电路基础分析知识点整理
电路基础知识点总结

1、独立电源:分为电压源和电流源 独立电源即可以对外提供能量,也可以从外电路吸 收能量; 理想电压源内阻为0,理想电流源内阻无穷大; 实际电压源等效于理想电压源US与内阻RS串联;实 际电流源等效于理想电流源IS与内阻RS并联; 两种实际电源模型之间可以相互等效变换。
《电路分析》总结
《电路分析》总结
5、电阻电路的分析方法:戴维南定理 任何一个线性有源二端网络对外电路而言,与一个独立 电压源和一个线性电阻串联的电路等效; 等效电压源的电压UOC等于有源二端网络的开路电压; 串联电阻RO等于有源二端网络中所有独立电源为0值时 的端口等效电阻;或采用外加电源法:即在两端口处外
《模拟电子技术》总结
3、共发射极放大电路 静态分析。 采用微变等效电路进行动态分析; 理解输入电阻与输出电阻代表的含义。 工作点稳定电路分析。 三种组态放大电路比较。
《模拟电子技术》总结
4、多级放大电路 三种耦合方式,前后级之间的关系。 零点漂移、以及消除零点漂移的方法; 多级放大电路的分析,特别注意放大倍数的计算。 理解频率特性概念。
加一个电压U,求的端口电流为I,等效电阻为RO=U/I。
《电路分析》总结
6、受控源 受控源的输出电压或电流受电路中其他地方的电压或电 流控制; 应用叠加定理时,受控源不能单独作用于电路,并且当 其他独立源单独作用时,受控源要保留在电路中; 应用戴维南定理时,受控源和控制量不能分开,要在同 一网络中;求等效电阻RO时,要保留受控源,可采用 外加电源法求RO 。
2、基尔霍夫定律:分为KCL、KVL KCL:任一瞬间,流入任一结点的电流代数和恒为 0;可推广应用于任一闭合封闭面; KVL:任一瞬间,沿着任一闭合回路绕行一周,所 有电压降代数和恒为0;可推广应用于任一开口电 路。 列基尔霍夫方程时,注意电压和电流的参考方向是 否关联;
(完整版)电路分析基础知识归纳

《电路分析基础》知识归纳一、基本概念1.电路:若干电气设备或器件按照一定方式组合起来,构成电流的通路。
2.电路功能:一是实现电能的传输、分配和转换;二是实现信号的传递与处理。
3.集总参数电路近似实际电路需满足的条件:实际电路的几何尺寸l(长度)远小于电路正常工作频率所对应的电磁波的波长λ,即l 。
4.电流的方向:正电荷运动的方向。
5.关联参考方向:电流的参考方向与电压降的参考方向一致。
6.支路:由一个电路元件或多个电路元件串联构成电路的一个分支。
7.节点:电路中三条或三条以上支路连接点。
8.回路:电路中由若干支路构成的任一闭合路径。
9.网孔:对于平面电路而言,其内部不包含支路的回路。
10.拓扑约束:电路中所有连接在同一节点的各支路电流之间要受到基尔霍夫电流定律的约束,任一回路的各支路(元件)电压之间要受到基尔霍夫电压定律约束,这种约束关系与电路元件的特性无关,只取决于元件的互联方式。
U(直流电压源)或是一定的时间11.理想电压源:是一个二端元件,其端电压为一恒定值Su t,与流过它的电流(端电流)无关。
函数()S12.理想电流源是一个二端元件,其输出电流为一恒定值I(直流电流源)或是一定的时间Si t,与端电压无关。
函数()S13.激励:以电压或电流形式向电路输入的能量或信号称为激励信号,简称为激励。
14.响应:经过电路传输处理后的输出信号叫做响应信号,简称响应。
15.受控源:在电子电路中,电源的电压或电流不由其自身决定,而是受到同一电路中其它支路的电压或电流的控制。
16.受控源的四种类型:电压控制电压源、电压控制电流源、电流控制电压源、电流控制电流源。
17.电位:单位正电荷处在一定位置上所具有的电场能量之值。
在电力工程中,通常选大地为参考点,认为大地的电位为零。
电路中某点的电位就是该点对参考点的电压。
18.单口电路:对外只有两个端钮的电路,进出这两个端钮的电流为同一电流。
19.单口电路等效:如果一个单口电路N1和另一个单口电路N2端口的伏安关系完全相同,则这两个单口电路对端口以外的电路而言是等效的,可进行互换。
电路分析基础

电路分析基础电路分析是电气工程中的重要基础知识,它涉及电路元件、电流、电压等方面的理论和计算。
通过电路分析,我们可以了解电路的性质和特点,为电路的设计与故障排除提供基础。
一、电路基本概念1. 电路:由电源、电路元件以及导线等组成的闭合路径,用于电流的传输与控制。
2. 电源:提供电流与电压的装置,如电池、发电机等。
3. 电路元件:用于改变电流与电压的元件,如电阻、电容、电感等。
二、基本电路定律1. 欧姆定律:描述电流、电压和电阻之间的关系,其数学表达式为V=IR,其中V为电压,I为电流,R为电阻。
2. 基尔霍夫定律:分为基尔霍夫电流定律和基尔霍夫电压定律。
前者表示在电路节点处,进入和离开该节点的电流之和为零;后者表示在闭合回路中,电压的代数和为零。
三、电路分析方法1. 等效电路法:将复杂电路化简为等效电路,通过替换与合并元件简化分析过程。
2. 串并联法:将电路中的元件按照串联和并联的方式组合,简化电路分析。
3. 特定电路分析法:对于特定类型的电路,可以采用特定的分析方法,例如交流电路中的复数法、矩阵法等。
四、常见电路元件1. 电阻:用于限制电流的元件,单位为欧姆,常用于控制电流大小。
2. 电容:用于储存电荷的元件,单位为法拉,常用于滤波与储能。
3. 电感:用于储存磁能的元件,单位为亨利,常用于电磁感应与频率选择性。
4. 二极管:一种具有单向导电性质的元件,常用于整流和开关。
5. 晶体管:一种电子器件,具有放大和开关功能,常用于电子电路中。
五、电路分析实例以下是一个简单的电路分析实例:假设有一个由电压源(V)和电阻(R1、R2、R3)串联而成的电路,如图所示。
\[示意图]我们可以根据欧姆定律和基尔霍夫定律来分析该电路。
首先,根据欧姆定律,我们可以得到以下公式:\[V = I \cdot R_1\]\[V = I \cdot R_2 + I \cdot R_3\]接下来,我们可以根据基尔霍夫定律,得到以下公式:\[I = \frac{V}{R_1}\]\[I \cdot R_2 + I \cdot R_3 = V\]将上述两个公式代入前面的欧姆定律公式中,可以得到:\[\frac{V}{R_1} \cdot R_2 + \frac{V}{R_1} \cdot R_3 = V\]整理得到:\[\frac{R_2 \cdot R_3}{R_1} = 1\]通过这样的分析,我们可以获得电路中各个元件之间的关系,为电路设计和故障排除提供参考。
(完整版)电路分析基础知识点概要(仅供参考)

电路分析基础知识点概要请同学们注意:复习时不需要做很多题,但是在做题时,一定要把相关的知识点联系起来进行整理复习,参看以下内容:1、书上的例题2、课件上的例题3、各章布置的作业题4、测试题第1、2、3章电阻电路分析1、功率P的计算、功率守恒:一个完整电路,电源提供的功率和电阻吸收的功率相等关联参考方向:ui=P-P=;非关联参考方向:ui<P吸收功率0P提供(产生)功率>注意:若计算出功率P=-20W,则可以说,吸收-20W功率,或提供20W功率2、网孔分析法的应用:理论依据---KVL和支路的VCR关系1)标出网孔电流的变量符号和参考方向,且参考方向一致;2)按标准形式列写方程:自电阻为正,互电阻为负;等式右边是顺着网孔方向电压(包括电压源、电流源、受控源提供的电压)升的代数和。
3)特殊情况:①有电流源支路:电流源处于网孔边界:设网孔电流=±电流源值电流源处于网孔之间:增设电流源的端电压u并增补方程②有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程3、节点分析法的应用:理论依据---KCL和支路的伏安关系1)选择参考节点,对其余的独立节点编号;2)按标准形式列写方程:自电导为正,互电导为负;等式右边是流入节点的电流(包括电流源、电压源、受控源提供的电流)的代数和。
3)特殊情况:①与电流源串联的电阻不参与电导的组成;②有电压源支路:位于独立节点与参考节点之间:设节点电压=±电压源值位于两个独立节点之间:增设流过电压源的电流i 并增补方程③有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程4、求取无源单口网络的输入电阻i R (注:含受控源,外施电源法,端口处电压与电流关联参考方向时,iu R i =) 5、叠加原理的应用当一个独立电源单独作用时,其它的独立电源应置零,即:独立电压源用短路代替,独立电流源用开路代替;但受控源要保留。
注意:每个独立源单独作用时,要画出相应的电路图;计算功率时用叠加后的电压或电流变量求取。
电路基础知识总结(精华版)

电路知识总结(精简)1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.全电路欧姆定律:U=E-RI4.负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二.基尔霍夫定律1.几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2)表达式:i进总和=0或: i进=i出(3)可以推广到一个闭合面。
3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2)表达式:1或: 2或: 3(3)基尔霍夫电压定律可以推广到一个非闭合回路三.电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。
称为接地。
(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。
(5)注意电源的简化画法。
四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2)理想电压源不允许短路。
2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
理想电流源的输出功率可达无穷大。
(2)理想电流源不允许开路。
3.理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。
电学基础必会知识点总结

电学基础必会知识点总结一、电路理论1. 电路基本概念电路是由电流源、电阻、电感和电容等元件组成的。
其中,电流源是提供电路中电流的源泉,电阻是阻碍电流通过的元件,电感是存储电能的元件,电容是存储电荷的元件。
电路中的元件通过导线互相连接构成电路的拓扑结构。
2. 电压、电流、电阻和功率电压是电路中的电势差,是指单位电荷在电路中的两点之间所具有的电势能。
电流是电荷在电路中的流动,是单位时间内通过电路横截面的电荷量。
电阻是电路中阻碍电流通过的元件,是电压和电流的比值。
功率是描述电路中能量转换效率的物理量,是电压和电流的乘积。
3. Ohm定律Ohm定律是描述电路中电压、电流和电阻之间关系的基本定律。
它可以表示为V=IR,其中V表示电压,I表示电流,R表示电阻。
根据Ohm定律,电压和电流成正比,电压和电阻成正比,电流和电阻成反比。
4. 串联电路和并联电路在电路中,电阻、电感和电容等元件可以通过串联和并联的方式组成不同的电路结构。
串联电路是指多个元件依次连接在一起,电流只有一条路径可走;并联电路是指多个元件同时连接在一起,电流可以选择不同的路径流动。
在串联电路中,电阻和电压分别求和;在并联电路中,电阻和电流分别求和。
5. 电路的戴维南定理和诺顿定理戴维南定理和诺顿定理是描述线性电路等效变换的定理。
根据这两个定理,任意一个线性电路都可以用一个等效的电压源和电阻网络或电流源和电阻网络来代替。
这两个定理在电路分析中有着重要的应用。
6. 交流电路和直流电路交流电路和直流电路是电路中两种不同的电压类型。
交流电路中,电压随时间呈正弦变化;直流电路中,电压是恒定不变的。
交流电路和直流电路在电路分析中有着不同的特点和分析方法。
7. 电路的平衡和不平衡在电路分析中,平衡和不平衡是两种重要的电路状态。
对于线性电路,在平衡状态下,电路中的各个元件的参数不随时间变化;在不平衡状态下,电路中的各个元件的参数随时间变化。
平衡和不平衡是电路分析中需要重点关注的问题。
电路分析基础

电路分析基础电路分析是电子工程中的一个重要基础知识点,它涉及到电流、电压、电阻等各种电路元件之间的相互关系以及在电路中的运行规律。
本文将介绍电路分析的基础知识、常见电路模型和分析方法。
一、基本概念在进行电路分析之前,我们需要了解一些基本概念。
1. 电流(I):电流是电子在电路中的流动方向,它的单位是安培(A)。
2. 电压(V):电压是电子在电路中的能量差异,它的单位是伏特(V)。
3. 电阻(R):电阻是电路元件对电流的阻碍程度,它的单位是欧姆(Ω)。
4. 电路:电路由电子器件和电源组成,它是电子设备完成特定功能的基本元件。
二、常见电路模型在电路分析中,有几种常见的电路模型,它们可以帮助我们更好地理解和分析电路。
1. 简单串并联电路简单串并联电路由电阻元件连接而成,其中串联电路是电阻依序连接,而并联电路是电阻同时连接。
2. 直流电路直流电路是指电流方向恒定的电路,其中电流的大小和方向不随时间变化。
3. 交流电路交流电路是指电流方向随时间周期性变化的电路,其中交流电流的频率、幅度和相位等特性是需要考虑的因素。
三、分析方法在电路分析中,我们需要采用一些方法来计算电路中的电压、电流等参数。
1. 基尔霍夫定律基尔霍夫定律是电路分析的重要工具,它分为基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,在电路的任何一个节点处,进入节点的电流等于离开节点的电流之和。
基尔霍夫电压定律指出,在电路中沿着任意一个回路,从一个节点到达回到该节点所经过的电压是零。
2. 电阻定律电阻定律是用来计算电阻上的电压和电流之间关系的方法,其中存在欧姆定律和功率定律。
欧姆定律指出,电阻上的电压与电阻上的电流成正比,即V = IR,其中V是电压,I是电流,R是电阻。
功率定律指出,电阻上的功率与电阻上的电流平方成正比,即P = I²R,其中P是功率,I是电流,R是电阻。
3. 网孔分析法网孔分析法是一种通过构建回路方程组来解决电路问题的方法,其中回路方程组可以通过基尔霍夫定律得到。
电路分析基础知识点

电路的组成
01
02
03
电源
提供电能,如电池、发电机等 。
负载
消耗电能,如灯泡、电机等。
导线
连接电源和负载,传输电能。
04
开关
控制电路的通断。
电路的状态
开路
电路中无电流流过。
通路
电路中电流正常流动,负载正常工作。
短路
电路中电流过大,可能造成严重后果。
02
CATALOGUE
电路元件
电阻
总结词
电阻是电路中常用的元件,用于限制 电流的流动。
电路分析基础知识 点
目录
• 电路分析的基本概念 • 电路元件 • 电路分析方法 • 交流电路分析 • 电路定理 • 电路的过渡过程
01
CATALOGUE
电路分析的基本概念
定义与特点
定义
电路分析是研究电路中电流、电 压以及功率等物理量分布和变化 规律的科学。
特点
基于欧姆定律、基尔霍夫定律等 基本原理,通过数学模型对电路 进行描述和预测。
要点二
响应类型
根据时间常数的不同,一阶电路的响应可以分为指数响应 、震荡响应和暂态响应等类型。
二阶电路的响应
阻尼比和自然频率
二阶电路的响应与阻尼比和自然频率有关,阻尼比决定 了响应的振荡程度,自然频率决定了响应的速度。
响应类型
根据阻尼比的不同,二阶电路的响应可以分为欠阻尼、 临界阻尼和过阻尼等类型,每种类型都有其独特的响应 特性。
03
CATALOGUE
电路分析方法
欧姆定律
总结词
欧姆定律是电路分析中最基本的定律之一,它描述了电路中 电压、电流和电阻之间的关系。
详细描述
欧姆定律指出,在纯电阻电路中,流过电阻的电流(I)与电 阻两端的电压(V)成正比,与电阻(R)成反比。数学表达 式为 V=IR,其中电压V、电流I和电阻R都是矢量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路分析基础1.(1)实际正方向:规定为从高电位指向低电位。
(2)参考正方向:任意假定的方向。
注意:必须指定电压参考方向,这样电压的正值或负值才有意义。
电压和电位的关系:U ab=V a-V b2.电动势和电位一样属于一种势能,它能够将低电位的正电荷推向高电位,如同水路中的水泵能够把低处的水抽到高处的作用一样。
电动势在电路分析中也是一个有方向的物理量,其方向规定由电源负极指向电源正极,即电位升高的方向。
电压、电位和电动势的区别:电压和电位是衡量电场力作功本领的物理量,电动势则是衡量电源力作功本领的物理量;电路中两点间电压的大小只取决于两点间电位的差值,是绝对的量;电位是相对的量,其高低正负取决于参考点;电动势只存在于电源内部。
3. 参考方向(1)分析电路前应选定电压电流的参考方向,并标在图中;(2)参考方向一经选定,在计算过程中不得任意改变。
参考方向是列写方程式的需要,是待求值的假定方向而不是真实方向,因此不必追求它们的物理实质是否合理。
(3)电阻(或阻抗)一般选取关联参考方向,独立源上一般选取非关联参考方向。
(4) 参考方向也称为假定正方向,以后讨论均在参考方向下进行,实际方向由计算结果确定。
(5)在分析、计算电路的过程中,出现“正、负”、“加、减”及“相同、相反”这几个名词概念时,切不可把它们混为一谈。
4. 电路分析中引入参考方向的目的是为分析和计算电路提供方便和依据。
应用参考方向时,“正、负”是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,说明它的实际方向与参考方向相反,参考方向下一个电压为“+20V”,说明其实际方向与参考方向一致;“加、减”指参考方向下列写电路方程式时,各项前面的正、负符号;“相同、相反”则是指电压、电流是否为关联参考方向,“相同”是指电压、电流参考方向关联,“相反”指的是电压、电流参考方向非关联。
5.基尔霍夫定律基尔霍夫定律包括结点电流定律(KCL)和回路电压(KVL)两个定律,是集总电路必须遵循的普遍规律。
中学阶段我们学习过欧姆定律(VAR),它阐明了线性电阻元件上电压、电流之间的相互约束关系,明确了元件特性只取决于元件本身而与电路的连接方式无关这一基本规律。
基尔霍夫将物理学中的“液体流动的连续性”和“能量守恒定律”用于电路中,总结出了他的第一定律(KCL);根据“电位的单值性原理”又创建了他的第二定律(KVL),从而解决了电路结构上整体的规律,具有普遍性。
基尔霍夫两定律和欧姆定律合称为电路的三大基本定律。
6.几个常用的电路名词1.支路:电路中流过同一电流的几个元件串联的分支。
(m)2.结点:三条或三条以上支路的汇集点(连接点)。
(n)3.回路:由支路构成的、电路中的任意闭合路径。
(l)4.网孔:指不包含任何支路的单一回路。
网孔是回路,回路不一定是网孔。
平面电路的每个网眼都是一个网孔。
7. 结点电流定律(KCL )基尔霍夫电流定律(KCL )是用来确定联接在同一结点上的各支路电流之间的关系。
根据电流连续性原理,电荷在任何一点均不能堆积(包括结点)。
故有:任一瞬间,流向某一节点电流的代数和恒等于零。
数学表达式为:∑ i = 0(任意波形的电流)∑ I = 0(直流电路中电流)出入的另一种形式:可得i i =∑ KCLKCL 推广应用在任一瞬间通过任一封闭面的电流的代数和也恒等于零。
8. 回路电压定律(KVL )基尔霍夫电压定律(KVL )是用来确定回路中各段电压之间关系的电路定律。
根据电位的单值性原理,绕回路一周,电位升高的数值必定等于电位降低的数值。
故有:任一瞬间,沿任一回路参考绕行方向,回路中各段电压的代数和恒等于零。
∑U = 0可得KVL 另一形式:∑IR=∑U S推论:电路中任意两点间的电压等于两点间任一条路径经过的各元件电压的代数和。
9.例题欧姆定律解决的是元件上电压、电流的约束关系,这种约束取决于支路元件的性质,与电路结构无关;KCL 和KVL 阐述的是电路结构上电压、电流的约束关系,取决于电路的连接形式,与支路元件的性质无关。
应用KCL 定律解题首先约定流入、流出结点电流的参考方向,其目的是为了给方程式中的各项给出其正、负依据。
若计算结果电流为负值,说明该电流的实际方向与电路图上标示的参考方向相反。
KCL 定律的推广应用主要应把握广义结点的正确识别;KVL 定律的推广应用则要在充分理解电位单值性原理的基础上,正确列写式中各段电压的正、负。
Y Y 3 31R R R R ==∆∆,或10. 电源之间的等效变换理想电压源和理想电流源均属于无穷大功率源,它们之间是不能等效变换的的。
实际电源的两种模型存在内阻,因此它们之间可以等效变换。
电路中某一点的电位是指由这一点到参考点的电压。
电路的参考点可以任意选取,通常认为参考点的电位为零。
11.例题电路中某一点的电位等于该点到参考点的电压电路中各点的电位随参考点选的不同而改变,但是任意两点间的电压不变。
4个桥臂电阻的值只要满足对臂电阻的乘积相等的平衡条件,电桥电路就由一个复杂电路变为简单电路,分析过程将大大简化。
含有受控源的电路分析要点一可以用两种电源等效互换的方法,简化受控源电路。
但简化时注意不能把控制量化简掉。
否则会留下一个没有控制量的受控源电路,使电路无法求解。
含有受控源的电路分析要点二如果一个二端网络内除了受控源外没有其他独立源,则此二端网络的开路电压必为0。
因为,只有独立源产生控制作用后,受控源才能表现出电源性质。
求含有受控源电路的等效电阻时,须先将二端网络中的所有独立源去除(恒压源短路处理、恒流源开路处理),受控源应保留。
含受控源电路的等效电阻可以用“加压求流法”求解。
电路分析基础第二章一..支路电流法1. 定义:以支路电流为未知量,根据基尔霍夫两定律列出必要的电路方程,进而求解客观存在的各支路电流的方法,称支路电流法。
2. 适用范围:原则上适用于各种复杂电路,但当支路数很多时,方程数增加,计算量加大。
因此,适用于支路数较少的电路。
3. 应用步骤:(1)确定已知电路的支路数m,并在电路图上标示出各支路电流的参考方向;(2)应用KCL列写n-1个独立结点方程式。
(3)应用KVL定律列写m-n+1个独立电压方程式。
(4)联立求解方程,求出m个支路电流。
二.回路电流法1. 定义:以假想的回路电流为未知量,根据KVL定律列出必要的电路方程,进而求解客观存在的各支路电流的方法,称回路电流法。
2. 适用范围:适用于支路数较多但网孔数较少的复杂电路。
3. 应用步骤(1)选取自然网孔作为独立回路,在网孔中标出各回路电流的参考方向,同时作为回路的绕行方向;(2)建立各网孔的KVL方程,注意自电阻压降恒为正,公共支路上的互阻压降由相邻回路电流而定;(3)对联立方程式进行求解,得假想各回路电流;(4)在电路图上标出客观存在的各支路电流参考方向,按照它们与回路电流之间的关系,求出各支路电流。
支路电流是客观存在于各条支路中的响应,一般是电路分析求解的对象;回路电流则是为了减少电路分析中方程式的数目而人为假想的电路响应,由于回路电流对它所经过的电路结点,均流入一次、流出一次,因此自动满足KCL定律,这样在电路求解的过程中就可省去KCL方程,对结点数较多、网孔数较少的电路十分适用。
回路电流经过的各条支路,若支路上仅流过一个回路电流,则这个支路电流在数值上就等于该回路电流,方向与回路电流一致时为正,相反为负;公共支路上通过两个回路电流,即支路电流在数值上等于这两个回路电流之代数和,与支路电流方向一致的取正值,与支路电流方向相反的取负值。
例题:如选取各回路电流均为顺时针方向时,三个方程式中左边第一项自电阻压降恒为正值,左边其余项为互电阻压降,恒为负值;方程式右边为电源压升,由“-”→“+”与回路电流方向一致时取正,反之取负此电路有6条支路,运用支路电流法求解电路时显然要列6个方程式联立求解,因此繁琐而复杂。
由于该电路具有4个结点,应用回路电流法就可省去4-1=3个KCL方程式,这样,仅列6-4+1=3个KVL方程式即可解出各网孔电流,进而求出支路电流。
2.3 结点电压法1.定义:以结点电压为待求量,利用基尔霍夫定律列出各结点电压方程式,进而求解电路响应的方法。
2.适用范围:适用于支路数较多但结点数较少的复杂电路。
与支路电流法相比,它可减少m-n+1个方程式。
3.解题步骤:1)选定参考结点。
其余各结点与参考点之间的电压就是待求的结点电压(均以参考点为负极);2)标出各支路电流的参考方向,对n-1个结点列写KCL方程式;3)用KVL和欧姆定律,将结点电流用结点电压的关系式代替,写出结点电压方程式;5)由结点电压求各支路电流及其它响应。
4)解方程,求解各结点电压;用结点电压法求解结点n=2的复杂电路时,显然只需列写出2-1=1个结点电压方程式,即:注意:式中分子部分为各支路恒压源与其支路电阻之比的代数和,其中恒压源正极与结点①相近时取正,反之取负;分母则为各支路电导之和。
2.5 戴维南定理(1)定义:对外电路来说,任何一个线性有源二端网络,均可以用一个恒压源U S和一个电阻R0串联的有源支路等效代替。
其中恒压源U S等于线性有源二端网络的开路电压U OC,电阻R0等于线性有源二端网络除源后的入端等效电阻R ab。
电路分析基础第四章电路分析基础- 31 -。