初中一元一次方程等量关系
一元一次方程找等量关系的小窍门
一元一次方程找等量关系的小窍门
找一元一次方程等量关系的小窍门有很多,以下是一些常见的技巧:
1. 分析题意:仔细阅读题目,理解题目的意思和要求。
明确题目中的已知量和未知量,以及它们之间的关系。
2. 找出关键词:在题目中找出与等量关系相关的关键词,如“等于”、“是”、“等于多少”等。
这些关键词可以帮助你确定等量关系的表达式。
3. 利用常识:根据常识和经验,理解题目中的情境和背景。
例如,在购物问题中,通常涉及到价格、数量和总价的关系;在行程问题中,通常涉及到速度、时间和距离的关系。
4. 列出关系式:根据题意和关键词,列出等量关系的数学表达式。
注意表达式的正确性和完整性,确保每个量都正确地表示出来。
5. 简化表达式:如果表达式过于复杂或冗长,尝试对其进行简化或化简。
这有助于更清晰地表达等量关系。
6. 验证答案:在找到等量关系并解出方程后,要验证答案的正确性。
可以通过代入原方程或利用其他方法来验证答案是否符合题意。
通过以上技巧,可以帮助你更好地找出一元一次方程的等量关系,从而正确地解决问题。
一元一次方程等量关系
一元一次方程等量关系方法一:根据常见的公式寻找等量关系1、 工作问题和工程问题(1) 单人工作:工作总量=工作效率×工作时间(2) 多人合作:甲的工作总量+乙的工作总量+。
=工作总量【例】某工作甲单独做4天完成,乙单独做8天完成。
现甲先做1天,然后和乙共同完成余下工作。
问甲一共做了几天?甲单独一天可以完成总量的1/4,乙单独一天完成1/8;甲干1天后剩余:1-1*1/4=3/4设甲乙共同完成余下的需要X 天则X*(1/4+1/8)=3/4解得X=2天所以甲一共干了:1+2=3天【例】一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的245,乙队单独做这项工程需要多少天? 解:设乙队的工作效率为X ,得:5X+10/120=5/24解得X=1/40答:乙队单独做这项工程需要40天2、 行程问题路程=速度×时间(特别注意:两地的距离不变)(1)追击问题:①同时不同地出发:前者走的路程+两地间距离=追者走的路程前者走的时间=追者走的路程②同地不同时出发:前者走的路程=追者走的路程前者走的时间=追者走的时间+等待时间【例】甲乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发。
已知,摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且出发2小时,问摩托车经过多少时间追上自行车?解:设摩托车经过时间x 追上自行车自行车行驶的路程:S 自=15*(x+2)摩托车行驶的路程:S 摩=15*3x由于S 自=S 摩+180,代入数据,得x=7答:摩托车7小时追上【例】甲乙两人都以不变的速度在400米环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的3/2倍,问经过多长时间后两人首次相遇?第二次相遇呢?首先要相遇,肯定是乙超了甲足足一圈乙的速度:100*3/2=150m/min 设第一次相遇经过时间为X150X -100X=400X=8设第二次相遇经过时间为Y150Y -100Y=400*2Y=16(2)相遇问题:甲走的路程+乙走的路程=两地间的距离【例】甲乙两站之间相距360千米,上午9点1刻,一辆慢车和一辆快车分别分别从两站相向开往对方车站,经过3小时相遇,已知快车速度是慢车的1.5倍,问两车在什么时刻相距90千米?设慢车速度为V,则快车速度为 1.5V,相约90千米所用时间为t列方程1。
一元一次方程知识点归纳
一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。
温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。
②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。
如x x 2735-=+才是等式。
二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。
即如果b a =,那么c b c a ±=±。
性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。
温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。
若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。
所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。
如31=+x ,左边加2,右边也加2,则有2321+=++x 。
②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。
③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。
b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。
例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。
三.方程含有未知数的等式叫做方程。
温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。
②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。
一元一次方程应用题常见类型及等量关系
一元一次方程应用题常见类型及等量关系湖北翟升华搜集整理班级姓名一、和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
二、等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h=πr2h②长方体的体积:V=长×宽×高=abc三、行程问题基本量之间的关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
(1)相遇问题:①甲行距+乙行距=原距;②(甲速+乙速)×相遇时间=相遇距离。
(2)追及问题:①快行距-慢行距=原距;②(快速-慢速)×追及时间=追及距离。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度;静水(风)速度=(顺水(风)速度+逆水(风)速度)÷2;水流(风)速度=(顺水(风)速度-逆水(风)速度)÷2。
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.(4)环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
(5)车上(离)桥(隧道)问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个车长;③车过桥指车头接触桥到车尾离开桥的一段路程,所走路程为:一个车长 +桥长;④车完全在桥上指车尾接触桥到车头离开桥的一段路程,所行路程为:桥长 - 一个车长。
四、工程问题基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
《等量关系》认识方程
二元一次方程组
• 认识方程是数学中重要的概念,其中等量关系是方程的核 心。通过理解等量关系,我们可以解决许多实际问题。
05
CATALOGUE
多元一次方程组
定义
多元一次方程组
含有两个或两个以上未知数,且未知数的次数均为1的方程组。
等量关系
表示数量相等的数学表达式或语句,是数学模型的基本特征之一。
解。
应用举例
实际生活中的问题
如行程问题、购物问题等,可以通过建立多元一次方程组来解决。
科学研究和工程设计
如物理学、化学、机械工程等领域的问题,可以通过建立多元一次方程组来描述和求解。
06
CATALOGUE
认识方程在日常生活中的应用
购物优惠活动中的方程应用
总结词
购物优惠活动中,商家经常使用方程式 来表达商品打折后的价格,以便让消费 者更加清晰地了解价格优惠的情况。
物理问题
在物理问题中,方程也被广泛使用。例如,牛顿第二定律 F=ma 就描述了力、质量和加 速度之间的关系。通过建立和解决这些方程,我们可以更好地理解物理现象和规律。
实际生活问题
在实际生活中,方程也有广泛的应用。例如,在商业领域中,可以通过建立和解决方程来 描述和预测产品的销售情况;在工程领域中,可以通过建立和解决方程来描述和优化设计 中的各种参数。
方程的类型
01
02
03
一元方程
只有一个未知数的方程。 例如:x + 5 = 10。
二元方程
有两个未知数的方程。例 如:2x + y = 10。
高次方程
未知数的次数大于2的方
程。例如:x\^{}3
-
2x\^{}2 + x = 0。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
初中数学一元一次方程中线定理
初中数学一元一次方程中线定理知识点一方程的相关概念等式:表示相等关系的式子。
方程:所含未知数的等式。
(方程一定就是等式,但等式不一定就是方程)。
方程的解:使方程左右两边的值相等的未知数的值叫做方程的解。
解方程:谋使臣方程左右两边都成正比的未知数的值的过程叫作解方程。
一元一次方程:只含一个未知数,未知数的次数是1,并且等式两边都是整式的方程。
同解方程:两方程的求解相同。
知识点二等式的性质等式的性质1:等式两边提(或减至)同一个数(或式子),结果仍成正比。
即:如果a=b,那么a±c=b±c。
等式的性质2:等式两边乘坐同一个数,或除以同一个不为0的数,结果仍成正比。
即:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c。
1.通常数学分析:ⅰ 去分母:两边同乘以各分母的最小公倍数;ⅱ 回去括号;ⅲ 移项:移项要变号;ⅳ 分拆同类项:把方程化为ax=b(a≠0)的形式;ⅴ 系数化为1:两边同除以未知数的系数, 得到方程的解x=b/a。
2.一元一次方程的应用领域(重点难点)列方程解应用题的关键是:仔细审题,找出能正确表达题目整体数量关系的一个相等关系,再设未知数,并将这个相等关系用含未知数的式子表示出来。
3.几种常见问题a.和差倍分问题:这类问题主要是正确理解是几倍“增加了几倍”“增加到几倍”“多少”“大小”“不足“剩余”等关键词语的意义。
b.行程碰面问题:三个基本量的关系路程=速度×时间(1)两人在圆形跑道上同时同地背向而行求首次相遇时间:甲的路程+乙的路程=一圈的长度(直线路上两人面对面行走首次相遇的时间求法与之相同);(2)两人在圆形滑行道上同时同地同向而行求首次碰面时间:慢人的路程-快人的路程=一圈的长度。
c.工程任务问题:三个基本量的关系:工作量=工作效率×工作时间通常情况下,把全部工作量看作1(即为%),工作效率=1/工作时间(各个量一定必须对应,自己的效率除以自己的时间等同于自己的工作量)。
七年级数学一元一次方程应用题怎么列等量关系
七年级数学一元一次方程应用题怎么列等量关系
一元一次方程的应用题是数学中的一个重要部分,它涉及到实际生活中的各种问题。
为了解决这类问题,我们首先需要找出等量关系。
等量关系是方程的基础,它表示两个量是相等的。
在应用题中,等量关系通常表示两个数学量之间的关系,例如:路程=速度×时间。
以下是一些常见的列等量关系的方法:
1. 直接描述法:如果题目中直接给出了两个量之间的关系,我们可以直接写出这个关系作为等量关系。
例如,题目说“小明走了10分钟,每分钟走100米”,那么等量关系就是“路程=速度×时间”。
2. 列表法:如果题目中有多个未知数和已知数,我们可以先列出所有的已知数和未知数,然后找出它们之间的关系。
例如,题目说“一个工人每小时可以生产10个零件,他工作了3小时”,那么我们可以列出“工人每小时生产的零件数”和“工作的小时数”,然后写出等量关系“生产的零件数=每小时生产的零件数×工作的小时数”。
3. 图示法:对于一些几何问题,我们可以使用图形来帮助我们找出等量关系。
例如,题目说“一个三角形的底是6厘米,高是4厘米”,那么我们可以画出这个三角形,然后写出等量关系“三角形的面积=底×高÷2”。
4. 转化法:有时候题目中的问题不容易直接转化为等量关系,这时我们可以尝试将问题转化为更容易处理的形式。
例如,题目说“一个长方形的长是5厘米,宽是3厘米,求它的周长”,我们可以将问题转化为“求两个长和两个宽的总和”,这样就可以写出等量关系“周长=2×长+2×宽”。
通过以上方法,我们可以更好地理解和解决一元一次方程的应用题。
七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)
为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程
七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)
2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
一元一次方程解应用题的思路和解法(全)
一元一次方程解应用题的思路和解法(全)一元一次方程解应用题的思路和解法一元一次方程应用题是初一数学研究的重点,也是一个难点。
主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。
事实上,方程就是一个含未知数的等式。
列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。
而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。
由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。
解题关键为:先找出等量关系,根据基本量设未知数。
一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。
初中一年级涉及到的一元一次方程应用题主要有以下几类:行程问题、工程问题、溶液配比问题、销售问题、数字问题、比例问题、设中间变量的问题。
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。
下面针对以上七项分别进行讲解。
1.行程问题行程问题中有三个基本量:路程、时间、速度。
等量关系为:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
特殊情况是航行问题,其是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化。
顺水(风)速度=静水(无风)速度+水流速度(风速);逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
例1:一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?此题的等量关系是:列车改变速度以后所用的总时间=原计划的时间。
七年级一元一次方程常见应用题
一元一次方程常见应用题一、课本上常用等量关系:总量=各部分量的和表示同一个量的两个不同的式子相等1、某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2、解放军战士在一次施工中,要运回75吨砂子,现出动大、小两种汽车17辆,大小汽车每辆各运砂5吨/次、3吨/次,这些砂子正好一次运完,问大、小汽车各几辆?3、把一些图书分给某班学生,如果每人4本,则剩余12本,如果每人分5本,则还缺30本,问该班有多少学生?4、一批宿舍,若每间住1人,有10人无处住;若每间住3人,则有10间宿舍无人住,那么这批宿舍有多少间,人有多少个?二、行船问题:(常用等量关系:顺流路程=逆流路程)顺流速度=静水速度+水流速度逆水速度=静水速度-水流速度1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
3、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。
已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离4、轮船在静水中的速度为每小时20千米,水流速度为每小时4千米,从甲码头顺流航行到一码头,再返回到甲码头,共用5小时,求甲乙两个码头的距离?三、工程问题:(工作总量=工作效率×工作时间一般设工作总量为单位1)1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作5天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开3小时,再同时开两管,问注满水池还需要多少时间?4、两根同样长的蜡烛,粗蜡烛可燃烧4h,细蜡烛可燃烧3h,一次停电,同时点然两根蜡烛,来电后同时吹灭,发现粗蜡烛的长是细蜡烛长的2倍,求停电时间?四、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时1、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
用一元一次方程解决实际问题
用一元一次方程解决实际问题知识点归纳知识框架用一元一次方程解决实际问题步骤:1、设未知数2、找等量关系3、列一元一次方程4、解一元一次方程5、检验,求解的结果是否符合实际意义,此步骤是正确求解的重要环节。
例题例1 333,共做了多少张桌子?例2 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一局部人加工甲种零件,其余的加工乙种零件.•每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.假设此车间一共获利1440元,•求这一天有几个工人加工甲种零件.例3 某商店开张为吸引顾客,所有商品一律按八折优惠出售,某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?例4 某地区居民生活用电根本价格为每千瓦时0.40元,假设每月用电量超过a千瓦那么超过局部按根本电价的70%收费.〔1〕某户八月份用电84千瓦时,共交电费30.72元,求a.〔2〕假设该用户九月份的平均电费为0.36元,那么九月份共用电多少千瓦?•应交电费是多少元?例5 某汽车对运送一批货物,每辆汽车装4吨还剩下8吨未装,每辆汽车装4.5吨就恰好装完,该车队运送货物的汽车共有多少辆?例6 假设A 、B 两站间的路程为500km, 甲速20km/h,乙速为30km/h ,〔1〕甲乙两车分别从A 、B 两地同时出发,相向而行,几小时后两车相遇?(2)快车先开出30分钟,两车相向而行,慢车行驶了多少小时两车相遇〔3〕甲、乙两车分别从A 、B 两地同时出发,相向而行,问经过多少小时他们相距100km ? 〔4〕甲、乙两车分别从A 、B 两地同时出发,同向而行,问经过多少小时他们相距100km ?例7 运动场跑道400m,小红跑步的速度是爷爷的35倍,他们从同一起点沿跑道的同一方向同时出发,5分钟后小红第一次追上了爷爷.你知道他们的跑步速度吗?〔1〕几分钟后小红与爷爷第二次相遇?〔2〕如果小红追上爷爷后立即转身沿相反方向跑,几分钟后小红又一次与爷爷相遇?例8 某蔬菜公司的一种绿色蔬菜,假设在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进展精加工,每天可加工16吨,如果进展精加工,每天可加工6吨,•但两种加工方式不能同时进展,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进展粗加工.方案二:尽可能多地对蔬菜进展粗加工,没来得及进展加工的蔬菜,•在市场上直接销售.方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?练习1.某同学在暑假里给同学寄了2封信和一些明信片,一共花了元,每封信的邮费为元,每张明信片的邮费为元。
一元一次方程应用题基本类型及解题所需等量关系
一元一次方程应用题基本类型及解题所需等量关系第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量 (3)快行距+慢行距=原距2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量(3)快行距-慢行距=原距3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题(1)顺水(风)速度=静水(风)速度+水流(风)速度(2)逆水(风)速度=静水(风)速度-水流(风)速度(3)水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①°/分②分针的速度是6°/分③秒针的速度是6°/秒第二类:工程问题的基本关系:1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.第二类:商品利润问题(市场经济问题或利润赢亏问题(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。
初一上册数学一元一次方程知识点讲解
初一上册数学一元一次方程知识点讲解 数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺,为此小编为大家整理了初一上册数学一元一次方程知识点讲解,希望能够帮助到大家。
1.等式:用=号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是数,且a0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号(留下靠前)合并同类项--------合并后符号系数化为1---------除前面10.列一元一次方程解应用题:(1)读题分析法:多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间 ;(2)工程问题:工作量=工效工时 ;工程问题常用等量关系:先做的+后做的=完成量(3)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)2顺水逆水问题常用等量关系:顺水路程=逆水路程(4)商品利润问题:售价=定价, ;利润问题常用等量关系:售价-进价=利润(5)配套问题:(6)分配问题:以上内容由查字典数学网独家专供,希望这篇初一上册数学一元一次方程知识点讲解能够帮助到大家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:
①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:
①顺风速度=无风速度+风速
②逆风速度=无风速度-风速
顺风速度-逆风速度=2×风速
航行问题,基本等量关系:
①顺水速度=静水速度+水速②逆水速度=静水速度-水速
顺水速度-逆水速度=2×水速
(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
(9)浓度问题:溶质=溶液×浓度(),溶液=溶质+溶剂。
追问
考试经常考的是哪些?
回答
(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:
①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:
①顺风速度=无风速度+风速
②逆风速度=无风速度-风速
顺风速度-逆风速度=2×风速
航行问题,基本等量关系:
①顺水速度=静水速度+水速②逆水速度=静水速度-水速
顺水速度-逆水速度=2×水速。