勾股定理:直角三角形两直角边的平方和等于斜边的平方.

合集下载

勾股定理——精选推荐

勾股定理——精选推荐

勾股定理勾股定理勾股定理是数学⼏何中的⼀个定理,⼀般的表述为:直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅。

勾股定理是余弦定理的⼀个特例,约有400种证明⽅法。

古埃及⼈在4500年前建造⾦字塔和测量尼罗河泛滥后的⼟地时,就⼴泛地使⽤勾股定理。

古巴⽐伦(公元前1800到1600年)的数学家也提出许多勾股数组。

数学史上普遍认为最先证明这个定理的是毕达哥拉斯,所以很多数学书上把此定理称为毕达哥拉斯定理。

中国古代称直⾓三⾓形的直⾓边为勾和股,斜边为弦,故此定理称为勾股定理。

中⽂名勾股定理外⽂名Pythagoras theorem别称毕达哥拉斯定理表达式a2+b2=c2提出者商⾼毕达哥拉斯提出时间公元前约1000年应⽤学科数学⼏何适⽤领域范围数学适⽤领域范围物理等理⼯学科记载著作《⼏何原本》《九章算术》⽬录1公式2验证推导3定理推⼴逆定理推⼴定理4发展简史5定理意义1公式如果直⾓三⾓形的两条直⾓边长分别为,,斜边长为,那么。

2验证推导标准验证:该证明对切即为加菲尔德的梯形证明法如右图所⽰:⼤正⽅形的⾯积等于中间正⽅形的⾯积加上四个三⾓形∴∴∴图⽰3定理推⼴逆定理勾股定理的逆定理是判断三⾓形为钝⾓、锐⾓或直⾓的⼀个简单的⽅法,其中C为最长边:如果,则△ABC是直⾓三⾓形。

如果,则△ABC是锐⾓三⾓形。

(若⽆先前条件C为最长边,则仅满⾜∠C是锐⾓)如果,则△ABC是钝⾓三⾓形。

推⼴定理欧⼏⾥得在他的《⼏何原本》中给出了勾股定理的推⼴定理:“直⾓三⾓形斜边上的⼀个直边形,其⾯积为两直⾓边上两个与之相似的直边形⾯积之和”。

4发展简史编辑⼏个⽂明古国都先后研究过这条定理,远在公元前约三千年的古巴⽐伦⼈就知道和应⽤勾股定理,他们还知道许多勾股数组。

古埃及⼈在建筑宏伟的⾦字塔和尼罗河泛滥后测量⼟地时,也应⽤过勾股定理。

我国也是最早了解勾股定理的国家之⼀。

三千多年前,周朝数学家就提出“勾三、股四、弦五”,它被记载于《周髀算经》中。

勾股定理口诀顺口溜

勾股定理口诀顺口溜

勾股定理口诀顺口溜
勾股定理是初中数学中的一个重要知识点,它描述了直角三角形三边之间的关系。

为了帮助学生记忆勾股定理,可以编写一些口诀或顺口溜。

以下是一些常见的勾股定理口诀:
1. 直角三角形斜边长,平方等于两直角边长之和。

2. 勾股定理真神奇,三边关系要记牢。

a²+b²=c²,这是公式要牢记。

3. 直角三角形三条边,勾股定理来帮忙。

斜边平方等于两直角边平方和,这是公式要牢记。

4. 勾股定理不难记,两直角边的平方和等于斜边的平方。

5. 勾股定理好记性,两直角边的平方和等于斜边的平方。

这些口诀都比较简单易懂,可以帮助学生快速掌握勾股定理的公式和意义。

同时,在教学过程中,老师也可以通过举例、演示等方式加深学生对勾股定理的理解和应用能力。

勾股定理及锐角三角函数值

勾股定理及锐角三角函数值

中考数学20大专题—勾股定理及锐角三角函数值勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2+ b 2= c 2。

公式的变形:a 2= c 2- b 2, b 2= c 2-a 2。

如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2+ b 2= c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。

满足a 2+ b 2= c 2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。

【例1】如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.【例2】在直线上依次摆放着七个正方形(如图4所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_____________。

【例3】已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242c mB 、36 2c mC 、482c mD 、602c m【例4】已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15【例5】如图1所示,等腰中,,是底边上的高,若,求 ①AD 的长;②ΔABC 的面积.【例6】若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。

勾股定理及直角三角形的判定

勾股定理及直角三角形的判定

勾股定理及直角三角形的判定知识要点分析1、勾股定理如果直角三角形两直角边分别为a、b,斜边为c,那么一定有a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

2、勾股定理的验证勾股定理的证明方法很多,其中大多数是利用面积拼补的方法证明的。

我们也可将勾股定理理解为:以两条直角边分别为边长的两个正方形的面积之和等于以斜边为边长的正方形的面积。

因此,证明勾股定理的关键是想办法把以两条直角边分别为边长的两个正方形作等面积变形,使它能拼成以斜边为边长的正方形。

另外,用拼图的方法,并利用两种方法表示同一个图形的面积也常用来验证勾股定理。

3、如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形,此结论是勾股定理的逆定理(它与勾股定理的条件和结论正好相反)。

其作用是利用边的数量关系判定直角三角形,运用时必须在已知三角形三条边长的情况下。

我们还可以理解为:如果三角形两条短边的平方和等于最长边的平方,那么这个三角形是直角三角形,并且两条短边是直角边,最长边是斜边。

4、勾股数满足条件a2+b2=c2的三个正整数a、b、c称为勾股数。

友情提示:(1)3,4,5是勾股数,又是三个连续正整数,并不是所有三个连续正整数都是勾股数;(2)每组勾股数的相同倍数也是勾股数。

【典型例题】考点一:勾股定理例1:在△ABC中,∠C=90°,(1)若a=3,b=4,则c=__________;(2)若a=6,c=10,则b=__________;(3)若c=34,a:b=8:15,则a=________,b=_________.例2:已知三角形的两边长分别是3、4,如果这个三角形是直角三角形,求第三边的长。

解:考点二:勾股定理的验证例3:如图所示,图(1)是用硬纸板做成的两个直角三角形,两直角边的长分别是a和b,斜边长为c,图(2)是以c为直角边的等腰三角形。

请你开动脑筋,将它们拼成一个能证明勾股定理的图形。

初中数学勾股定理与四边形知识点总结

初中数学勾股定理与四边形知识点总结

勾股定理知识点回顾1、勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBAbacbac cabcaba bcc baE D CBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3、勾股定理的适用范围:只适用于直角三角形4、勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;当△ABC 是锐角三角形时,当△ABC 是钝角三角形时,②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7、勾股定理的应用在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8、勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在计算过程中,应用两短边的平方和与最长边的平方进行比较,切不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9、勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°DCBAADB CCB DA知识运用题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为DBAC21EDCBA例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积BAC题型三:实际问题中应用勾股定理例5如图,水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.例6.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例7.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例8.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例9.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =D CBA四边形知识点回顾知识一:多边形内角和与外角和1.n边形内角和为(n-2)180°,外角和为360°。

勾股定理与平方根的数学知识点

勾股定理与平方根的数学知识点

勾股定理与平方根的数学知识点一、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

我国古代把直角三角形中,较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

结论为:勾三股四弦五a2+b2=c21、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

2、满足a+b=c的3个正整数a、b、c称为勾股数。

(例如,3、4、5是一组勾股数)。

利用勾股数可以构造直角三角形。

二、平方根1、定义一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。

也就是说,如果x2=a,那么x就叫做a的平方根。

2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

3、求一个数a的平方根的运算,叫做开平方。

4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

例如:4的平方根是2,其中2叫做4的算术平方根,记作=2;2的平方根是其中2的算术平方根。

0只有一个平方根,0的平方根也叫做0的算术平方根,即三、立方根1、定义一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。

也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作,读作三次根号a。

2、求一个数a的立方根的运算,叫做开立方。

3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

四、实数1、无限不循环小数称为无理数。

2、有理数和无理数统称为实数。

3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

五、近似数与有效数字1、例如,本册数学课本约有100千字,这里100是一个近似似数。

2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

初二数学勾股定理知识点勾股定理在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。

直角三角形相似判定定理

直角三角形相似判定定理

直角三角形相似判定定理
一、定义法
如果两个直角三角形的三条边对应成比例,那么这两个直角三角形相似。

二、定理法
1.勾股定理:在直角三角形中,勾股定理表述了直角三角形的两条直角边的
平方和等于斜边的平方。

如果两个直角三角形的斜边相等,那么这两个直角三角形相似。

2.毕达哥拉斯定理:在直角三角形中,毕达哥拉斯定理表述了直角三角形的
两条直角边的平方和等于斜边的平方。

如果两个直角三角形的两条直角边对应相等,那么这两个直角三角形相似。

三、斜边中线法
在直角三角形中,斜边上的中线等于斜边的一半。

如果两个直角三角形的斜边中线对应相等,那么这两个直角三角形相似。

四、两锐角对应相等
如果两个直角三角形的两个锐角对应相等,那么这两个直角三角形相似。

五、夹边中线法
在直角三角形中,夹边上的中线等于夹边的一半。

如果两个直角三角形的夹边中线对应相等,那么这两个直角三角形相似。

六、两边对应成比例且夹角相等
如果两个直角三角形的两边对应成比例且夹角相等,那么这两个直角三角形相似。

七、两边对应成比例且夹边平行
如果两个直角三角形的两边对应成比例且夹边平行,那么这两个直角三角形相似。

八、两锐角对应相等且夹边平行
如果两个直角三角形的两锐角对应相等且夹边平行,那么这两个直角三角形相似。

九、两角对应相等且夹边平行
如果两个直角三角形的两角对应相等且夹边平行,那么这两个直角三角形相似。

勾股定理及其逆定理知识网络及典型例题解析

勾股定理及其逆定理知识网络及典型例题解析

勾股定理及其逆定理知识网络及典型例题解析【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系.【知识网络】【考点梳理】知识点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方(即:222a b c +=).【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方.2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法.用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:①已知直角三角形的任意两边长,求第三边,在ABC ∆中,90C ∠=︒,则22c a b +,22b c a -,22a c b =-; ②知道直角三角形一边,可得另外两边之间的数量关系;③可运用勾股定理解决一些实际问题.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形. 3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等;③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三、勾股定理与勾股定理逆定理的区别与联系1.区别:勾股定理是直角三角形的性质定理,能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解;而其逆定理是判定定理,能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.2.联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.【典型例题】 类型一、勾股定理及其逆定理的应用1.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是__________.【思路点拨】根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.【答案与解析】∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,∴CG=NG,CF=DG=NF,∴S1=(CG+DG) 2=CG 2+DG 2+2CG•DG,=GF 2+2CG•DG,S2=GF 2,S3=(NG-NF) 2=NG 2+NF 2-2NG•NF,∵S1+S2+S3=10=GF 2+2CG•DG+GF 2+NG 2+NF 2-2NG•NF,=3GF 2,∴S2=103.【总结升华】此题主要考查了勾股定理的应用,根据已知得出S1+S2+S3=10=GF 2+2CG•DG+GF 2+NG 2+ NF 2-2NG•NF=3GF 2是解决问题的关键.【变式】若△ABC三边a、b、c 满足 a+b+c+338=10a+24b+26c,△ABC是直角三角形吗?为什么?【答案】∵a+b+c+338=10a+24b+26c∴a+b+c+338-10a-24b-26c =0(a-10a+25)+(b-24b+144)+(c-26c+169)=0即∵∴a=5,b=12,c=13又∵a+b=c=169,∴△ABC是直角三角形.2.如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,连AM.(1)求证:BE=CF;(2)求证:BE⊥CF;(3)求∠AMC的度数.【思路点拨】(1)求出∠BAE=∠CAF,根据SAS推出△CAF≌△BAE即可;(2)根据全等得出∠ABE=∠ACF,求出∠ABO+∠BOA=∠COM+∠ACF=90°,求出∠CMO=90°即可;(3)作AG⊥BE于G,AH⊥CF于H,证全等得出AG=AH,得出正方形,求出∠AMG,即可求出答案.【答案与解析】证明:(1)∵∠BAC=∠EAF=90°,∴∠BAC+∠CAE=∠FAE+∠CAE,∴∠BAE=∠CAF,在△CAF和△BAE中∴△CAF≌△BAE,∴BE=CF.(2)证明:∵△CAF≌△BAE,∴∠ABE=∠ACF,∵∠BAC=90°,∴∠ABO+∠BOA=90°,∵∠BOA=∠COM,∴∠COM+∠ACF=90°,∴∠CMO=180°﹣90°=90°,∴BE⊥CF.(3)解:过点A分别作AG⊥BE于G,AH⊥CF于H,则∠AGB=∠AHC=90°,在△AGB和△AHC中∴△AGB≌△AHC,∴AG=AH,∵AG⊥BE,AH⊥FC,BE⊥CF,∴∠AGM=∠GMH=∠AHM=90°,∴四边形AHMG是正方形,∴∠GMH=90°,∠AMG=∠HMG=45°,∴∠AMC=90°+45°=135°.【总结升华】本题考查了全等三角形的性质和判定,正方形的性质和判定的应用,主要考查学生的推理能力.举一反三:【变式】如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A. 8B. 8.8C. 9.8D. 10【答案】C.类型二、勾股定理及其逆定理与其他知识的结合应用3.(1)如图①,正方形ABCD①中,点E、F分别在边BC、CD上,∠E AF=45°,延长CD到点C,使DG=BE,连结EF、AG,求证:EF=FG;(2)如图②,在△ABC中,∠BAC=90°,点M、N在边BC上,且∠MAN=45°,若BM=1,AB=AC,CN=3,求MN的长.【思路点拨】(1)欲证明EF=FG,只需证得△FAE≌△GAF,利用该全等三角形的对应边相等证得结论;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【答案与解析】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,∵在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=.【总结升华】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,解题的关键是正确的作出辅助线构造全等三角形.4.如图,ABCD是一张边AB长为2,边AD长为1的矩形纸片,沿过点B的折痕将A角翻折,使得点A落在边CD上的点A′处,折痕交边AD于点E.(1)求∠DA′E的大小;(2)求△A′BE的面积.【思路点拨】(1)先根据图形翻折变换的性质得出Rt△ABE≌Rt△A′BE,再根据直角三角形的性质可得出∠DA′E 的度数;(2)设AE=x,则ED=1﹣x,A′E=x,在Rt△A′DE中,利用sin∠DA′E=可求出x的值,在根据Rt△A′BE中,A′B=AB,利用三角形的面积公式即可求解.【答案与解析】(1)∵△A′BE是△ABE翻折而成,∴Rt△ABE≌Rt△A′BE,∴在Rt△A′BC中,A′B=2,BC=1得,∠BA′C=30°,又∵∠BA′E=90°,∴∠DA′E=60°;(2)解法1:设AE=x,则ED=1-x,A′E=x,在Rt△A′DE中,sin∠DA′E=,即=,得x=4-23,在Rt△A′BE中,A′E=4﹣23,A′B=AB=2,∴S△A′BE=×2×(4﹣33解法2:在Rt△A′BC中,A′B=2,BC=1,得3∴A′D=23,设AE=x,则ED=1-x,A′E=x,在Rt△A′DE中,A′D2+DE2=A′E2,即(2-3)2+(1﹣x)2=x2,得x=4-23,在Rt△A′BE中,A′E=4-23,A′B=AB=2,∴S△A′BE=×2×(4-23)=4-23.【总结升华】本题考查的是图形的翻折变换,涉及到勾股定理及矩形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.举一反三:【变式】如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A. 6B. 7C. 8D. 9【答案】D.5 .如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。

勾股定理和三角函数之间有什么关系

勾股定理和三角函数之间有什么关系

勾股定理和三角函数之间有什么关系勾股定理和三角函数之间存在密切的关系。

首先,勾股定理是一个基本的几何定理,它指出在一个直角三角形中,直角边的平方和等于斜边的平方。

这个定理可以用数学公式表示为:a² + b² = c²,其中a和b 是直角三角形的两条直角边,c是斜边。

而三角函数则是一组描述角度和边长关系的函数,包括正弦、余弦和正切等。

在直角三角形中,三角函数可以用来表示角度和边长之间的关系。

例如,正弦函数sin(θ)表示对边a与斜边c的比值,即sin(θ) = a/c;余弦函数cos(θ)表示邻边b与斜边c的比值,即cos(θ) = b/c;正切函数tan(θ)表示对边a与邻边b的比值,即tan(θ) = a/b。

通过观察可以发现,勾股定理中的公式a² + b² = c²实际上可以转化为三角函数的形式。

将a/c和b/c分别用sin(θ)和cos(θ)表示,可以得到sin²(θ) + cos²(θ) = 1。

这正是三角函数的基本恒等式之一,也是勾股定理和三角函数之间关系的体现。

此外,三角函数还可以通过积分和微分等数学运算与勾股定理建立更深入的联系。

例如,通过对三角函数的积分,可以得到与勾股定理相关的面积公式,如直角三角形的面积公式S = 1/2 * a * b = 1/2 * c * sin(θ) * cos(θ)。

这些公式进一步体现了勾股定理和三角函数之间的紧密关系。

综上所述,勾股定理和三角函数之间存在密切的关系。

勾股定理的公式可以转化为三角函数的形式,而三角函数也可以通过积分和微分等数学运算与勾股定理建立更深入的联系。

这种关系不仅在数学理论中有重要意义,也在实际应用中得到了广泛的应用。

勾股定理与正方形的关系

勾股定理与正方形的关系

勾股定理与正方形的关系勾股定理是数学中的一种基本定理,描述了直角三角形三边之间的关系。

而正方形是一种特殊的四边形,具有特定的性质和特征。

本文将探讨勾股定理与正方形之间的关系,并阐述它们之间的联系和应用。

一、勾股定理的定义和应用勾股定理是古希腊数学家毕达哥拉斯提出的一个重要定理,表达为:直角三角形的两条直角边的平方和等于斜边的平方。

在直角三角形ABC中,设直角边分别为AB、BC,斜边为AC。

根据勾股定理可得:AB² + BC² = AC²勾股定理在解决各种几何问题时起到了重要作用。

例如,在测量角度时,可以利用勾股定理计算相应的边长。

二、正方形的定义和特性正方形是一种特殊的四边形,具有以下特征和性质:1. 四条边相等,且相邻两边互相平行;2. 所有角均为90度;3. 对角线相等且垂直于彼此。

正方形在几何学中有广泛的应用,常见于城市规划、建筑设计等领域。

三、勾股定理与正方形的关系正方形可以看作是一个特殊的长方形,而长方形可以看作是两个相等直角三角形的组合。

因此,我们可以利用勾股定理来探讨正方形的性质。

在一个正方形中,设边长为a,则正方形的对角线长度为a√2。

设对角线为d,根据勾股定理可得:AB² + BC² = AC²即 a² + a² = d²化简得 2a² = d²通过上述推导可知,正方形的对角线长度与边长之间存在着特定的数学关系,即对角线的长度等于边长乘以√2。

这个关系可以用勾股定理来证明和应用。

四、勾股定理与正方形的应用举例1. 在建筑设计中,我们常常需要计算正方形墙体的对角线长度,以便确定材料的需要和加固结构的必要性。

2. 在城市规划中,正方形的基底广场或者街道交叉口常常需要使用勾股定理来确保布局的准确性。

3. 在图像处理和计算机图形学中,勾股定理可以用来计算正方形图像的对角线长度,以确定图像的显示和处理比例。

勾股定理及经典例题

勾股定理及经典例题

一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。

满足222a b c +=的三个正整数称为勾股数。

练习题:1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm (B )8 cm (C )10 cm (D )12 cm2. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )643.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )13几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) A B CD 几何表达式举例: (1) ∵AD 平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD 是角平分线2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)A BC D 几何表达式举例: (1) ∵AD 是三角形的中线 ∴ BD = CD (2) ∵ BD = CD ∴AD 是三角形的中线E A B C D从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图)ABC D(1) ∵AD 是ΔABC 的高 ∴∠ADB=90° (2) ∵∠ADB=90° ∴AD 是ΔABC 的高※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)AB C几何表达式举例: (1) ∵AB+BC >AC ∴……………(2) ∵ AB-BC <AC ∴……………5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图) A B C几何表达式举例: (1) ∵ΔABC 是等腰三角形 ∴ AB = AC (2) ∵AB = AC∴ΔABC 是等腰三角形6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图) A BC几何表达式举例:(1)∵ΔABC 是等边三角形∴AB=BC=AC (2) ∵AB=BC=AC∴ΔABC 是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角.(1) (2) (3)(4)几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴………………… 8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图)A B C几何表达式举例: (1) ∵∠C=90° ∴ΔABC 是直角三角形 (2) ∵ΔABC 是直角三角形∴∠C=90° D AB C A B C AB C两条直角边相等的直角三角形叫等腰直角三角形.(如图) AB C(1) ∵∠C=90° CA=CB ∴ΔABC 是等腰直角三角形 (2) ∵ΔABC 是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1) ∵ΔABC ≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC ≌ΔEFG∴∠A=∠E ……… 11.全等三角形的判定: “SAS ”“ASA ”“AAS ”“SSS ”“HL ”. (如图) (1)(2) (3) 几何表达式举例: (1) ∵ AB = EF ∵ ∠B=∠F 又∵ BC = FG ∴ΔABC ≌ΔEFG(2) ………………(3)在Rt ΔABC 和Rt ΔEFG中 ∵ AB=EF又∵ AC = EG ∴Rt ΔABC ≌Rt ΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相等;(如图) (2)到角的两边距离相等的点在角平分线上.(如图)A O BC DE 几何表达式举例: (1)∵OC 平分∠AOB 又∵CD ⊥OA CE ⊥OB ∴ CD = CE (2) ∵CD ⊥OA CE ⊥OB又∵CD = CE∴OC 是角平分线 13.线段垂直平分线的定义: 垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图) A B E FO 几何表达式举例: (1) ∵EF 垂直平分AB ∴EF ⊥AB OA=OB (2) ∵EF ⊥AB OA=OB ∴EF 是AB 的垂直平分线A B C G EFA B C G E FA B C E F G14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)A BCMNP几何表达式举例:(1) ∵MN是线段AB的垂直平分线∴PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都是60°.(如图)AB C(1)AB CD(2)AB C(3)几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形是等边三角形;(如图)(3)有一个角等于60°的等腰三角形是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)AB C(1)AB C(2)(3)ABC(4)几何表达式举例:(1) ∵∠B=∠C∴AB = AC(2) ∵∠A=∠B=∠C∴ΔABC是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC是等边三角形(4) ∵∠C=90°∠B=30°∴AC =21AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AEEFMOABCNG18.勾股定理及逆定理:(1)直角三角形的两直角边a 、b 的平方和等于斜边c 的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)ABC几何表达式举例:(1) ∵ΔABC 是直角三角形∴a2+b2=c2 (2) ∵a2+b2=c2∴ΔABC 是直角三角形19.Rt Δ斜边中线定理及逆定理: (1)直角三角形中,斜边上的中线是斜边的一半;(如图) (2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)DA BC几何表达式举例:∵ΔABC 是直角三角形 ∵D 是AB 的中点∴CD = 21AB(2) ∵CD=AD=BD∴ΔABC 是直角三角形练习题:一、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

“勾股定理”必考点

“勾股定理”必考点

01勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方02勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理☞常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证.03勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形04勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题05勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若,时,以a,b,c为三边的三角形是钝角三角形;若,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边.③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形06勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。

初中数学 如何使用勾股定理计算一个直角三角形的另一个直角边长度

初中数学 如何使用勾股定理计算一个直角三角形的另一个直角边长度

初中数学如何使用勾股定理计算一个直角三角形的另一个直角边长度使用勾股定理计算一个直角三角形的另一个直角边长度的步骤如下:步骤1:确定已知条件。

在计算另一个直角边长度之前,我们需要确定已知的直角边长度和斜边长度。

假设已知直角边的长度为a或b,并且斜边的长度为c。

步骤2:应用勾股定理。

根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

因此,我们可以使用以下数学表达式:c² = a² + b²或者a² = c² - b²或者b² = c² - a²其中,c表示斜边的长度,a和b表示直角边的长度。

步骤3:代入已知条件并计算。

将已知的斜边长度和另一条直角边长度代入勾股定理的数学表达式中,然后进行计算。

举例说明:假设直角三角形的斜边长度为5,已知另一条直角边的长度为4。

按照步骤2,我们可以应用勾股定理的数学表达式得到:b² = 5² - 4²b² = 25 - 16b² = 9通过计算,我们得到b的平方等于9。

接下来,我们可以计算b的值。

由于b为直角边的长度,我们需要求b的平方根,即:b = √9b = 3因此,这个直角三角形的另一条直角边长度为3。

需要注意的是,计算另一个直角边长度时,确保斜边的长度和另一条直角边的长度单位一致,以避免计算错误。

如果直角边的长度不是整数,我们可以使用计算器或数学软件来进行准确的计算。

综上所述,使用勾股定理计算直角三角形的另一个直角边长度的步骤包括确定已知条件、应用勾股定理的数学表达式,并进行计算。

通过这些步骤,我们可以求解直角三角形另一个直角边的长度。

直角三角形的边长关系

直角三角形的边长关系

直角三角形的边长关系直角三角形是一种特殊的三角形,其中一个角度为90度,被称为直角。

直角三角形的边长关系是指三条边之间的关系,即勾股定理。

勾股定理是数学中的重要定理,它描述了直角三角形的边长之间的数学关系。

本文将详细介绍直角三角形的边长关系及其应用。

一、勾股定理勾股定理是直角三角形中最常用的定理之一,描述了直角三角形的两个直角边(两个与直角相邻的边)的平方和等于斜边(与直角不相邻的边)的平方。

勾股定理可以用数学公式表示如下:c² = a² + b²其中,a和b代表两个直角边的长度,c代表斜边的长度。

例如,如果直角三角形的一条直角边长为3,另一条直角边长为4,则斜边的长度可以通过勾股定理计算得出:c² = 3² + 4²= 9 + 16= 25开平方根得到c的长度为5。

勾股定理可以应用于求解直角三角形中的任意一条边长,只需已知另外两条边长即可。

二、特殊直角三角形在直角三角形中,存在一些特殊的边长关系。

最常见的特殊直角三角形是3-4-5三角形。

这种三角形的两条直角边分别为3和4,斜边的长度为5。

3-4-5三角形是勾股定理的一个特例。

还有一些其他的特殊直角三角形,如5-12-13三角形、8-15-17三角形等,它们的边长满足勾股定理。

特殊直角三角形在几何学中有着重要的应用,可以用于简化计算和推导其他平面几何问题。

三、推导直角三角形的边长关系直角三角形的边长关系可以通过勾股定理的推导得出。

假设直角三角形的两条直角边的长度分别为a和b,斜边的长度为c。

我们可以利用平方的性质来进行推导。

根据勾股定理,有 c² = a² + b²。

将a²和b²拆分为其因式,得到 c² = (a+b)(a-b)。

再进一步拆分为 (a+b)² - 2ab = (a-b)²。

化简得到 (a+b)² - (a-b)² = 2ab。

勾股定理证法

勾股定理证法

勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。

方法•1/16证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。

∵Rt△HAE≌Rt△EB F∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形由于上图中的四个直角三角形全等,易得四边形ABCD为正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴(a+b)^2=4•(1/2)•ab+c^2,整理得a^2+b^2=c^2•2/16证法二(课本的证明):如上图所示两个边长为a+b的正方形面积相等,所以a^2+b^2+4•(1/2)•ab=c^2+4•(1/2)•ab,故a^2+b^2=c^2。

•3/16证法三(赵爽弦图证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。

易得四边形ABCD和四边形EFGH都是正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴c^2=4•(1/2)•ab+(b-a)^2 ,整理得a^2+b^2=c^2•4/16证法四(总统证明):如下图所示。

易得△CDE为等腰直角三角形∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积∴1/2•(a+b)•(a+b)=2•(1/2)•ab+(1/2)•c^2,整理得a^2+b^2=c^2•5/16证法五(梅文鼎证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使DEF在同一直线上,过C点作CI垂直于DF,交DF于I点。

易得四边形ABEG、四边形CBDI、四边形FGHI都为正方形。

∴多边形EGHCB的面积=正方形ABEG的面积-两个直角三角形的面积且多边形EGHCB的面积=正方形CBDI的面积+正方形FGHI的面积-两个直角三角形的面积∴正方形ABEG的面积=正方形CBDI的面积+正方形FGHI的面积∴c²=a²+b²•6/16证法六(项明达证明):以a、b为直角边,以c为斜边做两个全等的三角形,做一个边长为c的正方形,按下图所示相拼,使E、A、C在同一条直线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档