湖北省鄂州市2014年中考模拟数学试题二及答案
2014年鄂州市中考数学二模试题(带答案)
2014年鄂州市中考数学二模试题(带答案)2014年鄂州市中考模拟数学试题(二)一、细心选一选(本题有10个小题,每小题3分,共30分)1.的倒数是()A.B.C.D.2.下列运算正确的是()A.4a﹣a=3B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a33.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.4.如图,则().A.60°B.50°C.70°D.80°5.若点在反比例函数的图象上,且,则和的大小关系是()A.B.C.D.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25B.65C.90D.1307.如图,四边形ABCD中,AD∥BC,AB=,BC=4,连接BD,∠BAD的平分线交BD于点E,且AE∥CD,则AD的长为()A.B.C.D.28.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为()A.10%B.31%C.13%D.11%9.已知二次函数的图象如图所示,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤10、在直角坐标系中,有四个点A(-8,3)、B(-4,5)、C(0,n)、D(m,0),当四边形ABCD的周长最短时,的值为()二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式8a2-2=_________________.12.汶川大地震时,航空兵空投救灾物质到指定的区域(圆A)如图所示,若要使空投物质落在中心区域(圆B)的概率为,则与的半径之比为.13.已知关于x的分式方程a+2x+1=1的解是非正数,则a的取值范围是________.14.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用时间比由甲单独完成这项工程所需时间少天。
湖北省鄂州市中考数学二模试卷
湖北省鄂州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2011·湖州) ﹣5的相反数是()A . 5B .C . ﹣5D . -2. (2分) (2016八下·蓝田期中) 下列电视台图标中,属于中心对称图形的是()A .B .C .D .3. (2分)我们学习了数据收集,下列正确的是()A . 折线图易于显示数据的变化趋势B . 条形图能够显示每组中的百分比的大小C . 扇形图显示部分在总体中的具体数据D . 直方图能够显示数据的大小4. (2分)下列运算正确的是()A . (ab)3=a3bB .C . a6÷a2=a3D . (a+b)2=a2+b25. (2分) (2015八上·郯城期末) 如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A . 70°B . 80°C . 90°D . 100°6. (2分)(2019·上海模拟) 如果将一个二次函数图像沿着坐标轴向左平移3个单位,向下平移4个单位后得到的是y = 2(x - 6)2 + 4,则原函数解析式是()A . y =(x - 9)2 + 8B . y = 2(x - 6)2C . y = 2(x - 3)2 + 8D . y = 2(x - 9)2 + 87. (2分)(2017·新疆) 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A . πB . 2πC . 4πD . 5π8. (2分)有两个相邻的手机门市甲和乙,甲购进了几只某种型号的手机,定好了售价.一个月后,乙也购进了几只同样的手机,售价与甲相同,但进价比甲降低了10%,因而利润率比甲提高了12个百分点.那么甲经销这种手机的利润率是()A . 12%B . 8%C . 20%D . 18%9. (2分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于()A . -1B . 1C . ±8﹣1D . ±8+110. (2分)(2017·滨州) 在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y= 相交于点A、B,且AC+BC=4,则△OAB的面积为()A . 2 +3或2 ﹣3B . +1或﹣1C . 2 ﹣3D . ﹣1二、填空题 (共8题;共9分)11. (1分) (2019八下·仁寿期中) 用科学记数法表示:0.0000002467=________.12. (1分)(2018·哈尔滨) 函数中,自变量x的取值范围是________.13. (2分)如图,菱形,矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.设菱形相邻两个内角的度数分别为m和n ,将菱形的“接近度”定义为|m-n|,于是,|m-n|越小,菱形越接近于正方形.若菱形的一个内角为70°,则该菱形的“接近度”等于________;当菱形的“接近度”等于________时,菱形是正方形.14. (1分) (2017七下·平南期末) 计算(a2)4•(﹣a)3=________.15. (1分)(2019·重庆模拟) PA是⊙O的切线,切点为A,PA=2 ,∠APO=30°,则阴影部分的面积为________.16. (1分)(2017·南岗模拟) 某工厂原计划生产7200顶帐篷,后来有一个地区突然发生地震,要求工厂生产的帐篷比原计划多20%,并且需提前4天完成任务.已知实际生产时每天比原计划多生产720顶帐篷,设实际每天生产x顶帐篷,根据题意可列方程为________.17. (1分)(2017·苏州) 如图,在一笔直的沿湖道路上有、两个游船码头,观光岛屿在码头北偏东的方向,在码头北偏西的方向,.游客小张准备从观光岛屿乘船沿回到码头或沿回到码头,设开往码头、的游船速度分别为、,若回到、所用时间相等,则 ________(结果保留根号).18. (1分)如图,将绕点逆时针旋转到使A、B、在同一直线上,若,,则图中阴影部分面积为________cm2 .三、解答题 (共10题;共90分)19. (5分)计算:()﹣1﹣2cos30°+ +(2π)0 .20. (5分) (2019八上·周口月考) 分解因式:①②③21. (10分) (2017八下·蚌埠期中) 如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请问一元二次方程x2﹣3x+2=0是倍根方程吗?如果是,请说明理由.(2)若一元二次方程ax2+bx﹣6=0是倍根方程,且方程有一个根为2,求a、b的值?22. (10分)(2017·湘潭) 从﹣2,1,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标;(2)求该点在第一象限的概率.23. (5分)若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少?试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解。
2014-2015湖北鄂州中考数学试题(含答案)解析
鄂州市2015年初中毕业生学业考试一、选择题(每小题3分,共30分) 1.31-的倒数是( )A .31 B .3C .3-D .31-2.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨, 将39400用科学计数法表示(结果保留2个有效数字)应为( )A .3.9×10 4B .3.94×10 4C .39.4×10 3D .4.0×10 4 3.下列运算正确的是( )A .a 4·a 2=a 8B .(a 2 )4=a 6C .(ab)2=ab 2D .2a 3÷a=2a 24.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是50 B .众数是51 C .方差是42 D .极差是21 5.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( )第5题图 A B C D6.如图,AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分 线FP 相交于点P ,且∠BEP=50°,则∠EPF=( )度. A .70 B .65 C .60 D .557.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数ky x的图象在第一象限交于点A ,连接OA ,若S △AOB :S △BOC = 1:2,则k 的值为( )A .2B .3C .4D .6第6题图 第8题图8.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .43B .34C .53D .54 居民(户) 1 2 3 4 月用电量(度/户) 30 42 50 51 FOC ABy9.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论: ① A ,B 两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,t =45或415. 其中正确的结论有( )A .1个B .2个C .3个D .4个第9题图 第10题图10.在平面直角坐标系中,正方形A 1B 1C 1D 1 、D 1E 1E 2B 2 、A 2B 2C 2D 2 、D 2E 3E 4B 3 、A 3B 3C 3D 3……按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…… 在x 轴上,已知正方形A 1B 1C 1D 1 的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…… 则正方形A 2015B 2015C 2015D 2015的边长是( )A .201421⎪⎭⎫ ⎝⎛ B .201521)( C .201533)( D .201433)( 二、填空题(每小题3分,共18分) 11有意义,则x 的取值范围是 .12.分解因式:a 3b -4ab = .13.下列命题中正确的个数有 个.①如果单项式3a 4b y c 与2a x b 3c z 是同类项,那么x = 4, y=3, z=1;②在反比例函数3yx中,y 随x 的增大而减小;③要了解一批炮弹的杀伤半径,适合用普查方式; ④从-3,-2,2,3四个数中任意取两个数分别作为k ,b 的值,则直线k b y x 经过第一、二、三象限的概率是16. 14.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .15.已知点P 是半径为1的⊙O 外一点,PA 切⊙O 于点A ,且PA=1, AB 是⊙O 的弦,,连接PB ,则PB= .16.如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP =6,当△PMN 的周长取最小值时,四边形PMON 的面积为 .AB OMNP三、解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值: ,其中12a -=.18.(本题满分8分)如图,在正方形ABCD 的外侧,作等边三角形ADE ,连接BE ,CE . (1)(4分)求证:BE=CE . (2)(4分)求∠BEC 的度数.19.(本题满分8分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.项目选择人数情况统计图 训练后篮球定时定点投篮测试进球数统计图请你根据上面提供的信息回答下列问题: (1)(3分)扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 . (2)(5分)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.BACED立定跳远 20%铅球10% 长跑 10% ,)(112122-÷-+++a a a a a 跳绳篮球50%20.(本题满分8分)关于x 的一元二次方程x 2+(2k+1)x +k 2+1=0有两个不等实根12,x x . (1)(4分)求实数k 的取值范围. (2)(4分)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值. 21.(本题满分9分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量 ,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°. 两人相距5米且位于旗杆同侧(点B 、D 、F 在同一直线上). (1)(6分)求小敏到旗杆的距离DF .(结果保留根号) (2)(3分)求旗杆EF 的高度.(结果保留整数.参考数据:4.12≈,7.13≈)22.(本题满分9分)如图,在△ABC 中,AB=AC ,AE 是∠BAC 的平分线,∠ABC 的平分线 BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆经过点M ,交BC 于点G ,交 AB 于点F . (1)(3分)求证:AE 为⊙O 的切线. (2)(3分)当BC=8,AC=12时,求⊙O 的半径. (3)(3分)在(2)的条件下,求线段BG 的长.300 450DBA C EF第21题图23.(本题满分10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)(3分)求出y与x的函数关系式,并写出自变量x的取值范围.(2)(3分)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)(4分)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?24.(本题满分12分)如图,在平面直角坐标系x oy 中,直线122yx 与x 轴交于点A ,与y 轴交于点C .抛物线y=a x 2+b x +c 的对称轴是,23-=x 且经过A 、C 两点,与x 轴的另一交点为点B . (1)(4分)①直接写出点B 的坐标;②求抛物线解析式. (2)(4分)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标. (3)(4分)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.第24题图32xy鄂州市2015年初中毕业生学业考试一、选择题(30分)1——5 C A D C A 6——10 A B D B D 二、填空题(18分)11、 x ≥2 12、ab(a+2)(a -2) 13、214、7 15、1或5 16、54336—三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分) 17、原式=a1a ))1a )(1a (2a 1a 2(-⨯-++++ =a1a )1a )(1a ()2a ()1a (2-⨯-+++- =1a 3+ ………………………………………………… 5′ 当a=2-1时, 原式=11-23+=223 … …………… …………………………… 8′18、(1)证明:∵四边形ABCD 为正方形∴AB=AD=CD,∠BAD=∠ ADC=90°∵三角形ADE 为正三角形∴ AE=AD=DE,∠EAD=∠EDA=60° ∴∠BAE=∠CDE=150° ∴ΔBAE ≌ΔCDE∴BE=CE … ………… ………………………… ……… 4′(2) ∵AB=AD, AD=AE,∴AB=AE ∴∠ABE=∠AEB又 ∵∠BAE=150° ∴∠ABE=∠AEB=15° 同理:∠CED=15°∴∠BEC=600-15°⨯2=30° ……………………………… 8′ 19、(1)36 , 40, 5 ……………………………………… 3′ (2)三名男生分别用A 1,A 2,A 3表示,一名女生用B 表示.根据题意,可画树形图如下: 第一名 A 1 A 2 A 3 B↙ ↓↘ ↙ ↓↘ ↙↓↘ ↙↓↘ ……6′ 第二名 A 2 A 3 B A 1 A 3 B A 1 A 2 B A 1 A 2 A 3由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M )的结果有6种,∴P(M)=126=21……………………………………… 8′D E20、(1)∵原方程有两个不相等的实数根∴ Δ=)1k 2(+2-k 4(2+1)=4k 2+4k+1-4k 2-4=4k -3﹥0 解得:k ﹥43……………………… ……………… 4′ (2) ∵k ﹥43∴ x 1+ x 2 =-(2k+1)<0 又∵ x 1·x 2 = k 2+1﹥0 ∴x 1<0,x 2 <0 ∴|x 1|+|x 2|=-x 1-x 2 =-(x 1+x 2)=2k+1∵|x 1|+|x 2|= x 1·x 2 ∴2k+1=k 2+1 ∴ k 1=0, k 2=2 ………7′又 ∵k ﹥43∴k=2 ………………………………… 8′ 21、(1)过点A 作AM ⊥EF 于点M,过点C 作CN ⊥EF 于点N.设CN= x在Rt ΔECN 中, ∵∠ECN=45° ∴EN=CN=x ∴EM=x+0.7-1.7=x -1 ∵BD =5 ∴AM=BF=5+x在Rt ΔAEM 中, ∵∠EAM=30° ∴33AM EM =∴ )5(331+=-x x 解得 334+=x即 DF= 4+33(米) ………… ………………………………………6′ (2)EF= x +0.7=4+ 33+0.7=4+3×1.7+0.7=9.8 ………… ……………………8/ ≈10(米) …………………………9′22、(1)证明:连接OM. ∵AC=AB,AE 平分∠BAC ∴AE ⊥BC,CE=BE=21BC=4 ∵OB=OM ∴∠OBM=∠OMB ∵BM 平分∠ABC ∴∠OBM=∠CBM ∴∠OMB=∠CBM ∴OM ∥DC 又 ∵ AE ⊥BC ∴AE ⊥OM ∴AE 是⊙O 的切线 ……………… ……………………………3′(2) 设⊙O 的半径为R∵OM ∥BE ∴ΔOMA ∽ΔBEA∴BE OM =AB AO 即4R =1212R-解得 R=3∴⊙O 的半径为3 ………………………………………… 6′AF ECBD 450300NMM AC EF G B.OH(3)过点O 作OH ⊥BG 于点H,则BG=2BH ∵ ∠OME=∠MEH= ∠ EHO= 90° ∴四边形OMEH 是矩形 ∴HE=OM=3∴BH=1∴BG =2BH =2 …………………………………………………9′23、(1)设y=kx+b ,根据题意得⎩⎨⎧+=+b k 50100b k 6080=解得:⎩⎨⎧=-=200b 2k∴y=-2x+200 (30 ≤x ≤60) ………………………… 3′(2) W=(x -30)(-2x+200)-450=-2x 2+260x -6450 ……………………………………………………… 6′ (W =-2(x -65)2 +2000) (3)W =-2(x -65)2 +2000 ∵30 ≤x ≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元 ………………10′ 24、(1) ①B(1,0) ………………………………………………………1′ ②y=2x 21+ 当x=0时,y =2, 当y=0时,x=-4 ∴ C(0,2),A(-4,0) ∵抛物线y=a x 2+b x +c 过A(-4,0), B(1,0) ∴可设抛物线解析式为y=a(x+4)(x -1)又∵抛物线过点C(0,2) ∴2=-4a ∴a=21-∴y=21-x 223-x +2 ……………………… ……………………… 4′(2)设P (m,21-m223-m+2). 过点P 作PQ ⊥x 轴交AC 于点Q ∴Q(m,21m+2) ∴PQ=21-m 223-m+2-(21m+2)=21-m 2-2m∵∆S PAC =21⨯PQ ⨯4=2PQ=-m 2-4m=-(m+2)2+4∴当m=-2时,ΔPAC 的面积有最大值是4 …………………………… 7′ 此时P (-2,3) …… …………………………… 8′(3)在Rt ΔAOC 中,tan ∠CAO=21 在Rt ΔBOC 中,tan ∠BCO=21 ∴∠CAO=∠BCO ∵∠BCO+∠OBC=90°AOyxBC23-=XP Q∴∠CAO+∠OBC=90° ∴∠ACB=90° ∴ ΔABC ∽ΔACO ∽ΔCBO① 当M 点与C 点重合,即M (0,2)时,ΔMAN ∽ΔBAC ……… 9′② 根据抛物线的对称性,当M(-3,2) 时,ΔMAN ∽ΔABC ………10′③ 当点M 在第四象限时,设M (n,21-n 223-n+2),则N(n,0)∴ MN=21n 2+23n -2 , AN=n+4当21=AN MN 时,MN=21AN 即21n 2+23n -2=21(n+4)n 2+2n -8=0 ∴ n 1= -4(舍), n 2=2∴M (2,-3) ………………………………………………………… 11′当12=AN MN 时,MN=2AN 21n 2+23n -2=2(n+4)n 2-n -20=0 ∴ n 1= -4(舍), n 2=5∴M (5,-18) ………………………………………………………… 12′综上所述:存在M 1(0,2),M 2(-3,2), M 3(2,-3),M 4(5,-18), 使得以点 A 、M 、N 为顶点的三角形与△ABC 相似.第24题23-=X (N 1) ( M 1 )N 3 M 2N 2M 3AOyxBC M 4N 4。
湖北省鄂州市2014年中考数学试题及答案(word解析版)
2014年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x ﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A (1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A 作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B ﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a ﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x 的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.考点:算术平均数.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x 的解集为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A (2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.考点:扇形面积的计算;正方形的性质.分析:如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.解答:解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC=S扇形OBC﹣S△OBC=﹣×2×1=﹣1.∴S阴影=4(S△OCD﹣2S弓形OmC)=4[×2×(2﹣)﹣2(﹣1)]=16﹣4﹣.故答案为:16﹣4﹣.点评:本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN 的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的部分通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=(+)•=•=•=,当a=2﹣时,原式==﹣.点评:本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n=36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).考点:频数(率)分布表;扇形统计图;列表法与树状图法.分析:(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.解答:解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.点评:考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.考点:根的判别式;根与系数的关系.分析:(1)根据关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,得出m≠0且(﹣2m)2﹣4•m•(m﹣2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1•x2的值,再根据|x1﹣x2|=1,得出(x1+x2)2﹣4x1x2=1,再把x1+x2和x1•x2的值代入计算即可.解答:解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.解答:解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE﹣DE=10,即x﹣x=10,解得:x=5(+1),∴AD=x=5+5答:AD的长为(5+5)米.(2)由(1)可得AC=2AE=(10+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=BF=y,在Rt△BFA中,AF=BF=y,∴y+y=(10+10),解得:y=10,在Rt△ABF中,AB==10米.答:树高AB的长度为10米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD 于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.考点:切线的判定.分析:(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,求出圆的直径AB,再根据勾股定理得出CE,即可求出答案.解答:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵=,∴令CD=3,AD=4,得AC=5,∴=,∴BC=,由勾股定理得AB=,∴OC=,∵OC∥AD,∴=,∴=,解得AE=,∴cos∠DAB===.点评:本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?考点:二次函数的应用.分析:(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解答:解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120;(2)当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+﹣40)(﹣2x+120)=﹣2250;(3)当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y=﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y=﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C 两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x 恒成立,求m的最大值.考点:二次函数综合题.分析:(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2=﹣x2的两根分别为x0,x0,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.解答:解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是x=2,∴,解得∴y=﹣x2+x+.∴m的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5∴B(5,0)∵D(0,)∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b则=2k+b,∴b=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由得x2﹣(4﹣4k)x﹣8k=0∴x1+x2=4﹣4k,x1x2=﹣8k∵y1=kx1+﹣2k,y2=kx2+﹣2k∴y1﹣y2=k(x1﹣x2)∴M1M2======4(1+k2)M1F===同理M2F=∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y设M1(x1,y1),则有(x1﹣2)2=9﹣4y1.∴M1F===﹣y1;设M2(x2,y2),同理可求得:M2F=﹣y2.∴+===①.直线M1M2的解析式为y=kx+﹣2k,即:y﹣=k(x﹣2).联立y﹣=k(x﹣2)与抛物线(x﹣2)2=9﹣4y,得:y2+(4k2﹣)y+﹣9k2=0,∴y1+y2=﹣4k2,y1y2=﹣9k2,代入①式,得:+==1.(3)设y2=﹣x2的两根分别为x0,x0,∵抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大∴当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得∴当x0=1时,对应的x0即为m的最大值将x0=1代入y2=﹣(x﹣h)2﹣x得(1﹣h)2=4∴h=3或﹣1(舍)将h=3代入y2=﹣(x﹣h)2=﹣x有﹣(x﹣3)2=﹣x∴x0=1,x0=9.∴m的最大值为9.点评:本题主要考查运用待定系数法求函数解析式、一元二次方程根与系数的关系及平面直角坐标系中两点距离公式的综合运用,对计算要求较高.。
2014年湖北省鄂州市中考数学试卷附详细答案(原版+解析版)
2014年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣22.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5 3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160 9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k (k≠0)与线段AB有交点,则k的取值范围为.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=,甲班学生成绩的中位数落在等级中,扇形统计图中等级D部分的扇形圆心角n=.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD 于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x 轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.2014年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x ﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500 B.1500(1+x)2=2160C.1500(1﹣x)2=2160 D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形A n B n C n D n面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B(0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A 作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B ﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a ﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x 的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题:(每小题3分,共18分)11.(3分)(2014•鄂州)的算术平方根为.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解答:解:∵=2,∴的算术平方根为.点评:此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.12.(3分)(2014•鄂州)小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为144.考点:算术平均数.分析:先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.解答:解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为144.点评:本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(3分)(2014•鄂州)如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为﹣2≤x≤﹣1.考点:一次函数与一元一次不等式.专题:数形结合.分析:先确定直线OA的解析式为y=﹣2x,然后观察函数图象得到当﹣2≤x≤﹣1时,y=kx+b的图象在x轴上方且在直线y=﹣2x的下方.解答:解:直线OA的解析式为y=﹣2x,当﹣2≤x≤﹣1时,0≤kx+b≤﹣2x.故答案为﹣2≤x≤﹣1.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14.(3分)(2014•鄂州)在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx﹣k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.考点:两条直线相交或平行问题.专题:计算题.分析:由于当x=1时,y=0,所以直线y=kx﹣k过定点(1,0),因为直线y=kx﹣k(k≠0)与线段AB有交点,所以当直线y=kx﹣k过B(4,7)时,k值最小;当直线y=kx﹣k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx﹣k可计算出对应的k的值,从而得到k的取值范围.解答:解:∵y=k(x﹣1),∴x=1时,y=0,即直线y=kx﹣k过定点(1,0),∵直线y=kx﹣k(k≠0)与线段AB有交点,∴当直线y=kx﹣k过B(4,7)时,k值最小,则4k﹣k=7,解得k=;当直线y=kx﹣k过A (2,3)时,k值最大,则2k﹣k=3,解得k=3,∴k的取值范围为≤k≤3.故答案为≤k≤3.点评:本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.(3分)(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积16﹣4﹣.考点:扇形面积的计算;正方形的性质.分析:如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.解答:解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC=S扇形OBC﹣S△OBC=﹣×2×1=﹣1.∴S阴影=4(S△OCD﹣2S弓形OmC)=4[×2×(2﹣)﹣2(﹣1)]=16﹣4﹣.故答案为:16﹣4﹣.点评:本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.(3分)(2014•鄂州)如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为﹣1.考点:正方形的性质;二次函数的最值;全等三角形的判定与性质.分析:如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+y2=z2,和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.解答:解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,∴△AMN≌△AML,∴∠MAN=∠MAL=45°,设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z∴(2﹣y﹣z)2+y2=z2,整理得2y2+(2z﹣4)y+(4﹣4z)=0,∴△=4(z﹣2)2﹣32(1﹣z)≥0,即(z+2+2)(z+2﹣2)≥0,又∵z>0,∴z≥2﹣2,当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=2﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.故答案为﹣1.点评:本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(8分)(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.考点:分式的化简求值.分析:将括号内的部分通分,相加后再将除法转化为乘法,然后约分.解答:解:原式=(+)•=•=•=,当a=2﹣时,原式==﹣.点评:本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.(8分)(2014•鄂州)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.考点:全等三角形的判定与性质;正方形的性质.专题:证明题.分析:(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.解答:证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,∴∠DMB=∠BCD=90°,∴BH⊥DE.点评:本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.(8分)(2014•鄂州)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A 90<S≤100 xB 80<S≤90 15C 70<S≤80 10D S≤70 3合计30根据上面提供的信息回答下列问题(1)表中x=2,甲班学生成绩的中位数落在等级B中,扇形统计图中等级D部分的扇形圆心角n=36°.(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).考点:频数(率)分布表;扇形统计图;列表法与树状图法.分析:(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.解答:解:(1)x=30﹣15﹣10﹣3=2;中位数落在B组;等级D部分的扇形圆心角n=360°×=36°;故答案是:2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:=.点评:考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.20.(8分)(2014•鄂州)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.考点:根的判别式;根与系数的关系.分析:(1)根据关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,得出m≠0且(﹣2m)2﹣4•m•(m﹣2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1•x2的值,再根据|x1﹣x2|=1,得出(x1+x2)2﹣4x1x2=1,再把x1+x2和x1•x2的值代入计算即可.解答:解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△<0,方程有两个相等的实数根;当△=0,方程没有实数根.21.(9分)(2014•鄂州)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.解答:解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE﹣DE=10,即x﹣x=10,解得:x=5(+1),∴AD=x=5+5答:AD的长为(5+5)米.(2)由(1)可得AC=2AE=(10+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=BF=y,在Rt△BFA中,AF=BF=y,∴y+y=(10+10),解得:y=10,在Rt△ABF中,AB==10米.答:树高AB的长度为10米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.(9分)(2014•鄂州)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若=,求cos∠DAB.考点:切线的判定.分析:(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC∥AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,求出圆的直径AB,再根据勾股定理得出CE,即可求出答案.解答:(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵=,∴令CD=3,AD=4,得AC=5,∴=,∴BC=,由勾股定理得AB=,∴OC=,∵OC∥AD,∴=,∴=,解得AE=,∴cos∠DAB===.点评:本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.(10分)(2014•鄂州)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?考点:二次函数的应用.分析:(1)由表格可以看出销售量p件与销售的天数x成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价﹣成本,分别求出在1≤x<25和25≤x≤50时,求得y与x的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可.解答:解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120;(2)当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+﹣40)(﹣2x+120)=﹣2250;(3)当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y=﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,于是,x=25时,y=﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.(12分)(2014•鄂州)如图,在平面直角坐标系xOy中,一次函数y=x+m的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究+是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.考点:二次函数综合题.分析:(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2=﹣x2的两根分别为x0,x0,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.解答:解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是x=2,∴,解得∴y=﹣x2+x+.∴m的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)要使△ADF的周长取得最小,只需AF+DF最小。
湖北省鄂州市2013-2014学年八年级下期中考试数学试题
AE FB D C2014年春季期中考试数学试题一、选择题。
(每小题3分,共30分)1、下列各式中,是二次根式的是()A .6B .322x x C.a D.392、使1x +(x -3)0有意义的x 的取值范围是()A .x ≥1B .x >1且x ≠3 C.x ≥1且x ≠0 D.x ≥1且x ≠33、已知a <b ,化简二次根式b a 3的正确结果是( )A .-a abB .-a ab C.a ab D.a ab4、下列命题是真命题的个数有()(1)直角三角形的最大边长为3,短边长为1,则另一条边长为2(2)已知直角三角形的面积为2,两直角边的比为1:2,则它的斜边长为10(3)在直角三角形中,若两条直角边长为n2-1和2n,则斜边长为n2+1(4)等腰三角形的面积为12,底边上的高为4,则腰长为5A .1个B .2个C.3个D.4个5、放学以后,小明和阳阳从学校分手,分别沿东南方向和西南方向回家,若小明和阳阳行走的速度都是40米/分,小明用15分钟回家,阳阳用20分钟回家,小明家和阳阳家的距离是()A .600米B .800米C.1000米D.不能确定6、如图,在Rt △ABC中,∠AC B=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A .30,2B .60,2C.60,23D.60,3第6题图第7题图第8题图7、如图,在△ABC中,DE∥CA,DF∥BA。
下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形8、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥BD 于F,PE ⊥AC 于E,则PE+PF 的值为()A .56B .512C.53D.59、如图,在菱形ABCD 中,E 、F 分别是AB 、AC 的中点,如果EF=2,那么菱形ABCD 的周长是()A .4 B.8 C .12 D .16 10、如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 边上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是() A.2B.3C.4D.5二、填空题。
湖北省鄂州市一中2014届九年级下第二次月考数学试题
2014年春九年级第二次月考数 学 试 卷(Ⅰ)一、选择题(每题3分,共30分) 1、4的算术平方根是 A 、±2 B 、21C 、2D 、-2 2、如果yx b a 321与-12+x y b a 是同类项,则x+y 的值为 A 、2 B 、3 C 、4 D 、53、如图,用6个完全相同的小正方体组合成如图所示的主体图形,它的主视图为A B C D 4、如图,已知AB ∥CD ,∠2=135º,则∠1的度数是 A 、35º B 、45 ºC 、55ºD 、65º5、如图,已知双曲线)0(<=k xky 经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若A 点的坐 标为(-6,4),则△AOC 的面积为A 、6B 、8C 、9D 、126、如图,正方形ABCD 的边长为4,点E 在BC 上,四边形EFGB也是正方形,以B 为圆心,BA 长为半径画AC ,连AF 、CF , 则图中阴影部分面积为 A 、2π B 、4π C 、4π-2 D 、6π7、如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG =42,则△EFC 的周长为A 、11B 、10C 、9D 、88、设1x 、2x 是一元二次方程0342=-+x x 的两个根,2)35(22221=+-+a x x x ,则a 的值为A 、-2B 、4C 、8D 、10 9、如图,二次函数)0(2≠++=a c bx ax y 的图象顶点在第一象限, 且过点(0,1)和(-1,0),下列结论:①ab <0;②a b 42>;③20<++<c b a ;④10<<b ;⑤当1->x 时,0>y , 其中正确结论的个数是A 、5个B 、4个C 、3个D 、2个 10、如图,圆柱形容器中,高为1.2米,底面周长为1米,在容器 内壁离容器底部0.3m 处的点B 处有一蚊子。
2014年湖北省鄂州市中考数学试卷-普通用卷
2014年湖北省鄂州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−12的绝对值的相反数是()A. 12B. −12C. 2D. −22.下列运算正确的是()A. (−2x2)3=−6x6B. (3a−b)2=9a2−b2C. x2⋅x3=x5D. x2+x3=x53.如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()A.B.C.D.4.如图,直线a//b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A. 20°B. 40°C. 30°D. 25°5.点A为双曲线y=kx(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB 的边长为2,则k的值为()A. 2√3B. ±2√3C. √3D. ±√36.圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A. 90°B. 120°C. 150°D. 180°7.在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG//DH,当AGAD=()时,四边形BHDG为菱形.A. 45B. 35C. 49D. 388.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A. 2016(1−x)2=1500B. 1500(1+x)2=2160C. 1500(1−x)2=2160D. 1500+1500(1+x)+1500(1+x)2=21609.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为a+b8;④四边形A n B n C n D n面积为a⋅b2n.A. ①②③B. ②③④C. ①③④D. ①②③④10.已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B(0,y B),C(−1,y C)在该抛物线上,当y0≥0恒成立时,y Ay B−y C的最小值为()A. 1B. 2C. 4D. 3二、填空题(本大题共6小题,共18.0分)11.√4的算术平方根为______.12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为______ .13.如图,直线y=kx+b过A(−1,2)、B(−2,0)两点,则0≤kx+b≤−2x的解集为______ .14.在平面直角坐标中,已知点A(2,3)、B(4,7),直线y=kx−k(k≠0)与线段AB有交点,则k的取值范围为______ .15.如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积______ .16.如图,正方形ABCD的边长是1,点M,N分别在BC,CD上,使得△CMN的周长为2,则△MAN的面积最小值为______ .三、计算题(本大题共1小题,共8.0分)17.先化简,再求值:(1a−2+1a+2)÷2aa+2,其中a=2−√2.四、解答题(本大题共7小题,共64.0分)18.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.19.学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:等级成绩(S)频数A90<S≤100xB80<S≤9015C70<S≤8010D S≤703合计30根据上面提供的信息回答下列问题(1)表中x=______ ,甲班学生成绩的中位数落在等级______ 中,扇形统计图中等级D部分的扇形圆心角n=______ .(2)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.一元二次方程mx2−2mx+m−2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1−x2|=1,求m.21.小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB 倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.22.如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)求证:CD为⊙O的切线.(2)若CDAD =34,求cos∠DAB.23.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+1125x.(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?24.如图,在平面直角坐标系xOy中,一次函数y=54x+m的图象与x轴交于A(−1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,2512),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究1M1F +1M2F是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:y2=−14(x−ℎ)2,ℎ>1.若当1<x≤m 时,y2≥−x恒成立,求m的最大值.答案和解析1.【答案】B【解析】 【分析】此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.根据绝对值的定义,这个数在数轴上的点到原点的距离,−12的绝对值为12;再根据相反数的定义,只有符号不同的两个数是互为相反数,12的相反数为−12. 【解答】解:−12的绝对值为:|−12|=12,12的相反数为:−12, 所以−12的绝对值的相反数是为:−12, 故选B .2.【答案】C【解析】解:A 、原式=−8x 6,故A 错误; B 、原式=9a 2−6ab +b 2,故B 错误; C 、原式=x 5,故C 正确; D 、原式不能合并,故D 错误, 故选:CA 、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B 、原式利用完全平方公式展开得到结果,即可做出判断;C 、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D 、原式不能合并,错误.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.【答案】D【解析】解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.【答案】A【解析】解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a//b,∠DCB=90°,∴∠2=180°−∠3−90°=180°−70°−90°=20°.故选:A.根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.【答案】D【解析】解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=AOsin60°=2sin60°=√3,∴A点的坐标是(1,√3),(k≠0)上一点,∵点A为双曲线y=kx∴k=√3;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(−2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=√3,∴A点的坐标是(−1,√3),∵点A 为双曲线y =kx (k ≠0)上一点, ∴k =−√3; 故选:D .分两种情况:点A 在第一象限或第二象限,从而得出点B 的坐标,再根据△AOB 为等边三角形,△AOB 的边长为2,求出点A 坐标,即可得出k 值.本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.【答案】D【解析】解:设圆锥的侧面展开图的圆心角为n°,母线长为R , 根据题意得12⋅2π⋅2⋅R =8π,解得R =4, 所以n⋅π⋅4180=2⋅2π,解得n =180, 即圆锥的侧面展开图的圆心角为180°. 故选:D .设圆锥的侧面展开图的圆心角为n°,母线长为R ,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到12⋅2π⋅2⋅R =8π,解得R =4,然后根据弧长公式得到n⋅π⋅4180=2⋅2π,再解关于n 的方程即可.本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.【答案】C【解析】解:∵四边形BGDH 是菱形, ∴BG =GD ,设AB =x ,则AD =3x ,设AG =y ,则GD =3x −y ,BG =3x −y , ∵在Rt △AGB 中,AG 2+AB 2=GB 2, ∴y 2+x 2=(3x −y)2, 整理得:xy =34, y =43x ,∴AGAD =y3x=43x3x=49,故选:C.首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x−y,BG=3x−y,再根据勾股定理可得y2+x2=(3x−y)2,再整理得xy =34,然后可得y=43x,再进一步可得AGAD的值.此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边相等.8.【答案】B【解析】【分析】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量,本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意可用x表示今年退休金,然后根据已知可以得出方程.【解答】解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年退休金为:1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.9.【答案】A【解析】解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,∴A1D1//BD,B1C1//BD,C1D1//AC,A1B1//AC;∴A1D1//B1C1,A1B1//C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴A1B1丄A1D1,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═12A5B5=14A3B3=18A1B1=116AC,B7C7=12B5C5=1 4B3C3=18B1C1=116BD,∴四边形A7B7C7D7的周长是2×116(a+b)=a+b8,故③正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n的面积是ab2,故④错误;综上所述,①②③正确.故选:A.首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.【答案】D【解析】【解答】解:由0<2a <b ,得x 0=−b2a <−1,由题意,如图,过点A 作AA 1⊥x 轴于点A 1,则AA 1=y A ,OA 1=1,连接BC ,过点C 作CD ⊥y 轴于点D ,则BD =y B −y C ,CD =1,过点A 作AF//BC ,交抛物线于点E(x 1,y E ),交x 轴于点F(x 2,0), 则∠FAA 1=∠CBD . 于是Rt △AFA 1∽Rt △BCD , 所以AA1BD =FA 1CD,即y AyB −y C=1−x 21,过点E 作EG ⊥AA 1于点G , 易得△AEG∽△BCD . 有AGBD =EGCD ,即y A −y EyB −y C=1−x 11,∵点A(1,y A )、B(0,y B )、C(−1,y C )、E(x 1,y E )在抛物线y =ax 2+bx +c 上,得y A =a +b +c ,y B =c ,y C =a −b +c ,y E =ax 12+bx 1+c ,∴y A −y E y B −y C=a+b+c−(ax 12+bx 1+c)c−(a−b+c)=1−x 1,化简,得x 12+x 1−2=0,解得x 1=−2(x 1=1舍去),∵y 0≥0恒成立,根据题意,有x 2≤x 1<−1, 则1−x 2≥1−x 1,即1−x 2≥3. ∴y A y B −y C ≥3, ∴y AyB −y C的最小值为3.故选:D . 【分析】由0<2a <b 得x 0=−b2a <−1,作AA 1⊥x 轴于点A 1,CD ⊥y 轴于点D ,连接BC ,过点A 作AF//BC ,交抛物线于点E(x 1,y E ),交x 轴于点F(x 2,0),则AA 1=y A ,OA 1=1,BD =y B −y C ,CD =1,易证得Rt △AFA 1∽Rt △BCD ,利用相似比得到y Ay B −y C=1−x 21;过点E 作EG ⊥AA 1于点G ,易得△AEG∽△BCD ,利用相似比得y A −y EyB −y C=1−x 11,再把点A(1,y A )、B(0,y B )、C(−1,y C )、E(x 1,y E )代入抛物线y =ax 2+bx +c 得y A =a +b +c ,y B=c,y C=a−b+c,y E=ax12+bx1+c,所以a+b+c−(ax12+bx1+c)c−(a−b+c)=1−x1,整理得x12+x1−2=0,解得x1=−2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<−1,所以1−x2≥1−x1,即1−x2≥3,于是得到y Ay B−y C ≥3,所以y Ay B−y C的最小值为3.11.【答案】√2【解析】解:∵√4=2,∴√4的算术平方根为√2.故答案为:√2.首先根据算术平方根的定义计算√4=2,再求2的算术平方根即可.此题考查了算术平方根的定义,注意这里的双重概念.12.【答案】144【解析】解:∵小林五次成绩(143、145、144、146、a)的平均数为144,∴这五次成绩的总数为144×5=720,∵小林自己又记载了两次练习成绩为141、147,∴他七次练习成绩的平均数为(720+141+147)÷7=1008÷7=144.故答案为:144.先根据平均数的定义由五次成绩的平均数为144得出这五次成绩的总数为144×5,再根据平均数的定义即可求出他七次练习成绩的平均数.本题考查了平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.【答案】−2≤x≤−1【解析】解:直线OA的解析式为y=−2x,当−2≤x≤−1时,0≤kx+b≤−2x.故答案为:−2≤x≤−1.先确定直线OA的解析式为y=−2x,然后观察函数图象得到当−2≤x≤−1时,y=kx+b的图象在x轴上方且在直线y=−2x的下方.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y= ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.【答案】73≤k≤3【解析】解:∵y=k(x−1),∴x=1时,y=0,即直线y=kx−k过定点(1,0),∵直线y=kx−k(k≠0)与线段AB有交点,∴当直线y=kx−k过B(4,7)时,k值最小,则4k−k=7,解得k=73;当直线y=kx−k 过A(2,3)时,k值最大,则2k−k=3,解得k=3,∴k的取值范围为73≤k≤3.故答案为:73≤k≤3.由于当x=1时,y=0,所以直线y=kx−k过定点(1,0),因为直线y=kx−k(k≠0)与线段AB有交点,所以当直线y=kx−k过B(4,7)时,k值最小;当直线y=kx−k过A(2,3)时,k值最大,然后把B点和A点坐标代入y=kx−k可计算出对应的k的值,从而得到k的取值范围.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.【答案】16−4√3−8π3【解析】解:如图,设点O为弧的一个交点.连接OA、OB,则△OAB为等边三角形,∴∠OBC=30°.过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=√32AB=√3,∴OF=2−√3.过点O作PQ⊥BC,分别交AD、BC于点P、Q,则OQ=1.S弓形OmC =S扇形OBC−S△OBC=30×π×22360−12×2×1=π3−1.∴S阴影=4(S△OCD−2S弓形OmC)=4[12×2×(2−√3)−2(π3−1)]=16−4√3−8π3.故答案为:16−4√3−8π3.如解答图,作辅助线,利用图形的对称性求解.解题要点是求出弓形OmC的面积.本题考查了扇形的面积公式和正方形性质的+应用,主要考查学生的计算能力,题目比较好,难度不大.16.【答案】√2−1【解析】解:延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∵CM+CN+MN=2,CN+DN+CM+BM=1+1=2,∴MN=DN+BM=BL+BM=ML,∴△AMN≌△AML(SSS),设CM=x,CN=y,MN=zx2+y2=z2,∵x+y+z=2,则x=2−y−z∴(2−y−z)2+y2=z2,整理得2y2+(2z−4)y+(4−4z)=0,∴△=4(z−2)2−32(1−z)≥0,即(z+2−2√2)(z+2+2√2)≥0,又∵z>0,∴z≥2√2−2此时S△AMN=S△AML=12ML⋅AB=12z因此,当z=2√2−2,S△AMN取到最小值为√2−1.故答案为:√2−1.如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°设CM=x,CN=y,MN=z,根据x2+ y2=z2,和x+y+z=2,整理根据△=4(z−2)2−32(1−z)≥0可以解题.本题考查了勾股定理在直角三角形中的应用,考查了正方形各边相等,各内角是直角的性质,本题求证三角形全等是解题的关键.17.【答案】解:原式=(a+2a2−4+a−2a2−4)⋅a+22a=2aa2−4⋅a+2 2a=2a(a−2)(a+2)⋅a+2 2a=1a−2,当a=2−√2时,原式=2−√2−2=−√22.【解析】将括号内的部分通分,相加后再将除法转化为乘法,然后约分.本题考查了分式的化简求值,熟悉约分、通分、因式分解是解题关键.18.【答案】证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,{BC=CD∠BCH=∠DCE CE=CH,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,又∵∠CGB=∠MGD,∴∠DMB=∠BCD=90°,∴BH⊥DE.【解析】(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.19.【答案】解:(1)2,B,36°;(2)乙班A等级的人数是:30×10%=3,则甲班的二个人用甲表示,乙班的三个人用乙表示.,共有20种情况,则抽取到两名学生恰好来自同一班级的概率是:820=25.【解析】【分析】考查了频数(率)分布表,本题用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.(1)利用总人数30减去其它各组的人数就是x的值,根据中位数的定义求得中位数的值,利用360°乘以对应的比例就可求得圆心角的度数;(2)甲班的人用甲表示,乙班的人用乙表示,利用列举法即可求得概率.【解答】解:(1)x=30−15−10−3=2;中位数落在B组;等级D部分的扇形圆心角n= 360°×330=36°;故答案是:2,B,36°;(2)见答案.20.【答案】解:(1)∵关于x的一元二次方程mx2−2mx+m−2=0有两个实数根,∴m≠0且△≥0,即(−2m)2−4⋅m⋅(m−2)≥0,解得m≠0且m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1⋅x2=m−2m,∵|x1−x2|=1,∴(x1−x2)2=1,∴(x1+x2)2−4x1x2=1,∴22−4×m−2m=1,解得:m=8;经检验m=8是原方程的解.【解析】(1)根据关于x的一元二次方程mx2−2mx+m−2=0有两个实数根,得出m≠0且(−2m)2−4⋅m⋅(m−2)≥0,求出m的取值范围即可;(2)根据方程两实根为x1,x2,求出x1+x2和x1⋅x2的值,再根据|x1−x2|=1,得出(x1+ x2)2−4x1x2=1,再把x1+x2和x1⋅x2的值代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.【答案】解:(1)过点A作AE⊥CB于点E,设AE=x,在Rt△ACE中,∠C=30°,∴CE=√3x,在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∴CE−DE=10,即√3x−x=10,解得:x=5(√3+1),∴AD=√2x=5√6+5√2答:AD的长为(5√6+5√2)米.(2)由(1)可得AC=2AE=(10√3+10)米,过点B作BF⊥AC于点F,∵∠1=75°,∠C=30°,∴∠CAB=45°,设BF=y,在Rt△CBF中,CF=√3BF=√3y,在Rt△BFA中,AF=BF=y,∴√3y+y=(10√3+10),解得:y=10,在Rt△ABF中,AB=√AF2+BF2=10√2米.答:树高AB的长度为10√2米.【解析】(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF 中可求出AB的长度.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用锐角三角函数及已知线段表示未知线段,有一定难度.22.【答案】(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC//AD,∵AD⊥CD,∴OC⊥CD,∵OC为⊙O半径,∴CD是⊙O的切线;(2)解:连接BC,∵AB为直径,∴∠ACB=90°,∵AC平分∠BAD,∴∠CAD=∠CAB,∵CDAD =34,∴令CD=3,AD=4,得AC=5,∴BCAC =34,BC 5=34,∴BC=154,由勾股定理得AB=254,∴OC=258,∵OC//AD,∴OCAD =OEAE,∴2584=AE−258AE,解得AE=1007,∴cos∠DAB=ADAE =41007=725.【解析】(1)连接OC,推出∠DAC=∠CAB,∠OAC=∠OCA,求出∠DAC=∠OCA,得出OC//AD,推出OC⊥DC,根据切线的判定判断即可;(2)连接BC,可证明△ACD∽△ABC,得出比例式,求出BC,再根据勾股定理求出圆的直径AB,再根据三角形相似由比例得出AE,即可求出答案.本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.23.【答案】解:(1)设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得{2k+b=116k+b=118解得{b=120k=−2因此销售量p件与销售的天数x的函数解析式为p=−2x+120;(2)当1≤x<25时,y=(60+x−40)(−2x+120)=−2x2+80x+2400,当25≤x≤50时,y=(40+1125x−40)(−2x+120)=135000x−2250;(3)当1≤x<25时,y=−2x2+80x+2400,=−2(x−20)2+3200,∵−2<0,∴当x =20时,y 有最大值y 1,且y 1=3200;当25≤x ≤50时,y =135000x −2250;∵135000>0,∴135000x 随x 的增大而减小,当x =25时,135000x 最大,于是,x =25时,y =135000x −2250有最大值y 2,且y 2=5400−2250=3150.∵y 1>y 2∴这50天中第20天时该超市获得利润最大,最大利润为3200元.【解析】(1)由表格可以看出销售量p 件与销售的天数x 成一次函数,设出函数解析式,进一步代入求得答案即可;(2)利用利润=售价−成本,分别求出在1≤x <25和25≤x ≤50时,求得y 与x 的函数关系式;(3)利用(2)中的函数解析式分别求得最大值,然后比较两者的大小得出答案即可. 本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.24.【答案】解:(1)∵一次函数y =54x +m 的图象与x 轴交于A(−1,0)∴0=−54+m∴m =54. ∴一次函数的解析式为y =54x +54.∴点C 的坐标为(0,54).∵y =ax 2+bx +c(a ≠0)经过A 、C 两点且对称轴是x =2,∴{a −b +c =0c =54−b 2a =2,解得{a =−14b =1c =54 ∴y =−14x 2+x +54.∴m 的值为54,抛物线C 1的函数表达式为y =−14x 2+x +54.(2)要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=−14x2+x+54中的y=0,则x=−1或5∴B(5,0)∵D(0,2512)∴直线BD解析式为y=−512x+2512,∴F(2,54).令过F(2,54)的直线M1M2解析式为y=kx+b1,则54=2k+b1,∴b1=54−2k则直线M1M2的解析式为y=kx+54−2k.解法一:由{y=−14x2+x+54y=kx+54−2k得x2−(4−4k)x−8k=0∴x1+x2=4−4k,x1x2=−8k∵y1=kx1+54−2k,y2=kx2+54−2k∴y1−y2=k(x1−x2)∴M1M2=√(x1−x2)2+(y1−y2)2 =√(x1−x2)2+k2(x1−x2)2 =√1+k2√(x1−x2)2=√1+k2√(x1+x2)2−4x1x2=√1+k2√(4−4k)2+32k=4(1+k2)M1F=√(x1−2)2+(y1−54)2=√(x1−2)2+(kx1+54−2k−54)2=√1+k2√(x1−2)2同理M2F=√1+k2√(x2−2)2∴M 1F ⋅M 2F =(1+k 2) √(x 1−2)2(x 2−2)2=(1+k 2)√[x 1x 2−2(x 1+x 2)+4]2=(1+k 2)√[−8k −2(4−4k)+4]2=4(1+k 2)=M 1M 2∴1M1F +1M 2F =M 1F+M 2F M 1F⋅M 2F =M 1M 2M 1F⋅M 2F =1;解法二:∵y =−14x 2+x +54=−14(x −2)2+94,∴(x −2)2=9−4y设M 1(x 1,y 1),则有(x 1−2)2=9−4y 1.∴M 1F =√(x 1−2)2+(54−y 1)2=√(54−y 1)2+9−4y 1=134−y 1;设M 2(x 2,y 2),同理可求得:M 2F =134−y 2. ∴1M 1F +1M 2F =M 1F+M 2FM 1F⋅M 2F =(134−y 1)+(134−y 2)(134−y 1)⋅(134−y 2)=132−(y 1+y 2)16916−134(y 1+y 2)+y 1y 2 ①.直线M 1M 2的解析式为y =kx +54−2k ,即:y −54=k(x −2).联立y −54=k(x −2)与抛物线(x −2)2=9−4y ,得:y 2+(4k 2−52)y +2516−9k 2=0, ∴y 1+y 2=52−4k 2,y 1y 2=2516−9k 2,代入①式,得: 1M 1F +1M 2F =4k 2+44k 2+4=1.(3)设y 2与y =−x 的两交点的横坐标分别为x 0,x 0′,∵抛物线C 2:y 2=−14(x −ℎ)2可以看成由y =−14x 2左右平移得到,观察图象可知,随着图象向右移,x 0,x 0′的值不断增大∴当1<x ≤m ,y 2≥−x 恒成立时,m 最大值在x 0′处取得∴当x 0=1时,对应的x 0′即为m 的最大值将x 0=1代入y 2=−14(x −ℎ)2=−x 得(1−ℎ)2=4,∴ℎ=3或−1(舍)将ℎ=3代入y2=−14(x−ℎ)2=−x有−14(x−3)2=−x∴x0=1,x0′=9.∴m的最大值为9.【解析】(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F⋅M2F=M1M2,最后可求1M1F +1M2F=1;(3)设y2与y=−x的两交点的横坐标分别为x0,x0,因为抛物线C2:y2=−14(x−ℎ)2可以看成由y=−14x2左右平移得到,观察图象可知,随着图象向右移,x0,x0的值不断增大,所以当1<x≤m,y2≥−x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.本题主要考查运用待定系数法求函数解析式、一元二次方程根与系数的关系及平面直角坐标系中两点距离公式的综合运用,对计算要求较高.。
2013-2014学年鄂州市九年级4月调研考试数学试卷及答案
2013-2014学年鄂州市九年级4月调研考试数学试卷及答案数学试题一、选择题(本题有10个小题,每小题3分,共30分) 1.-2的相反数是( ) A .21-B .21 C .-2 D .22.下列运算正确的是( ) A .1234x x x =⋅ B .8143)(x x = C .()034≠=÷x x x xD .743x x x =+ 3.下列四个立体图形中,主视图为圆的是( )A .B .C .D .4.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是()A .7145B .1421 C .53D .721 5.点A 在双曲线xk y =上,AB ⊥x 轴于B ,且△AOB 的面积为3,则k=( )A .3B .6C .±3D .±66.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .2.5B .5C .10D .157.在直角坐标系中,已知点A (-2,0)、B (0,4)、C (0,3),过点C 作直线交x 轴于点D ,使得以D 、O 、C 为顶点的三角形与△AOB 相似,如此的直线最多能够作( )A .2条B .3条C .4条D .6条8.已知关于x 的一元二次方程(a -1)x2-2x +1=0有两个不相等的实数根,则a 的取值范畴是( )A .a >2B .a <2C .a <2且a ≠1D .a <-29.如图,抛物线y1=a (x +2)2-3与1)3(2122+-=x y 交于点A (1,3),过点A 作x 轴的平行线,分不交两条抛物线于点B 、C ,则以下结论:①不管x 取何值,y2总是正数;②a =1;③当x =0时,y1-y2=4;④2AB =3AC .其中正确的是( )A .①②B .②③C .③④D .①④10.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是( )A .(-75,-65) B .(75,65)C .(-75,65)D .(75,-65)二、填空题(每小题3分,共18分) 11.16的算术平方根是____________.12.布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是____________.13.已知关于x 的方程2x +mx -2=3的解是正数,则m 的取值范畴为____________.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的物资转给甲车,然后甲车连续前行,乙车向原地返回.设x 秒后两车间的距离为y 千米,y 关于x 的函数关系如图所示,则甲车的速度是____________米/秒.15.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为____________.16.如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,AC=10,将B C 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是 .三、解答题(17—20每题8分,21—22每题9分,23题10分,24题12分,共72分)17.(满分8分)先化简,再求值:211a a a a a ⎛⎫+÷⎪--⎝⎭,其中21a =+. 18.(满分8分)如图,在等腰Rt △ABC 中,∠C =90°,正方形DE FG 的顶点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上.(1)求证:△ADE ≌△BGF ;(2)若正方形DEFG 的面积为16,求AC 的长.19.(满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分不用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情形,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请按照以上信息回答:(1)此次参加抽样调查的居民有多少人? (2)将不完整的条形图补充完整.(3)若居民区有8000人,请估量爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D 粽各一个煮熟后,小王吃了俩个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(满分8分)已知关于x 的一元二次方程x2+(m+3)x+m+1=0. (1)求证:不管m 取何值,原方程总有两个不相等的实数根; (2)若x1,x2是原方程的两根,且1222x x -=,求m 的值,并求出现在方程的两根.21.(满分9分)东方山是鄂东南地区的佛教圣地,月亮山是黄荆山脉第二高峰,山顶上有黄石电视塔.据黄石地理资料记载:东方山海拔DE =453.20米,月亮山海拔CF =442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D 的正上方A 处测得月亮山山顶C 的俯角为α,在月亮山山顶C 的正上方B 处测得东方山山顶D 处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时刻?(精确到0.1秒)22.(满分9分)如图,在△ABC中,AB=AC,∠BAC=54°,以A B为直径的⊙O分不交AC,BC于点D,E,过点B作⊙O的切线,交AC 的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求 AD的长.23.(满分10分)为鼓舞大学毕业生自主创业,某市政府出台了有关政策:由政府和谐,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担,李明按照有关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府那个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元,如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24.(满分12分)如图,在平面直角坐标系中,点O为坐标原点,A 点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点动身沿着OC向点C运动,动点Q从B点动身沿着BA向点A运动,P,Q两点同时动身,速度均为1个单位/秒。
湖北省鄂州市2014学年八年级下学期期中考试数学试题
湖北省鄂州市2014学年八年级下学期期中考试数学试题一、选择题(3×10=30分)1、下列算式中正确的是A、 B、(3.14-pi;)0=1C、D、2、设m=2 0 n=(-3)2 p= q=( )-1,则m、n、p、q 由小到大排列为A 、p3、若分式的值为0,则b的值为A、1B、-1C、1D、24、下列命题不成立的是A、三个角的度数之比为1:3:4的三角形是直角三角形B、三个角的度数比为1::2的三角形是直角三角形C、三边长度比为1::的三角形是直角三角形D、三边长度之比为::2的三角形是直角三角形9、如图,点A是反比例函数 (xgt;0)的图象上任意一点,AB∥x轴交反比例函数的图象于点B,以AB作平形边四形ABCD,其中C、D在x轴上,则S平形边四形ABCD为A、2B、3C、4D、510、如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A,使梯子的底端A到墙根O的距离等于3m,同时梯子的顶端B下降至B,那么BB的长为A、等于1mB、大于1mC、小于1mD、以上答案都不对二、填空题(3×8=24分)11、用四舍五入法把数-0.02009(精确到万分位)用科学记数法表示为。
12、若,则 = 。
13、下列各式中计算结果正确的有。
(填序号)① ②a÷b× =a③④ ⑤14、若Rt△ABC中AC=3,BC=4,则AB= 。
15、若y-2与x成反比例且当x=3时y=1,则y与x 之间函数关系式为。
16、如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S△OAB=。
17、若A、B两点关于y轴对称且点A在双曲线上,点B在直线上,若点B坐标为(m,- n),则的值为。
18、如图,大正方形面积13,小正方形面积为1,直角三角形的两直角边为a,b,求a+b= 。
2014-2015年鄂州一中九年级下第二次月考数学试卷及答案解析
2014-2015学年湖北省鄂州一中九年级(下)第二次月考数学试卷一、选择题(每题3分,共30分)2.(3分)(2014春•鄂城区校级月考)如果a 3xb y与﹣a 2y b x+1是同类项,则x+y 的值为( )3.(3分)(2013•吉林)用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为( ).4.(3分)(2013•临沂)如图,已知AB ∥CD ,∠2=135°,则∠1的度数是( )5.(3分)(2010•眉山)如图,已知双曲线y=(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣6,4),则△AOC 的面积为( )6.(3分)(2014春•鄂城区校级月考)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连AF、CF,则图中阴影部分面积为()7.(3分)(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()8.(3分)(2014春•鄂城区校级月考)设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1 29.(3分)(2013•十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()10.(3分)(2014春•鄂城区校级月考)如图,圆柱形容器中,高为1.2米,底面周长为1米,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()米.二、填空题(3’×6=18’)11.(3分)(2014春•鄂城区校级月考)计算+(﹣1)+()0=.12.(3分)(2014春•鄂城区校级月考)小李和小王准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选古隆中为第一站的概率是.13.(3分)(2015•江都市模拟)若关于x的一元一次不等式组无解,则a 的取值范围是.14.(3分)(2009•武汉)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为.15.(3分)(2015•黄冈中学自主招生)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.16.(3分)(2012•东营)在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A n的纵坐标是.三、解答题(17-20每题8分,21-22每题9分,23题10分,24题12分)17.(8分)(2014春•鄂城区校级月考)先化简,再求值(1)÷(﹣a),其中a=1+,b=1﹣(2)÷+1.在1,0,2三个数中选一个合适的代入求值.18.(8分)(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.19.(8分)(2012•宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.20.(8分)(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21.(9分)(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.(9分)(2013•扬州)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.23.(10分)(2009•武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?24.(12分)(2013•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P运动的时间为t秒.①当t为秒时,△PAD的周长最小?当t为秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2014-2015学年湖北省鄂州一中九年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)2.(3分)(2014春•鄂城区校级月考)如果a3x b y与﹣a2y b x+1是同类项,则x+y的值为()解:根据题意得:3.(3分)(2013•吉林)用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为().4.(3分)(2013•临沂)如图,已知AB ∥CD ,∠2=135°,则∠1的度数是( )解:5.(3分)(2010•眉山)如图,已知双曲线y=(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣6,4),则△AOC 的面积为( )|k|经过点×6.(3分)(2014春•鄂城区校级月考)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连AF、CF,则图中阴影部分面积为()=+)﹣7.(3分)(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为(),=BG=4AG=8.(3分)(2014春•鄂城区校级月考)设x1、x2是一元二次方程x2+4x﹣3=0的两个根,2x1(x22+5x2﹣3)+a=2,则a的值为()﹣9.(3分)(2013•十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()﹣10.(3分)(2014春•鄂城区校级月考)如图,圆柱形容器中,高为1.2米,底面周长为1米,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为()米.=二、填空题(3’×6=18’)11.(3分)(2014春•鄂城区校级月考)计算+(﹣1)+()0=3.=2=312.(3分)(2014春•鄂城区校级月考)小李和小王准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选古隆中为第一站的概率是.∴他们都选古隆中为第一站的概率是:故答案为:13.(3分)(2015•江都市模拟)若关于x的一元一次不等式组无解,则a 的取值范围是≥1.解:14.(3分)(2009•武汉)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x>kx+b>﹣2的解集为﹣1<x<2.的值,即可得到不等式解:由题意可得方程组解得不等式x x可化为15.(3分)(2015•黄冈中学自主招生)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.AE=PD=a=PD+DC=2+16.(3分)(2012•东营)在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A n的纵坐标是()n﹣1.(,∴解得x+y=时,x+,==(,×MNO==)(的纵坐标是((三、解答题(17-20每题8分,21-22每题9分,23题10分,24题12分)17.(8分)(2014春•鄂城区校级月考)先化简,再求值(1)÷(﹣a),其中a=1+,b=1﹣(2)÷+1.在1,0,2三个数中选一个合适的代入求值.(﹣=÷﹣•﹣a=1+﹣﹣===﹣18.(8分)(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.CE=,然后由相似三角形的对应边成比例,求得CE=CE=CE=∴∴19.(8分)(2012•宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了50名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为24%,喜欢“戏曲”活动项目的人数是4人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.活动项目的人数占抽查总人数的百分比为:两项活动的概率是两项活动的概率是.总体数目20.(8分)(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21.(9分)(2013•自贡)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.AC=BC===16∴60=12AC=8=8=20×所以=22.(9分)(2013•扬州)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.ADB=,∴BD===ABE=BE==AE=﹣=23.(10分)(2009•武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?24.(12分)(2013•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E 向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.=得解得﹣4+﹣∴=∴=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14题图天2014年鄂州市中考模拟数学试题(二)一、细心选一选(本题有10个小题,每小题3分,共30分)1.12-的倒数是( ) A .2 B .12C .12-D .2-A ...4.如图,则( ).A .60°B .50°C . 70°D .80°5.若点1122()()A x y B x y ,、,在反比例函数3y x=-的图象上,且120x x <<,则12y y 、和0的大小关系是( )A.120y y >>B.120y y <<C.120y y >>D.120y y <<6.在Rt △ABC 中,∠C =90°,AC =12,BC =5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A .25πB .65πC .90πD .130π7.如图,四边形ABCD 中,AD ∥BC ,AB=25,BC=4,连接BD ,∠BA D 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为( )A.34B. 23C. 35D.28.某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( )A.10%B.31%C.13%D.11%9.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( ) A .①② B . ①③④ C .①②③⑤ D .①②③④⑤ 10、在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D(m ,0),当四边形ABCD 的周长最短时,mn的值为( ) A.73- B.32- C.27- D.32二、认真填一填(本题有6个小题,每小题3分,共18分)11.分解因式8a 2-2=_________________.12.汶川大地震时,航空兵空投救灾物质到指定的区域(圆A )如图所示,若要使空投物质落在中心区域(圆B )的概率为12,则B ⊙与A ⊙的半径之比为 . 13.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 14.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用时间比由甲单独完成这项工程所需时间少 天。
15.如图,AD 、AC 分别是直径和弦,∠CAD=30°,B 是AC 上一点,BO ⊥AD ,垂足为O ,BO=5cm ,则CD 等于 . 16.如图,将直角三角形ABO ,∠ABO=90°,放入平面直角坐标系中,使OB 边落在x 轴上,将纸中AOB 沿线段OA 的垂直平分线MN 对折,使O 点落在点A 的位置,B 点落在B ′的位置,若(第9题图)(第12题图)ABC(第4题图)1 23 (第15题图)ADCBE第7题图OB=1,∠BAO=30°,则点B ′的坐标为 .三、全面答一答(本题有9个小题,共72分) 17.(8分)先化简,再求值 222366510252106a a a a a a a a--+÷++++其中a = 18.(8分)如图,已知平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E . (1)求证:CD CE =;(2)若BE CE =,80B ∠=︒,求DAE ∠的度数.19.(8分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数;(3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 20.(8分)已知关于x 的一元二次方程x 2= 2(1-m )x -m 2的两实数根为x 1,x 2. (1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.21.(9分)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC .22.(9分)已知:如图,以Rt △ABC 的边AB 为直径作△ABC 的外接圆O ,∠B 的平分线BE 交AC 于D ,交⊙O 于E ,作EF//AC 交BA的延长线于F。
(1)求证:EF 是⊙O 的切线;(2)求证:AE2=CD ·EF ;(3)若AB=15,EF=10,求DC 的长。
23.(10分)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工。
已知生产这种产品的成本价为每件20元。
经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:⎩⎨⎧≤〈≤≤=35)x (305.0-2530)x (25-40x x y (年获利=年销售收入-生产成本-投资成本) (1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少? (3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款。
若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围;24.(12分)已知抛物线b ax ax y l +-=2:21与x 轴交于A 、B 两点,与y 轴负半轴交于点C ,且A(-1,0),OB=OC (1)求抛物线1l 的解析式: (2)将(1)中抛物线绕点P(3,23-)旋转180゜得到抛物线2l ,已知抛物线2l 交x 轴于G 、H 两点(G 在H 的左侧),Q 是y 轴正半轴上一点,若∠QHG=∠QCA ,求点Q 的坐标;(3)经过(2)中Q 点的直线与(1)中抛物线1l 交于M 、N 两点(M 在N 的左侧),交抛物线1l 的对称轴于点F ,是否存在这样的直线MN ,使得MF=2FN ?若存在,求直线MN 的解析式;若不存在,请说明理由。
(第21题图) 米山顶 BADECOF参考答案二、填空题(每小题3分,共18分)11.12.13.a≤-1且a≠-2 14.15.16.三、解答题(9小题,共72分)17.解:原式2(6)(6)2(5)5(5)6(6)a a a aa a a a+-++=+-+2a=.当a=2=.18.证明:(1)如图,在ABCD中,//AD BC得,13∠=∠又12∠=∠,∴23∠=∠,∴CD CE=(2)由ABCD得,AB CD=又CD CE=,BE CE=∴AB BE=∴BAE BEA∠=∠∵80B∠=︒,∴50BAE∠=︒,得:180508050DAE∠=︒-︒-︒=︒.19.(1)12(2)500 (3)1620.(1)将原方程整理为x2 + 2(m-1)x + m2 = 0.∵原方程有两个实数根,∴△= [ 2(m-1)2-4m2 =-8m + 4≥0,得m≤21.(2)∵x1,x2为x2 + 2(m-1)x + m2 = 0的两根,∴y = x1 + x2 =-2m + 2,且m≤21.因而y随m的增大而减小,故当m =21时,取得最小值1.21.解:在Rt PAB△中,∵tanABPAα=,∴6001000m3tan5ABPAα===.在Rt PAC△中,∵tanACPAβ=,∴5tan1000625m8AC PAβ===.∴62560025mBC=-=.答:发射架高为25m.22.DC=4.523.(1) 当x=28时,y=40-28=12(万件)(2)1°当30x25≤≤时,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25故当x=30时,W最大为-25,及公司最少亏损25万;2°当30﹤x≤35时,W=(25-0.5x)(x-20)-25-100=-21x2+35x-625=-21(x-35)2-12.5故当x=35时,W最大为-12.5,及公司最少亏损12.5万;对比1°,2°得,投资的第一年,公司亏损,最少亏损是12.5万;(3)1°当30x25≤≤时,W=(40-x)(x-20-1)-12.5-10=-x2+61x-862.5令W=67.5,则-x2+61x-862.5=67.5 化简得:x2-61x+930=0 x1=30;x2=31结合函数图像可知:当两年的总盈利不低于67.5万元,30x25≤≤;2°当30﹤x≤35时,W=(25-0.5x)(x-20-1)-12.5-10=-21x2+35.5x-547.5令W=67.5,则-21x2+35.5x-547.5=67.5 化简得:x2-71x+1230=0 x1=30;x2=41,结合函数图像可知,此时,当两年的总盈利不低于67.5万元,30﹤x≤35;24.(1)32:21---=xxyl;(2) Q(0,2)(3) 223:1+-=xyl123EDCBA。