电路分析基础复习提纲
电路分析期末复习提纲
《电路分析AI》总复习第一章电路分析的基本概念1、电流、电压、电位、功率的基本概念2、R欧姆定理3、电压源、电流源特性4、KCL、KVL方程,广义KCL、广义KVL、路径法▲5、▲观察法第二章电路的等效分析1、等效电阻(串联、并联、混联、平衡电桥、对称星三角转换、等电位分析法)2、▲实际的压流源等效互换3、输入电阻求法,▲含受控源的伏安法4、运放计算第三章电路分析的规范方法1、支路电流法,万能方法2、▲网孔电流法,含电流源支路的网孔法,含受控源3、▲回路电流法,含电流源越多越适用(一个方程求解的例题),含受控源4、▲节点电压法,含理想电压源的节点电压法,含受控源第四章电路分析的重要定理1、▲叠加定理,含受控源的叠加定理(求R0时,伏安法,开短路法)2、替代定理3、▲戴维南定理,含受控源的戴维南定理,诺顿定理4、最大功率传输定理(注意直流和第七章正弦电路最大功率传输定理的区别)5、▲互易定理第六章正弦电路的基本概念1、瞬时值、有效值、最大值、频率、初相等基本概念2、相量的表示法,代数式和极坐标式相互转换(计算器)3、KCL、KVL的相量形式4、R、L、C元件的伏安关系的相量形式第七章正弦稳态电路的分析1、阻抗Z,导纳Y概念2、▲正弦电路解析法3、▲正弦电路相量图法4、▲正弦电路功率P、Q、S,功率因素λ,功率因素的提高5、▲正弦最大功率传输定理(共轭匹配,模匹配)第八章耦合电感和变压器电路1、耦合电感,同名端,V AR2、去耦等效1)受控源模式2)串联、一点相连、并联3、空芯变压器计算4、▲理想变压器计算,理想变压器阻抗变换作用及最大功率传输问题5、▲全耦合变压器计算。
电路基础分析课程期末复习要点
电路基础分析课程期末复习要点第一章电路的基本概念和定律1、掌握电压、电流、电功率等物理量及电压、电流参考方向的基本概念。
会计算元件的功率。
2、掌握KCL、KVL和元件VCR关系式的含义,深刻理解这两类约束是分析电路的基本依据。
第二章简单电阻电路分析1、掌握两个串联电阻的分压公式和两个并联电阻的分流公式,并用于电路计算。
2、掌握电阻串、并、混联和独立电压源串联、独立电流源并联的等效变换。
3、掌握两种电源电路模型的相互等效变换,并用于含源单口网络的化简。
第三章网孔分析法和结点分析法1、掌握结点分析法和网孔分析法,能熟练用结点分析法分析计算含受控源的电路。
第四章网络定理1、掌握叠加定理、戴维宁定理和最大功率传输定理,并用于电路计算。
2、会进行简单含源单口网络的等效化简。
第五章多端元件和双口网络1、理解理想变压器的性质和表征参数,掌握理想变压器两侧端口电压、电流和阻抗的变换方程。
会分析计算含理想变压器的简单电路。
2、理解双口网络Z、Y、H参数方程及概念。
第六章动态电路的时域分析1、掌握L、C元件电压与电流的关系式u(t) = Ldi/dt, i(t) = Cdu/dt和电路发生转换时L中电流、C 上电压不能突变的概念:i L(0+) = i L(0-) , uc (0+) = uc(0-) 。
2、掌握一阶电路零输入响应、零状态响应、完全响应和稳态响应、暂态响应的概念及其相应表达式。
会判断RLC二阶电路零输入响应的性质(欠阻尼、过阻尼、临界阻尼等)。
3、掌握一阶电路三要素法的解题方法和步骤,会用三要素法分析计算RL和RC动态电路。
第七章正弦稳态分析1、掌握表征正弦量的三要素,有效值电压(电流)与其幅值的关系。
2、掌握两同频正弦量相位差及相位超前与滞后的概念。
3、掌握基尔霍夫定理和R、L、C元件VCR关系式的相量形式及阻抗的概念。
4、掌握正弦稳态电路相量模型的画法。
5、掌握一般正弦稳态电路的相量分析方法,尤其会用网孔分析法分析计算正弦稳态电路。
电路基础复习提纲
一、填空题1、不论是电能的传输和转换,还是信号的传递和处理,其中电源或信号源的电压或电流,被称为激励,而激励在电路各部分产生的电压和电流称为响应。
2、KCL是电流连续性原理的体现,KVL则是电位单值性原理的反映。
3、对一个实际电源来说,当没有电流流过,内部没有电能消耗时,其电动势和端电压必定是大小相等,方向相反。
4、对于线性电阻元件,若它的电阻为无穷大,则当电压是有限值时,其电流总是零,这时就把它称为“开路”;若它的电导为无限大,则当电流是有限值时,其端电压总是零,这时就把它称为“短路”。
5、各种电器设备或元器件的电压、电流及功率都规定一个限额,这个限额就称为电器设备的额定值,包括额定电压、额定电流和额定功率。
6、电气设备可能有三种运行状态:当电气设备电压、电流和功率的实际值小于额定值时,称电气设备为欠载运行状态;当电气设备电压、电流和功率的实际值大于额定值时,称电气设备为过载运行状态;当电气设备电压、电流和功率的实际值等于额定值时,称电气设备为满载运行状态。
7、电路中,若某元件开路,则流过它的电流必为零。
8、电感元件也是一种储能元件,某一时刻t的储能只取决于电感L及这一时刻电感的电流值,并与其中电流的平方成正比。
电感元件具有“阻交流、通直流”或“阻高频、通低频”的特性。
9、在线性电路叠加定理分析中,不作用的独立电压源应将其短路。
10、实际电压源的电路模型是理想电压源与电阻串联的组合。
11、正弦交流电的三要素是振幅,频率,初相位。
12在正弦交流电路中,电感电压的相位前电流相位90 。
13、星形连接的三相电源,每一相相电压为220V,则线电压为380V 。
14、工程上凡是谈到周期电压和电流或电动势时,若无特殊说明,都是指有效值。
在交流测量仪表上指示的电压或电流都是有效值,在分析各种电子器件的击穿电压或电气设备绝缘耐压时,要按最大值考虑。
15、电路根据其基本功能可以分为两类,第一类是用来实现电能的传递和转换。
电路分析基础复习提纲
《电路分析基础》复习提纲和练习题第一章:重点知识:关联参考方向、吸收提供功率的计算、节点KCL和回路KVL方程的熟练灵活应用(广义节点的KCL、假想闭合回路的KVL)关联参考方向及对应的欧姆定律关联参考方向(U=RI)非关联参考方向(U=-RI)吸收和提供功率的计算P = UI(关联参考方向)P>0 吸收功率P = -UI P<0 提供功率1、求图示电路中所标的未知量U a=10V I b=-1A I c=1AI d=-1A U e=-10V I f=-1A2、求电流ii+ -u uA5)2(3=--=i3、图1-3电路中,已知i 1=4A ,i 2=7A ,i 4=10A ,i 5=-2A ,则i 3=__3A_, i 6=___9A__。
142536A i 1i 4i 3i 2i 5i 6BCA Dda bc 2A图1-3 图1-44、图1-4电路中,已知元件A 提供功率100W ,其它3个元件B 、C 、D 吸收功率分别为20W 、30W 和50W 。
则U ab =__50V__, U bc =__-40V____, U cd =__15V__, U da =___-25V_。
5、定向图和各支路电流如图1-5所示,求 i 1、i 2、i 3、i 4、i 5 。
6A4A2A2Ai 1i 2i 3i 4i 5(-6A 、4A 、2A 、2A 、-2A)图1-56、电路图如图1-6所示,求U cd 、U be (U cd = -9V U be = -11V )图1-67、电路图如图1-7所示,求电压 u(u =-15V ) 图1-75+-V+- ?=u -+V10-+V208、电路图如图1-8所示,已知Us 1=10V 、Us 2=4V 、Us 3=20V 、R 1=2 、R 2=4 、R 3=5 、求开路电压U ab 。
(-12V )图1-89、求图示电流i 和电压u-++-4V 5Vi =?3Ω-++4V 5V1A+-u =?3Ω10、图1-10电路中,电流I =__2A__,受控源吸收的功率为 P 吸收 =___-20W_。
电路分析基础提纲
课程内容半导体器件的基本知识以半导体器件为核心组成的各种分立元件电子电路的工作原理,特点和基本分析方法及由分立元件构成基本任务:信号的产生、传输、处理第1章 绪论第一阶段,20世纪20年代开始出现的以电第二阶段,1947年贝尔实验室的布拉丁等第三阶段,1958年,世界上利用单晶硅材第四阶段,20世纪70年代集成电路从小规定义:电子系统指有若干相互连接、相互1.3.2.1什么是信号1.3.2.2模拟信号和数字信号1.3.2.3信号源及其等效电路1.3.2.4信号的频谱半导体中的载流子及其导电机理PN结的原理和特性半导体二极管、双极型晶体管和场效应管二极管的应用电路2.1.1半导体及其特性2.1.2本征半导体具有晶体结构的纯净2.1.3杂质半导体为了提高半导1.N型半导体2.P型半导体2.1.4PN结 2.1.4.1PN结的形成2.4.1.2PN结的单向导2.2.1二极管的及结构、类型及符号2.2.2二极管的伏安特性及主要的性能参数第二章 半导体器件基础(1)稳定电压:是二极管正常(2)稳定电流:实际中稳压管(3)最大稳定电流(4)最大允许耗散功率(5)动态电阻(6)电压温度系数:<6为负,2.3.2.1半导体能带结构2.3.2.2发光二极管及其工作原1.整流电路2.开关电路3.限幅电路4.继电器驱动管保护电路5.自动电平控制电路2.5.2双极型晶体管的工作原理1.放大交流信2.内部载流子运动过3.电流分配关系1.输入特性曲线2.输出特性曲线1.电流放大倍数2.极间反向电流3.极限参数2.6.1N沟道结构场效应管的结构2.6.1.1N沟道2.6.2.2N沟道结构场2.6.2.1N沟道增强型2.6.2.2N沟道耗尽型2.7.1FET的主要参数1.直流参数2.7.2FET的特点 2.交流参数3.极限参数2.7.3场效应管的简单测试方法2.7.4MOS场效应管使用注意事项第3章 晶体管放大电路基础 3.1放大电路的基本概念 3.1.1放大器的基本概念3.1.2放大器的主要性能指标3.2放大电路及其基本分析方法3.2.1晶体管放大电路的3钟组态3.2.2共发射极放大电路的组成3.2.3共发射极放大电路的分析3.3放大电路静态工作点的稳定3.3.1温度对放大电路静态工作点3.3.2分压偏置式共发射极放大电路3.4共集电极和共基极放大电路3.4.1共集电极放大电路3.4.2共基极放大电路3.5多级放大电路 3.5.1多级放大电路的级间耦合1.多级放大电3.5.2多级放大电路的分析和计算3.6放大电路的频率响应 3.6.1频率响应基本概念3.6.2BJT的高频小信号混合π型4..1.1功率放大电路的特点和要求4.1功率放大器的特殊问题4.1.2提高功率放大电路效率的主要途径4.2.1无输出电容的双电源互补对称功率放大电路第四章 功率放大器 4.2一类互补对称功率放大电路4.2.2功率参数分析 1.输出功率P02.管耗Pt1,Pt23.直流电源提供的功率PE4.效率η5.功率管的选择4.2.3无输出变压器的单电源互补对称功率放大电路4.3甲乙类互补对称功率放大电路 4.3.1乙类功放的交越失真4.3.2消除交越失真的措施4.3.3具有推动级的单电源甲乙类互补对称4.3.4采用复合管的单电源甲乙类准互补对4.4集成功率放大器件及其应用4.4.1TA2006集成功率放大器简介4.4.2TDA2006集成功放的典型应用2.单电源应3.BTL应用1)电路结构与元器件参数具有对称性2)用有源器件代替无源器件5.1集成电路的特点3)采用复合结构的电路4)外界分立元件少5)极间采用直接耦合的方式,并利用二极管进行温5.2电流源电路 5.2.1镜像电流源5.2.2比例电流源5.2.3微电流源第5章 集成运算放大器 5.2.4改进型电流源5.3差分放大电路 5.3.1直接耦合多级放大电路的零点漂移问题5.3.2差分放大电路的组成原理5.3.2.1电路5.3.2.2零点漂移的抑5.3.2.3改进型差分放5.3.3差分放大电路的静态分析5.3.4差分放大电路动态分析 5.3.4.1差模输入5.3.4.2共模输入5.3.4.3比较输入5.3.4.4单端输入的差5.3.5带恒流源的差分放大电路5.3.6差分放大电路的应用举例——感应式测5.4集成运放的组成原理和主要技术参数 5.4.1集成运算放大器的组成5.4.2集成运放的主要技5.4.3理想运放的特点及答疑伍舜德楼302方法及由分立元件构成的简单电子电路的设计方法平时成绩:30%(作业10%,设计作品10%,实验考勤10%)术,在20世纪得以高速发展并广泛应用。
电路基础复习大纲
UZI
23
(五)正弦交流电路中基ຫໍສະໝຸດ 霍夫定律的相量形式 IK 0
U K 0(或 Z K I K = E X)
将直流电路的规律扩展到正弦交流电路中进行分析计算的方法是: 将直流电路中的E、U、I、R分别用交流电路中的 将直流电路中的代数运算用交流电路中的复数运算代替。 来代替。
8
(五)理想电路元件及伏安特性 1.理想电路元件分类
储能元件(电感、电容) 理想电 路元件 无源元件 有源元件 耗能元件(电阻) 理想电压源 理想电流源 2.伏安特性 在电压和电流的参考方向一致的条件下,电 阻元件、电感元件、电容元件的伏安特性是:
u Ri
di u L dt
du iC dt
5
(三)电路的状态 有3种状态 开路 短路 有载
1.开路
即电源开路,这时电流为零,电源端电压等于 理想电压源的电压US,电路不消耗功率。 2.短路 短路通常是一种事故,这时电源端电压为零, 短路电流IS=E/R0,电路功率全部消耗在电源内 阻上。
6
3.有载
是电路的一般工作状态,这时电源发出的功率 减去内阻消耗的功率等于外电路上消耗的功率。 4.额定值 是制造厂为了使产品能在给定的工作条件下正 常运行而规定的允许值。电气设备和元器件在额 定状态下工作是最合理的。 (四)基尔霍夫定律 基尔霍夫电流定律 基尔霍夫电压定律
3.某电源单独作用时,将其他理想电压源短路,其他理想电流源开路,而电 源的内阻均须保留。
14
(四) 戴维宁定理
1.内容:将有源二端线性网络等效为电压源模型的方法,叫做戴维宁定 理。
2.任何一个有源二端线性网络都可以用一个由电压US的理想电压源和内 阻R0相串联的电压源模型来等效代替。此理想电压源电压US等于有源二端 网络的开路电压,内阻R0等于有源二端网络中所有电源均除去后所得到的 无源二端网络的等效内阻。
电路分析基础 总复习
《电路分析基础》总复习第一章基本知识及基本定律1.电压、电流定义;真实方向,参考方向;关联与非关联参考;吸收功率计算=p ui吸(关联),=-p ui吸(非关联);吸收功率正负的含义。
2. 理想电压源和理想电流源特性。
KCL及KVL及其应用。
单口网络端口V AR列写。
3. 受控源特性。
受控源与独立源的区别。
3. 两类约束关系为拓扑结构约束(KVL,KCL)和元件特性约束。
二者相互独立:拓扑结构约束与元件特性无关,元件特性约束与拓扑结构无关。
第二章等效变换分析法1. 单口网络等效条件:端口伏安关系相同。
等效指对外电路等效,对内部一般不等效。
2. 额定电压、额定电流、额定功率概念;电阻串、并联等效、分压分流公式、电阻功率计算,纯电阻网络等效电阻求取。
3. 含源单口网络等效化简法。
包括:○1实际电源两种模型(串联模型和并联模型)之间的等效变换,○2与理想电压源直接并联的二端网络(元件)对外视为不起作用;○3与理想电流源直接串联的二端网络(元件)对外视为不起作用。
4、单口网络等效电阻求取方法。
(1)外加激励法求等效电阻i i iU R I =。
(内部独立源先置零:电压源视为短路,电流源视为开路,受控源不置零)(2)开路短路法:oc o scU R I = 5. *电源转移法、 T~π变换(此部分了解)第三章 线性网络一般分析法及网络定理1. 独立节点数和独立回路数:n 个节点b 条支路的连通电路,可以建立的独立的KCL 方程数目为n -1个,独立回路的KVL 方程数目为b-(n -1)个。
2. 节点电位分析法(1)基本情况: n s s=G U I (2)含受控源时:先当独立源看待按常规法列方程,再补充控制量与节点电位关系。
(3)含无伴理想电压源时:法一:引入无伴电压源支路电流x I ;补充该支路两节点电位约束关系法二:以无伴电压源一端为参考节点,另一端电位直接可得。
3. 回路(网孔)电流分析法(1)基本情况: l ss =RI U(2)含受控源时:先当独立源看待按常规法列方程,再补充控制量与回路电流关系。
电路知识点提纲
电路复习第一章电路模型和电路定律一.电流和电压的参考方向1 电流、电压的参考方向如何表示2 什么是关联、非关联参考方向二电路吸收、发出功率的判断三电阻元件的VCR1 关联参考方向时的VCR2 非关联参考方向时的VCR3 电阻和电导的关系及各自的单位4 电阻功率表达式(关联和非关联两种)5 电阻的开路和短路(在什么情况下看作开路,在什么时候看作短路)四理想电压源、电流源1 认识对应的电路符号2 基本性质3 各自功率五受控源1 电路符号2 四种类型及与独立源的区别六KCL KVL定律的内容及应用第二章电阻电路的等效变换一电阻的串、并联1 电阻串、并联公式2 串联分压公式、并联分流公式3 串、并联电路总功率4 会求串、并联电路的等效电阻二理想电压源和电流源的串、并联三实际电压源和电流源的等效互换1会画等效之后的电路2 会求等效电路的参数(利用等效条件来求)四输入电阻第三章一会求独立回路的个数二会用网孔电流法列回路方程三会用结点电压法列结点方程第四章一叠加定理1 定理内容2 应用叠加定理时,不作用的独立源怎么处理、受控源怎么处理?二戴维宁定理和诺顿定理(重点戴维宁)1 定理内容2 会画戴维宁、诺顿等效电路3 会求Uoc、Req、Isc三最大功率传输定理1 定理内容2 满足最大功率传输时的条件3 最大功率表达式第六章一电容电感的性质二电容电感的VCR关系(关联和非关联两种)三在直流电路里,电感、电容等效为什么?四电感、电容储存的能量公式第七章一一阶电路1 换路定律2会根据换路定律求初始条件3 会区分零输入响应、零状态响应及全响应4 会画t=0-、t=0+、t= 时对应的电路,并根据相应的电路求该时刻的参数值。
5 掌握三要素法会用三要素法求零输入、零状态、全响应二二阶电路1 会列电路方程2 会求初始值3 会列特征方程并求特征根4 会根据特征根判断电路状态(临界阻尼、过阻尼、欠阻尼?)第八章一正弦量1掌握正弦量的时域表达形式2 会判断两个同频信号相位超前、滞后关系3 会正确计算两个正弦量的相位差二电流电压有效值和最大值的关系三向量法1 会用向量的形式来表示正弦量(会在时域和向量形式之间变换)2 同频正弦量的加减运算变为对应相量的加减运算。
电路分析基础复习提纲
电路分析基础复习提纲任务1 电路的基本概念和基本定律1.1电路和电路模型1.2电流、电压的参考方向及功率1.3电路的基本定律1.4电阻元件1.5独立电源思考与练习1:填空题、选择题任务2 线性电路的分析方法2.1 电路的等效变换2.3 实际电源的等效变化2.4 支路分析法2.5 网孔分析法及回路分析法2.6 节点分析法2.7 线性电路的叠加性与叠加定理2.8 戴维南定理和诺顿定理2.9 最大功率传输定理思考与练习2填空题:1、2、15判断题:1-17计算题:10、13、15、16任务3 动态元件及分析3.1 电容元件3.2 电感元件思考与练习3 填空题、判断题任务5 单相正弦交流电路5.1 正弦交流电压与电流5.2 正弦量的向量表示法5.3 电路基本定律的向量形式思考与练习5填空题:1-9判断题:1-10计算题:1复习题:1、用节点电压法求图3所示电路中各支路的电流。
10V2ΩΩU图3解:具有两个独立节点的节点电压方程的一般形式为1111221121122222s s G U G U I G U G U I +=⎧⎨+=⎩ 其中自电导11111222G S =++=,22111 1.544G S =++=互电导12211G G S ==-111052s I A ==,221234s I A == 带入方程解得,U 1=5.25V ,U 2=5.5V所以支路电流11102.3752U I A -==- 12 2.6252UI A ==1230.251U U I A -==-24 1.3754UI A ==2512 1.6254U I A -==-2、 已知图4电路中,U S1=19V ,U S2=12V ,U S3=6V ,R 1=3Ω,R 2=2Ω,R 3=3Ω,R 4=6Ω,R 5=2Ω,R 6=1Ω,求各支路电流。
U S1U S2I 1I 2图4解:三个网孔电路的网孔方程的一般形式为111122133112112222332231132233333m m m s m m m s m m m s R I R I R I U R I R I R I U R I R I R I U++=⎧⎪++=⎨⎪++=⎩ 其中自电阻1114636110R R R R =++=++=Ω,222562215R R R R =++=++=Ω,3334536211R R R R =++=++=Ω互电阻122161R R R ==-=-Ω,133146R R R ==-=-Ω,233252R R R ==-=-Ω U S11=19V ,U S22=-12V ,U S3=6V带入方程解得,I m1=3A, I m2=-1A, I m3=2A 所以支路电流113m I I A ==,221m I I A =-=,332m I I A ==,413321m m I I I A =-=-=, 523123m m I I I A =-=--=-,612314m m I I I A =-=+=。
《电路分析基础》课程复习大纲
《电路分析基础》课程学习资料继续教育学院《电路分析基础》课程复习大纲一、考试要求本课程是一门专业基础课,要求学生在学完本课程后,能够牢固掌握本课程的基本知识,并具有应用所学知识说明和处理实际问题的能力。
据此,本课程的考试着重基本知识考查和应用能力考查两个方面,包括识记、理解、应用三个层次。
各层次含义如下:识记:指学习后应当记住的内容,包括基本概念、基本定律等。
这是最低层次的要求。
理解:指在识记的基础上,全面把握基本概念、基本定律、基本分析方法,并能表达其基本内容和基本原理,能够分析和说明相关问题的区别与联系。
这是较高层次的要求。
应用:指能够用学习过的知识分析、计算涉及一两个知识点或多个知识点的电路问题,包括简单应用和综合应用。
二、考试方式闭卷笔试,时间120分钟三、考试题型(例如)●选择题:15%●填空题:15%●分析计算题:70%四、参考教材1、电路基础,北京理工大学出版社,主编:吴青萍 ISBN 978-7-5640-1127—7五、复习样题一.选择题1.电路如图所示,开关S 从断开状态合上以后,电路中物理量的变化情况是( )A .I 增加B .U 下降C .I 1减少D .I 不变2.直流电路如图所示,电流I 应等于( )A .1AB .3AC .4AD .7A3.设60W 和100W 的电灯在220V 电压下工作时的电阻分别为R 1和R 2,则R 1和R 2的关系为( )A .R 1>R 2B .R 1=R 2C .R 1<R 2D .不能确定4.一个由线性电阻构成的电器,从220V 的电源上吸取1000W 的功率,若将此电器接到110V 的电源上,则吸取的功率为( )A .250WB .500WC .1000WD .2000W5.图示电路中,Ω=5R ,A ,B 两点间的电压AB U 值为( )A .-15VB .-5VC .10VD .15V6.图示电路中的电流I 为( )A .0AB .1AC .2AD .4A7.图示电路中电压U 为( )A .-22VB .-2VC .2VD .22V8.下列电路中,符合方程E IR U +-=的电路是( )A .B .C .D .9.电阻并联时,各个电阻上的电流与其电阻值成( )A .正比B .反比C .无关D .平方10.电阻串联时,各个电阻上的电压与其电阻值成( )A .正比B .反比C .无关D .平方11.图示电路中,调节增大电阻2R ,流过电压源的电流将( )A .变大B .变小C .不变D .为零12.图示电路中,如果增大电阻1R ,则电流表○A 的读数( )A .减小B .不变C .增大D .不定13.图示电路中已知电阻Ω==Ω=10,5321R R R ,则AB 两端的等效电阻为() A .Ω5 B .Ω10 C .Ω15 D .Ω2014.当电压源两端开路时,该电压源内部( )A .有电流,有功率损耗B .有电流,无功率损耗C .无电流,有功率损耗D .无电流,无功率损耗15.当电流源两端开路时,该电流源内部( )A .有电流,有功率损耗B .有电流,无功率损耗C .无电流,有功率损耗D .无电流,无功率损耗16.电路中V 3=U ,当滑动端A 上下滑动时,A 点电位的最大值和最小值分别是()A .1V ,0VB .1.5V ,1VC .2V ,1VD .3V ,2V17.图示电路中,电流I 的值为( )A .-4AB .-2AC .2AD .4A18.图示电路中,电流3I 的值为( )A .-3AB .1AC .2AD .3A19.图示电路中的电流I 为( )A .-3AB .1AC .2AD .3A20.图示电路中,当开关S 闭合时,A 点的电位为( )A .-12VB .-6VC .0VD .6V21.图示电路中,A 点电位为( )A .10VB .14VC .18VD .20V22.图示电路中,A 点的电位为( )A .V 6-B .V 5.1C .V 3D .V 5.1-23.图示电路中,A 点的电位A V 应是( )A .-30VB .-20VC .-10VD .10V24.电路中某点的电位是指该点到电路中参考点之间的( )A .电流B .功率C .电压D .电阻25.理想电流源的外接电阻逐渐增大,则它的端电压( )A .逐渐升高B .逐渐降低C .先升高后降低D .恒定不变26.图示电路,对外电路来说可以等效为( )A .理想电压源E 与电阻R 串联B .理想电压源EC .理想电流源S I 与电阻R 并联D .理想电流源S I27.已知白炽灯A 和B 的额定电压相等,但A 的电阻值大于B 的电阻值。
《电路分析基础》复习大纲
《电路分析基础》复习大纲课程的基本内容及要求(一)电路模型和电路定律(1)掌握电压、电流及其参考方向的概念,关联和非关联参考方向的概念;(2)掌握电阻元件,电压源、电流源和受控源的伏安关系,欧姆定律,功率的计算及实际功率的判别方法;(3)掌握基尔霍夫电流定律和基尔霍夫电压定律。
常考点:关联非关联参考方向,功率计算;基尔霍夫定律(二)电阻电路的等效变换(1)理解并掌握等效与等效变换的概念、Y-Δ之间的等效变换;(2)理解并掌握实际电源的两种模型及其等效变换;(3)掌握输入电阻的概念及计算。
常考点:电阻电路的等效变换及等效电路的化简、分压、分流公式;实际电压源、电流源的等效互换。
输入电阻(含受控源)的计算。
(三)电阻电路的一般分析(1)结点、网孔、回路、支路概念;(2)树枝、连枝概念。
(3)支路电流法;(4)回路(网孔)电流法;(5)结点电压法。
常考点:结点、支路、网孔数量,树枝、连枝数量。
支路电流法计算回路(网孔)电流法计算结点电压法计算。
(四)电路定理(1)叠加定理;(2)戴维宁定理(3)最大功率传输定理。
常考点:叠加定理计算戴维宁定理及最大功率传输定理。
(五)含有运算放大器的电阻电路(1)运算放大器的特点、应用、两个典型特性;(2)简单比例电路的分析及含有运算放大器的电路分析。
常考点:集成运算放大器的理想化条件含负反馈运算电路的两个典型特性(虚短、虚断)(六)储能元件电容、电感动态储能元件的特性及电压电流关系。
常考点:电容、电感的储能计算电容电感元件,利用电压电流关系式,已知电压(电流)求电流(电压)。
(七)一阶电路的时域分析(1)电路的初始条件,换路原理;(2)RC、RL电路的零输入响应,零状态响应;(3)一阶动态电路全响应,时间常数;三要素法;常考点:全响应构成(零输入、零状态及含义)(暂态+稳态),三要素法(初始值、稳态值、时间常数)计算。
(八)相量法1.课程教学内容(1)复数和复变量的表示方法,(2)正弦量的三要素,有效值和相位差的概念;(3)电路定律的相量表示法。
电路基础复习提纲
电路基础 复习提纲一、直流电路部分1、 掌握电路的基本变量(电压、电流、电位、功率等)及参考方向的概念;掌握线性电阻、电容、电感元件的伏安特性及其与参考方向的关系,熟悉元件的储能性质(电阻耗能,电容电感储能)。
2、掌握功率的基本表达式及功率性质(提供、吸收)的判断方法;能够根据给定电路(电路给定的参数、标出的电压电流参考方向)计算出电路的电压、电流、功率。
3、掌握KCL 、KVL ,能熟练的结合参考方向列KCL 、KVL 方程求解电路的电流和电压。
4、牢记电阻串联分压、并联分流公式;掌握复杂的电阻混联(串并联)电路的化简方法。
5、熟练进行电压源模型和电流源模型之间的等效变换。
6、重点掌握戴维南定理的含义和解题步骤,能应用戴维南定理熟练的分析求解电路中的电流电压以及负载获得最大功率的条件。
(了解诺顿定理)7、能够熟练应用叠加定理求解电路的电压、电流。
8、重点掌握换路定律、初始值、时间常数的计算,了解零输入、零状态、全响应含义,掌握一阶电路的三要素法。
二、交流电路部分1、 熟悉正弦交流电的三要素(周期、频率、初相)之间的关系;相位差;有效值和平均值。
2、 掌握相量的四种表示方式及互相转换,正弦量的相量表示方法。
3、 掌握电阻、电容、电感元件的电压电流之间的瞬时值、相量、有效值的关系。
功率、储能。
4、 重点掌握RLC 串并联电路(多阻抗串并联电路)复阻抗、各电压、电流等的计算,相量图的画法;正弦交流电路中负载获得最大功率的条件。
5、 掌握三相电源的对称性,三相电源和三相负载的不同连接方式(星形、三角形联接)以及各自的特点(星形是三相四线制;三角形是三相三线制);负载对称(相等)时各相电流和线电流对称。
电路元件:无源元件:电阻、电容、 电感 有源元件:电压源、电流源 分流公式:I 1=⎪ ⎩ ⎪⎨ ⎧ < > = 吸收(消耗)功率为p ,输出(提供功率为-P ) 吸收(消耗)功率为p0 0 ) ( ) ( ) ( t i t u t p =0 不吸收(消耗)功率R 2R 1+ R 2I I 2= R 1 R 1+R 2 I 负载的最大功率:P Lmax= U 2OC 4R o 电容的功率和储能:t u C u ui p d d ⋅== ①当电容充电, p >0, 电容吸收功率。
大学电路复习提纲-(适用于工科学生的复习)
应用戴维宁定理和诺顿定理必须注意,在移去待求支 路即对电路进行分割时,受控源和控制量应划分在同 一网络中。
4.4 最大功率传输定理
A
i
+ u
负
–载
R0 i
+
Uoc
RL
–
一个实际电源模型(Uo、Ro)向负载RL传输能量,当且 仅当RL= Ro时,才可获最大功率Pmax。
Pmax
u2 oc
4 Req
适用场合:RL可调,R0一定的场合
第2章 电阻电路的等效变换
两个二端电路,端口具有相同的电压、电流关 系,则称它们是等效的电路。
B
+ iu
等效
-
+
C iu
-
对A电路中的电流、电压和功率而言,满足:
B
A
C
A
注意:对外等效,对内不等效 A中的电压、电流和功率不变(B和C内部不等效) 1.电阻的串、并联 2. 电阻的Y-变换
Y的变换条件:
2. 电路模型
3.含有理想运算放 大器的电路分析
输入电阻
+
uRi
u+
-
输出电阻
+
Ro
+
uo
_ A(u+-u-)
-
①根据理想运放的性质,抓住以下两条规则: (a)倒向端和非倒向端的输入电流均为零 [ “虚断(路)”]; (b)对于公共端(地),倒向输入端的电压与 非倒向输入端的电压相等 [ “虚短(路)”]。
注意:换路瞬间电容可视为一个电压值为U0的电压源 电感可视为一个电流值为I0的电流源
求初始值的步骤:
1)由换路前电路(稳定状态)求uC(0-)和iL(0-); 2)由换路定律得 uC(0+) 和 iL(0+)。
电路分析基础复习提纲
电路分析基础复习提纲
1. 电路基本概念
a. 电路的定义
b. 电路元件的分类
c. 电路的基本参数
2. 电路定律
a. 基尔霍夫电压定律
b. 基尔霍夫电流定律
c. 电阻定律
3. 串联电路和并联电路
a. 串联电路的特点和计算方法
b. 并联电路的特点和计算方法
c. 串并联电路的混合计算
4. 电阻网络分析
a. 等效电阻的计算方法
b. 电压分压和电流分流定律
c. 电阻网络的简化方法
5. 电源和负载
a. 电源的类型和特点
c. 电源和负载的匹配问题
6. 电流、电压和功率
a. 电流的定义和计算方法
b. 电压的定义和计算方法
c. 功率的定义和计算方法
7. 电路分析方法
a. 网孔分析法
b. 节点电压分析法
c. 超节点分析法
8. 交流电路分析
a. 交流电路的基本概念
b. 交流电路的复数表示
c. 交流电路的频率响应
9. 电感和电容
a. 电感的特点和计算方法
b. 电容的特点和计算方法
c. 电感和电容的串并联组合
10. 非线性元件
b. 可变电阻的特点和分析方法
c. 可变电容的特点和分析方法
11. 受控源和受控器件
a. 受控源的特点和分析方法
b. 受控器件的特点和分析方法
c. 受控源和受控器件的应用
12. 电路分析工具
a. 电路摹拟软件的使用
b. 实验仪器的使用
c. 电路设计和调试技巧
以上是电路分析基础的复习提纲,可以根据提纲逐个进行复习和总结,加深对电路分析基础知识的理解和掌握。
电路分析基础复习提纲
d ()d ()()()()d d q t u t q t C u t i t C t t=⋅⇒==第一章1. 参考电压和参考电流的表示方法。
(1)电流参考方向的两种表示:A )用箭头表示:箭头的指向为电流的参考方向。
(图中标出箭头)B )用双下标表示:如 i AB , 电流的参考方向由A 指向B 。
(图中标出A 、B )(2) 参考电压方向: 即电压假定的正方向,通常用一个箭头、“+”、”-”极性或“双下标”表示。
(3)电路中两点间的电压降就等于这两点的电位差,即U ab = V a - V b 2. 关联参考方向和非关联参考方向的定义若二端元件上的电压的参考方向与电流的参考方向一致(即参考电流从参考电压的正极流向负极),则称之为关联参考方向。
否则为非关联参考方向。
3. 关联参考方向和非关联参考方向下功率的计算公式:(1)u, i 取关联参考方向:p = u i (2)u, i 取非关联参考方向:p =- ui按此方法,如果计算结果p>0,表示元件吸收功率或消耗功率;p<0,表示发出功率或产生功率。
关联参考方向和非关联参考方向下欧姆定律的表达式:(1)电压与电流取关联参考方向: u = Ri (2)电压与电流取非关联参考方向: u =–Ri 。
4.电容元件 (1)伏安特性(2)两端的电压与与电路对电容的充电过去状况有关(3)关联参考方向下电容元件吸收的功率 (4)电容元件的功率与储能d ()()()()()d C u t p t u t i t C u t t=⋅=⋅21()d d ()2C C W p t t C u u C u t ==⋅=⋅⎰⎰5.电感元件(1)电感元件的电压-电流关系——伏安特性(2)电感两端的电压与流过的电流无关,而与电流的变化率成正比(3)电感元件的功率与储能6.实际电压源随着输出电流的增大,端电压将下降,可以用理想电压源U S 和一个内阻R 0串联来等效。
完整版)电路分析基础知识归纳
完整版)电路分析基础知识归纳电路分析基础》知识归纳一、基本概念电路是若干电气设备或器件按照一定方式组合起来,构成电流的通路。
电路功能一是实现电能的传输、分配和转换;二是实现信号的传递与处理。
集数电路近似实际电路需满足的条件是实际电路的几何尺寸l(长度)远小于电路正常工作频率所对应的电磁波的波长λ,即l。
电流的方向是正电荷运动的方向。
关联参考方向是电流的参考方向与电压降的参考方向一致。
支路由一个电路元件或多个电路元件串联构成电路的一个分支。
节点是电路中三条或三条以上支路连接点。
回路是电路中由若干支路构成的任一闭合路径。
网孔是对于平面电路而言,其内部不包含支路的回路。
拓扑约束是电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。
理想电压源是一个二端元件,其端电压为一恒定值US(直流电压源)或是一定的时间t),与流过它的电流(端电流)无关。
函数uS。
理想电流源是一个二端元件,其输出电流为一恒定值IS(直流电流源)或是一定的时间t),与端电压无关。
函数iS。
激励是以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。
响应是经过电路传输处理后的输出信号叫做响应信号,简称响应。
受控源在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它支路的电压或电流的控制。
受控源的四种类型是电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源。
电位是单位正电荷处在一定位置上所具有的电场能量之值。
在电力工程中,通常选大地为参考点,认为大地的电位为零。
电路中某点的电位就是该点对参考点的电压。
单口电路是对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。
单口电路等效是如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同,则这两个单口电路对端口以外的电路而言是等效的,可进行互换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
解 (1) 由图可见, R1与R2为串联,R3与R4也为串联。由分 由图可见, 为串联, 也为串联。 压公式可求得 uac=R2us/ (R1+R2) =6 V ubc=R4 us/ (R3+R4 ) =4V 所以, 间的电压 所以, ab间的电压 uab= uuc+ ubc= uac- ubc=2 V
2
第2章电阻电路的一般分析方法
1、拓扑图与电路方程 、 2、2b和b法 、 和 法 3、回路法和网孔法 、
3
第3章常用的电路定理
1、叠加定理和齐次定理 、 2、戴维南定理与诺顿定理 、 3、最大功率传输定理 、
4
第4章动态电路时域分析
1、动态电路的方程 、 2、一阶电路的全响应(三要素法) 、一阶电路的全响应(三要素法)
36
37
38
所示RL串联电路。已知R=50Ω, L=25µH, us(t)=10cos106tV。 所示 串联电路。已知 。 串联电路 求电流i(t),并画出相量图。 求电流 ,并画出相量图。
39
40
41
42
43
13
解如图是含流控电压源的电路。 解如图是含流控电压源的电路。 可以求得控制电流
6 I1 = = 0.5 12
从而受控源的端电压u2=4i1=2 V。于是未知电流 从而受控源的端电压 。
u2 = 0.5 ix = 5
14
如下图所示的电路。 如下图所示的电路。 (1) 求ab两点间的电压 ab; 两点间的电压u 两点间的电压
16
电路中,已知R 图示 电路中,已知 1=15Ω,R2=1.5Ω,R3=1Ω, us1=15V,us2 , , , =4.5V, us3=9V。 求电压 ab及各电源产生的功率。 。 求电压u 及各电源产生的功率。
17
18
19
20
21
22
23
24
25
如图所示电路,求电压 和电流i 如图所示电路,求电压uab和电流 1。
将i3代入 4的表达式, 得 代入i 的表达式, i4 =- i3 + i6 =-4+2=-2 A
8
如下图所示电路,已知 如下图所示电路,已知u1=10 V, u2 =-2 V, u3 =3 V, u7 =2 , , , V。 求u5 、 u6和ucd。 。
9
解由图可见 u5 =ubc=uba+uac=- u1 + u3 =-7 V 由于u 路径, 由于 6 =uad,沿a、 b、 e、 d路径,得 沿 、 、 、 路径 u6 = uad +ube+ued= u6+ u2- u7=6 V ucd=uca+ uad=- u3+ u6=3 V
根据KVL,电流源的端口电压 , 根据 U=RI+ US =R IS + US =5 V 由于IS与其端口电压U为非关联参考方向, 故电流源产生 由于 与其端口电压 为非关联参考方向, 为非关联参考方向 的功率 PIS =U IS =5 W
12
如下图所示的电路, 如下图所示的电路, 求ix。
电路分析
第一章 电路的基本概念与定律
自动化学院 彭义 Pengyi_23@
第1章电路的基本概念与定律
1、电路变量参考方向 、 2、欧姆定律 、 3、理想电流与电压源 、 4、基尔霍夫定律(KCL与KVL) 、基尔霍夫定律( 与 ) 5、电阻的串并联等效 、 6、受控源及含受控源电路的等效 、
30
31
对图所示电路,求电压u。 对图所示电路,求电压 。
32
33
如图所示电路, 若负载R 可以任意改变, 如图所示电路 , 若负载 L 可以任意改变 , 问负载为何值时 其上获得的功率为最大? 其上获得的功率为最大 并求出此时负载上得到的最大功率 pLmax。
34
35
如图所示电路, 时开关 闭合,闭合前电路处于稳定。 时开关S闭合 如图所示电路,t=0时开关 闭合,闭合前电路处于稳定。 时的电感电流i 求t>0时的电感电流 L。 时的电感电流
26
27
如图所示电路,含有一受控源,求电流 电压u。 如图所示电路,含有一受控源,求电流i, 电压 。
28
ቤተ መጻሕፍቲ ባይዱ 29
图所示电路,负载电阻R 可以改变, 其上的电流i; 图所示电路 , 负载电阻 L可以改变 , 求 RL=1Ω其上的电流 ; 其上的电流 改变为6Ω, 再求电流i。 若RL改变为 , 再求电流 。
5
第5章正弦稳态电路分析
1、正弦电流和电压的相量表示 、 2、电路定律的相量形式 、 3、相量分析法 、
6
如下图所示的电路,已知 如下图所示的电路,已知i1 =-5A, i2 =1A, i6 =2 A, 求i4 。 , , ,
解为求得i 对于节点b,根据KCL有- i3 – i4 + i6 =0,即 解为求得 4 ,对于节点 ,根据 有 , i4 =- i3 + i6 为求出i 可利用节点a, 为求出 3 ,可利用节点 ,由KCL有i1 + i2 + i3 =0, 有 i3=- i1 - i2 =-(-5)-1=4 A 即
10
如下图,求电压源产生的功率和电流源产生的功率。 如下图,求电压源产生的功率和电流源产生的功率。
11
解由图可见, 根据电流源的定义, 电流I=IS=1A, 它也是通过 解由图可见 , 根据电流源的定义 , 电流 , 电压源的电流。 由于U 为关联参考方向, 电压源的电流 。 由于 S 与 I为关联参考方向 , 故电压源吸收的 为关联参考方向 功率P=USI=2W,它发出(或产生)的功率 功率 ,它发出(或产生)的功率-2W。或者, 因u与 。或者, 与 i为非关联参考方向时,乘积 i表示发出功率,所以电压源 S产 为非关联参考方向时, 为非关联参考方向时 乘积u 表示发出功率,所以电压源U 生的功率 PUS=US (-I)=US(-IS)=-2 W