log64=log69+log64=log636=2.故选:B.点评:本题考查对数的性质的求法,是基础题,解题时要留意对数性质的合理运用.5.(5分)已知实数x,y 满足,则z=4x+y的最大值为()A.10 B.8C.2D.0考点:简洁线性规划.专题:不等式的解法及应用.分析:画出足约束条件的平面区域,再将平面区域的各角点坐标代入进行推断,即可求出4x+y的最大值.解答:解:已知实数x、y 满足,在坐标系中画出可行域,如图中阴影三角形,三个顶点分别是A(0,0),B(0,2),C(2,0),由图可知,当x=2,y=0时,4x+y的最大值是8.故选:B.点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.6.(5分)已知a,b是两条不同的直线,α是一个平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a⊥α,b⊥α,则a∥b D.若a⊥b,b⊥α,则a∥α考点:空间中直线与平面之间的位置关系.专题:探究型;空间位置关系与距离.分析:依据有关定理中的诸多条件,对每一个命题进行逐一进行是否符合定理条件去判定即可.解答:解:若a∥b、b⊂α,则a∥α或a⊂α,故A错误;若a∥α、b⊂α,则a∥b或a,b异面,故B错误;若a⊥α,b⊥α,则a∥b,满足线面垂直的性质定理,故正确若b⊥α,a⊥b,则a∥α或a⊂α,故D错误;故选:C点评:本题考查空间中直线与直线、直线与平面、平面与平面的位置关系,是基础题.解题时要认真审题,认真解答,留意空间想象力量的培育.7.(5分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般状况下PM2.5浓度越大,大气环境质量越差,茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是()A.这l0日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等考点:众数、中位数、平均数;茎叶图.专题:概率与统计.分析:依据茎叶图中的数据分布,分别求出甲乙的极差,中位数,众数,平均数比较即可.解答:解:依据茎叶图中的数据可知,这l0日内甲、极差为55,中位数为74,平均数为73.4,这l0日内乙、极差为57,中位数为68,众数为68,平均数为68.1,通过以上的数据分析,可知C正确.故选;C.点评:本题考查茎叶图的识别和推断,依据茎叶图中数据分布状况,即可确定极差,中位数,众数,平均数大小,比较基础.8.(5分)已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z考点:正弦函数的图象;两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,依据题意求得周期,进而求得ω,函数的解析式可得,最终利用正弦函数的单调性求得函数的单调减区间.解答:解:f(x)=2(sinωx+cosωx)=2sin(ωx+),依题意知函数的周期为T==π,∴ω=2,∴f(x)=2sin(2x+),由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,∴f(x)的单调递减区间是[kπ+,kπ+](k∈Z),故选A.点评:本题主要考查了两角和与差的正弦函数,三角函数图象与性质.求得函数的解析式是解决问题的基础.9.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线与圆(x﹣3)2+y2=9相交于A,B两点,若|AB|=2,则该双曲线曲离心率为()A.8B.C.3D .考点:双曲线的简洁性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先依据双曲线方程求得其中一条渐近线方程,依据题意可知圆心到渐近线的距离为2,进而表示出圆心到渐近线的距离,求得a,b的关系,即可求出双曲线的离心率.解答:解:依题意可知双曲线的一渐近线方程为bx﹣ay=0,∵|AB|=2,圆的半径为3∴圆心到渐近线的距离为2,即=2,解得b= a∴c=3a,∴双曲线的离心率为e==3.故选:C.点评:本题主要考查了双曲线的简洁性质.解题的关键是利用数形结合的方法求得圆心到渐近线的距离.10.(5分)已知定义在R上的函数f (x)的周期为4,且当x∈(﹣1,3]时,f (x)=,则函数g(x)=f(x)﹣1og6x的零点个数为()A.4B.5C.6D.7考点:分段函数的应用;函数零点的判定定理.专题:函数的性质及应用.分析:先依据函数的周期性画出函数y=f(x)的图象,以及y=log5x的图象,结合图象当x>6时,y=log6x >1此时与函数y=f(x)无交点,即可判定函数函数g(x)=f(x)﹣1og6x的零点个数.解答:解:依据周期性画出函数y=f(x)的图象,y=log6x的图象当x=6时log66=1,∴当x>6时y=log5x此时与函数y=f(x)无交点,结合图象可知有5个交点,则函数g(x)=f(x)﹣log6x的零点个数为5,故选B.点评:本题考查函数的零点,求解本题,关键是争辩出函数f(x)性质,作出其图象,将函数g(x)=f(x)﹣1og6x的零点个数的问题转化为两个函数交点个数问题是本题中的一个亮点,此一转化使得本题的求解变得较简洁.二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上.11.(5分)已知α∈(0,),cosα=,则sin(π﹣α)=.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用诱导公式与同角三角函数间的关系即可求得答案.解答:解:∵cosα=,α∈(0,),∴sin(π﹣α)=sinα==.故答案为:.点评:本题考查运用诱导公式化简求值,考查同角三角函数间的关系的应用,属于基础题.12.(5分)当x>1时,函数的最小值为3.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式就看得出.解答:解:∵x>1,∴==3,当且仅当x=2时取等号.故答案为:3.点评:本题查克拉基本不等式的应用,属于基础题.13.(5分)如图是一个几何体的本视图,则该几何体的表面积是28+12.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知该几何体是一平放的直三棱柱,利用数据推断出底面为正三角形,再利用表面积公式计算.解答:解:由三视图可知该几何体为上部是一平放的直三棱柱.底面三角形为等腰三角形,底边长为2,腰长为2;棱柱长为6.S底面==4S侧面=cl=6×(4+2)=24+12所以表面积是28+12.故答案为:28+12.点评:本题考查三视图求几何体的体积,考查计算力量,空间想象力量,三视图复原几何体是解题的关键14.(5分)运行如图所示的程序框图,则输出的运算结果是.考点:程序框图.专题:算法和程序框图.分析:模拟程序框图的运行过程,即可得出该程序的运行结果是什么.解答:解:模拟程序框图的运行过程,如下;S=0,i=1,S=0+=;i≥4?,否,i=2,S=+=;i≥4?,否,i=3,S=+=;i≥4?,否,i=4,S=+=;i≥4?,是,输出S=.故答案为:.点评:本题考查了程序框图的运行过程,解题时应模拟算法程序的运行过程,从而得出正确的结果,是基础题.15.(5分)已知y=a x(a>0且a≠1)是定义在R上的单调递减函数,记a的全部可能取值构成集合A;P(x,y )是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+1对称,记的全部可能取值构成集合B.若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.考点:几何概型.专题:概率与统计.分析:依据指数函数的性质以及直线和圆锥曲线的位置关系求出集合A,B,然后依据几何概型的概率公式即可得到结论.解答:解:∵y=a x(a>0且a≠1)是定义在R上的单调递减函数,∴0<a<1,∴A={a|0<a<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P 是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:点评:本题主要考查几何概型的概率计算,利用直线和圆锥曲线的位置关系求出集合A,B是解决本题的关键.综合性较强,难度格外大.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=3,S7=49,n∈N*.(I)求数列{a n}的通项公式;(Ⅱ)设b n =,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)依据等差数列,建立方程关系即可求数列{a n}的通项公式.(Ⅱ)求出数列{b n}的通项公式,利用等比数列的求和公式即可得到结论.解答:解:(Ⅰ)设等差数列的公差是d,∵a2=3,S7=49,∴,解得,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)b n ===2n,则数列{b n}为等比数列,则数列{b n}的前n项和T n =.点评:本题主要考查数列的通项公式和数列求和,要求娴熟把握等差数列和等比数列的通项公式和求和公式,考查同学的运算力量.17.(12分)在△ABC中,角A,B,C所对的边分别是a,b,c ,已知向量=(a﹣b,c﹣a),=(a+b,c)且•=0.(Ⅰ)求角B的大小;(Ⅱ)求函数f(A)=sin(A+)的值域.考点:余弦定理;平面对量数量积的运算.专题:解三角形.分析:(Ⅰ)由两向量的坐标及两向量的数量积为0,利用平面对量的数量积运算法则计算得到关系式,由余弦定理表示出cosB,将得出关系式代入求出cosB的值,即可确定出角B的大小;(Ⅱ)由B的度数,利用内角和定理求出A的范围,进而确定出这个角的范围,利用正弦函数的值域即可确定出f(A)的值域.解答:解:(Ⅰ)∵=(a﹣b,c﹣a),=(a+b,c),且•=0,∴(a﹣b)(a+b)﹣c(a﹣c)=0,即a2+c2=b2+ac,∴cosB==,∵B∈(0,π),∴B=;(Ⅱ)由(Ⅰ)得:A=π﹣﹣C∈(0,),∴A+∈(,),∴sin(A+)∈(,1],则f(A)=sin(A+)的值域为(,1].点评:此题考查了余弦定理,平面对量的数量积运算,以及正弦函数的值域,娴熟把握余弦定理是解本题的关键.18.(12分)某地区为了解2022-2021学年高二同学作业量和玩电脑玩耍的状况,对该地区内全部2022-2021学年高二同学接受随机抽样的方法,得到一个容量为200的样本统计数据如表:认为作业多认为作业不多总数宠爱电脑玩耍72名36名108名不宠爱电脑玩耍32名60名92名(I)已知该地区共有2022-2021学年高二同学42500名,依据该样本估量总体,其中宠爱电脑玩耍并认为作业不多的人有多少名?(Ⅱ)在A,B,C,D,E,F六名同学中,但有A,B两名同学认为作业多假如从速六名同学中随机抽取两名,求至少有一名同学认为作业多的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(I)依据样本数据统计表,可得200名同学中宠爱电脑玩耍并认为作业不多的人有36名,求出其占总人数的概率,再乘以2022-2021学年高二同学的总数即可;(Ⅱ)求出至少有一名同学认为作业多的大事的个数,和从这六名同学中随机抽取两名的基本大事的个数,两者相除,即可求出至少有一名同学认为作业多的概率是多少.解答:解:(Ⅰ)42500×答:欢电脑玩耍并认为作业不多的人有7650名.(Ⅱ)从这六名同学中随机抽取两名的基本大事的个数是至少有一名同学认为作业多的大事的个数是:15﹣=15﹣6=9(个)全部至少有一名同学认为作业多的概率是.答:至少有一名同学认为作业多的概率是.点评:本题主要考查了概率的运算,考查了同学的分析推理力量,解答此题的关键是要弄清楚两点:①符合条件的状况数目;②全部状况的总数;二者的比值就是其发生的概率的大小.19.(12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(I)求证:BC⊥平面V AC;(Ⅱ)若AC=1,求二面角M﹣V A﹣C的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)由线面垂直得VC⊥BC,由直径性质得AC⊥BC,由此能证明BC⊥平面V AC.(Ⅱ)分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角M ﹣VA﹣C的余弦值.解答:(Ⅰ)证明:∵VC⊥平面ABC,BC⊂平面ABC,∴VC⊥BC,∵点C为⊙O上一点,且AB为直径,∴AC⊥BC,又∵VC,AC⊂平面V AC,VC∩AC=C,∴BC⊥平面V AC.(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,则A(1,0,0),V(0,0,2),B(0,2,0),=(1,0,﹣2),,设平面V AC 的法向量==(0,2,0),设平面V AM 的法向量=(x,y,z),由,取y=,得∴,∴cos <>==,∴二面角M﹣V A﹣C 的余弦值为.点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,留意向量法的合理运用.20.(13分)已知椭圆F :﹣=1(a>b>0)经过D(2,0),E(1,)两点.(I)求椭圆F的方程;(Ⅱ)若直线l:y=kx+m与F交于不同两点A,B,点G是线段AB中点,点O为坐标原点,设射线OG交F 于点Q ,且=2.①证明:4m2=4k2+1;②求△AOB的面积.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(Ⅰ)由已知条件得,由此能示出椭圆方程.(Ⅱ)设A(x1,y1),B(x2,y2),由,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,由此利用根的判别式、韦达定理、中点坐标公式,结合已知条件能证明4m2=1+4k2.②由已知条件得m≠0,|x1﹣x2|==,由此能求出△AOB的面积.解答:(Ⅰ)解:∵椭圆F :﹣=1(a>b>0)经过D(2,0),E(1,)两点,∴,解得,∴椭圆方程为(Ⅱ)①证明:设A(x1,y1),B(x2,y2),由,消去y,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,即,(1)∴y1+y2=k(x1+x2)+2m=+2m=,又由中点坐标公式,得,将Q ()代入椭圆方程,得,化简,得4m2=1+4k2,(2).②解:由(1),(2)得m≠0,且|x1﹣x2|==,(3)在△AOB 中,,(4)结合(2)、(3)、(4),得S△AOB ==,∴△AOB 的面积是.点评:本题考查椭圆方程的求法,考查方程的证明,考查三角形面积的求法,解题时要认真审题,留意弦长公式的合理运用.21.(14分)巳知函数f(x)=ax2﹣bx﹣1nx,其中a,b∈R.(Ⅰ)当a=3,b=﹣1时,求函数f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(e,f(e)处的切线方程为2x﹣3y﹣e=0(e=2.71828…为自然对数的底数),求a,b的值;(Ⅲ)当a>0,且a为常数时,若函数h(x)=x[f(x)+1nx]对任意的x1>x2≥4,总有>﹣1成立,试用a表示出b的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)当a=3,b=﹣1时,=,利用导数性质能求出当x=时,函数f(x )取得微小值即最小值=.(Ⅱ)由,得f′(e)=,由曲线y=f(x)在点(e,f(e))处的切线方程为2x﹣3y﹣e=0,能求出,b=.(Ⅲ)由题意知函数h(x)=在x∈[4,+∞)上单调递增.2b ≤,由此利用分类争辩思想能求出当时,.当,.解答:解:(Ⅰ)当a=3,b=﹣1时,f(x)=x2+x﹣lnx,(x>0).==,令f′(x)>0,解得;令f′(x)<0,解得.∴函数f(x )在区间上单调递减,在区间上单调递增.因此当x=时,函数f(x)取得微小值即最小值,最小值为==.(Ⅱ),∴f′(e)=,∵曲线y=f(x)在点(e,f(e))处的切线方程为2x﹣3y﹣e=0,∴,解得.∴,b=.(Ⅲ)由函数h(x)=x[g(x)+1]对任意的x1>x2≥4,总有>﹣1成立,∴函数h(x)=在x∈[4,+∞)上单调递增.∴h′(x)=ax2﹣2bx+1≥0在[4,+∞)上恒成立.∴=ax+在[4,+∞)上恒成立,∴2b ≤,x∈[4,+∞).令u(x)=,x∈[4,+∞).(a>0).则=.令u′(x)=0,解得.∴u(x )在上单调递减,在上单调递增.(i )当时,即时,u(x )在上单调递减,在上单调递增.∴u(x)min ==,∴,即.(ii)当时,即,函数u(x)在[4,+∞)上单调递增,∴,即.综上可得:当时,.当,.点评:本题考查了利用导数争辩函数的单调性极值与最值,考查了分类争辩的思想方法,考查了推理力量和计算力量,属于难题.。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2022-2023学年陕西省榆林市高三第一次模拟考试数学(文科)试题(word版)

2022-2023学年陕西省榆林市高三第一次模拟考试数学(文科)试题(word版)

绝密★启用前榆林市2022~2023年度第一次模拟考试数学试题(文科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

2.请将各题答案填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =-i(1+2i)在复平面内对应的点位于( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.已知集合A ={x |y =ln(x +1)},B ={x |2x -1>-5},则( R A )∩B =( )(A)(-1,+∞)(B)(-2,-1)(C)(-2,-1](D)(-2,+∞)3.若m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是( )(A)若m ∥α,α∥β,则m ∥β (B)若m ⊥α,α⊥β,则m ∥β (C)若m ∥n ,n ∥α,则m ∥α (D)若m ⊥α,α∥β,则m ⊥β4.已知tan(α+π4)=9,则tan α=( )(A)45(B)-45(C)34(D)-345.已知函数f (x )=a ln x +x 2的图像在x =1处的切线方程为3x -y +b =0,则a +b =( )(A)-2(B)-1(C)0(D)16.为了解市民的生活幸福指数,某组织随机选取了部分市民参与问卷调查,将他们的生活幸福指数(满分100分)按照[0,20),[20,40),[40,60),[60,80),[80,100]分成5组,制成如图所示的频率分布直方图,根据此频率分布直方图,估计市民生活幸福指数的中位数为( )(A)70(B)2003(C)1903(D)607.如图1,某建筑物的屋顶像抛物线,建筑师通过抛物线的设计元素赋予了这座建筑轻盈、极简和雕塑般的气质.若将该建筑外形弧线的一段按照一定的比例处理后可看成图2所示的抛物线C :x 2=2py (p >0)的一部分,P 为抛物线C 上一点,F 为抛物线C 的焦点,若∠OFP =120°,且|OP |=212,则p =( )(A)1(B)2(C)3(D)48.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +(b +λa )sin B =c sin C ,则λ的取值范围为( )(A)(-2,2)(B)(0,2)(C)[-2,2](D)[0,2]9.在平行四边形ABCD 中,AB =2AD =4,∠BAD =60°,CE →=2ED →,BC →=2BF →,则AE →•EF →=( )(A)4(B)329(C)289(D)310.已知四面体ABCD 外接球的球心O 与正三角形ABC 外接圆的圆心重合,若该四面体体积的最大值为23,则该四面体外接球的体积为( )(A)8π(B)32π3(C)16π(D)64π311.已知ω>0,函数f (x )=3sin(ωx +π3)+3cos(ωx +π3)在(0,2π)上恰有3个极大值点,则ω的取值范围为( )(A)(2312,3512](B)[2312,3512)(C)(3512,4712](D)[3512,4712)12.已知a 2+ln a =9b 4+2ln b +1,则下列结论一定成立的是( )(A)a <b 2+1(B)a <2b 2+1(C)a >3b(D)a <3b 2第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 13.若x ,y 满足约束条件错误!,则z =2x +y 的最小值为▲.14.自然对数的底数e ,也称为欧拉数,它是数学中重要的常数之一,和π一样是无限不循环小数,e 的近似值约为2.7182818….若从欧拉数的前4位数字2,7,1,8中任选2个,则至少有1个偶数被选中的概率为▲.15.已知函数f (x )是定义在(-2,2)上的增函数,且f (x )的图象关于点(0,-2)对称,则关于x 的不等式f (x )+f (x +2)+4>0的解集为▲.16.已知双曲线C :x 22-y 22=1的右焦点为F ,直线l :x =my +2(m >0)与双曲线C 相交于A ,B 两点,点P (6,0),以PF 为直径的圆与l 相交于F ,M 两点,若M 为线段AB 的中点,则 |MF |=▲.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)第二十二届世界杯足球赛在卡塔尔正式拉开序幕,这是历史上首次在北半球冬季举行的世界杯足球赛.某市为了解高中生是否关注世界杯足球赛与性别的关系,随机对该市50名高中生进行了问卷调查,得到如下列联表.已知在这50名高中生中随机抽取1人,抽到关注世界杯足球赛的高中生的概率为45.(1)完成上面的2×2列联表;(2)根据列联表中的数据,判断能否有90%的把握认为该市高中生是否关注世界杯足球赛与性别有关.附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (χ2≥k 0)0.10 0.05 0.010 0.001 k 02.7063.8416.63510.82818.(12分)已知数列{a n }的前n 项和为S n ,且a 1=3,S n+1+S n =(n +1)a n+1. (1)求{a n }的通项公式;(2)若b n =1a n a n+1,求数列{b n }的前n 项和为T n .19.(12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥底面ABCD ,AB ∥CD ,∠DAB =60°,PA ⊥PD ,且PA =PD =2,AB =2CD =2.(1)证明:AD ⊥PB .(2)求点A 到平面PBC 的距离.20.(12分)已知P (1,0)是椭圆C :x 2m 2+y 2n 2=1(m >0,n >0)的一个顶点,圆E :(x -2)2+(y -2)2=4经过C 的一个顶点.(1)求C 的方程;(2)若直线l :y =kx +1与C 相交于M 、N 两点(异于点P ),记直线PM 与直线PN 的斜率分别为k 1、k 2,且k 1+k 2=k 1k 2,求k 的值. 21.(12分)已知函数f (x )=(x -12x 2)ln x +(12k +14)x 2-(k +1)x ,k ∈R .(1)若k >0,求f (x )的单调区间;(2)若k ∈Z ,且当x >1时,f'(x )<ln x +1,求k 的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,已知点P (1,0),曲线C 的参数方程为错误!(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin(θ+π4)-2=0.(1)求C 的普通方程与l 的直角坐标方程; (2)若l 与C 交于A ,B 两点,求|P A |+|PB |. 23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +a -2|+|x +3|. (1)当a =0时,求不等式f (x )≥9的解集; (2)若函数f (x )>2,求a 的取值范围.绝密★启用前榆林市2022~2023年度第一次模拟考试文科数学试题逐题解析第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =-i(1+2i)在复平面内对应的点位于( )(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】D2.已知集合A ={x |y =ln(x +1)},B ={x |2x -1>-5},则( R A )∩B =( )(A)(-1,+∞)(B)(-2,-1)(C)(-2,-1](D)(-2,+∞)【答案】C3.若m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是( )(A)若m ∥α,α∥β,则m ∥β (B)若m ⊥α,α⊥β,则m ∥β (C)若m ∥n ,n ∥α,则m ∥α (D)若m ⊥α,α∥β,则m ⊥β【答案】D4.已知tan(α+π4)=9,则tan α=( )(A)45(B)-45(C)34(D)-34【答案】A5.已知函数f (x )=a ln x +x 2的图像在x =1处的切线方程为3x -y +b =0,则a +b =( )(A)-2(B)-1(C)0(D)1【答案】B6.为了解市民的生活幸福指数 ,某组织随机选取了部分市民参与问卷调查,将他们的生活幸福指数(满分100分)按照[0,20),[20,40),[40,60),[60,80),[80,100]分成5组,制成如图所示的频率分布直方图,根据此频率分布直方图,估计市民生活幸福指数的中位数为( )(A)70(B)2003(C)1903(D)60【答案】C7.如图1,某建筑物的屋顶像抛物线,建筑师通过抛物线的设计元素赋予了这座建筑轻盈、极简和雕塑般的气质.若将该建筑外形弧线的一段按照一定的比例处理后可看成图2所示的抛物线C :x 2=-2py (p >0)的一部分,P 为抛物线C 上一点,F 为抛物线C 的焦点,若∠OFP =120°,且|OP |=212,则p =( )(A)1(B)2(C)3(D)4【答案】A8.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +(b +λa )sin B =c sin C ,则λ的取值范围为( )(A)(-2,2)(B)(0,2)(C)[-2,2](D)[0,2]【答案】A9.在平行四边形ABCD 中,AB =2AD =4,∠BAD =60°,CE →=2ED →,BC →=2BF →,则AE →•EF →=( )(A)4(B)329(C)289(D)3【答案】B10.已知四面体ABCD 外接球的球心O 与正三角形ABC 外接圆的圆心重合,若该四面体体积的最大值为23,则该四面体外接球的体积为( )(A)8π(B)32π3(C)16π(D)64π3【答案】B11.已知ω>0,函数f (x )=3sin(ωx +π3)+3cos(ωx +π3)在(0,2π)上恰有3个极大值点,则ω的取值范围为( )(A)(2312,3512](B)[2312,3512)(C)(3512,4712](D)[3512,4712)【答案】C12.已知a 2+ln a =9b 4+2ln b +1,则下列结论一定成立的是( )(A)a <b 2+1(B)a <2b 2+1(C)a >3b(D)a <3b 2【答案】D第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分. 13.若x ,y 满足约束条件错误!,则z =2x +y 的最小值为▲. 【答案】-1114.自然对数的底数e ,也称为欧拉数,它是数学中重要的常数之一,和π一样是无限不循环小数,e 的近似值约为2.7182818….若从欧拉数的前4位数字2,7,1,8中任选2个,则至少有1个偶数被选中的概率为▲. 【答案】5615.已知函数f (x )是定义在(-2,2)上的增函数,且f (x )的图象关于点(0,-2)对称,则关于x 的不等式f (x )+f (x +2)+4>0的解集为▲. 【答案】(-1,0)16.已知双曲线C :x 22-y 22=1的右焦点为F ,直线l :x =my +2(m >0)与双曲线C 相交于A ,B 两点,点P (6,0),以PF 为直径的圆与l 相交于F ,M 两点,若M 为线段AB 的中点,则 |MF |=▲. 【答案】2(一)必考题:共60分. 17.(12分)第二十二届世界杯足球赛在卡塔尔正式拉开序幕,这是历史上首次在北半球冬季举行的世界杯足球赛.某市为了解高中生是否关注世界杯足球赛与性别的关系,随机对该市50名高中生进行了问卷调查,得到如下列联表.已知在这50名高中生中随机抽取1人,抽到关注世界杯足球赛的高中生的概率为45.(1)完成上面的2×2列联表;(2)根据列联表中的数据,判断能否有90%的把握认为该市高中生是否关注世界杯足球赛与性别有关.附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .【解析】(1)2×2列联表如下:(2)χ2=50(26×6-14×4)230×20×40×10=2512<2.706,故没有90%的把握认为该市高中生是否关注世界杯足球赛与性别有关. 18.(12分)已知数列{a n }的前n 项和为S n ,且a 1=3,S n+1+S n =(n +1)a n+1. (1)求{a n }的通项公式;(2)若b n =1a n a n+1,求数列{b n }的前n 项和为T n .【解析】(1)因为S n+1+S n =(n +1)a n+1,所以S n+2+S n+1=(n +2)a n+2,两式相减可得:(n +2)a n+1=(n +1)a n+2,即:a n+2n +2=a n+1n +1,n ∈N +,又因为a 1=3,S 2+S 1=2a 2,解得:a 2=6,故a n n =a 22=3,即:a n =3n ,n ≥2,n =1时,a 1=3也成立,故a n =3n ; (2)b n =1a n a n+1=19n (n +1)=19(1n -1n +1),故T n =19(1-1n +1)=n9(n +1).19.(12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥底面ABCD ,AB ∥CD ,∠DAB =60°,PA ⊥PD ,且PA =PD =2,AB =2CD =2.(1)证明:AD ⊥PB .(2)求点A 到平面PBC 的距离.【解析】(1)取AD 的中点O ,连结OP 、OB ,因为∠DAB =60°,PA ⊥PD ,且PA =PD =2,AB =2,所以AD ⊥PO ,AD ⊥BO ,而PO ∩BO =O ,PO 、BO ⊂平面POB ,故AD ⊥平面POB ,AD ⊥PB ;(2)BC =3,PB =PC =2,S △PBC =134,设A 到平面PBC 的距离为h ,V A -PBC =13×S △PBC ×h =V P -ABC =13×S △ABC ×PO ,h =S △ABC ×PO S△PBC=41313.20.(12分)已知P (1,0)是椭圆C :x 2m 2+y 2n 2=1(m >0,n >0)的一个顶点,圆E :(x -2)2+(y -2)2=4经过C 的一个顶点.(1)求C 的方程;(2)若直线l :y =kx +1与C 相交于M 、N 两点(异于点P ),记直线PM 与直线PN 的斜率分别为k 1、k 2,且k 1+k 2=k 1k 2,求k 的值.【解析】(1)由题意:椭圆C 的两个顶点为(1,0),(0,2),故C 的方程为x 2+y 24=1; (2)解法1:联立错误!可得:(k 2+4)x 2+2kx -3=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-错误!,x 1x 2=-3k 2+4,因为k 1+k 2=k 1k 2,所以1k 1+1k 2=x 1-1y 1+x 2-1y 2=x 1-1kx 1+1+x 2-1kx 2+1=1,即:(k 2-2k )x 1x 2+(2k +1)(x 1+x 2)+3=-3(k 2-2k )k 2+4-2k (2k -1)k 2+4+3=0,解得:k =3或k =-1(舍去).解法2:以P 为坐标原点建立新的坐标系,在新坐标系下椭圆C的方程为:(x +1)2+y 24=1,即:4x 2+8x +y 2=0,直线l 的方程为y -kx =k +1(k ≠-1),则4(k +1)x 2+8x (y -kx )+4(k +1)y 2=0,即:4(k +1)y 2+8xy +4(1-k )x 2=0,所以4(k +1)(y x )2+8(y x)+4(1-k )=0,因为k 1+k 2=k 1k 2,所以4(1-k )=-8,解得:k =3.21.(12分)已知函数f (x )=(x -12x 2)ln x +(12k +14)x 2-(k +1)x ,k ∈R . (1)若k >0,求f (x )的单调区间;(2)若k ∈Z ,且当x >1时,f'(x )<ln x +1,求k 的最大值.【解析】(1)因为f'(x )=(1-x )(ln x -k ).当0<x <1或x >e k 时,f'(x )<0,当1<x <e k 时,f'(x )>0,故f (x )的增区间为(1,e k ),减区间为(0,1)和(e k ,+∞);(2)f'(x )=(1-x )(ln x -k )<ln x +1,即:k (x -1)<x ln x +1,因为x >1,所以k <x ln x +1x -1,令φ(x )=x ln x +1x -1,φ'(x )=-ln x +x -2(x -1)2,令r (x )=-ln x +x -2,r'(x )=x -1x >0,所以r (x )在(1,+∞)上单调递增,因为r (3)<0,r (4)>0,故存在唯一的x 0∈(3,4)使得r (x 0)=-ln x 0+x 0-2=0,∴φ(x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )≥φ(x 0)=x 0ln x 0+1x 0-1=x 0(x 0-2)+1x 0-1=x 0-1∈(2,3),而若k ∈Z ,k <x 0-1,故k 的最大值为2.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,已知点P (1,0),曲线C 的参数方程为错误!(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin(θ+π4)-2=0.(1)求C 的普通方程与l 的直角坐标方程;(2)若l 与C 交于A ,B 两点,求|P A |+|PB |.【解析】(1)因为曲线C 的参数方程为错误!(φ为参数),所以C 的普通方程为:x 2+(y -2)2=4,即:x 2+y 2-4y =0;而直线l 的极坐标方程为2ρsin(θ+π4)-2=0,即:2ρsin θ+2ρcos θ-2=0,所以l 的直角坐标方程为:x +y -1=0;(2)直线l 过点P (1,0),设直线l 的参数方程为错误!(t 为参数),代入x 2+y 2-4y =0可得:t 2-3t +1=0,所以t 1+t 2=3>0,t 1t 2=1>0,故|P A |+|PB |=3.23.[选修4-5:不等式选讲](10分)已知函数f (x )=|x +a -2|+|x +3|.(1)当a =0时,求不等式f (x )≥9的解集;(2)若函数f (x )>2,求a 的取值范围.【解析】(1)当a =0时,f (x )≥9,即:|x -2|+|x +3|≥9.当x≥2时,x-2+x+3≥9,解得:x≥4;当-3<x<2时,2-x+x+3≥9,不成立;当x≤-3时,2-x-x-3≥9,解得:x≤-5;故不等式的解集为(-∞,-5]∪[4,+∞);(2)|x+a-2|+|x+3|≥|x+a-2-(x+3)|=|a-5|,x=-3时,等号成立,而f(x)>2,所以|a -5|>2,解得:a>7或a<-3,故a的取值范围为(-∞,-3)∪(7,+∞).。

(完整word版)高考数学模拟试题及答案

(完整word版)高考数学模拟试题及答案

高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。

东北三省四市教研联合体2020届高三模拟考试试卷(二)数学(文科)试题 Word版含解析

东北三省四市教研联合体2020届高三模拟考试试卷(二)数学(文科)试题 Word版含解析
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
【答案】C
【解析】
【分析】
把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.
【详解】由(1+i)2z=1﹣i,得z ,
∴z在复平面内对应的点的坐标为( ),位于第三象限.
故选:C.
【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
则当x≤0时,函数f(x)没有零点即可,当x≤0时,0<2x≤1,∴﹣1≤﹣2x<0,∴﹣1﹣a≤﹣2x﹣a<﹣a,
所以﹣a≤0或﹣1﹣a>0,即a≥0或a<﹣1.
故选:B
【点睛】本小题主要考查分段函数零点,属于基础题.
11.已知与椭圆 1焦点相同的双曲线 1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e ,若双曲线的左支上有一点M到右焦点F2的距离为12,N为MF2的中点,O为坐标原点,则|NO|等于( )
根据几何概型的计算公式,所以在太极图中随机取一点,此点取自黑色阴影部分的概率是 ,正确;
对于②,当 时,直线 ,过点 ,所以直线 与白色部分在第I和第IV象限部分没有公共点.圆 的圆心为 ,半径为 ,圆心 到直线 ,即直线 的距离为 ,所以直线 与白色部分在第III象限的部分没有公共点.综上所述,直线y=ax+2a与白色部分没有公共点,②错误;
10.若函数 有且只有一个零点,则a的取值范围是( )
A (﹣∞,﹣1)∪(0,+∞)B. (﹣∞,﹣1)∪[0,+∞)
C. [﹣1,0)D. [0,+∞)
【答案】B
【解析】
【分析】
根据 在 没有零点列不等式,解不等式求得 的取值范围.

高三文科数学模拟题二

高三文科数学模拟题二

高三数学模拟试题(二)一、选择题(5×10=50分)1. 在等差数列{}n a 中,,2,41==d a 则=3a ( )A .4B .6C .8D .102.函数lg y x = )A .{|0}x x >B .{|01}x x <≤C .{|1}x x >D .{|1}x x ≥3.要得到x x y 2cos 2sin +=的图象,只需将x y 2sin 2=的图象( )A .向左移4π个单位B .向左平移8π个单位C .右平移4π个单位D .向右平移8π个单位4.两平行平面之间的距离等于12,一直线与它们相交且夹在两平面间的线段长等于24,则该直线与这两个平行平面所成角等于( )A .060 B .090 C .030 D .045 5. 设1.52.42.46.0,7.0,6.0===c b a ,则c b a ,,大小关系正确的是( )A .c b a >>B .a b c >>C .a c b >>D .c a b >>6.过抛弧线24y x =的焦点作直线l 交抛物线于A B 、两点,若线段AB 中点的横坐标为3,则AB 等于( )A .10B .8C .6D .47.已知(1,3)a =-,OA a b =-,OB a b =+,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积为( )A .4B .2C .D 8.函数()sin(2)f x x =-的一个单调增区间是( )A .⎥⎦⎤⎢⎣⎡-4,4ππ B .⎥⎦⎤⎢⎣⎡-2,2ππ C .⎥⎦⎤⎢⎣⎡--2,23ππ D .⎥⎦⎤⎢⎣⎡--4,43ππ9.函数x y cos =在点)23,6(π处的切线斜率为( ) A .21-B .23 C .22-D .23-10.数列{}n a 定义如下:*12211,3,22()n n n a a a a a n N ++===-+∈,则11a =( )A .91B .110C .111D .133二、填空题(5×5=25分)11.已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -//b ,则k =12.若函数2()(1)f x x a x a a =+-+=为偶函数,则_____13.双曲线的中心在坐标原点,离心率等于2, 一个焦点的坐标为()0,2,则此双曲线的方程是14.一直线l 被两直线0653:064:21=--=++y x l y x l 和截得的线段MN 的中点P 恰好是坐标原点,则直线l 的方程为15.函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则[])5(f f =___ 三、解答题(75分)16.(本小题满分13分)已知函数2()sin(2)cos .6f x x x π=-+(1)若()1,f θ=求θθcos sin 的值; (2)求函数()f x 的单调区间17.(本小题满分13分)已知{}n a 是等差数列,首项31=a ,公差为整数,前n 项和为n S ,数列{}n b 是等比数列,首项.20,12,123221=+==b S b a b 且(1)求{}n a 和{}n b 的通项公式.(2)令(),n n c n b n N +=⋅∈求{}n c 的前n 项和nTF E DB A P C18.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是正方形,PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (1)求证:EF BD ⊥;(2)试确定点F 在线段AC 上的位置,使EF //平面PBD ,并说明理由.19.(本小题满分12分)设圆C 与两圆((22224,4x y x y ++=+=中的一个内切,另一个外切(1)求C 的圆心轨迹L 的方程 (2)已知点),55M F ⎛ ⎝⎭,且P 为L 上动点,求||||||PF PM -的最大值及此时点P的坐标20.(本小题满分13分)设函数)()(23R x cx bx x x f ∈++=,已知)()()(x f x f x g '-=是奇函数. (1)求c b 、的值;(2)求)(x g 的单调区间与极值21.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。

山西省太原市第五中学2022届高三4月阶段性检测(模拟)文科数学试卷 Word版含答案

山西省太原市第五中学2022届高三4月阶段性检测(模拟)文科数学试卷 Word版含答案

太原五中2021—2022学年度其次学期阶段性检测高 三 数 学(文)命题、校对:郭贞 时间:2022.4.6第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,A ={x ∈N |2x (x-4)<1},B ={x ∈N |y =ln (2-x )},则图中阴影部分表示的集合的子集个数为( ) A .1 B .2 C .3 D .42. 若复数ii a 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为( )A. 6-B. 2-C. 4D. 63.给出命题:p 若平面α与平面β不重合,且平面α内有不共线的三点到平面β的距离相等,则βα//;命题:q 向量)1,(),1,2(λ=--=b a 的夹角为钝角的充要条件为),21(+∞-∈λ. 关于以上两个命题,下列结论中正确的是( )A. 命题“q p ∨”为假B. 命题“q p ∧”为真C. 命题“q p ⌝∨”为假D. 命题“q p ⌝∧”为真4. 已知正数,x y 满足⎩⎨⎧≥+-≤-05302y x y x ,则y x z )21(4⋅=-的最小值为( ) A .1 B .3241 C .161 D .3215. 已知函数cos(),(0)2y A x A ϕπ=+>在一个周期内的图象如图所示,其中Q P ,分别是这段图象的最高点和最低点,N M ,是图象与x 轴的交点,且︒=∠90PMQ ,则A 的值为( )A .3B .2C .1D .26.下面左图是某学习小组同学数学考试成果的茎叶图,1号到16号同学的成果依次为A 1,A 2,…,A 16,右图是统计茎叶图中成果在肯定范围内的同学人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .927.一个空间几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .24πB .6πC .4πD .2π8.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=()A . 0B .100-C .100D .102009.函数()f x 是定义域为R 的奇函数,且0x ≤时,1()22x f x x a =-+,则函数()f x 的零点个数是( ) A .1 B . 2 C .3 D .410.设12,A A 分别为双曲线2222:1x y C a b -=()0,0a b >>的左右顶点,若双曲线上存在点M 使得两直线斜率122MA MA k k ⋅<,则双曲线C 的离心率的取值范围为( )A.()0,3 B. ()1,3 C. ()3,+∞D. ()0,311.已知ABC ∆外接圆O 的半径为1,且1,23OA OB C π⋅=-∠=,从圆O 内随机取一个点M ,若点M 取自ABC ∆内的概率恰为 334π,则ABC ∆的外形为( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形12.设函数)(x f 的导函数为)(x f ',对任意R x ∈都有)()(x f x f >'成立,则( )A .3(ln 2)2(ln3)f f >B .3(ln 2)2(ln3)f f =C .3(ln 2)2(ln3)f f <D .3(ln 2)2(ln 3)f f 与的大小不确定第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必需作答.第22题~第24题为选考题。

高三文科数学模拟题三

高三文科数学模拟题三

高三数学模拟试题(三)一、选择题(5×10=50分)1.设全集{}{}{}2,1,0,1,2,2,1,0,0,1,2U A B =--=--=则=B A C U )(( )A .{}0B .{}2,1--C .{}0,1,2D .{}1,22.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .99 B .66 C .144 D .297 3.已知:1231,:(3)0p x q x x -<-<-<, 则p 是q 的什么条件( )A .必要不充分B .充分不必要C .充要D .既不充分也不必要4.已知函数)(x f y =是R 上的偶函数,且在(]0,∞-上是减函数,若)2()(f b f ≥,则实数b 的取值范围是( )A .2≤bB .2-≤b 或2≥bC .2-≥b bD .22≤≤-b 5.已知4sin ,sin cos 0,5θθθ=<则θ2sin 的值为( )A .2524-B .2512-C .54- D .25246.函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .47.已知点A (3,1)和B )6,4(-在直线023=+-a y x 的两侧,则的a 取值范围是( )A .a <-7或 a >24B .a <-24或 a >7C .-7<a <24D .-24<a <78.已知i 为虚数单位,复数121iz i +=-,则复数z 的虚部是 ( )A .i 23B .23C .i 21-D .21-9.在ABC ∆中,c b a 、、分别为角C B A 、、的对边,若2cos ,a b C =则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形10.圆心在曲线2(0)y x x=>上,且与直线210x y ++=相切的面积最小的圆的方程为( ) A .22(1)(2)5x y -+-= B .22(2)(1)5x y -+-= C .22(1)(2)25x y -+-= D .22(2)(1)25x y -+-=二、填空题(5×5=25分)11.函数322-+=x x y 的单调减区间为12.某个容量为100的样本的频率分布直方 图见右图,则在区间[4,5)上的数据的频数..为 .13.如图,P 是椭圆192522=+y x 上的一点,F 是椭圆的左焦点,且)(21OF OP OQ +=,4||=则点P 到该椭圆左准线的距离为14.在ABC ∆中,角,,A B C 所对的边分别为,,,6a b c AB AC ⋅=,向量(cos ,sin )m A A =与向量(4,3)n =-相互垂直。

2023届高三新高考数学原创模拟试卷(word版)

2023届高三新高考数学原创模拟试卷(word版)

2023届高三新高考数学原创模拟试卷(word版)一、单选题(★) 1. 若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为()A.5B.4C.3D.2(★★) 2. 若向量与不共线,,且,则向量与的夹角为A.B.C.D.(★) 3. 在财务审计中,我们可以用本福特定律来检验数据是否造假.本福特定律指出,在一组没有人为编造的自然生成的数据(均为正实数)中,首位非零数字是1,2,,9这九个事件并不是等可能的.具体来说,假设随机变量是一组没有人为编造的数据的首位非零数字,则,.根据本福特定律,首位非零数字是1的概率与首位非零数字是8的概率之比约为()(参考数据:,)A.4B.5C.6D.7(★★★) 4. 十一世纪,波斯(今伊朗)诗人奥马尔·海亚姆(约1048-1131)发现了三次方程的几何求解方法,如图是他的手稿,目前存放在伊朗的德黑兰大学.奥马尔采用了圆锥曲线的工具,画出图像后,可通过测量的方式求出三次方程的数值解.在平面直角坐标系上,画抛物线,在轴上取点,以为直径画圆,交抛物线于点.过作轴的垂线,交轴于点.下面几个值中,哪个是方程的解?()A.B.C.D.(★★) 5. 若,则()A.B.C.0D.2(★★★) 6. 函数y=ax 2+ bx与y= (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是()A.B.C.D.(★) 7. 以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率等于A.B.C.D.(★★) 8. 若干个能确定一个立体图形的体积的量称为该立体图形的“基本量”.已知长方体,下列四组量中,一定能成为该长方体的“基本量”的是()A.,,的长度B.,,的长度C.,,的长度D.,BD,的长度二、多选题(★★★) 9. 在正四面体中,,,分别是,,的中点,则()A.//平面B.C.平面平面D.平面平面(★★★) 10. 设是数列的前项和.下面几个条件中,能推出是等差数列的为()A.当时,B.当时,C.当时,D.当时,(★★★) 11. 投掷一枚均匀的骰子8次,记录每次骰子出现的点数.根据统计结果,可以判断一定出现点数6的是()A.第25百分位数为2,极差为4B.平均数为,第75百分位数为C.平均数为3,方差为3D.众数为4,平均数为(★★★) 12. 设,函数的定义域为.记.两个集合,不交指的是.则()A.若,则是定义在上的偶函数B.若,则在处取到最大值C.若,则可表示成4个两两不交的开区间的并D.若,则可表示成6个两两不交的开区间的并三、双空题(★★★) 13. 设是虚数单位,已知是关于的方程的一个根,则________ , ________ .四、填空题(★★★) 14. 设曲线:.已知曲线满足如下性质:曲线是双曲线,且其渐近线分别为直线与轴.根据以上信息,可得位于第一象限的焦点坐标为 ________ .(★★) 15. 等腰三角形两腰所在直线的方程分别为与,原点在等腰三角形的底边上,则底边所在直线的斜率为 ______ .五、双空题(★★★★) 16. 正方形位于平面直角坐标系上,其中,,,.考虑对这个正方形执行下面三种变换:(1):逆时针旋转.(2):顺时针旋转.(3):关于原点对称.上述三种操作可以把正方形变换为自身,但是,,,四个点所在的位置会发生变化.例如,对原正方形作变换之后,顶点从移动到,然后再作一次变换之后,移动到.对原来的正方形按,,,的顺序作次变换记为,其中,.如果经过次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是-恒等变换.例如,是一个3-恒等变换.则3-恒等变换共 ________ 种;对于正整数,-恒等变换共 ________ 种.六、解答题(★★★) 17. 如图,在四棱锥中,底面为直角梯形,,,底面,且,,分别为,的中点.(1)证明:.(2)求与平面所成角的正弦值.(★★★) 18. 十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆和横档构成,并且是的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持十字测天仪,使得眼睛可以从点观察.滑动横档使得,在同一水平面上,并且眼睛恰好能观察到太阳,此时视线恰好经过点,的影子恰好是.然后,通过测量的长度,可计算出视线和水平面的夹角(称为太阳高度角),最后通过查阅地图来确定船员所在的位置.(1)在某次测量中,,横档的长度为20,求太阳高度角的正弦值.(2)在杆上有两点,满足.当横档的中点位于时,记太阳高度角为,其中,都是锐角.证明:.(★★★) 19. 设正项数列满足,,.数列满足,其中,.已知如下结论:当时,.(1)求的通项公式.(2)证明:.(★★★★) 20. 椭圆:的右焦点为,为坐标原点.过点的直线交椭圆于,两点.(1)若直线与轴垂直,并且,求的值.(2)若直线绕点任意转动,当,,不共线时,都满足恒为钝角,求的取值范围.(★★★★) 21. 某校20名学生的数学成绩和知识竞赛成绩如下表:学生编1号数学成100绩知识竞赛成绩290学生编11号数学成75绩知识竞赛成绩45计算可得数学成绩的平均值是,知识竞赛成绩的平均值是,并且,,.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到).(2)设,变量和变量的一组样本数据为,其中两两不相同,两两不相同.记在中的排名是第位,在中的排名是第位,.定义变量和变量的“斯皮尔曼相关系数”(记为)为变量的排名和变量的排名的样本相关系数.(i)记,.证明:.(ii)用(i)的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到).(3)比较(1)和(2)(ii)的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.;;.(★★★★★) 22. 设函数,是的导函数.(1)求的所有极值点.(2)下面三个问题的满分分值分别为(i)4分;(ii)7分;(iii)9分.请在下面三个问题中选一个进行解答.若选择了多于一个问题分别解答,则按照序号较小的解答计分.(i)若在区间中有极值点,求的取值范围.(ii)若在区间中有且只有个极值点,求的取值范围.(iii)若在区间中有且只有个极值点,求的取值范围.。

2022届河南省示范性高中高三5月阶段性模拟联考三文科数学试题(word版)

2022届河南省示范性高中高三5月阶段性模拟联考三文科数学试题(word版)

河南省示范性高中2022届高三下学期阶段性模拟联考三文科数学全卷满分150分,考试用时120分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案的标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.命题“x ∃≥0,2x +x -2≤0”的否定是A .x ∀≥0,2 x +x -2≤0B .x ∀≥0,2 x +x -2>0C .x ∃≥0,2 x +x -2>0D .x ∃≥0,2 x +x -2<02.已知集合A ={-1,0,1,2},B ={y |y =x 2,x ∈A},则集合A ∩B 的子集的个数为 A .1 B .2 C .3 D .4 3.复数z =211i+-(i 表示虚数单位)的共轭复数在复平面内对应的点为 A .(-1,2) B .(1,-2) C .(1,2) D .(2,1) 4.已知等差数列{n a }的前n 项和为n S ,若10S =30,则1a +20a +30a -40a = A .4 B .5 C .6 D .12 5.已知函数f (x )在区间[-π,π]上的大致图象如图所示,则f (x )的解析式可能是A .f (x )=e |x |·sinxB .f (x )=e |x |·cosxC .f (x )=e |x |+cosxD .f (x )=e |x |-cosx6.已知不等式组24201x y x y x ⎧⎪⎪⎨⎪⎪⎩+≤,≤,≥,≥表示的平面图形为τ,则按斜二测画法,平面图形τ的直观图的面积为 A .5216 B .528 C .22 D .547.在平面直角坐标系中,A (0,1),B (0,4),C 是直线y =x 上的一动点,M 是圆 (x -2)2+y 2=1325上一点,则当|CA |+|CB |最小时,|MC |的最小值为A .135 B .2135C .3135D .138.某老物件收藏者购买了清代老榉木的大铜钱形状的水车轮子,正面以颇具传统文化 意味的“古钱币”为外形,预示着财源广进, 事业发达,也可以理解为象征中国传统文化 的天圆地方,其正视图和侧视图(单位:厘 米)如图所示(图中m <10),且该轮子的表面积为(1320π+210)平方厘米.若向 轮子的正面随机投掷一颗小石子,则恰好落 到正方形中的概率为A .116π B .18π C .14π D .12π9.在平面直角坐标系中,α∈(0,2π),角α的终边经过点P (sincos1212ππ-,sincos1212ππ+),则α的值是 A .56π B .23π或53π C .53π D .23π10.已知曲线254y x =+在点(12,32)处的切线为l ,数列{n a }的首项为1,点(n a ,1n a +)(n ∈N *)为切线l 上一点,则数列{n a }的前n 项和为A .()12n n - B .()12n n + C .n (n +1) D .n 2 11.已知定义在R 上的函数f (x )=(|x |-1)·(x +a )为奇函数,则不等式()12x f x ⎛⎫ ⎪⎝⎭- <0的解集为A .(-1,0)∪(0,1)B .(-12,0)∪(12,1) C .(-1,0)∪(0,12) D .(-1,0)∪(12,1)12.已知x >0,y >0,2022x x x +=a ,(y -2)3+2 022(y -2)=-a ,则x +y 的最小值是A .1B .2C .2D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.曲线x xe y x+=在点()0,0处的切线方程为 .14.若实数x,y 满足1022030x x y y -≥⎧⎪--≤⎨⎪-≤⎩,则Z=2x+y 的最大值为 .15.在平面直角坐标系xoy 中,已知点)1,0(-A ,)2,(-t t P ,若动点M 满足2=MOMA(O 为坐标原点),则MP 的最小值是 .16.数列{}n a 满足111,(1)21nn n a a a n +=+-=+,n S 为其前n 项和,则101S = .三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题12分)已知数列{a n }对任意的n ∈N *都满足312n23a a a a n 3333n +++⋅⋅⋅+=。

北京市高三一模考试数学文试题真题(word版含答案)

北京市高三一模考试数学文试题真题(word版含答案)

北京市海淀区高三一模数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( ) A .{}|23x x << B .{}|1x x > C .{}|12x x << D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++= 3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC. D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x ≤⎧⎪=⎨>⎪⎩的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况,所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=,租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=, 得2sin cos sin a b B B B =,所以2cos a b B =. (Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=. 18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12c e a ==,所以1c =,所以2223b a c =-=, 所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ , 所以||||||||BQ BM AB BP =,所以||1||2BM BP =. 设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln 2(ln 2)2ln 2112ln 2g e =--=-.(Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+, 因为(1)30g e =-<,323()402g e =->, 所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。

安徽省芜湖市南陵中学2022届高三上学期第一次模拟数学试卷(文科)Word版含解析

安徽省芜湖市南陵中学2022届高三上学期第一次模拟数学试卷(文科)Word版含解析

2021-2022学年安徽省芜湖市南陵中学高三(上)第一次模拟数学试卷(文科)一、选择题.每小题5分,共60分.1.设i为虚数单位,则复数z=i(1﹣i)对应的点位于( )A.第一象限 B.其次象限 C.第三象限 D.第四象限2.平面对量,的夹角为60°,=(2,0),||=1,则|+2|=( )A .B .C .D.23.已知lga+lgb=0,函数f(x)=a x与函数g(x)=﹣log b x的图象可能是( )A .B .C .D .4.已知命题p:对于∀x∈R,恒有2x+2﹣x≥2成立,命题q:奇函数f(x)的图象必过原点.则下列结论正确的是( )A.p∧q为真B.(¬p)∨q为真C.p∧(¬q)为真 D.¬p为真5.已知实数x,y 满足,则x﹣3y的最小值为( )A.﹣4 B.﹣3 C.0 D.16.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是( )A.2 B .C.4 D.27.已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A.m⊂α,n∥m⇒n∥αB.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β8.已知正实数m,n满足m+n=1,且使取得最小值.若曲线y=x a过点P (,),则a的值为( ) A.﹣1 B .C.2 D.39.已知f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程f(x)=0在[0,1]内有且只有一个根,则f(x)=0在区间[0,2022]内根的个数为( )A.1006 B.1007 C.2021 D.202210.点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点(异于原点),若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率为( )A .B .C .D .11.执行如图所示的程序框图,若输入k的值为2,则输出的i值为( )A.2 B.3 C.4 D.512.已知函数f(x)=x 3ax2+bx+c在x1处取得极大值,在x2处取得微小值,满足x1∈(﹣1,0),x2∈(0,1),则的取值范围是( )A.(0,2)B.(1,3)C.[0,3]D.[1,3]二、填空题.每小题5分,共20分.13.已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则a,b 的值分别为__________.14.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是__________.15.某班有同学55人,现将全部同学按1,2,3,…,55随机编号.若接受系统抽样的方法抽取一个容量为5的样本,已知编号为6,a,28,b,50号同学在样本中,则a+b=__________.16.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x 1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是__________.三、解答题.(共70分)17.济南天下第一泉风景区为了做好宣扬工作,预备在A和B两所高校分别招募8名和12名志愿者,将这20名志愿者的身高编成如右茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高精灵”,身高在175cm以下(不包括175cm)定义为“帅精灵”.已知A高校志愿者的身高的平均数为176cm ,B高校志愿者的身高的中位数为168cm.(Ⅰ)求x,y的值;(Ⅱ)假如用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人.求至少有一人为“高精灵”的概率.18.在△ABC中,a、b、c为角A、B、C所对的三边,已知b2+c2﹣a2=bc.(Ⅰ)求角A的值;(Ⅱ)若,,求c的长.19.如图,三棱柱ABC﹣A1B1C1,A1A ⊥底面ABC,且△ABC为正三角形,A1A=AB=6,D为AC中点.(Ⅰ)求三棱锥C1﹣BCD的体积;(Ⅱ)求证:平面BC1D⊥平面ACC1A1;(Ⅲ)求证:直线AB1∥平面BC1D.20.已知等差数列{a n}满足,a1+a2+a3=9,a2+a8=18.数列{b n}的前n和为S n,且满足S n=2b n﹣2.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)数列{c n}满足,求数列{c n}的前n和T n.21.已知椭圆=1(a>b>0)上任意一点到两焦点F1,F2距离之和为4,离心率为.(1)求椭圆的标准方程;(2)若直线l的斜率为,直线l与椭圆C交于A,B两点.点P(2,1)为椭圆上一点,求△PAB的面积的最大值.22.已知函数f(x)=ax3+bx2lnx,若f(x)在点(1,f(1))处的切线方程为y=2x﹣2.(1)求f(x)的解析式;(2)求f(x)在[,e]上的单调区间和最值;(3)若存在实数m∈[﹣2,2],函数g(x)=x3﹣(2m+n)x在(1,e)上为单调减函数,求实数n的取值范围.2021-2022学年安徽省芜湖市南陵中学高三(上)第一次模拟数学试卷(文科)一、选择题.每小题5分,共60分.1.设i为虚数单位,则复数z=i(1﹣i)对应的点位于( )A.第一象限 B.其次象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】直接利用复数代数形式的乘法运算化简,求出复数对应点的坐标得答案.【解答】解:由z=i(1﹣i)=1+i,得复数z=i(1﹣i)对应的点的坐标为(1,1),位于第一象限.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.2.平面对量,的夹角为60°,=(2,0),||=1,则|+2|=( )A .B .C .D.2【考点】平面对量数量积的运算.【专题】平面对量及应用.【分析】依据已知条件可求出,,又,从而能求出=.【解答】解:由得;所以依据已知条件可得:=.故选A.【点评】考查依据向量坐标求向量长度,数量积的计算公式,以及求向量长度的方法:.3.已知lga+lgb=0,函数f(x)=a x与函数g(x)=﹣log b x的图象可能是( )A .B .C .D .【考点】对数函数的图像与性质;指数函数的图像与性质.【专题】数形结合.【分析】先求出a、b的关系,将函数g(x)进行化简,得到函数f(x)与函数g(x)的单调性是在定义域内同增同减,再进行判定.【解答】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B【点评】本题主要考查了对数函数的图象,以及指数函数的图象和对数运算等有关学问,属于基础题.4.已知命题p:对于∀x∈R,恒有2x+2﹣x≥2成立,命题q:奇函数f(x)的图象必过原点.则下列结论正确的是( )A.p∧q为真B.(¬p)∨q为真C.p∧(¬q)为真 D.¬p为真【考点】命题的真假推断与应用.【专题】简易规律.【分析】推断两个命题的真假,推断推出结果即可.【解答】解:命题p:对于∀x∈R,恒有2x+2﹣x≥2成立,明显是真命题;命题q:奇函数f(x)的图象必过原点.例如y=,函数是奇函数,但是不经过原点,所以是假命题,¬q是真命题,所以p∧(¬q)为真是正确的.故选:C.【点评】本题考查命题的真假的推断与应用,考查命题的否定,基本学问的考查.5.已知实数x,y 满足,则x﹣3y的最小值为( )A.﹣4 B.﹣3 C.0 D.1【考点】简洁线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【解答】解:设z=x﹣3y,则得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点A时,直线y=的截距最大,此时z最小,由,解得,即A(2,2).将A(2,2)代入目标函数z=x﹣3y,得z=2﹣3×2=2﹣6=﹣4.∴目标函数z=x﹣3y的最小值是﹣4.故选:A.【点评】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.6.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的左(侧)视图的面积是( )A.2 B .C.4 D.2【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】由题意可知左视图与主视图外形完全一样是正三角形,可得结论.【解答】解:由题意可知左视图与主视图外形完全一样是正三角形,由于主(正)视图是边长为2的正三角形,所以几何体的左(侧)视图的面积S==故选:B.【点评】本题考查由三视图求面积、体积,求解的关键是依据所给的三视图推断出几何体的几何特征.7.已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是( )A.m⊂α,n∥m⇒n∥αB.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β【考点】平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.【点评】本题考查命题真假的推断,是基础题,解题时要认真审题,留意空间思维力量的培育.8.已知正实数m,n满足m+n=1,且使取得最小值.若曲线y=x a过点P (,),则a的值为( ) A.﹣1 B .C.2 D.3【考点】基本不等式.【专题】不等式.【分析】先依据基本不等式等号成立的条件求出m,n的值,得到点P的坐标,再代入到函数的解析式中,求得答案.【解答】解:=(m+n)(+)=1+16++≥17+2=25,当且仅当n=4m,即m=,n=时取等号,∴点P (,),∴=,∴α=.故选:B【点评】本题考查了基本不等式的应用以及函数的解析式,属于基础题.9.已知f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程f(x)=0在[0,1]内有且只有一个根,则f(x)=0在区间[0,2022]内根的个数为( )A.1006 B.1007 C.2021 D.2022【考点】根的存在性及根的个数推断.【专题】计算题;函数的性质及应用.【分析】由题意可推出f(x)=0的根为x=k+,k∈Z;从而得到f(x)=0在区间[0,2022]内根的个数.【解答】解:∵f(x)=f(﹣x+2),∴f(x)的图象关于x=1对称,又∵方程f(x)=0在[0,1]内有且只有一个根,∴方程f(x)=0在[1,2]内有且只有一个根,故方程f(x)=0在[0,2]上有且只有两个根,;又∵f(x+1)=f(x﹣1),∴f(x)是周期为2的函数,故f(x)=0的根为x=k+,k∈Z;故f(x)=0在区间[0,2022]内根的个数为2021,故选C.【点评】本题考查了函数的性质的推断与应用,属于中档题.10.点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点(异于原点),若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率为( )A .B .C .D .【考点】双曲线的简洁性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先依据条件求出点A的坐标,再结合点A到抛物线C1的准线的距离为p ,得到=,再代入离心率计算公式即可得到答案.【解答】解:取双曲线的其中一条渐近线:y=x,联立⇒;故A (,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e====.故选B.【点评】本题主要考查双曲线的性质及其方程依据抛物线的方程和性质.留意运用双曲线的离心率e和渐近线的斜率之间的关系是解题的关键.11.执行如图所示的程序框图,若输入k的值为2,则输出的i值为( ) A.2 B.3 C.4 D.5【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当,S=时不满足条件S≤2,退出循环,输出i的值为4.【解答】解:模拟执行程序框图,可得k=2,i=1,S=1满足条件S≤2,i=2,S=满足条件S≤2,i=3,S=满足条件S≤2,i=4,S=>2不满足条件S≤2,退出循环,输出i的值为4.故选:C.【点评】本题主要考查了循环结构的程序框图,正确推断退出循环的条件是解题的关键,属于基础题.12.已知函数f(x)=x 3ax2+bx+c在x1处取得极大值,在x2处取得微小值,满足x1∈(﹣1,0),x2∈(0,1),则的取值范围是( )A.(0,2)B.(1,3)C.[0,3]D.[1,3]【考点】函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】据极大值点左边导数为正右边导数为负,微小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.【解答】解:∵f(x)=x 3ax2+bx+c,∴f′(x)=x2+ax+b∵函数f(x)在区间(﹣1,0)内取得极大值,在区间(0,1)内取得微小值,∴f′(x)=x2+ax+b=0在(﹣1,0)和(0,1)内各有一个根,f′(0)<0,f′(﹣1)>0,f′(1)>0即,在aOb坐标系中画出其表示的区域,如图,=1+2×,令m=,其几何意义为区域中任意一点与点(﹣2,﹣1)连线的斜率,分析可得0<<1,则1<<3∴的取值范围是(1,3).故选B.【点评】本题考查同学利用导数争辩函数极值的力量,以及会进行简洁的线性规划的力量,解题时要认真审题,认真解答.二、填空题.每小题5分,共20分.13.已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则a,b 的值分别为﹣1和3.【考点】利用导数争辩曲线上某点切线方程.【专题】计算题;导数的概念及应用.【分析】由于(1,3)是直线与曲线的交点,所以把(1,3)代入直线方程即可求出斜率k的值,然后利用求导法则求出曲线方程的导函数,把切点的横坐标x=1代入导函数中得到切线的斜率,让斜率等于k列出关于a 的方程,求出方程的解得到a的值,然后把切点坐标和a的值代入曲线方程,即可求出b的值.【解答】解:把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=﹣1,把(1,3)及a=﹣1代入曲线方程得:1﹣1+b=3,则b的值为3.故答案为:﹣1和3.【点评】此题考查同学会利用导数求曲线上过某点切线方程的斜率,是一道基础题.14.设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是1.【考点】双曲线的应用;双曲线的简洁性质.【专题】计算题.【分析】设|PF1|=x,|PF2|=y,依据依据双曲线性质可知x﹣y的值,再依据∠F1PF2=90°,求得x2+y2的值,进而依据2xy=x2+y2﹣(x﹣y)2求得xy,进而可求得△F1PF2的面积.【解答】解:设|PF1|=x,|PF2|=y,(x>y)依据双曲线性质可知x﹣y=4,∵∠F1PF2=90°,∴x2+y2=20∴2xy=x2+y2﹣(x﹣y)2=4∴xy=2∴△F1PF2的面积为xy=1故答案为:1.【点评】本题主要考查了双曲线的简洁性质.要机敏运用双曲线的定义及焦距、实轴、虚轴等之间的关系.15.某班有同学55人,现将全部同学按1,2,3,…,55随机编号.若接受系统抽样的方法抽取一个容量为5的样本,已知编号为6,a,28,b,50号同学在样本中,则a+b=56.【考点】系统抽样方法.【专题】计算题;概率与统计.【分析】求出样本间隔即可得到结论.【解答】解:∵样本容量为5,∴样本间隔为55÷5=11,∵编号为6,a,28,b,50号同学在样本中,∴a=17,b=39,∴a+b=56,故答案为:56.【点评】本题主要考查系统抽样的应用,依据条件求出样本间隔即可,比较基础.16.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是②③.【考点】幂函数的性质.【分析】利用待定系数法求出幂函数的解析式;幂函数的指数大于0得到幂函数在(0,+∝)上的单调性;图象呈上升趋势,推断出②③正确.【解答】解:依题意,设f(x)=xα,则有()α=,即()α=(),所以α=,于是f(x)=x.由于函数f(x)=x在定义域[0,+∞)内单调递增,所以当x1<x2时,必有f(x1)<f(x2),从而有x1f(x1)<x2f(x2),故②正确;又由于,分别表示直线OP、OQ的斜率,结合函数图象,简洁得出直线OP的斜率大于直线OQ 的斜率,故>,所以③正确.答案②③【点评】本题考查利用待定系数法求幂函数的解析式、考查幂函数的性质由幂函数的指数的取值打算.三、解答题.(共70分)17.济南天下第一泉风景区为了做好宣扬工作,预备在A和B两所高校分别招募8名和12名志愿者,将这20名志愿者的身高编成如右茎叶图(单位:cm).若身高在175cm以上(包括175cm)定义为“高精灵”,身高在175cm以下(不包括175cm)定义为“帅精灵”.已知A高校志愿者的身高的平均数为176cm,B高校志愿者的身高的中位数为168cm.(Ⅰ)求x,y的值;(Ⅱ)假如用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人.求至少有一人为“高精灵”的概率.【考点】古典概型及其概率计算公式;分层抽样方法;茎叶图.【专题】应用题;概率与统计.【分析】(I)依据求平均数及中位数的方法,即可求解x,y.(II)依据分层抽样方法求得抽到的“高精灵”和“帅精灵”的志愿者人数,再分类求得至少有1人是“高精灵”的抽法种数与从这5人中选2人的种数,代入古典概型概率公式计算.【解答】解:(I )由茎叶图得:,解得,x=5,y=7 (II)由题意可得,高精灵有8人,帅精灵有12人,假如从“高精灵”和“帅精灵”中抽取5人,则“高精灵”和“帅精灵”的人数分别为:,=3记抽取的高精灵分别为b1,b2,帅精灵为c1,c2,c3,从已经抽取的5人中任选2人的全部可能为:(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共10种结果记从这5人中选2人.求至少有一人为“高精灵”为大事A,则A包括,(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3)共7种∴因此,假如用分层抽样的方法从“高精灵”和“帅精灵”中抽取5人,再从这5人中选2人,至少有一人为“高精灵的概率为【点评】本题考查了利用茎叶图求平均数及中位数,考查分层抽样方法及古典概型的概率计算,要留意求至少有1人是“高精灵”的选法可用分类法,解答本题的关键是读懂茎叶图18.在△ABC中,a、b、c为角A、B、C所对的三边,已知b2+c2﹣a2=bc.(Ⅰ)求角A的值;(Ⅱ)若,,求c的长.【考点】余弦定理的应用;正弦定理的应用.【专题】计算题;综合题.【分析】(Ⅰ)把题设等式代入关于cosA的余弦定理中求得cosA的值,进而求得A.(Ⅱ)先利用同角三角函数的基本关系求得sinC的值,然后利用正弦定理求得b.【解答】解:(Ⅰ)b2+c2﹣a2=bc ,∵0<A<π∴(Ⅱ)在△ABC 中,,,∴由正弦定理知:,∴═.∴b=【点评】本题主要考查了正弦定理和余弦定理的应用.考查了同学对这两个定理的娴熟把握.19.如图,三棱柱ABC﹣A1B1C1,A1A⊥底面ABC,且△ABC为正三角形,A1A=AB=6,D为AC中点.(Ⅰ)求三棱锥C1﹣BCD的体积;(Ⅱ)求证:平面BC1D⊥平面ACC1A1;(Ⅲ)求证:直线AB1∥平面BC1D.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】综合题.【分析】(Ⅰ)先依据△ABC为正三角形,D为AC中点,得到BD⊥AC,求出△BCD的面积;再依据C1C⊥底面ABC即可求出三棱锥C1﹣BCD的体积;(Ⅱ)先依据A1A⊥底面ABC,得到A1A⊥BD,再结合BD⊥AC即可得到BD⊥平面ACC1A1.即可证:平面BC1D⊥平面ACC1A1;(Ⅲ)连接B1C交BC1于O,连接OD,依据D为AC中点,O为B1C中点可得OD∥AB1,即可证:直线AB1∥平面BC1D.【解答】(本小题满分12分)解:(Ⅰ)∵△ABC为正三角形,D为AC中点,∴BD⊥AC,由AB=6可知,,∴.又∵A1A⊥底面ABC,且A1A=AB=6,∴C1C⊥底面ABC,且C1C=6,∴.…(Ⅱ)∵A1A⊥底面ABC,∴A1A⊥BD.又BD⊥AC,∴BD⊥平面ACC1A1.又BD⊂平面BC1D,∴平面BC1D⊥平面ACC1A1.…(Ⅲ)连接B1C交BC1于O,连接OD,在△B1AC中,D为AC中点,O为B1C中点,所以OD∥AB1,又OD⊂平面BC1D,∴直线AB1∥平面BC1D.…【点评】本题主要考查平面与平面垂直的判定以及直线与平面平行的判定和棱锥体积的计算.在证明线面平行时,一般常用做法是证明面面平行或证明线线平行.20.已知等差数列{a n}满足,a1+a2+a3=9,a2+a8=18.数列{b n}的前n和为S n,且满足S n=2b n﹣2.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)数列{c n}满足,求数列{c n}的前n和T n.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(Ⅰ)设等差数列{a n}的公差为d,利用等差中项的性质及已知条件“a1+a2+a3=9、a2+a8=18”可得公差,进而可得数列{a n}的通项;利用“b n+1=S n+1﹣S n”及“b1=2b1﹣2”,可得公比和首项,进而可得数列{b n}的通项;(Ⅱ)利用=,写出T n 、T n的表达式,利用错位相减法及等比数列的求和公式即得结论.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a1+a2+a3=9,∴3a2=9,即a2=3,∵a2+a8=18,∴2a5=18,即a5=9,∴3d=a5﹣a2=9﹣3=6,即d=2,∴a1=a2﹣d=3﹣2=1,∴a n=1+2(n﹣1)=2n﹣1;∵S n=2b n﹣2,∴b n+1=S n+1﹣S n=2b n+1﹣2b n,即b n+1=2b n,又b1=2b1﹣2,∴b1=2,∴数列{b n}是以首项和公比均为2的等比数列,∴b n=2•2n﹣1=2n;∴数列{a n}和{b n}的通项公式分别为:a n=2n﹣1、b n=2n;(Ⅱ)由(I )知=,∴T n =++…+,∴T n =++…++,两式相减,得T n =+++…+﹣=+﹣=﹣,∴T n=3﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,留意解题方法的积累,属于中档题.21.已知椭圆=1(a>b>0)上任意一点到两焦点F1,F2距离之和为4,离心率为.(1)求椭圆的标准方程;(2)若直线l 的斜率为,直线l与椭圆C交于A,B两点.点P(2,1)为椭圆上一点,求△PAB的面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)由椭圆定义,椭圆上任意一点到两焦点距离之和为常数2a=,得,离心率,于是,从而可得椭圆的标准方程;(2)设直线l 的方程为,把其与椭圆的方程联立,求出弦长,即为△PAB的底,由点线距离公式求出△PAB 的高,然后用基本不等式求最值.【解答】解:(1)由条件得:,解得,所以椭圆的方程为(2)设l 的方程为,点A(x1,y1),B(x2,y2),由消去y得x2+2mx+2m2﹣4=0.令△=4m2﹣8m2+16>0,解得|m|<2,由韦达定理得.则由弦长公式得|AB|=•=•.又点P到直线l 的距离,∴,当且仅当m2=2,即时取得最大值.∴△PAB面积的最大值为2.【点评】本题考查待定系数法求椭圆的标准方程;韦达定理、弦长公式及利用基本不等式求最值.考查分析问题解决问题到哪里.22.已知函数f(x)=ax3+bx2lnx,若f(x)在点(1,f(1))处的切线方程为y=2x﹣2.(1)求f(x)的解析式;(2)求f(x)在[,e]上的单调区间和最值;(3)若存在实数m∈[﹣2,2],函数g(x)=x3﹣(2m+n)x在(1,e)上为单调减函数,求实数n的取值范围.【考点】利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(1)由题意利用导数的几何意义可得,解得a,b即可.(2)利用导数的运算法则可得f′(x).令f′(x)=0,解得x.分别解出f′(x)>0与f′(x)<0,列出表格即可得出其单调区间及其最值.(3)求出g′(x),由题意可知g(x)在(1,e)上为单调减函数,可得:g′(x)≤0恒成立,即2m+n≥2x2lnx.于是.可得n≥﹣2m+2e2.由存在实数m∈[﹣2,2],使得上式成立,可得n≥(﹣2m+2e2)min,即可得出n的取值范围.【解答】解:(1)f′(x)=3ax2+2bxlnx+bx,(x>0).∵f(x)在点(1,f(1))处的切线方程为y=2x﹣2,∴,解得,∴f(x)=2x2lnx.(2)由(1)可知:f′(x)=4xlnx+2x=2x(2lnx+1),令f′(x)=0,解得.xf′(x)﹣0 +f(x)单调递减微小值单调递增由表格可知:f(x)在[,e]上的单调递增区间为,单调递减区间为.最小值为=﹣,又=,f(e)=2e2,故最大值为2e2.(3),由题意可知g(x)在(1,e)上为单调减函数,∴g′(x)≤0恒成立,即2x2lnx﹣(2m+n)≤0,∴2m+n≥2x2lnx.∴.∴n≥﹣2m+2e2.∵存在实数m∈[﹣2,2],使得上式成立,∴n≥(﹣2m+2e2)min=﹣4+2e2,∴n的取值范围是[﹣4+2e2,+∞).【点评】本题考查了利用导数争辩函数的单调性极值与最值、切线方程、恒成立问题的等价转化等基础学问与基本技能,属于难题.。

高三文科数学模拟题十三

高三文科数学模拟题十三

高三数学模拟试题(十三)一、选择题(5×10=50分)1.设全集{}{}{}2,1,0,1,2,2,1,0,0,1,2U A B =--=--=则)U C A B (=( )A .{}B .{}2,1--C .{}0,1,2D .{}1,22.已知正数m 是2,8的等比中项,则圆锥曲线122=+myx 的离心率是( ) A .23 B .25C .5D .33.已知函数()f x =是奇函数,则实数a 的值为( )A .1-B .0C .1D .2 4.复数22i z i-=+(i为虚数单位)在复平面内对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.连续掷两次骰子分别得到点数m 、n ,则向量(,)a m n =与向量(1,1)b =-的夹角2πθ>的概率是( )A .12B .13C .712D .5126.角α的终边经过点A ()a ,且点A 在抛物线214y x =-的准线上,则sin α=( )A .12-B .12 C.2- D.27.已知变量x y ,满足条件10290x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,,,则x y +的最大值是( )A .2B .5C .6D .8 8.下列命题中正确的个数为( )①三点确定一个平面;②若一条直线垂直于平面内的无数条直线,则该直线与平面垂直;③同时垂直于一条直线的两条直线平行;④底面边长为2,侧棱长为5的正四棱锥的表面积为12。

A .0B .1C .2D .3 9.函数x xy sin 3+=的图象大致是( )10.在ABC ∆中,角A B C 、、所对边的长分别为a b c 、、,若60=∠A ,2=a ,则ABC ∆面积的最大值为 ( )A .1B .3C .2D .23二、填空题(5×5=25分)11.某市有大型超市200家、中型超市400家、小型超市1400家。

为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市_______家 12.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为13.已知函数322()3(1)1(0)f x kx k x k k =+--+>的单调递减区间是(0,4),则k 的值是14.数列{}n a 满足*11()2n n a a n N ++=∈,且112a =-,n S 是数列{}n a 的前n 项和,则2011S =15.若函数2()4f x x x a =--的有3个零点,则a =(选做)若)0,3(-C 、)0,3(D ,M 是椭圆1242=+y x 上的动点,则11+的最小值为 . 三、解答题(75分)16.(本题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,且83ABC AB AC S ∆⋅=(其中ABC S ∆为ABC ∆的面积)。

高考数学(文科)预测试题(二)word版

高考数学(文科)预测试题(二)word版

重庆高考数学(文科)预测试题(5)参考数据与公式:柱体的体积公式 V S h = (表示柱体的底面积,h 表示柱体的高)锥体的体积公式 13V S h = (其中S 表示锥体的底面积,h 表示锥体的高)由列联表中数据计算2K 的公式 22()()()()()n ad bc K a b c d a c b d -=++++临界值表第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将你认为正确的选项前面的代号填入答题卷相应的表格中1.设全集U R =,集合{|09}A x x =<<,{|44}B x Z x =∈-<<,则集合B A C U )(中元素的个数为( )A .3B .4C .5D .62.若i 是虚数单位,设()()11,,2ia b i a b R i+=++∈-,则复数Z a bi =+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数()sin()(0)3f x x πωω=->的最小正周期为π,则函数()f x 的单调递增区间( )A .5[,]66k k ππππ-+()k Z ∈B .511[,]66k k ππππ++()k Z ∈C .5[,]1212k k ππππ-+()k Z ∈D .511[,]1212k k ππππ++()k Z ∈4.已知等差数列{}n a 中22a =,则其前3项的积3T 的取值范围是( ) A .(],4-∞ B .(],8-∞ C .[)4,+∞ D .[)8,+∞ 5.如果执行右边的程序框图,那么输出的k =( )A .4B .5C .6D .7 6.已知圆C 与直线 0x y -=及40x y --=都相切,圆心在直线 0x y +=上,则圆C 的方程为( )A .22(11)2x y -++=)( B .22(11)2x y ++-=)( C .22(11)2x y -+-=)( D .22(11)2x y +++=)( 7.已知双曲线的渐近线方程为230,x y ±=(0,5)F -为双曲线的一个焦点,则双曲线的方程为( )A .22149y x -=B .2213131100225y x -=C .22194x y -=D .22131********y x -=8.下列四个命题:①()()0f a f b <为函数 ()f x 在区间 (,)a b 内存在零点的必要不充分条件;②从总体中抽取的样本1122(,),(,),(,),n n x y xy x y …,若记1111,,n ni i i i X x Y y n n ====∑∑则回归直线ˆybx a =+必过点(,)X Y ;③设点P 是ABC ∆所在平面内的一点,且2BC BA BP +=,则P 为线段AC 的中点;④若空间两点 (1,2,1),(2,0,)A B m -2m =. 其中真命题的个数为( )A .1个B .2个C .3 个D .4个9.已知定义在R 上的函数()y f x =满足()()f x f x =--,当0x <时,'()0f x <.若120x x +<,且120x x <,则12()()f x f x +的值( )A .恒正B .恒负C .可正可负D .可能等于010.电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之积为10的概率为( )A .1144B .1160C .1180D .1360第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,满分25分.11.若函数 ()log (3)a f x m x =+-的图像恒过点(4,2),则 22()4x x m g x m +=+的最大值是 .12.已知直线1:30l x y ++=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是13.对于有线性相关关系的变量y x ,,测得一组数据如下表:根据上表得它们的回归直线方程为a x y ˆ52.10ˆ+=,据此模型来预 测当20=x 时,y 的估计值为14.已知函数5(6),()(4)4(6),2x a x f x ax x -⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围是 15.已知过抛物线22(0)y px p =>的焦点F的直线与抛物线交于,A B 两点,且AF BF >,则AF BF= .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)在三边互不相等的 ABC ∆中,已知 45,tan .3AB BC A ===(1)求AC 的值;(2)求cos(2)A C +的值.17.(本小题满分13分)某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,并按[)[)[)40,50,50,60,60,70,[)[)[]70,80,80,90,90,100分组,得到成绩分布的频率分布直方图(如图).(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面22⨯列联表,并问是否有99%的把握认为“18.(本小题满分13分)如图是某三棱柱被截去一部分后的直观图与三视图的侧视图、俯视图.在直观图中,2CF AD =,M 是FD 的中点. 侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示.(1)求该几何体的体积; (2)求证:EM ACFD ⊥平面.19.(本小题满分12分)已知圆 22:2O x y +=交x 轴正半轴于点A ,点F 满足2OF OA =,以F 为右焦点的椭圆 C . (1)求椭圆 C 的标准方程;(2)设过圆 O 上一点P 的切线交直线 2x =于点Q ,求证:PF OQ ⊥.20. (本小题满分12分)设数列 {}n a 的前n 项和为n S ,且 *21()n n S a n N =-∈. (1)求数列 {}n a 的通项公式;(2)设数列 {}n na 的前n 项和为n T ,对任意 *n N ∈,比较2n T与 n S 的大小.21.(本小题满分12分)设0a >,函数 2()xe f x x a=+.(1)求函数 ()f x 的单调区间; (2)当12x =时,函数 ()f x 取得极值,证明:对于任意的 1213,[,],22x x ∈12()()f x f x |-重庆高考数学(文科)参考答案一、 BDCBB ABBAC二、11.1.12..13. 211.8 14. [)7,8 15.3 三、16.(Ⅰ)由4tan 3A =知,由余弦定理,222525cos AC AC A =+-⨯⨯,即 2650AC AC -+=,1,5AC AC ∴==或(舍去). …………………6分(Ⅱ)cos C ==,sin C ∴,2247sin 22sin cos ,cos22cos 12525A A A A A ===-=-cos(2)cos2cos sin 2sin A C A C A C ∴+=-= …………………12分17.(Ⅰ)高一合格率为0.02100.03100.02100.01100.8⨯+⨯+⨯+⨯==80﹪; ………4分(Ⅱ)高一样本的平均数为10102030201045556575859572100100100100100100⨯+⨯+⨯+⨯+⨯+⨯=,据此,可以估计高一年级这次知识竞赛的学生的平均成绩为72分. ………8分 (Ⅲ)2200(80402060)9.5 6.63510010014060K ⨯-⨯=≈>⨯⨯⨯.所以有99%的把握认为“这次知识竞赛的成绩与年级有关系”. ………12分 18.(Ⅰ)CF P,P PQ BC BE Q,取中点过作∥交于PD,QD,AD CP AD=CP 连结∥且,ACPD 四边形为平行四边形,AC PD ∴∥,PDQ ABC ∴平面∥面,2D-EFPQ DQP-ABC 11V=V +V =2sin 60223∴⨯︒⨯+三棱柱…………6分(Ⅱ)由三视图可知,ABC CBEF ⊥平面平面,FC ABC ⊥平面, 取AC 中点N ,连结MN,BN ,BN AC,ABC ∆⊥中, 又FC ABC,BN FC,⊥∴⊥平面BN ACFD ∴⊥平面MN MN=BE=3,∥CF ∥AD∥BE,又BN EM ∴∴四边形BEMN 为平行四边形,∥EM ACFD ∴⊥平面. …………12分19.(Ⅰ)(1,0)A F .椭圆1,c =e =,a ∴=2221b a c =-=, 221x y ∴+=椭圆D 的方程为2. ………………5分(Ⅱ)设点()11,P x y ,过点P 的圆的切线方程为 ()1111x y y x x y -=-- 即()1111xy x x y y =--+。

集美中学高三数学(文科)模拟试题

集美中学高三数学(文科)模拟试题

集美中学高三数学试题(文科)参考公式:台体的体积公式 球的表面积和体积公式)(31S S S S h V '+'+=台体 24R π 334R V π=球 其中S 和S ′是上、下底面积,h 是高 其中R 表示球的半径一、选择题:1. 设全集为 R ,A =}01|{<xx ,则=A C R ( ) A .}01|{>x x B .{x | x >0}C .{x | x 0≥}D . }01|{≥xx2.函数x x f 3log 2)(-=的定义域是( )A .),9(+∞B .),9[+∞C .(0,9)D .]9,0(3.在下列直线中,是圆0323222=+-++y x y x 的切线的是 ( )A .x=0B .y=0C .x=yD .x=-y4.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[)100,110中的频率和分数不满110分的累积频率约分别是 ( ) A .0.18, 0.47 B .0.47, 0.18 C .0.18, 15.如图,该程序运行后输出的结果为 ( )A .1B .2C .4D .166.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则和过点(,)n P n a 和点2(2,)()n Q n a n N *++∈的直线平行的一个向量的坐标是( )A .1(2,)2 B .1(,2)2-- C .1(,1)2-- D .(1,1)--7.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必8.已知直线m 、n 平面βα,,下列命题中正确的是( )A .若直线m 、n 与平面α所成的角相等,则m//nB .若m//α,,//,//βαβn 则m//nC .若m ⊂α,β⊂n ,m//n ,则α//βD .若m ⊥α,n ⊥β,α⊥β,则m ⊥n 9.若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =( ) A .97- B .31- C .31 D .9710.函数222)(-=x x f 的值域是( )A .)1,(--∞B .),0()0,1(+∞-C .),1(+∞-D .),0()1,(+∞--∞11.要得到函数)2(π+=x f y 的图象,只须将函数)(x f y =的图象 ( )A .向左平移π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变B .向右平移π个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变D .向右平移π个单位,再把所有点的横坐标缩短到原来的21倍,纵坐标不变12.抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于 ( ) A .33B .34C .36D .38俯视图集美中学高三月考数学试题(文科)一、选择题答案:二、填空题:把答案填在题中的横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学(文)模拟试卷1.复数2ii 1z =-(i 为虚数单位)在复平面内对应的点所在象限为() 第二象限 B.第一象限 C.第四象限 D.第三象限2.已知命题p :0x ∀>,总有(1)1xx e +>,则p ⌝为( ) A .00x ∃≤,使得00(1)1x x e +≤ B .0x ∀>,总有(1)1x x e +≤ C .00x ∃>,使得00(1)1x x e+≤ D .0x ∀≤,总有(1)1x x e +≤3.已知集合{}{}21,0,1,2,3,20,A B x x x =-=->则A B =I () A .{3}= B.{2,3} C.{-1,3} D.{1,2,3}4.如下图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16π C. 32π D .64π5.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,4则输出v 的值为( ) A .399 B .100 C .25 D .66.要得到函数x x x f cos sin 2)(=的图象,只需将函数x x x g 22sin cos )(-=的图象( ) A .向左平移2π个单位 B .向右平移2π个单位 C .向左平移4π个单位D .向右平移4π个单位7.若变量x ,y 满足约束条件1021010x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩,则目标函数2z x y =+的最小值为( )A .4B .-1 C. -2 D .-38.在正方形内任取一点,则该点在此正方形的内切圆外的概率为( ) A .44π- B .4π C .34π- D .24π-9.三棱锥P ABC PA -⊥中,面ABC ,1,3AC BC AC BC PA ⊥===,,则该三棱锥外接球的表面积为 A .5π B .2πC .20πD .72π10.已知是等比数列,若,数列的前项和为,则为 ( )A .B .C .D .11.已知函数2log ,0,()1(),0,2x x x f x x >⎧⎪=⎨≤⎪⎩则((2))f f -等于( )A .2B .-2C .14D .-112.设双曲线22221(00)x y a b a b -=>>,的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则2e =( ) A .322+B .522- C .12+D .422-二.填空题13.已知平面向量a ,b 的夹角为23π,且||1=a ,||2=b ,若()(2)λ+⊥-a b a b ,则λ=_____. 14.曲线y =2ln x 在点(1,0)处的切线方程为__________.15.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点为F 1,F 2,3,过F 2的直线l 交椭圆C 于A ,B 两点.若1AF B ∆的周长为43C 的标准方程为 .16.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。

现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,x R ∃∈,()f a b =”; ②若函数()f x B ∈,则()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉;④若函数2()ln(2)1xf x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。

其中的真命题有____________。

(写出所有真命题的序号)。

三.解答题17.公差不为零的等差数列{n a }中,73=a ,又942,,a a a 成等比数列. (Ⅰ)求数列{n a }的通项公式.(Ⅱ)设n an b 2=,求数列{n b }的前n 项和n S .18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率。

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.19.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ;(3)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA20.已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.21.已知函数21()e xax x f x +-=.(1)求曲线()y f x =在点(0,-1)处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥. 22.在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为⎪⎩⎪⎨⎧=+-=,,2k m y m x (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ),M 为l 3与C 的交点,求M 的极径.试卷答案1.C2.C3.C4.C5.B6.D7.C8.A9.A10.C 11.A12.B13.314.y=2x–215.221 32x y+=因为离心率为,过的直线交于两点.若的周长为,所以,解得的方程为,故答案为.16.(1)(3) (4)正确所以,正确是有界函数,,有最大值,则综上,若无最大值时,;当时,当有最大值时,当时,由对勾函数知,且当上是奇函数在对正确类函数一定不是类函数是类函数,是若对误不是充分必要条件,错不是必要条件区间上在,如不一定有最大和最小值类函数即有界,则是若是充分条件类函数是有最大和最小值若对是充分必要条件,正确是必要条件使得,则若是充分条件使得则若对)4)(3)(1(.B∈)()(0)2-(1)2ln()(.)(∴R ∈)2ln(0≠]21,21-∈[)(0∴.],21,21-∈[12-∴]21,0(∈110,1),4(.)()(⇒)()(),3(∴∴)1,0()()(.)(⇒)(),2(∴.)(,∈∃,∈∀∈)(.∈)(⇒.)(,∈∃,∈∀),1(222x f x f a x x xx a x f x f x a y a x f a x x y x x x y x R x xy B x g x f B x g A x f x y x f B x f B x f x f b a f D a R b R x f R x f b a f D a R b =>+++=+===+=>+=>+=+===ΘΘ17.(Ⅰ)设公差为d (d 0≠) 由已知得:2111(3)()(8)a d a d a d +=++ ∴13d a =,又∵37a =,∴127a d +=解得:11,3,32n a d a n ==∴=- (Ⅱ)由(Ⅰ)得322n n b -=,因为3(1)2132282n n n n b b +-+-==(常数)∴数列{}n b 是以12b =为首项,以8为公比的等比数列,∴2(81)7nn S =- 18.解:(1)需求量不超过300瓶,即最高气温不高于C ο25,从表中可知有54天, ∴所求概率为539054==P . (2)Y 的可能值列表如下:低于C ο20:100445022506200-=⨯-⨯+⨯=y ;)25,20[:300445021506300=⨯-⨯+⨯=y ;不低于C ο25:900)46(450=-⨯=y∴Y 大于0的概率为519016902=+=P . 19.20.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2. 所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+.故MN 的中点为E (23422223,),m MN y m m ++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.21.解:(1)2(21)2()e xax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+. 令21()1e x g x x x +≥+-+,则1()21e x g x x +'≥++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.22.(1)直线的普通方程为(2)y k x =-直线的普通方程为2x ky =-+ 消去k 得 224x y -=,即C 的普通方程为224x y -=.(2)化为普通方程为x y +=联立224x y x y ⎧+=⎪⎨-=⎪⎩ 得22x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴222182544x y ρ=+=+=∴与C 的交点M。

相关文档
最新文档