初中三数学分类复习训练题__一元一次方程
一元一次方程热点题型专项练--2023年中考数学一轮复习
一元一次方程一、单选题1.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 2.若2x =是关于x 的一元一次方程3ax b -=的解,则421a b -+的值是( ) A .7 B .8 C .7- D .8- 3.关于x 的一元一次方程2224a x m --+=的解为1x =,则a m +的值为( )A .9B .8C .7D .54.下列说法中,正确的是( )A .若ac bc =,则a b =B .若22a b =,则a b =C .若a b c c =,则a b =D .若163x -=,则2x = 5.若关于x ,y 的多项式23237654x y mxy y xy -++化简后不含二次项,则m =( ) A .17 B .67 C .67- D .06.若代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,则有( ) A .1m = B .1m =- C .12m = D .1 2m =- 7.在四个数1,2,3,4中,是方程|x ﹣5|=2的解的是( )A .1B .2C .3D .48.下面是一个被墨水污染过的方程:23x x -=-,答案显示此方程的解是1x =,被墨水遮盖的是一个常数,则这个常数是( )A .2B .-2C .12-D .129.已知k 为非负整数,且关于x 的方程()33x kx -=的解为正整数,则k 的所有可能取值为( )A .2,0B .4,6C .4,6,12D .2,0,610.已知1x =是方程122()3-=-x x a 的解,那么关于y 的方程(4)24+=+a y ay a 的解是( ).A .y =1B .y =-1C .y =0D .方程无解11.若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解12.若关于x 的方程()()20192017620191k x x --=-+的解是整数,则整数k 的取值个数是( )A .5B .3C .6D .213.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .237230x xB .327230x xC .233072x xD .323072x x14.我国“DF -41型”导弹俗称“东风快递”,速度可达到26马赫(1马赫=340米/秒),则“DF -41型”导弹飞行多少分钟能打击到12000公里处的目标?设飞行x 分钟能打击到目标,可以得到方程( )A .263406012000x ⨯⨯=B .2634012000x ⨯=C .26340120001000x ⨯=D .2634060120001000x ⨯⨯= 15.为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .17 二、填空题16.关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.17.若 x =3 是关于 x 的一元一次方程 mx - n =3 的解,则代数式 10 - 3m + n 的值是___.18.已知2x ﹣3y ﹣5=0,则9y ﹣6x +16=________.19.如果212m ab -与23m ab +-是同类项,那么m 等于______.20.已知关于x 的方程32()mx x m +=-的解满足230x --=,则m 的值是____________. 21.已知关于x 的方程22()mx m x +=-的解满足1102x --=,则m 的值是_________. 22.已知关于x 的方程21132--=-x x a 的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______. 23.当a 取整数________时,关于x 的方程411633x ax ---=有正整数解.24.若关于x的方程234k x-=与方程1302x-=的解相同,则k的值为____________.25.当m取___ 时,关于x的方程mx+m=2x无解.三、解答题26.小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?27.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.28.小王看到两个超市的促销信息如图所示.(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物标价198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?29.丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:按上述优惠条件,若小丽一次性购买乙种商品实际付款504元,求小丽购买商品的原价是多少?参考答案:1.C2.A解:将x =2代入ax -b =3中,得2a -b =3,∴421a b -+=2(2a -b )+1=231⨯+=7,3.C 方程2224a x m --+=是关于x 的一元一次方程,21a ∴-=,解得3a =,∴方程为224x m -+=,又1x =是方程224x m -+=的解,2124m ∴⨯-+=,解得4m =,则347a m +=+=,4.C解:A 、若ac =bc ,当c ≠0,则a =b ,故此选项错误; B 、若22a b =,则a b =±,故此选项错误;C 、若a b c c=,则a b =,故此选项正确; D 、若163x -=,则18x =-,故此选项错误; 5.B解:∴23237654x y mxy y xy -++ =()23236754x y m xy y +-+, ∴不含二次项,∴6﹣7m =0,解得m =67.6.C解:()()226251x y mx y -+-+-=226251x y mx y ---++=()21267m x y --+∴代数式()()226251x y mx y -+-+-的值与字母x 的取值无关,∴120m -= 解得:12m =7.C当x -5≥0,则原式方程可变为:x -5=2,解得:x=7,当x -5<0,则原式方程可变为:x -5=-2,解得:x=3,8.A解:设这个常数为a ,则把1x =代入方程,得:2131a ⨯-=-,解得:2a =,9.A解:方程去括号得:3x −9=kx ,移项合并得:(3−k )x =9,解得:x =93k -, 由x 为正整数,k 为非负整数,得到k =2,0,10.C解:∴1x =是方程122()3-=-x x a 的解, ∴122(1)3a -=-, 解得1a =,将1a =代入(4)24+=+a y ay a 得:424y y +=+,解得0y =.11.D解:解方程3m (2x ﹣1)﹣n =3(2﹣n )x可得:(6m +3n ﹣6)x =3m +n∴有至少两个不同的解,∴6m +3n ﹣6=3m +n =0,即m =﹣2,n =6,把m =﹣2,n =6代入(m +n )x +3=4x +m 中得:4x +3=4x +m , ∴方程(m +n )x +3=4x +m 无解.12.C解:()()20192017620191k x x --=-+,(2019)2017620192019k x x --=--,(2019)2019620192017k x x -+=-+,4kx =, 解得:4x k=, ∴方程的解是整数,k 也是整数,∴k 可以为-4或-2或-1或1或2或4,共有6个数,故C 正确.13.D14.D解:因为1分钟60=秒,1公里1000=米, 所以可列方程为2634060120001000x ⨯⨯=, 15.B解:设小红答对的个数为x 个,由题意得()52070x x --=,解得15x =,16.-2解:由题意可得(0)x a a =≠,把x a =代入原方程可得:220a ab a ++=,等式左右两边同时除以a ,可得:20a b ++=, 即2a b +=-,故答案为:2-.17.7解:把x =3代入关于 x 的一元一次方程 mx - n =3得 3m - n =3-3m +n =-310 - 3m + n =10-3=7故答案为:7.18.1解:∴2x ﹣3y ﹣5=0,∴2x ﹣3y =5,∴9y ﹣6x +16=﹣3(2x ﹣3y )+16=﹣3×5+16=1,故答案为:1.19.320.5或-1解:230x --=,23x -=,23x -=±,解得:x =5-1或。
2022年中考数学培优复习考点一元一次方程专项训练(含答案)
一元一次方程专项训练一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.若代数式a+3的值为﹣2,则a等于()A.﹣2B.﹣3C.﹣4D.﹣53.下列变形错误的是()A.如果a=b,那么a+5=b+5B.如果a=b,那么a﹣c=b﹣c.C.如果ac=bc,那么a=bD.如果,那么a=b4.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折()A.7折B.7.5折C.8折D.8.5折5.将连续的奇数1,3,5,7,9,…排成如图所示的数表,平移十字方框,方框内的5个数字之和可能是()A.405B.545C.2012D.20156.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为()A.B.C.D.7.阅读下列解方程的过程,此过程从上一步到所给步有的产生了错误,则其中没有错误的是()解方程:.①;②2(10x﹣30)﹣5(10x+40)=160;③20x﹣60﹣50x+200=160;④﹣30x=300.A.①B.②C.③D.④8.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.69.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.610.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.某玩具店销售一种玩具,按规定会员购买打八折,非会员购买打九折,同样购买一样玩具,小芳用会员卡比小明不用会员卡购买少花了3元钱,则这种玩具用会员卡购买的价格是元.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为.14.关于x的方程2x﹣3=kx的解是整数,则整数k可以取的值是.15.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.三.解答题16.解方程:(1)5x+3(2﹣x)=10;(2)x=+4.17.小明在解方程=﹣1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.18.公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)求一个月通话多少分钟时两种方式的费用相同?(列方程解)19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.已知数轴上三点A,O,B对应的数分别为﹣2,0,3,点P为数轴上任意一点,其对应的数为x.(1)AB的长为;(2)如果点P到点A、点B的距离相等,那么x的值是;(3)动点M从点O出发,以每秒3个单位长度的速度沿数轴正方向运动,点N从点B出发,以每秒1个单位长度的速度沿数轴正方向运动.求动点M经过几秒追上动点N?参考答案一.选择题1.解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x ﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.解:根据题意,可得:a+3=﹣2,解得a=﹣5.故选:D.3.解:∵a=b,∴a+5=b+5,∴选项A不符合题意;∵a=b,∴a﹣c=b﹣c,∴选项B不符合题意;∵ac=bc,c=0时,a可以不等于b,∴选项C符合题意;∵,∴a=b∴选项D不符合题意.故选:C.4.解:设这件商品销售时打x折,依题意,得100×(1+80%)×﹣100=100×44%,解得:x=8.故选:C.5.解:设方框中间的数为x,则方框中的5个数字之和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x,平移十字方框时,方框中间的数x只能在第2或3或4列.A、405÷5=81,在第一列,故本选项不符合题意;B、545÷5=109,在第五列,故本选项不符合题意;C、2012÷5=402.4,数表中都是奇数,故本选项不符合题意;D、2015÷5=403,在第二列,故本选项符合题意;故选:D.6.解:设甲一共做了x天,由题意得:+=,故选:B.7.解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为﹣200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为﹣30x=20错误,本选项不符合题意;故选:B.8.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.9.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:设这种玩具原价是x元,根据题意可得:0.9x﹣0.8x=3,解得:x=30,∴0.8x=24(元)答:这种玩具用会员卡购买的价格是24元.故答案为:24.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:联立方程得:,②×2﹣①得,3a=11,解得a=.故答案为:.14.解:移项、合并,得(2﹣k)x=3,解得x=,∵x为整数,k为整数,∴,,解得k=±1或3或5.故答案为:±1或3或5.15.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.三.解答题16.解:(1)去括号得:5x+6﹣3x=10,移项得:5x﹣3x=10﹣6,合并得:2x=4,解得:x=2;(2)去分母得:3x=x﹣2+12,移项得:3x﹣x=﹣2+12,合并得:2x=10,解得:x=5.17.解:根据题意,x=3是方程4(2x﹣1)=3(x+m)﹣1的解,将x=3代入得4×(2×3﹣1)=3(3+m)﹣1,解得m=4,所以原方程为=﹣1,解方程得x=.18.解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟时两种方式的费用相同,由题意得:18+0.10x=0.15x,解得x=360.答:一个月通话360分钟时两种方式的费用相同.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.天天向上独家原创-2022故m的值为﹣.20.解:(1)AB=|﹣2﹣3|=5.故答案为:5;(2)依题意,得:|x﹣(﹣2)|=|x﹣3|,即x+2=x﹣3或x+2=3﹣x,方程无解或x=0.5.故答案为:0.5;(3)设动点M经过t秒恰好追上动点N,依题意,得:3t=3+t,解得:t=1.5.答:动点M经过1.5秒恰好追上动点N.11 / 11。
初中数学一元一次方程基础训练3含答案
一元一次方程基础训练3一.选择题(共34小题)1.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=8 2.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数3.下列结论不成立的是()A.若x=y,则5﹣x=5﹣y B.若x=y,则mx=myC.若,则a=b D.若a=b,则4.设x,y,c是有理数,下列选项错误的是()A.若x=y,则x+c=y+c B.若x=y,则xc=ycC.若x=y,则=D.若=,则3x=2y5.下列结论错误的是()A.若a=b,则am=bm B.若a+m=b+m,则a=bC.若a=b,则a﹣m=b﹣m D.若am=bm,则a=b6.下列方程的变形符合等式性质的是()A.由2x﹣3=7,得2x=﹣3B.由﹣2x=5,得x=5+2C.由3x﹣2=x+1,得3x﹣x=1﹣2D.由﹣x=1,得x=﹣37.将方程x﹣3(4﹣3x)=5去括号正确的是()A.x﹣12﹣6x=5B.x﹣12﹣2x=5C.x﹣12+9x=5D.x﹣3+6x=5 8.下列说法正确的是()A.若a=b,则a+c=b﹣c B.a=b则3a=﹣3bC.若a=b,则=D.若a=b,则ad=bd9.设a,b,c表示任意有理数,下列结论不一定成立的是()A.若a=b,则a+c=b+c B.若a=b,则ac=bcC.若ac=bc,则a=b D.若,则a=b10.根据等式的性质,下列变形正确的是()A.如果2x=3,那么x=B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=311.下列方程的变形,符合等式性质的是()A.由﹣5x=,得x=﹣B.x+2=6,得x=6+2C.由x=0,得x=3D.由x﹣2=4,得x=4﹣212.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6D.2(2x+1)﹣(10x+1)=113.关于x的方程3x+5=0与3x+3k=1的解相同,则k=()A.﹣2B.C.2D.﹣14.若k是方程2x﹣1=3的解,则4k﹣2的值是()A.2B.4C.6D.815.已知3是关于x的方程2x+a=1的解,则a的值是()A.﹣5B.5C.7D.216.制作一件手工制品,如果由一个人完成需10小时,现在由一部分人先做1小时,再增加1人和他们一起做2小时,完成这项工作的,假设每个人的工作效率相同,具体先安排x人工作,则下列方程正确的是()A.+=1B.+=C.﹣=D.+=17.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)18.一件标价为1088元的上衣,按9折销售仍可获利100元,设这件上衣的成本价为x元,列方程()A.1088×0.9﹣x=100B.1088×9﹣x=100C.1088×0.9=x﹣100D.1088×9=x﹣10019.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元20.已知光在空气中的传播速度约为3×105km/s,声音在空气中传播速度约为340m/s.下雨天的时候,若我们看到闪电后,过2s才听到雷声,则我们离打雷的地方有多少米?设我们离打雷的地方有x米.下列所列出的方程中正确的是()A.=2B.=2C.=2D.21.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x元,那么依题意所列方程正确的是()A.70%(1+70%)x=x+38B.70%(1+70%)x=x﹣38C.70%(1+70%x)=x﹣38D.70%(1+70%x)=x+3822.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满8个月就决定不再继续干了,结账时,老板给了他一件衣服和2枚银币.设这件衣服值x枚银币,依题意列方程为()A.12(x+2)=x+10B.8(x+2)=x+10C.D.23.某校组建了66人的合唱队和14人的舞蹈队,根据实际需要,从合唱队中抽调了部分同学参加舞蹈队,使合唱队的人数恰好是舞蹈队人数的3倍,设从合唱队中抽调了x人参加舞蹈队,则可列方程为()A.3(66﹣x)=14+x B.66﹣x=3(14+x)C.66﹣3x=14+x D.66+x=3(14﹣x)24.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分.今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有()A.10道B.15道C.20道D.8道25.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.﹣=10C.12(x+10)=13x+60D.﹣=1026.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5B.6C.7D.827.在排成每行七天的月历表中取下一个3×3方块(如图所示),若所有日期数之和为99,则n的值为()A.21B.11C.15D.928.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠:②一次性购书超过200元但不超过400元一律打九折:③一次性购书超过400元一律打八折.如果黄聪同学一次性购书共付款324元,那么黄聪所购书的原价是()A.360元B.405元C.324元或360元D.360元或405元29.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为()A.3750元B.4000元C.4250元D.3500元30.一种商品,原价600元,现按九折出售,现在的价格比原来便宜()A.540元B.40元C.60元D.100元31.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,可列方程为()A.40x﹣8x=3.6B.=40﹣8C.﹣=3.6D.﹣=3.6 32.某地为了打造千年古镇旅游景点,将修建一条长为3600m的旅游大道.此项工程由A、B两个工程队接力完成,共用时20天.若A、B两个工程队每天分别能修建240m、160m,设A工程队修建此项工程xm,则可列方程为()A.+=20B.+=20C.﹣=20D.﹣=2033.为纪念中华人民共和国成立70周年,实验中学特组织七年级学生参观胡风纪念馆,对学生进行爱国主义教育.若租用30座客车x辆,则有5人没座位;若租用38座客车,则可少租2辆,且有一辆车空7个座位,根据题意,可列方程为()A.30x+5=38(x﹣2)+7B.30x+5=38(x﹣2)﹣7C.30x﹣5=38(x﹣2)+7D.30x﹣5=38(x﹣2)﹣734.一种商品原价400元,现按九折出售,现在的价格比原来便宜()A.350元B.360元C.370元D.40元二.填空题(共3小题)35.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了_____道题.36.若(a﹣2)x a+3+2=0是关于x的一元一次方程,则a=_____,方程的解是_____.37.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是_____.三.解答题(共3小题)38.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?39.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?40.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?一元一次方程基础训练3参考答案与试题解析一.选择题(共34小题)1.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.2.解:根据一元一次方程的特点可得,解得m=1.故选:A.3.解:A、等式两边都乘以﹣1,且等式都加上5,等式仍成立,故A不符合题意;B、等式两边都乘以m,等式仍成立,故B不符合题意;C、等式两边都乘以c,等式仍成立,故C不符合题意;D、当c=0时,两边都除以c无意义,等式不成立,故D符合题意;故选:D.4.解:A、等式两边都加上c,等式仍成立,故这个选项不符合题意;B、等式两边都乘以c,等式仍成立,故这个选项不符合题意;C、c=0时,等式两边都除以c没有意义,等式不成立,故这个选项符合题意;D、等式两边都乘以6c,等式仍成立,故这个选项不符合题意.故选:C.5.解:A、a=b,两边都乘以m,得ma=bm,原变形正确,故这个选项不符合题意;B、a+m=b+m,两边都减去m,得a=b,原变形正确,故这个选项不符合题意;C、a=b,两边都减去m,得a﹣m=b﹣m,原变形正确,故这个选项不符合题意;D、m=0时,两边都除以0无意义,原变形错误,故这个选项符合题意;故选:D.6.解:A、等式的两边都加上3,得2x=10,故A不符合题意;B、等式两边同时除以﹣2,得x=﹣,故B不符合题意;C、由3x﹣2=x+1,得3x﹣x=1+2,故C不符合题意;D、等式的两边同时乘以﹣3,得x=﹣3,故D符合题意;故选:D.7.解:方程x﹣3(4﹣3x)=5,去括号得:x﹣12+9x=5,故选:C.8.解:A、一边加c,一边减c,所得等式不成立,故这个选项不符合题意;B、一边乘以3,一边乘以﹣3,所得等式不成立,故这个选项不符合题意;C、c=0时,两边都除以c无意义,所得等式不成立,故这个选项不符合题意;D、两边都乘以d,所得等式成立,故这个选项符合题意;故选:D.9.解:A、等式的两边都加c,等式仍成立,故这个选项不符合题意;B、等式的两边都乘以c,等式仍成立,故这个选项不符合题意;C、当c=0时,等式的两边都除以c无意义,等式不一定成立,故这个选项符合题意;D、等式的两边都乘以c,等式仍成立,故这个选项不符合题意;故选:C.10.解:A、根据等式的性质得到x=,故本选项不符合题意.B、根据等式的性质得到x﹣5=y﹣5,故本选项不符合题意.C、根据等式的性质得到﹣2x=﹣2y,故本选项符合题意.D、根据等式的性质得到x=12,故本选项不符合题意.故选:C.11.解:A、由﹣5x=,得x=﹣,所以A选项正确;B、x+2=6,得x=6﹣2,所以B选项错误;C、由x=0,得x=0,所以C选项错误;D、由x﹣2=4,得x=4+2,所以D选项错误.故选:A.12.解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选:C.13.解:解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2故选:C.14.解:把x=k代入方程2x﹣1=3得:2k﹣1=3,解得:k=2,即4k﹣2=8﹣2=6,故选:C.15.解:把x=3代入方程2x+a=1得:6+a=1,解得:a=﹣5,故选:A.16.解:设先安排x人工作,依题意,得:+=.故选:B.17.解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.18.解:设这件上衣的成本价为x元,依题意,得:1088×0.9﹣x=100.故选:A.19.解:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y﹣25%y=60,60+60﹣48﹣80=﹣8,∴亏了8元.故选:C.20.解:设我们离打雷的地方有x米,依题意,得:﹣=2.故选:C.21.解:设这件夹克衫的成本价是x元,依题意,得:70%(1+70%)x=x+38.故选:A.22.解:设这件衣服值x枚银币,依题意,得:=.故选:D.23.解:设从合唱队中抽调了x人参加舞蹈队,依题意,得:66﹣x=3(14+x).故选:B.24.解:设他作对了x道题,则:8x﹣5(26﹣x)=0,解得:x=10.故选:A.25.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:C.26.解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.27.解:由题意可得,n+(n﹣1)+(n+1)+(n﹣7)+(n+7)+(n﹣1﹣7)+(n﹣1+7)+(n+1﹣7)+(n+1+7)解得,n=11,故选:B.28.解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,黄聪所购书的原价是360元或405元,故选:D.29.解:设该电器的成本价为x元,依题意,得:500=20%x,解得:x=2500,∴该电器的标价为(2500+500)÷0.8=3750(元).故选:A.30.解:设现在的价格比原来便宜x元,根据题意,得600﹣x=600×0.9解得x=60.故选:C.31.解:设甲乙两地相距x千米,先利用路程公式分别求得步行和乘公交车所用的时间,再根据等量关系列方程得:﹣=3.6.故选:C.32.解:设A工程队修建此项工程xm,则可列方程为:+=20.故选:A.33.解:由题意知,30x+5=38(x﹣2)﹣7.故选:B.34.解:设现在的价格比原来便宜x元,依题意,得:400﹣x=400×0.9,解得:x=40.故选:D.二.填空题(共3小题)35.解:设他做对了x道题,则做错了(25﹣x)道题,依题意得:4x﹣(25﹣x)=85,解得x=22.故答案是:22.36.解:∵(a﹣2)x a+3+2=0是关于x的一元一次方程,∴a+3=1,且a﹣2≠0,解得:a=﹣2,方程为﹣4x+2=0,解得:x=,故答案为:﹣2;x=.37.解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8﹣x=270,解得:x=1350.故答案是:1350元.三.解答题(共3小题)38.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.39.解:(1)设每个书包价格为x元,则每本词典价格为(x﹣8)元,根据题意得:3x+2(x﹣8)=124解得:x=28所以28﹣8=20(元)答:每个书包价格为28元,每本词典价格为20元.(2)设购买书包y个,则购买词典(40﹣y)个,余下的钱为:900﹣[28y+20(40﹣y)]=100﹣8y,由题意,当y=12时,100﹣8y为最小的正数4.答:购买方案为购买书包12个,词典28本.40.解:设应分配x人生产甲种零件,12x×2=23(62﹣x)×3,解得x=46,62﹣46=16(人).故应分配46人应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.。
2020年中考数学复习指南: 《一元一次方程》 综合训练(含答案)
2020中考数学复习指南:《一元一次方程》综合训练第Ⅰ卷(选择题)一.选择题1.关于x的方程x+1=2b的解是5,则b=()A.2 B.﹣2 C.3 D.﹣32.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A.36元B.48元C.50元D.54元3.在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23 B.21 C.15 D.124.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.﹣1,去分母,得4(x+1)=3x﹣1D.方程﹣x=4,未知数系数化为1,得x=﹣105.天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会()A.不亏不赚B.赚了4% C.亏了4% D.赚了36% 6.方程﹣x=+1去分母得()A.3(2x+3)﹣x=2(9x﹣5)+1 B.3(2x+3)﹣6x=2(9x﹣5)+6 C.3(2x+3)﹣x=2(9x﹣5)+6 D.3(2x+3)﹣6x=2(9x﹣5)+17.下面是一个被墨水污染过的方程:(1﹣2ax)=x+a,答案显示此方程的解是x=﹣2,被墨水遮盖的是一个常数a,则这个常数是()A.1 B.﹣C.D.﹣8.有m间学生宿舍和n个学生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程正确的是()①8m﹣4=10m+6;②;③;④8m+4=10m﹣6.A.①③B.②④C.①②D.③④9.若关于x的方程(k﹣4)x=3有正整数解,则自然数k的值是()A.1或3 B.5 C.5或7 D.3或710.一列火车匀速行驶,经过一条长600米的隧道需要25秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求火车的速度.设火车的速度为xm/s,列方程得()A.B.C.10x+600=25x D.10x+25x=600第Ⅱ卷(非选择题)二.填空题11.若x=a是方程2x+3=4的解,则代数式4a+6的值是.12.“x的与7的差等于x的2倍与5的和”用方程表示为.13.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m﹣4)x+16=0的解,则m的值为.14.“衢州有礼华外有你”衢州华外第19届科技艺术节如期举行,小郑在“美食节”上共卖出50个鸭头,其中一半鸭头以8元每个卖出,另一半鸭头降价为5元每个卖出,共获利50%.问小郑这50个鸭头平均每个多少元买进?设这50个鸭头平均每个以x元买进,可列出方程为:.15.已知x=4是关于x的方程3a+x=+3的解,则a2﹣a的值为.16.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A、B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A、B产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.17.用“※”定义一种新运算:对于任意有理数a和b,我们规定a※b=a(a﹣b)+1,比如,2※5=2×(2﹣5)+1.若3※x=5※(x﹣1),则x的值为.18.已知连接A、B两地之间的公路长为600千米,甲开车从A地出发沿着此公路以100千米/小时的速度前往B地,乙骑自行车从B地出发沿此公路匀速前往A地.已知乙比甲晚出发1小时,乙出发4小时后与甲第一次相遇,当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m千米,则m=.19.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为.20.探索规律:将连续的偶数2,4,6,8,…,排成如下表:若将十字框上下左右移动,可框住五个数,若五个数的和等于2020,写出这五个数是.三.解答题21.解方程:(1)3x﹣(x﹣1)=5(2)3x﹣=122.甲,乙两辆汽车同时从A地出发前往C地,甲车的速度是80km/h,乙车的速度是60km/h,甲车行驶30分钟后到达B地,并在B地停留了45分钟,最后两车同时到达C地.(1)当甲车从B地出发时,甲,乙两车相距多少km?(2)求A,C两地的距离.23.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/s,经过多长时间P、Q两点相遇?(2)当PA=2PB时,点Q运动到的位置恰好是线段OB的中点,求点Q的运动速度;(3)设运动时间为xs,当点P运动到线段AB上时,分别取OP和AB的中点E、F,则OC﹣AP﹣2EF=cm.24.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?25.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?26.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A点以3厘米/秒运动,经过秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q 沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距6cm?(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.27.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.参考答案一.选择题1.解:∵关于x的方程x+1=2b的解是5,∴5+1=2b,∴2b=6,解得b=3.故选:C.2.解:设该商品的进货价是x元,依题意,得:60﹣x=20%x,解得:x=50.故选:C.3.解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、=﹣1,去分母,得4(x+1)=3x﹣12,不符合题意;D、方程﹣x=4,未知数系数化为1,得x=﹣10,符合题意,故选:D.5.解:设一件羽绒服的进价为a元,则在进价的基础上提高60%定价为:(1+60%)a=1.6a,在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a×0.6=0.96a,0.96a﹣a=﹣0.04a,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%;故选:C.6.解:方程的两边都乘以6,得3(2x+3)﹣6x=2(9x﹣5)+6.故选:B.7.解:把x=﹣2代入方程得:(1+4a)=a﹣2,去分母得:1+4a=2a﹣4,解得:a=﹣,故选:B.8.解:按照学生人数不变,可列出方程8m+4=10m﹣6;按照宿舍间数不变,可列出方程=.∴方程②④正确.故选:B.9.解:(k﹣4)x=3,解得x=,又∵(k﹣4)x=3有正整数解,k为自然数,∴自然数k的值是5或7.故选:C.10.解:设火车的速度为xm/s,依题意,得:600+10x=25x.故选:C.二.填空题(共10小题)11.解:把x=a代入方程得:2a+3=4,所以4a+6=2(2a+3)=2×4=8.故答案是:8.12.解:由题意可得:x﹣7=2x+5.故答案为:x﹣7=2x+5.13.解:∵AB=8,∴6﹣a=8,解得a=﹣2,∵a+c=0,∴c=2,∵c是关于x的方程(m﹣4)x+16=0的一个解,∴2(m﹣4)+16=0,解得m=﹣4.故答案是:﹣4.14.解:设这50个鸭头平均每个以x元买进,依题意,得:8×50×+5×50×﹣50x=50%×50x.故答案为:8×50×+5×50×﹣50x=50%×50x.15.解:将x=4代入3a+x=+3,得3a+4=+3,解得a=.所以a2﹣a=()2﹣=﹣.故答案是:﹣.16.解:设A商品的单价为x元/件,则B商品的单价为(27﹣x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27﹣x)×a=xa+(27﹣x)(a+2)+8,∴x=,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10∴小明购买两种商品实际花费=9×12+1.2×10×17=312元,故答案为:31217.解:∵3※x=5※(x﹣1)∴3(3﹣x)+1=5(5﹣x+1)+1去括号,得9﹣3x+1=30﹣5x+1移项,得﹣3x+5x=30+1﹣9﹣1合并同类项,得2x=21系数化为1,得x=10.5故答案为:10.5.18.解:设乙的速度为x千米/小时,由题意可知:100×1+100×4+4x=600,解得:x=25,第一次相遇后,甲到达B地所需要的时间为=1,此时乙继续往A地走了25×1=25千米,设甲到达B地后到追上乙所需要时间为t小时,∴25+100+25t=100t,∴t=,∴当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m=100+25+25t=千米,故答案为:19.解:设甲数是2x,则乙数是3x,丙数是4x,则2x+3x﹣(3x+4x)=30解得x=﹣15.故2x=﹣30,3x=﹣45,4x=﹣60.即甲、乙、丙分别为﹣30、﹣45、﹣60.故答案是:﹣30、﹣45、﹣60.20.解:设十字框最中间的数为x,其他数为x﹣10,x+10,x﹣2,x+2,根据题意得:x﹣10+x+x+10+x﹣2+x+2=2020,解得:x=404,则五个数是394,402,404,406,414,故答案为:394,402,404,406,414.三.解答题(共7小题)21.解:(1)去括号得:3x﹣x+1=5,移项合并得:2x=4,解得:x=2;(2)去分母得:12x﹣3x+1=4,移项合并得:9x=3,解得:x=.22.解:(1)60×﹣80×=35(km).答:当甲车从B地出发时,甲,乙两车相距35km.(2)设A,C两地的距离为xkm,依题意,得:﹣=,解得:x=180.答:A,C两地的距离为180km.23.解:(1)设运动时间为t,则t+2t=90,解得t=30;所以经过30s,P、Q两点相遇;(2)当点P在线段AB上时,∵PA=2PB,∴PA=40cm,∴OA=60cm,∴t==60s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度=cm/s;当点P在线段AB的延长线上时,∵PA=2PB,∴PA=120cm,∴OA=140cm,∴t==140s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度为==cm/s;(3))∵E、F分别是OP、AB的中点,∴OE=OP=t,OF=OA+AB=20+30=50,∴EF=50﹣t∴OC﹣AP﹣2EF=90﹣(t﹣20)﹣(100﹣t)=10,故答案为:10.24.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.25.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)设乙干满10天,剩下的让甲工程队干需要a天,由题意得+=1,解得:a=7,故甲乙合干7天,剩下的乙再干3天完成任务.26.解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4s,点P、Q两点相遇;故答案为:4.(2)设经过a秒后P、Q相距6cm,由题意得,20﹣2×2﹣(2+3)a=6,解得:a=2,或2×2+(2+3)a﹣20=6,解得:a=,答:再经过2秒和秒后P、Q相距6cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为=2s或=5s,设点Q的速度为ym/s,当2秒时相遇,依题意得,2y=20﹣2=18,解得y=9当5秒时相遇,依题意得,5y=20﹣6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.27.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755解得:x=21则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解得:y=44.5 (不符合题意).所以王老师肯定搞错了.。
人教版七年级上册数学 第三章 一元一次方程 单元训练题 (4)(有解析)
第三章 一元一次方程 单元训练题 (4)一、单选题1.某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x 个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是( )A .22x =64(27﹣x )B .2×22x =64(27﹣x )C .64x =22(27﹣x )D .2×64x =22(27﹣x ) 2.若关于x 的方程(m-3)x |m|-2 -m+3=0是一元一次方程,则m 的值为( )A .m=3B .m=-3C .m=3或-3D .m=2或-2 3.对于实数a ,b ,c ,d ,定义一种运算a b ad bc c d =-,那么当24103x =-时,x =( ).A .1B .2C .1-D .2-4.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款。
设一次购书数量为x 本(x >10),则付款金额为( )A .6.4x 元B .(6.4x +80)元C .(144−6.4x )元D .(6.4x +16)元 5.3的倒数是( )A .3B .3-C .13D .13- 6.若方程(m -1)x + 2 = 0表示关于x 的一元一次方程,则m 的取值范围是( ) A .m 0 B .m 1 C .m=-1D .m=0 7.某商品标价120元,打八折售出后仍盈利10元,则该商品进价是( ) A .86元 B .106元C .110元D .140元 8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是( )A .70千米/小时B .75千米/小时C .80千米/小时D .85千米/小时9.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x 元,由题意得( )A .40x +60(x –20)=6000B .40x +60(x +20)=6000C .60x +40(x –20)=6000D .60x +40(x +20)=600010.如果2x =是方程112x a +=-的解,那么a 的值是( ) A .-2 B .2 C .0 D .-111.下列等式是由3x 4x 1=-根据等式性质变形得到的,其中正确的个数有( ) ①431x x -=;②3x 4x 1-=;③32212x x =-;④134-=+x x A .0个 B .1个 C .2个 D .3个12.某商人一次卖出两件商品。
中考数学一轮复习《一元一次方程》练习题(含答案)
中考数学一轮复习《一元一次方程》练习题(含答案)一、单选题1.下列方程中解是2x =的方程是( )A .360x +=B .240x -+=C .122x =D .240x += 2.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .33.已知a =b ,根据等式的性质,错误的是( )A .22a b +=+B .ac bc =C .a b c c =D .2211a b c c =++ 4.若方程()2180m m x---=是关于x 的一元一次方程,则m =( ) A .1 B .2 C .3 D .1或35.下列命题中是真命题的是( )A .同位角相等,两直线平行B .钝角三角形的两个锐角互余C .若实数a ,b 满足a 2=b 2,则a =bD .若实数a ,b 满足a <0,b >0,则ab >06.某车间原计划用15小时生产一批零件,实际每小时多生产了10件,用了13小时不但完成了任务,而且还多生产了80件,设原计划每小时生产x 个零件,那么下列方程正确的是( )A .11(10)801513x x =++B .11(10)801513x x +=+ C .1513(10)80x x =++D .13(10)1580x x +=+ 7.若a b =,下列变形错误的是( )A .11a b +=+B .a m b m -=-C .22a b =D .23a b = 8.《孙子算经》中记载:今有百鹿入城,家取一鹿,不尽,又三家共鹿适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?设有x 户人家,可列方程为( )A .3100x x +=B .3100x x -=C .1003x x -=D .1003x x += 9.已知点P 的坐标为()2,3x x +,点M 的坐标为()1,2x x -,PM 平行于y 轴,则P 点的坐标为( )A .()2,2-B .()6,6C .()2,2-D .()6,6--10.在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个11.如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .212.小江去商店购买签字笔和笔记本(其中签字笔和笔记本的单价相同).若购买20支签字笔和15本笔记本,则他身上的钱还缺25元;若购买19支签字笔和12本笔记本,则他身上的钱会剩下15元.若小江购买17支签字笔和9本笔记本,则( )A .他身上的钱还缺65元B .他身上的钱会剩下65元C .他身上的钱还缺115元D .他身上的钱会剩下115元二、填空题13.已知等式285x y -+=,则32x y -+=______.14.若方程2x -m =1和方程3x =2(x -1)的解相同,则m 的值为__________.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是___ 1621x -5x 的值为 _____.17.若()235k y k x -=-+是一次函数,则k =_________.18.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.19.对于实数a ,b ,定义运算“※”如下:a ※b =a 2﹣ab ,例如,5※3=52﹣5×3=10.若(1)x +※(4)10x -=,则x 的值为_____.20.一个装有红豆和黄豆共计200颗的瓶子,现将瓶中豆子充分摇匀,再从瓶中取出80颗豆子时,发现其中有20颗红豆,根据实验估计该瓶装有红豆大约_________颗.三、解答题21.解方程:(1)2﹣3x =5﹣2x ;(2)3(3x ﹣2)=4(1+x ).22.解下列方程:(1)4385-=+x x ; (2)7531132y y --=-.23.一个正数a 的两个不相等的平方根分别是21b -和4b +.(1)求b 的值;(2)求a b +的立方根.24.我们规定一种运算=-a b ad cb c d,如232534245=⨯-⨯=-,再如14224-=-+-x x .按照这种运算规定,解答下列各题:(1)计算3245--=___________;(2)若22235-=-x x,求x 的值;(3)若88123332--+-mx x与51--n x的值始终相等,求m,n的值.25.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y,B y与x之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程.(3)小明用的A卡,他计算了一下,若是B卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?26.接种疫苗是阻断新冠病毒传播的有效途径,为保障人民群众的身体健康,我市启动新冠疫苗加强针接种工作,已知今年3月甲接种点平均每天接种加强针的人数比乙接种点平均每天接种加强针的人数多20%,两接种点平均每天共有440人接种加强针.(1)求3月平均每天分别有多少人前往甲、乙两接种点接种加强针?(2)4月份,甲接种点平均每天接种加强针的人数比3月少10m人,乙接种点平均每天接种加强针的人数比3月多30%,在m天期间,甲、乙两接种点共有2250人接种加强针,求m 的值.27.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:进货价(元/个)20 15 销售价(元/个)28 20(1)第一次小冬550元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?28.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d (0d ≥),则称d 为点P 到点Q 的追击值,记作[]d PQ .例如,在数轴上点P 表示的数是5,点Q 表示的数是2,则点P 到点Q 的追击值为[]3d PQ =.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的追击值[]d MN a =(0a ≥),则点N 表示的数是______(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒4个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 从表示数b 的点出发,且数b 不超过5,设运动时间为t (0t ≥).①当4b =且t =______时,点A 到点B 的追击值[]2d AB =;②当时间t 不超过3秒时,求点A 到点B 的追击值[]d AB 的最大值是多少?(用含b 的代数式表示)参考答案1.B2.D3.C4.C5.A6.D7.D8.D9.A10.D11.B12.B13.614.-515.100元16.317.-318.﹣1或﹣519.120.5021.(1)2﹣3x =5﹣2x2352x x -=-3x -=解得3x =-(2)3(3x ﹣2)=4(1+x )9644x x -=+9446x x -=+510x =2x =22.(1)解:4385-=+x x4835-=+x x48x -=2x =-.(2)解:7531132y y --=- ()()2756331y y -=--1410693y y -=-+1096314y y -+=+-5y -=-5y =.23.(1)解:一个正数a 的两个不相等的平方根分别是21b -和4b +,21(4)0b b +∴-=+,解得1b .(2)解:由(1)已得:1b, []22(21)2(1)19a b ∴=-=⨯--=,9(1)8a b +=+-=∴,a b ∴+的立方根2=.24.(1)解:根据题意354(2)73245---⨯⨯-=-=-, 故答案为:7-(2)解:根据题意22235-=-x x, 转化为2(5)3(2)2x x ⨯--⨯-=, 解方程,得12x =-. (3)解:88123833(81)(2)243732332mx x mx x mx x --+=----+=--+-; 515(1)()5x n x n n x -=---=--;根据题意24375mx x x n --+=-恒成立,即(243)75m x x n --+=-,2435m --=,7n -=, 解得,13m =-,7n =-. 25.(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4A y x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,∴500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元)∵A B y y <,∴选择A 类.(3)解:根据题意得,100A B y y +=,∴500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, ∴500.4500.4750350A y x =+=+⨯=(元),∴小明实际话费是350元.26.(1)解:设3月平均每天有x 人前往乙接种点接种加强针,则3月平均每天有(1+20%)x 人前往甲接种点接种加强针,依题意得:(1+20%)x +x =440,解得:x =200,∴(1+20%)x =(1+20%)×200=240.答:3月平均每天有240人前往甲接种点接种加强针,有200人前往乙接种点接种加强针;(2)解:依题意得:(240-10m )m +200×(1+30%)m =2250,整理得:m 2-50m +225=0,解得:m 1=5,m 2=45.当m =5时,240-10m =240-10×5=190>0,符合题意;当m =45时,240-10m =240-10×45=-210<0,不符合题意,舍去.答:m 的值为5.27.(1)解:设A 款玩偶购进x 个,B 款玩偶购进(30)x -个,由题意,得2015(30)550x x +-=,解得:20x .302010-=(个).答:A 款玩偶购进20个,B 款玩偶购进10个;(2)解:设A 款玩偶购进a 个,B 款玩偶购进(30)a -个,获利y 元,由题意,得(2820)(2015)(30)3150y a a a =-+--=+. A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.1(30)2a a ∴-, 10a ∴,3150y a =+.30k ∴=>,y ∴随a 的增大而增大.10a ∴=时,180y =最大元.B ∴款玩偶为:301020-=(个).答:按照A 款玩偶购进10个、B 款玩偶购进20个的方案进货才能获得最大利润,最大利润是180元.28.(1)由题意可得:点M 到点N 的距离为a , 当N 在M 左侧时,则N 表示的数为1a -, 当N 在M 右侧时,则N 表示的数为1a +, 故答案为1a -或1a +;(2)①由题意可得:点A 表示的数为14t +,点B 表示的数为4t + 当点A 在B 的左侧时,即144t t +<+,解得1t <, ∵[]2d AB =,∴()4142t t +-+=,解得13t = 当点A 在B 的右侧时,即144t t +>+,解得1t >, ∵[]2d AB =,∴()1442t t +-+=,解得2t = 综上,53t =或13t =时,[]2d AB =; 故答案为:53或13; ②由题意可得:点A 表示的数为14t +,点B 表示的数为b t + 当点B 在点A 的左侧或重合时,此时1b ≤,随着t 的增大,A 与B 之间的距离越来越大, ∵03t ≤≤时,即3t =时,[]143(3)10d AB b b =+⨯-+=-, ∵b 不超过5,∴105b -≥当点B 在点A 的右侧时,此时1b >,在AB 、不重合的情况下,A B 、之间的距离越来越小,[]d AB 最大为初始状态,即0=t 时,[]1d AB b =-,∵b 不超过5,∴14b -≤在AB 、可以重合的情况下,14t b t +=+,13b t =+,b 的最大值为10,又数b 不超过5, ∴,A B 不重合,综上, []d AB 最大值是10b -.。
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
最新初中数学一元一次方程综合复习基础题目含答案
初中数学一元一次方程综合复习基础题目
含答案
初中数学一元一次方程综合复习基础题
一、单选题(共5道,每道20分)
1.如果是关于x的一元一次方程,则m的值为()
A.1
B.-1
C.0
D.2
答案:A
试题难度:三颗星知识点:一元一次方程的定义
2.若方程3(2x-2)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,则k的值为()
A. B.
C. D.
答案:B
试题难度:三颗星知识点:同解方程
3.已知关于x的方程的解是2,求代数式的值()
A.5
B.-5
C.13
D.-13
答案:A
试题难度:三颗星知识点:方程的解;代入求值
4.已知x=2是关于x的方程7+2(m-x)=2x的解,那么关于y的方程m(y-1)=(m+2)(3y-4)的解是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:方程的解;解方程
5.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场负5场共得19分,问这个队胜了几场?()
A.4
B.5
C.6
D.7
答案:B
试题难度:三颗星知识点:一元一次方程的应用(得分问题)。
一元一次方程测试题(含答案)
第三章一元一次方程测试题一、选择题(每小题6分,共36分)1.下列方程中,是一元一次方程的是( ) A.x 2-4x=3 B.3x-1=2x C. x+2y=1 D.xy-3=5 2.方程212=-x 的解是( )A.41-=x B.4-=x C. 41=x D.x=4 3.已知等式3a=2b+5,则下列等式中不一定成立的是( )A.3a-5=2bB.3a+1=2b+6C.3ac=2bc+5D.3532+=b a 4.若关于x 的方程2x+a-4=0的解是x=-2,则a 的值等于( )A.-8 B.0 C.2 D.85.一个长方形的周长为26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,可列方程( )A.x-1=(26-x)+2B.x-1=(13-x)+2C.x+1=(26-x)-2D.x+1=(13-x)-26.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店A.不盈不亏B.盈利10元C.亏损10元D.盈利50元二、填空题(每小题6分,共24分)7.方程4232=-x 的解是________________ 9.如果关于x 的方程37615=-x 与m x x 2214218++=-的解相同,那么m 的值是_____________ 三、解答题(每小题10分,共40分)11.解方程(1)2x+5=3(x-1) (2)4)1(2=-x (3)152+-=-x x(4))9)21(3=--x x (5)11)121(21=--x (6)()()x x 2152831--=--(7)23421=-++x x (8)1)23(2151=--x x (9) 32213415x x x --+=-(10)1835+=-x x (11)0262921=---x x (12)13)1(32=---x x(13)53210232213+--=-+x x x (14)1246231--=--+x x x (15)32222-=---x x x19、x x 45321412332=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- 20、14]615141[3121=⎭⎬⎫⎩⎨⎧+-⎪⎭⎫ ⎝⎛-x12.在某年全国足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队胜了x 场,根据题意,用含x 的式子填空:(1)该队平了_____________________场;(2)按比赛规则,该队胜场共得______________________分;(3)按比赛规则,该队平场共得______________________分.13.用白铁皮做罐头盒,每张白铁皮可制作盒身16个或盒底43个,一个盒身与两个盒底配成一个罐头盒.现有150张白铁皮,用多少张白铁皮制盒身、多少张白铁皮制盒底可以正好制成整套罐头盒而无余料?14.整理一批图书,如果由一个人单独做要用30h ,现先安排一部分人用1h 整理,随后又增加6人和他们一起又做了2h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员是多少?四、附加题(每小题10分,共20分)15.为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时利润率为14%.若此种照相机的进价为1200元,该照相机的原售价是多少?16.公园门票价格规定如下表:某校七年级(1)(2)两个班共104人去游园,其中(1)班现有40多人,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?参考答案:1.B2.A3.C4.D5.B6.B 提示:设第一个计算器的进价为x 元,第二个计算器的进价为y 元,则1.6x=80,0.8y=80,解得 x=50,y=100.因为80×2-50-100=10(元),所以盈利了10元.7.x=98.a+d=b+c (答案不唯一)9.±2.提示:由37615=-x ,得x=3,代入m x x 2214218++=-,得m =2,所以m=±2. 10.504.提示:设A 港和B 港相距xkm ,列方程2263226-=++x x ,解得x=504 11.(1)x=8;(2)x=-9.2.12.(1)11-x ;(2)3x ;(3)(11-x );3x+(11-x )=23,x=6.答:该队共胜了6场.13.解:设用x 张白铁皮制盒身,(150-x )张白铁皮制盒底,列方程2×16x=43(150-x ),解得x=86,所以150-x=150-86=64答:用86张白铁皮制盒身,64张白铁皮制盒底.14.解:设先安排整理的人员有x 人,列方程130)6(230=++x x ,解得x=6. 答:先安排整理的人员有6人.15.解:设该照相机的原售价为x 元,列方程 0.8x=1200(1+14%),解得x=1710答:该照相机的原售价为1710元.16.解:(1)设七年级(1)班有x 人,则七年级(2)班有(104-x )人,列方程13x+11(104-x )=1240解得x=48,104-x=56,答:七年级(1)班有48人,七年级(2)班有56人.(2)1240-104×9=304,所以两个班联合起来,作为一个团体购票,可省304元钱.(3)因为48×13=624,51×11=561,所以按照51张票购买比较省钱.。
一元一次方程的解法(六大类型)(题型专练)(原卷版)
专题02 一元一次方程的解法(六大类型)【题型1 解一元一次方程】【题型2 一元一次方程的整数解问题】【题型3 根据两个一元一次方程的解之间的关系求参数】【题型4 错解一元一次方程的问题】【题型5 一元一次方程的解与参数无关】【题型6 一元一次方程的解在新定义中运用】【题型1 解一元一次方程】1.解方程1﹣2(2x﹣1)=x,以下去括号正确的是()A.1﹣4x﹣2=x B.1﹣4x+1=x C.1﹣4x+2=x D.1﹣4x+2=﹣x 2.若与互为相反数,则a的值为()A.﹣6B.2C.6D.123.解方程3﹣4(x﹣2)=1,去括号正确的是()A.3﹣4x+2=1B.3﹣4x﹣2=1C.3﹣4x﹣8=1D.3﹣4x+8=1 4.解方程:(1)3x+7=22﹣2x;(2).5.解方程:=1﹣.6.解方程:(1)4(2﹣y)+2(3y﹣1)=7;(2).7.解方程:(1);(2).8.解方程.(1)3(x﹣2)﹣4(2x+1)=7;(2).9.解方程:﹣=﹣1.10.(2022秋•丹徒区期末)解方程:(1)3(2x﹣1)+1=4(x+2);(2).11.(2022秋•零陵区期末)解方程:(1)2(x﹣1)=3x﹣3;(2).【题型2 一元一次方程的整数解问题】12.已知关于x的方程2mx﹣6=(m+2)x有正整数解,则整数m的值是.13.(2022秋•通川区校级期末)若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个【题型3 根据两个一元一次方程的解之间的关系求参数】14.(2023春•新乡期末)若和3﹣2x互为相反数,则x的值为()A.﹣3B.3C.1D.﹣1 15.(2022秋•柳州期末)已知代数式5a+1与a﹣3的值相等,那么a=.16.(2023春•通许县期末)设M=2x﹣2,N=2x+3,若2M﹣N=1,则x的值是.【题型4 错解一元一次方程的问题】17.王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2 18.小明在解方程3a﹣2x=11(x是未知数)时,误将﹣2x看成了+2x,得到的解为x=﹣2,请聪明的你帮小明算一算,方程正确的解为()A.x=2B.x=0C.x=﹣3D.x=119.某同学在解关于x的方程5a﹣x=13时,误将﹣x看作+x,得到方程的解为x=﹣2,则a的值为()A.3B.C.2D.1 20.(2022秋•莱州市期末)某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数看成了()A.5B.6C.7D.8 21.(2022春•唐河县月考)某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3B.﹣3C.4D.﹣4 22.(2022秋•咸丰县期末)海旭同学在解方程5x﹣1=()x+3时,把“()”处的数字看错了,解得x=﹣,则该同学把“()”看成了()23.某同学在解方程5x﹣1=■x+3时,把■处的数字看错了,解得x=﹣,则该同学把■看成了()A.3B.﹣3C.﹣8D.824.小明同学在解方程:5x﹣1=mx+3时,把数字m看错了,解得x=1,则该同学把m看成了()A.7B.﹣7C.1D.﹣1【题型5 一元一次方程的解与参数无关】25.(2021春•伊春期末)若代数式(a、b 为常数)的值与字母x、y的取值无关,则方程3ax+b=0的解为.26.(1)先化简,后求值3(3a2﹣b)﹣2(5a2﹣3b),其中a=﹣3,b=﹣1.(2)解方程:.(3)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,求a b的值.27.定义:若A﹣B=m,则称A与B是关于m的关联数.例如:若A﹣B=2,则称A与B是关于2的关联数;(1)若3与a是关于2的关联数,则a=.(2)若2x﹣1与3x﹣5是关于2的关联数,求x的值.(3)若M与N是关于m的关联数,M=3mn+n+3,N的值与m无关,求N 的值.【题型6 一元一次方程的解在新定义中运用】28.定义a*b=ab+a+b,若5*x=35,则x的值是()29.定义:“*”运算为“a*b=ab+2a”,若(3*x)+(x*3)=22,则x的值为()A.1B.﹣1C.﹣2D.2 30.(2022秋•东明县校级期末)规定一种运算法则:a※b=a2+2ab,若(﹣3)※2x=﹣3﹣2x,则x的值为()A.B.C.D.﹣1 31.(2022秋•滕州市校级期末)对于任意有理数a、b,规定一种新运算“*”,使a*b=3a﹣2b,例如:5*(﹣3)=3×5﹣2×(﹣3)=21.(2x﹣1)*(x ﹣2)=﹣3,则x的值为()A.﹣3B.3C.﹣1D.132.新定义一种运算符号“△”,规定x△y=xy+x2﹣3y,已知2△m=6,则m 的值为.33.对于任意有理数a,b,我们规定:a⊗b=a2﹣2b,例如:3⊗4=32﹣2×4=9﹣8=1.若2⊗x=3+x,则x的值为.34.对于数a,b定义这样一种运算:a*b=2b﹣a,例如1*3=2×3﹣1,若3*(x+1)=1,则x的值为.35.用符号※定义一种新运算a※b=ab+2(a+b),若﹣3※x=2022,则x的值为.36.(2022秋•泗水县期末)对于有理数a,b,定义运算“★”;a★b=2ab﹣b,例如:2★1=2×2×1﹣1=3,所以,若(x+2)★3=27,则x=.37.(2022秋•松原期末)已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(﹣3x)=29,则x值为.38.(2023春•巴州区期中)定义一种新运算“※”:a※b=ab﹣a+b.例如3※1=3×1﹣3+1=1,(2a)※2=(2a)×2﹣2a+2=2a+2.(1)计算:5※(﹣1)的值为;(2)已知(2m)※3=2※m,求m的值.。
中考数学一轮复习专题训练:一元一次方程(附答案)
2020 年中考数学一轮复习专题训练:一元一次方程一.选择题(共 8 小题)1.以下四个式子中,是方程的是()A .3+2=5B .x= 1C. 2x﹣ 3< 022 D. a +2ab+b2.若对于 x 的方程 2x﹣( 2a﹣1) x+3=0 的解是 x=3,则 a=()A .1B .0C. 2D. 33.解是 x=2 的方程是()A .2( x﹣ 1)= 6B .C.D.4.以下等式变形正确的选项是()A .若﹣ 3x= 5,则 x=﹣B .若,则2x+3(x﹣1)=1C.若 5x﹣ 6=2x+8,则 5x+2x= 8+6D .若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 15.在解方程 3x+5=﹣ 2x﹣ 1 的过程中,移项正确的选项是()A .3x﹣ 2x=﹣ 1+5B.﹣ 3x﹣ 2x= 5﹣ 1C. 3x+2x=﹣ 1﹣ 5D.﹣ 3x﹣ 2x=﹣ 1﹣ 56.解方程: 2﹣=﹣,去分母得()A .2﹣ 2 (2x﹣ 4)=﹣( x﹣ 7)B. 12﹣ 2 ( 2x﹣ 4)=﹣ x﹣7C. 2﹣( 2x﹣4)=﹣( x﹣ 7)D. 12﹣ 2 ( 2x﹣ 4)=﹣( x﹣ 7)7.有以下结论:①若 a+b+c= 0,则 abc≠ 0;②若 a( x﹣ 1)= b( x﹣ 1)有独一的解,则a≠b;③若 b=2a,则对于 x 的方程 ax+b= 0( a≠ 0)的解为 x=﹣;④若 a+b+c= 1,且 a≠ 0,则 x= 1 必定是方程 ax+b+c= 1 的解;此中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个8.若对于x 的方程 |2x﹣3|+m= 0 无解, |3x﹣ 4|+n= 0 只有一个解, |4x﹣ 5|+k= 0 有两个解,A .m >n > kB .n > k > mC . k > m > nD . m > k > n二.填空题(共8 小题)9.比 a 的 3 倍大 5 的数等于 a 的 4 倍用等式表示为. 10.已知等式 5x m+2m =.+3= 0 是对于 x 的一元一次方程,则11.在 ① 2x ﹣ 1; ② 2x+1= 3x ; ③ |π﹣ 3|= π﹣ 3 ; ④ t+1 = 3 中,等式有,方程有.(填入式子的序号)12.已知 x =5 是方程 ax ﹣ 8= 20+a 的解,则 a = .13.小强在解方程时,不当心把一个数字用墨水污染成了x =1﹣ ,他翻阅了答案知道这个方程的解为 x = 1,于是他判断●应当是.14.已知代数式 与 互为相反数,则 x 的值是 .15.已知方程的解也是方程 |3x ﹣ 2|= b 的解,则b = .16.已知 x ﹣3y = 3,则 7+6y ﹣ 2x =.三.解答题(共 6 小题)17.解方程:( 1) 3x ﹣ 9= 6x ﹣1;( 2) x ﹣= 1﹣.18.若方程 3(x+1 )= 2+x 的解与对于 x 的方程 = 2( x+3)的解互为倒数,求 k 的值.19.已知对于 x 的方程( m+5) x|m|﹣4+18= 0 是一元一次方程.试求:( 1)m 的值;( 2)代数式 的值.20.依据题意设未知数,并列出方程(不用求解).( 1)有两个工程队,甲队人数30 名,乙队人数10 名,问如何调整两队的人数,才能使甲队的人数是乙队人数的7 倍.( 2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,假如比原计划多租1 条船,那么正好每条船坐 6 人;假如比原计划少租 1 条船,那么正好每条船坐9 人.问这个班共有多少名同学?21.我们规定:若对于 x 的一元一次方程ax= b 的解为 b+a,则称该方程为“和解方程” .比如:方程 2x=﹣ 4 的解为 x=﹣ 2,而﹣ 2=﹣ 4+2,则方程 2x=﹣ 4 为“和解方程”.请依据上述规定解答以下问题:( 1)已知对于x 的一元一次方程3x= m 是“和解方程” ,求 m 的值;( 2)已知对于x 的一元一次方程﹣2x= mn+n 是“和解方程” ,而且它的解是x=n,求 m,n 的值.22.先阅读以下解题过程,而后解答问题(1)、( 2)、( 3).例:解绝对值方程:|2x|= 1.解:议论:①当 x≥ 0 时,原方程可化为2x= 1,它的解是x=.②当 x<0 时,原方程可化为﹣2x= 1,它的解是x=﹣.∴原方程的解为x=和﹣.问题( 1):依例题的解法,方程|的解是;问题( 2):试试解绝对值方程:2|x﹣2|= 6;问题( 3):在理解绝对值方程解法的基础上,解方程:|x﹣ 2|+|x﹣ 1|= 5.参照答案一.选择题(共8 小题)1.【解答】解:A、不是方程,由于不含有未知数,故本选项错误;B、是方程, x 是未知数,式子又是等式,故本选项正确;C、不是方程,由于它是不等式而非等式,故本选项错误;D、不是方程,由于它不是等式,故本选项错误;应选: B.2.【解答】解:把x=3 代入方程获得:6﹣ 3( 2a﹣ 1) +3= 0解得: a= 2.应选: C.3.【解答】解:将x=2 分别代入题目中的四个选项得:A、 2( x﹣ 1)= 2( 2﹣ 1)= 2≠ 6,因此, A 错误;B.= +1=2= X=2,因此, B 正确;C.==,因此,C错误;D .==≠1﹣x=1﹣2=﹣1,因此D错误;应选: B.4.【解答】解: A、若﹣ 3x=5,则 x=﹣,错误,故本选项不切合题意;B、若,则2x+3(x﹣1)=6,错误,故本选项不切合题意;C、若 5x﹣ 6=2x+8,则 5x﹣ 2x= 8+6,错误,故本选项不切合题意;D 、若 3( x+1)﹣ 2x= 1,则 3x+3 ﹣2x= 1,正确,故本选项切合题意;应选: D.5.【解答】解:方程3x+5=﹣ 2x﹣ 1 移项得: 3x+2 x=﹣ 1﹣ 5.应选: C.6.【解答】解:去分母得:12﹣2( 2x﹣ 4)=﹣( x﹣ 7),应选: D.7.【解答】解:① 错误,当a=0, b= 1, c=﹣ 1 时, a+b+c=0+1 ﹣ 1=0,可是 abc= 0;②正确,方程整理得:( a﹣ b) x= a﹣b,③ 错误,由 a ≠ 0, b = 2a ,方程解得: x =﹣ =﹣ 2;④ 正确,把 x = 1,a+b+c = 1 代入方程左侧得: a+b+c = 1,右侧= 1,故若 a+b+c = 1,且 a ≠ 0,则 x = 1 必定是方程 ax+b+c = 1 的解,应选: C .8.【解答】解: ( 1)∵ |2x ﹣ 3|+m = 0 无解,∴ m > 0.( 2)∵ |3x ﹣ 4|+n = 0 有一个解,∴ n = 0.( 3)∵ |4x ﹣ 5|+k = 0 有两个解,∴ k < 0.∴ m > n > k .应选: A .二.填空题(共 8 小题)9.【解答】解:依据题意得: 3a+5 = 4a .故答案为: 3a+5= 4.10.【解答】解:由于 5x m+2+3= 0 是对于 x 的一元一次方程,因此 m+2= 1,解得 m =﹣ 1.故填:﹣ 1.11.【解答】解:等式有 ②③④ ,方程有 ②④ .故答案为: ②③④ ,②④ .12.【解答】解:把 x = 5 代入方程 ax ﹣ 8= 20+a得: 5a ﹣ 8= 20+a ,解得: a = 7.故答案为: 7.13.【解答】解:●用 a 表示,把 x = 1 代入方程得 1= 1﹣,解得: a = 1.故答案是: 1.514.【解答】解:∵代数式与x﹣3 互为相反数,∴﹣=x﹣3,解得 x=.故答案为:.15.【解答】解:2(x﹣ 2)= 20﹣ 5( x+3),2x﹣ 4=20﹣ 5x﹣ 15,7x= 9,解得: x=.把 x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得: b=.故答案为:.16.【解答】解:x﹣ 3y= 3,方程两边都乘以﹣2,得6y﹣ 2x=﹣ 6,方程两边都加7,得7+6y﹣ 2x=﹣ 6+7= 1,故答案为: 1.三.解答题(共 6 小题)17.【解答】解:( 1)移项归并得:3x=﹣ 8,解得: x=﹣;(2)去分母得: 4x﹣ x+1=4﹣ 6+2x,移项归并得: x=﹣ 3.18.【解答】解:解3( x+1)= 2+x,得 x=﹣,∵双方程的解互为倒数,∴将 x=﹣ 2 代入=2(x+3)得=2,解得 k=0.19.【解答】解:( 1)由题意得,|m|﹣ 4= 1, m+5≠ 0,解得, m= 5;(2)当 m=5 时,原方程化为 10x+18 =0,解得, x=﹣,∴==﹣.20.【解答】解:(1)设从乙队调x 人去甲队,则乙队此刻有10﹣ x 人,甲队有30+x 人,由题意得30+x= 7( 10﹣ x);(2)设这个班共有 x 名同学,由题意得﹣1= +1.21.【解答】解:( 1)∵方程3x= m 是和解方程,∴= m+3,解得: m=﹣.(2)∵对于 x 的一元一次方程﹣ 2x= mn+n 是“和解方程” ,而且它的解是 x= n,∴﹣ 2n= mn+n,且 mn+n﹣2= n,解得 m=﹣ 3, n=﹣.22.【解答】解:( 1) |x|= 2,①当 x≥0 时,原方程可化为x= 2,它的解是x= 4;②当 x<0 时,原方程可化为﹣x=2,它的解是x=﹣ 4;∴原方程的解为x= 4 和﹣ 4,故答案为: x= 4 和﹣ 4.(2) 2|x﹣ 2|= 6,①当 x﹣ 2≥ 0 时,原方程可化为2(x﹣ 2)= 6,它的解是x= 5;②当 x﹣ 2< 0 时,原方程可化为﹣2(x﹣ 2)= 6,它的解是x=﹣ 1;∴原方程的解为x= 5 和﹣ 1.( 3) |x﹣ 2|+|x﹣ 1|= 5,①当 x﹣ 2≥ 0,即 x≥ 2 时,原方程可化为x﹣ 2+x﹣ 1= 5,它的解是x= 4;②当 x﹣ 1≤ 0,即 x≤ 1 时,原方程可化为2﹣ x+1﹣ x= 5,它的解是x=﹣ 1;③当 1< x< 2 时,原方程可化为2﹣x+x﹣ 1= 5,此时方程无解;∴原方程的解为x= 4 和﹣ 1.。
七年级上册数学 第三章 一元一次方程 训练题 (4)-0725(含答案解析)
七年级上册数学 第三章 一元一次方程 训练题 (4)一、单选题1.解方程1132x x --=时,去分母后,正确的是( ) A .3x ﹣2(x ﹣1)=1B .2x ﹣3(x ﹣1)=1C .3x ﹣2(x ﹣1)=6D .2x ﹣3(x ﹣1)=6 2.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是( ) A . B .C .D .3.小明从家里骑车去游乐场,若速度为每小时10 km ,则可早到8分钟;若速度为每小时8 km ,则就会迟到5分钟,设他家到游乐场的路程为x km ,根据题意可列出方程为( ) A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=- 4.某种商品进价为m 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动,这时一件该商品的售价为( ) A .m 元 B .0.8m 元 C .1.04m 元 D .0.92m 元5.方程2398,81a a S +==的解是( )A .1x =B .1x =-C .2x =D .0x = 6.x =﹣12是方程2x ﹣1=a +1的解,则(a +1)2的值为( ) A .14B .4C .1D .0 7.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( )A .65元B .80元C .100元D .104元 8.下面是一个被墨水污染过的方程:1(12)2ax x a -=+,答案显示此方程的解是2x =-,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .52-C .52D .12- 9.某商品原价为50元,“双11”期间按原价的9折促销.活动结束又提价后,每件商品的售价为54元,则提价的百分率为( )A .120%B .20%C .18%D .118%10.下列方程中是一元一次方程的有( )①2x ﹣5y =1;②x 2﹣2x +1=0;③x =2;④x+2>0;⑤4x ﹣3;⑥1x +x =1 A .1个 B .2个 C .3个 D .4个11.如下图是某月的月历,竖着取连续的三个数字,它们的和可能是 ( )A .18B .33C .38D .7512.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( )A .2B .3C .4D .6二、填空题13.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密)。
一元一次方程专项训练
一元一次方程专项训练
1. 理解方程的概念:方程是含有未知数的等式。
学会识别方程中的未知数和已知数,并理解它们之间的关系。
2. 解方程的步骤:掌握解方程的一般步骤,包括移项、合并同类项、化简等。
通过练习不同类型的方程,熟练掌握这些步骤。
3. 应用题:将一元一次方程应用到实际问题中,如计算速度、时间、距离等。
通过解决实际问题,加深对一元一次方程的理解。
4. 等式性质:熟悉等式的基本性质,如等式两边加上或减去同一个数,等式仍然成立;等式两边乘以或除以同一个非零数,等式仍然成立。
利用这些性质解方程。
5. 方程的变形:学会将复杂的方程进行变形,以便更容易求解。
例如,将分式方程转化为整式方程,将含有括号的方程去括号等。
6. 练习错题:收集自己做错的题目,仔细分析错误原因,并进行有针对性的练习。
通过反复练习错题,加深对知识点的理解。
7. 限时训练:设置时间限制,进行一元一次方程的解题训练。
这样可以提高解题速度和应试能力。
通过以上的专项训练,你将更好地掌握一元一次方程的概念和解题方法。
不断练习和巩固,提高自己的数学能力。
专题03 一元一次方程重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版
专题03 高分必刷题-一元一次方程重难点题型分类(解析版)专题简介:本份资料包含《一元一次方程》这一章除应用题之外的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:等式的性质、一元一次方程的定义、已知一元一次方程的解求参数、解一元一次方程、 同解或错解方程、含参方程解的个数问题、定义新运算类压轴题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一 等式的性质1.(青竹湖)运用等式的性质,下列等式变形错误的是( ) A .若x ﹣1=2,则x =3 B .若,则x ﹣1=2xC .若x ﹣3=y ﹣3,则x =yD .若3x =2x +4,则3x ﹣2x =4【解答】解:A 、若x ﹣1=2,根据等式的性质1,等式两边都加1,可得x =3,原变形正确,故这个选项不符合题意;B 、若x ﹣1=x ,根据等式的性质2,两边都乘以2,可得x ﹣2=2x ,原变形错误,故这个选项符合题意;C 、两边都加上3,可得:x =y ,原变形正确,故这个选项不符合题意;D 、两边都减去﹣2x ,可得:3x ﹣2x =4,原变形正确,故这个选项不符合题意; 故选:B .2.(师大)下列变形后的等式不一定成立的是( )A .若x y =,则x y +5=+5B .若x y =,则()x ya a a=≠0 C .若x y -3=-3,则x y = D .若mx my =,则x y = 【解答】解:A 、在等式x =y 的两边同时加上5,等式仍成立,即x +5=y +5,故本选项正确;B 、在等式x y =的两边同时除以以a (0≠a ),等式仍成立,即()x ya a a=≠0,故本选项正确;C 、在等式﹣3x =﹣3y 的两边同时除以﹣3,等式仍成立,即x =y ,故本选项正确;D 、若m =0时,x =y 不一定成立.故本选项错误; 故选:D .3.(广益)ma mb =,那么下列等式不一定成立的是( ) A.a b = B.66ma mb -=- C.118822ma mb -+=-+D.22ma mb +=+【解答】解:A、当m≠0时,由ma=mb两边除以m,得:a=b,不一定成立;B、由ma=mb,两边减去6,得:ma﹣6=mb﹣6,成立;C、由ma=mb,两边乘以﹣,再同时加上8,得:﹣ma+8=﹣mb+8,成立,D、由ma=mb,两边加上2,得:ma+2=mb+2,成立;故选:A.题型二一元一次方程的定义4.(青竹湖)已知下列方程,属于一元一次方程的有()①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.A.5个B.4个C.3个D.2个【解答】解:一元一次方程有0.5x=1,=8x﹣1,x=0,共3个,故选:C.5.(一中)已知关于x的方程(m﹣2)x|m﹣1|﹣3=0是一元一次方程,则m的值是()A.2B.0C.1D.0 或2【解答】解:由题意,得|m﹣1|=1,且m﹣2≠0,解得m=0,故选:B.6.(广益)关于x的方程(m﹣2)x|m|﹣1﹣2=0是一元一次方程,则m=.【解答】解:由题意,知|m|﹣1=1,且m﹣2≠0.解得m=﹣2.故答案是:﹣2.题型三已知一元一次方程的解去求参数7.(长郡)已知2-=的解,则a=________.x=是方程102x ax【解答】解:∵x=2是关于x的方程10﹣2x=ax的解,∴10﹣2×2=2a,解得a=3.故答案是:3.8.(西雅)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.9.(长梅)如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?【解答】解:当y =3时,2+m ﹣3=6,解得:m =7, 将m =7代入方程2mx =(m +1)(3x ﹣5)得:14x =8(3x ﹣5),即14x =24x ﹣40,解得:x =4.题型四 解一元一次方程10.(西雅)下列变形中:①将方程34x =-的系数化为1,得34x =-;②将方程52x =-移项得52x =-; ③将方程()()221331x x ---=去括号得42391x x ---=; ④将方程213132x x --=+去分母得()()221133x x -=--. 其中正确的变形有( ) A.0个B.1个C.2个D.3个【解答】解:①将方程3x =﹣4的系数化为1,得x =﹣,错误; ②将方程5=2﹣x 移项得x =2﹣5,错误;③将方程2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x +9=1,错误; ④将方程=1+去分母得2(2x ﹣1)=6+3(x ﹣3),错误;故选:A .11.(青竹湖)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1 C .方程,系数化为1得,t =1D .方程,去分母得,5( x ﹣1)﹣2x =1【解答】解:A 、方程3x ﹣2=2x+1,移项得:3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号得:3﹣x =2﹣5x+5,不符合题意; C 、方程t =,系数化为1得:t =,不符合题意; D 、方程﹣=1,去分母得:5(x ﹣1)﹣2x =1,符合题意,故选:D . 12.(长郡)将方程212134x x -+=-去分母,得( ) A.()()421132x x -=-+B.()()421122x x -=-+C.()()21632x x -=-+D.()()4211232x x -=-+【解答】解:去分母得:4(2x ﹣1)=12﹣3(x +2),故选:D . 13.(一中)方程1134x x +-=去分母后,正确的是( ) A.4133x x -=- B.4133x x -=+ C.41233x x -=-D.41233x x -=+【解答】解:方程两边乘以12得:4x ﹣12=3(x +1),即4x ﹣12=3x +3, 故选:D .14.(长郡)解方程: (1)()331x x -=+(2)223246x x +--= 【解答】解:(1)去括号,得3x ﹣9=x +1,移项,得3x ﹣x =9+1,合并,得2x =10, 系数化为1,得x =5;(2)去分母,得3(x +2)﹣2(2x ﹣3)=24,去括号,得3x +6﹣4x +6=24, 移项,得3x ﹣4x =24﹣6﹣6,合并,得﹣x =12,系数化为1,得x =﹣12. 15.(青竹湖)解方程:(1) 1071453x x x +=-- (2)25123x x +-=-【解答】解:(1)10x +7=14x ﹣5﹣3x ,10x +3x ﹣14x =﹣5﹣7,﹣x =﹣12,x =12;(2)=1﹣,3(x +2)=6﹣2(x ﹣5),3x +6=6﹣2x +10,3x +2x =6+10﹣6,5x =10,x =2.16.(一中)解下列方程: (1)()()2441x x x --=-(2)2113322x x x --+=-【解答】解:(1)去括号得:x ﹣2x +8=4﹣4x ,移项合并得:3x =﹣4,解得:x =﹣; (2)去分母得:6x +2x ﹣1=6﹣x +1,移项合并得:9x =8,解得:x =.17.(广益)解下列方程:(1)2(21)(34)2x x +--= (2)3157146y y ---=【解答】解:(1)去括号得:4x +2﹣3x +4=2,移项合并得:x =﹣4;(2)去分母得:3(3y ﹣1)﹣12=2(5y ﹣7),去括号得:9y ﹣3﹣12=10y ﹣14, 移项合并得:﹣y =1,解得:y =﹣1.题型五 同解、错解方程18.(青竹湖)已知关于x 的方程325+=x m .若该方程的解与方程2158-=+x x 的解相同,则m 的值是( ) A.7B.-2C.1D.3【解答】解:2x ﹣1=5x +8,移项,得2x ﹣5x =8+1,合并同类项,得﹣3x =9,解得 x =﹣3. 把x =﹣3代入3x +2m =5,得3×(﹣3)+2m =5.移项,得2m =5+9.合并同类项,得2m =14,系数化为1,得m =7. 故选:A .19.(长郡)已知方程7236x x +=-与1x k -=的解相同,则231k -的值为( ) A .18B .20C .26D .26-【解答】解:由7x +2=3x ﹣6,得x =﹣2,由7x +2=3x ﹣6与x ﹣1=k 的解相同,得﹣2﹣1=k ,解得k =﹣3.则3k 2﹣1=3×(﹣3)2﹣1=27﹣1=26, 故选:C .20.(雅礼)一元一次方程解答题已知关于x 的方程23x m mx -=-与()1221x x -=-的解互为倒数,求m 的值.【解答】解:方程x ﹣1=2(2x ﹣1),去括号得:x ﹣1=4x ﹣2,解得:x =, 将x =3代入方程得,=3﹣,去分母得:9﹣3m =18﹣2m ,解得:m =﹣9.21.(青竹湖)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程; (1)若关于x 的两个方程24x =与1mx m =+是同解方程,求m 的值;(2)若关于x 的两个方程21x a =+与32x a -=-是同解方程,求a 的值;(3)若关于x 的两个方程()34513x m mn ++=与()19213x mn m -=-+是同解方程,求此时符合要求的正整数m ,n 的值.【解答】解:(1)解方程2x =4得x =2,把x =2代入mx =m +1得2m =m +1,解得m =1; (2)关于x 的两个方程2x =a +1与3x ﹣a =﹣2得x =,x =,∵关于x 的两个方程2x =a +1与3x ﹣a =﹣2是同解方程,∴=,解得a =﹣7;(3)解关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)得x =,x =,∵关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)是同解方程, ∴=,∴mn ﹣3m ﹣3=0,mn =3(m +1),∵m ,n 是正整数,∴m =3,n =4或m =1,n =6.22.(青竹湖)我们把解相同的两个方程称为同解方程.例如:方程:26x =与方程412x =的解都为3x =,所以它们为同解方程.(1)若方程2311x -=与关于x 的方程453x k +=是同解方程,求k 的值;(2)若关于x 的方程3[2()]43k x x x --=和3151128x k x+--=是同解方程,求k 的值;(3)若关于x 的方程223x a b -=和243x a b ++=是同解方程,求22214686a ab a b +++的值.【解答】解:(1)∵方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,∴2x ﹣3=11,解得x =7,把x =7代入方程4x +5=3k ,解得k =11,所以k 的值为11; (2)∵方程3[x ﹣2(x ﹣)]=4x 和﹣=1是同解方程,∴3[x ﹣2(x ﹣)]=4x 解得,x =,﹣=1解得,x =(27﹣2k ),∴=(27﹣2k ),解得k =;所以k 的值为;(3)∵方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,∴2x ﹣3a =b 2即4x ﹣6a =2b 2,∴4x =6a +2b 2,∵4x +a +b 2=3,∴6a +2b 2+a +b 2=3,即7a +3b 2=3,∴14a 2+6ab 2+8a +6b 2=2a (7a +3b 2)+7a +3b 2+a +3b 2=6a +3+a +3b 2=7a +3b 2+3=3+3=6. 所以14a 2+6ab 2+8a +6b 2的值为6.题型六 含参方程解的个数问题23.问当a 、b 满足什么条件时,方程bx a x -=-+152:(1)有唯一解;(2)有无数解;(3)无解。
初中数学中考复习专题:一元一次方程练习题1(含答案)
一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。
2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。
5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。
7、方程5x 4x 123-+-=,去分母可变形为______。
8、如果2a+4=a -3,那么代数式2a+1的值是________。
9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。
10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。
11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。
A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程(1) 一、选择题:1、下列各式中,不是等式的式子是( )(A )3+2=6; (B ) ba ab =;(C )x x 2112+=-; D )().315+-x2、我省为了解决药品价格过高的问题,决定大幅度降低药品价格,其中将原价为a 元的某种常用药降价40%,则降价后此格为 ( ) A 、元4.0a B 、元6.0a C 、60%a 元 D 、40%a 元3、已知下列方程的变形:①如果311=+x ,那么113=+x ;②如果3333+=+y x ,那么y x =;③如果42=x ,那么223+=-x x ;④如果422=-x ,那么1=x 。
正确的结果是( ) (A )①和③ (B )②和③ (C )③和④ (D )①和④4、当2=x 时,代数式2-ax 的值是4,那么,当2-=x 时,这代数式的值是( )(A )-4; (B )-8; (C )8; (D )2。
5、某商场上月的营业额是a 万元,本月比上月增长15%,那么本月的营业额是( )(A )()%151∙+a 万元;(B )a ∙%15万元; (C )()a %151+万元; (D )()a 2%151+万元。
6、小明的父亲到银行参入20000元人民币,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款( )(A )20158.4元(B )20198元(C )20396元(D )20316.8元7、某同学到农贸市场买苹果,买每千克3元的苹果用所带钱的一半,而其余的钱都买了每千克2元的苹果,则该同学所买的苹果的平均价是每千克( )(A )6.2元; (B )5.2元; (C )4.2元; (D )3.2元8、一家商店将某种服装按成本价提高40%后标价,又以8折(即按标准的80%)优惠卖出,结果每作服装仍可获利15元,则这种服装每件的成本是( )A 、120元B 、125元C 、135元D 、140元 9、稀盐水蒸发浓缩,浓缩前后的两种盐水中,不变的量是( )(A )盐水的质量(B )所含盐的质量(C )所含水的质量(D )盐水的浓度10、如果m是两位数,n是一位数,把n放在m的左边,那么所得的三位数是( ) (A )nm (B )m n +(C )m n +10(D )m n +100 二、填空题:1、当x=————时,一次式23-x 的值比–5小1;2、关于x 的方程b ax =有解的条件是__________;3、已知关于x 的方程0||62=-+k x 的根是–2,则k 的值为_________。
4、三角形三边长之比为6:4:3,若中间长度的一边长的两倍比其他两边长的和少3厘米,则三角形的周长为______________。
5、人民商场在今年“五一”黄金周期间,商品实行让利促销,全场商品的最大优惠是五折,“红叶”牌皮鞋每双八折优惠价是96元,则该皮鞋原价是每双________元6、如果x=–2是方程04341=-+k kx 的解,k=__________。
7、长方形的一边为x 厘米,另一边比它的21多1厘米,则这个长方形的周长为__________厘米。
8、某人以每小时pkm 步行3km ,又以qkm 骑车行驶4小时从甲地到乙地,则他从甲地到乙地的平均速度是每小时__________km 。
三、解方程: (1)、52221+-=--y y y (2)、()()()3222516+=---x x x(3)、302.02.01.05.01=--+x x (4)、2503.002.003.05.09.04.0-=+-+x x x(5 )、x x 6552131=⎪⎭⎫ ⎝⎛-(6)、x x =-⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-2321412332一元一次方程(2)应用题: 1、已知21=x 是方程2512+=+m m x 的解,求关于x 的方程()x m mx 212-=+的解答案:一元一次方程(1)一、DCBBC DCBBD ;二、1、-34;2、a ≠0;3、±2;4、39厘米;5、120;6、23;7、3x+2;8、4343++p q ;三、(1)711;(2)32;(3)3;(4)2145;(5)2910;(6)-6;一元一次方程(2)1、1;2、32;3、40x=24(x+3)+40,240,280,7,10;4、32(x-12)=(95-x+12),69,26;5、45x+28=50x-62,838人,18辆车;6、x1000=x5.21000+15,100;2、某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进多少件? (=商品利润率商品进价商品利润)3、从甲地到乙地水路比公路近40km 。
上午10时,一艘轮船从甲地开往乙地,下午1时一辆骑车从甲地开往乙地,结果同时到达终点,已知轮船每小时行24km ,汽车每小时行40km ,求甲、乙两地的水路和公路长及汽车,轮船行驶的时间。
4、学校数学兴趣小组与自然兴趣小组共有95名成员,抽调数学兴趣小组的12名学生到自然兴趣小组后,自然兴趣小组的人数是数学兴趣小组的32,求两小组原有成员的人数5、学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?6、某工厂加工1000个零件后,改进操作技术,结果工作效率提高到原来的2.5倍,因此再加工1000个机器零件时,共提前15天完成计划任务,求改进技术后,每天加工的零件数。
一元二次方程(1)一、填空题:1、一元二次方程01242=-+x x 的根是______。
2、方程14-x =0的根是________。
3、方程0122=-+x x 根的判别式的值是_________4、请写出一个两实根之和为1的一元二次方程 .5、如果()51222+++-m x m x 是一个完全平方公式,则=m ______。
6、关于x 的方程a x -2=0有实数根,则方程的根是=____________7、已知x 的二次方程04422=++k kx x 的一个根是–2,那么k=__________ 8、已知关于x 的一元二次方程02=++q px x 的两根为2和3,则q p +=________.9、已知关于x 的一元二次方程02=--k x x 无实数恨,则k 的取值范围是=_________ 10、方程09232=-+x x 两根的倒数和等于=_______________11、若关于x 的一元二次方程()01122=-+++k x k kx 有两个实数根,则k 的取值范围是_________。
12、若m 、n 是方程0120022=-+x x 的两个实数根,则mn mnn m -+22的值是 .13、如果关于x 的一元二次方程022=+-m x x 有两个相等的实数根,那么m =________。
14、如果关于x 的方程022=+-k x x 的两根的差等于6,那么k=___________15、若关于x 的方程0122=-+kx x 的两根均是整数,则k 的值可以是________。
(只要求写出两个)。
16、已知α,β是方程0522=-+x x 的两个实数根,则ααβα22++的值为=_________ 二.选择题:1、方程x x =2的根是 ( )(A )0=x (B )1=x (C )0=x 或1=x (D )0=x 或1-=x2、方程0)2)(1(=--x x 的根是( )(A 2,121-==x x (B ) 2,121==x x (C )2,121=-=x x (D )2,121-=-=x x 3、一元二次方程0322=-+x x 的两根为21,x x 则下列四个式子中正确的是 ( ) (A )3,22121-=⋅=+x x x x (B )3,22121-=⋅-=+x x x x (C ) 3,22121=⋅=+x x x x (D )3,22121=⋅-=+x x x x4、若21,x x 是方程0532=-+x x 的两个根,则()()1121++x x 的值为( )(A )–7(B ) 1(C ) 291+-(D ) 291--5、如果方程03622=+-x x 的两个实数根分别为21,x x ,那么21x x ⋅的值是 ( ) (A )3 (B )–3 (C )23 (D )32-6、若关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是。
(A )1<k (B )1≤k (C )1<k 且0≠k (D )1≤k 且0≠k 7,关于x 的一元二次方程 x²-2mx+m²+1=0的根的情况是 ( )A.有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D.不能确定8、以1,–2为两根的一元二次方程是( )(A )022=-+x x (B )022=+-x x (C )022=--x x (D )022=++x x 9、方程06524=+-x x 的根是( ) (A )6,1(B )2,3(C )3,2±±(D )1,6±±10、已知方程()()0712=-+--m x m x 有一个正根,一个负根,那么() (A )7>m (B )1>m (C )1<m (D )7<m11、a 是任意实数,关于x 的方程01222=-+-a ax x 的根的情况是( ) (A )有两个不相等的实数根 (B )有两个相等的实数根(C )没有实数根 (D )根的个数与a 的取值有关。