列一元一次方程常见等量关系
一元一次方程等量关系(学生版)
一次方程等量关系方法一:根据常见的公式寻找等量关系1、 工作问题和工程问题(1) 单人工作:工作总量=工作效率×工作时间(2) 多人合作:甲的工作总量+乙的工作总量+。
=工作总量【例】某工作甲单独做4天完成,乙单独做8天完成。
现甲先做1天,然后和乙共同完成余下工作。
问甲一共做了几天?【例】一项工程,甲队独做要120天完成,如果甲队先做10天,乙队再做5天,就可以完成这项工程的245,乙队单独做这项工程需要多少天?2、 行程问题路程=速度×时间(特别注意:两地的距离不变)(1)追击问题:①同时不同地出发:前者走的路程+两地间距离=追者走的路程前者走的时间=追者走的路程②同地不同时出发:前者走的路程=追者走的路程前者走的时间=追者走的时间+等待时间【例】甲乙两地路程为180千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地出发。
已知,摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且出发2小时,问摩托车经过多少时间追上自行车?【例】甲乙两人都以不变的速度在400米环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的3/2倍,问经过多长时间后两人首次相遇?第二次相遇呢?(2)相遇问题:甲走的路程+乙走的路程=两地间的距离【例】甲乙两站之间相距360千米,上午9点1刻,一辆慢车和一辆快车分别分别从两站相向开往对方车站,经过3小时相遇,已知快车速度是慢车的1.5倍,问两车在什么时刻相距90千米?【例】上午8时,甲乙两人从A、B两地同时出发,相向而行,上午9时,两人相距54km,两人继续前进,到上午11时,两人又相距54km,已知甲每小时比乙多走3km,求A、B两地的距离。
(3)航行问题:①顺风(水)速度=静风(水)中的速度+风(水)速度②逆风(水)速度=静风(水)中的速度-风(水)速度引申:在静风(水)中的速度=1(顺风(水)速度+逆风(水)速度)2风(水)中的速度=1(顺风(水)速度-逆风(水)速度)2【例】一轮船往返于甲、乙两码头之间,顺水航行需要3小时,逆水航行比顺水多用30分钟,若轮船在静水中的速度为26千米/时。
「初中数学」一元一次方程应用题设元的四种方法及如何找等量关系.doc
「初中数学」一元一次方程应用题设元的四种方法及如何找等量关系解应用题时,首要任务是选设未知数,如何准确恰当地设未知数呢?没有固定的方法,但有一点是肯定的,那就是设未知数要有助于表示相关量,有助于简化解题过程。
设什么元需要根据具体问题的条件确定,常见的设元方法有:直接设元法、间接设元法、整体设元法、辅助设元法等。
那么在做题时又如何找等量关系呢?抓住几个原则:(一).分析题中的不变量原则,利用不变量来列方程(二).用不同的方式表示同一个量原则,以此得到相等关系,从而列出方程(三)利用总量等于各个分量之和”原则列方程具体方法上可以利用平时掌握的一些公式等基本数量关系,也可以抓住问题中的和、差、倍、分关系中的关键词来寻找相等关系。
以上所说,并不单指一元一次方程,所说的方法不可能全面,要学会每一部分知识仍需要同学们自己辛苦,多归纳,多总结,会用了才是你的方法。
一.直接设元法1.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?【分析】这道题我们抓住小型车的车费十中型车的车费=总车费这一关系列方程,具体设谁为未知数,哪种都可以.解:设中型汽车有x辆,则小型汽车有(50一x)辆.根据题意,得12x+8(50一x)=480解得,x=20则50一x=50一20=30.答:中型汽车有20辆,小型汽车有30辆.(1)和、差、倍、分问题基本数量关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.抓住关键性的词语,多、少、倍、几分之几以及原有量、现有量之间的关系导出相等关系.2.男、女生人数有若干人,男生与女生人数之比为4:3,后来走了12名女生,这时男生人数恰好是女生人数的2倍,求原来男生和女生的人数.【分析】抓住关键词男生人数恰好是女生人数的2倍”,也可以理解为女生人数恰好是男生人数的一半,等量关系是:男生人数=2(女生原有人数一走了的人数)或女生原来的人数一走了的人数=男生人数的一半.一般看见有比例关系的条件时,未知数设为一份数,所以.解:设原来男生人数为4x人,则女生人数为3x人,根据题意,得3x一12=(4x)/2解得×=12.原来男生人数为4x=48原来女生人数为3x=36答:原来男生人数为x人,原来女生人数为36人.(2)体积变化问题基本数量关系,常见几何图形的面积、周长、体积计算公式.等量关系有,形变体不变,即变形前的体积=变形后的体积;形变体积也变,但质量不变,即变形前的质量=变形后的质量.3.用直径为4厘米的圆柱形钢材,铸造3个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圓柱形钢材?【分析】等量关系是:铸造前圆柱形钢材的体积=铸造后三个圆柱的体积.解:设需截取x厘米的圆柱形钢材,根据题意得π(4/2)²x=3×π×(2/2)²×16解得x=12.答:需要截取12厘米的圓柱形钢材.(3)行程问题这类问题比较复杂,基本数量关系为,路程=速度×时间.①相向问题的等量关系为:甲走的路程+乙走的路程=两地距离.②追及问题的等量关系为:第一,同地不同时出发,前者走的路程=追者走的路程;第二,同时不同地出发,前者所走的路程+两地距离=追者所走的路程.③航行问题基本数量关系:路程=速度×时间,顺水速度=静水速度十水流速度,逆水速度=静水速度一水流速度,静水速度=(顺水速度十逆水速度)/2,水流速度=(顺水速度一逆水速度)/2.寻等量关系时,抓住两码头之间距离不变,水流速度不变,船在静水中的速度不变的特点来考虑.注意:行程问题,关注出发的时间、地点及行走的方式,往往画路线图,帮助分析等量关系,同时注意相遇和追击的区别.4.小红骑车以每小时10km的速度从甲地到乙地,返回时因事绕路而行,比去时多走了8km,虽然速度增加到每小时12km,但比去时还是多用了10min,水甲、乙两地之间的距离.【分析】注意单位统一,10min=1/6h.设甲、乙两地之间距离为xkm,则去时的时间为x/10,回来的时间为(x十8)/12,根据回来时间比去时多用了1/6h,可列方程解:设甲、乙两地之间的距离为xkm,根据题意可得x/10+1/6=(x十8)/12解得x=30答:甲、乙两地之间的距离为30km.5.一艘轮船从A港到B港顺水航行需要4.5小时,从B 港到A港逆水航行需要6小时,已知水流速度为每小时2千米,求船在静水中的速度.【分析】抓住,从A港到B港顺水航行的路程=从B港到A港逆水航行的速程不变.解:船在静水中的速度为x千米/时,则船在逆水航行的速度为(x一2)千米/时,船在顺水航行的速度为(x+2)千米/时,依题意得4.5(x+2)=6(x一2)解得x=14.答:船在静水中的速度为14千米/时.(4).劳动力调配问题将一处的人员调往另一处,一处的人数减少多少,另一处的人数会增加多少,两处的人数之间往往存在着倍分关系,可从题意中的关键性词语找等量关系6.铸造车间共有工人86人,若每人每天加工A种零件15个或B种零件12个或C种零件9个,应怎样按排加工三种零件的人数,才能使加工后的零件按3个A种零件,2个B 种零件和1个C种零件配套?【分析】等量关系是:加工A种零件的人数十加工B种零件的人数+加工C种零件的人数=86.设有x人加工A种零件,因为3个A零件,2个B零件和1个C零件配套,所以最后A种零件:B种零件:C种零件=3:2:1,也就是15x:(12×加工B 种零件的人数):(9×加工C种零件的人数)=3:2:1.所以加工B 种零件的人数为5x/6人,加工C种零件的人数为5x/9人.(必须学会这种用未知数表示相关的量).解:设按排加工A种零件为x人,根据题意得,x十5x/6+5x/9=86解得x=36加工B种零件人数为:5x/6=30加工C种零件人数为:5x/9=20答:安排36人加工A种零件,30人加工B种零件,20人加工C种零件.(5).利润问题基本数量关系为:商品利润=商品售价一商品进价,利润率=利润/进价×100%,销售额=成本(进价)×(1+利润率).7.某商场以每件80元的价格购进了某种品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【分析】等量关系为:销售额=进价×(1十利润率)解:设每件衬衫降价x元,依题意得400×120+(500-400)(120-x)=500×80×(1+45℅)解得x=20答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45℅的预期目标.(6)储蓄问题基本量的关系为:利息=本金×利率×期数,税后利息=本金×利率×期数×(1一利息税),本息和=本金【1十利率×期数×(1十利息税)】8.小明买了一年期债券150元,一年到期后小明用本息和正好买了一个价格是162元的书包,问小明买的债券的年利率是多少?(无利息税)【分析】等量关系是:本息和=本金×(1十利率×期数)解:设年利率是x,依题意得150×(1十x)=162解得x=8℅答:小明买的债券的年利率是8℅.(7)工程问题基本数量关系是,工作量=工作效率×工作时间,各部分工作量之和等于工作总量(单位1).9.一项工程,甲队独做10小时完成,乙队独做15小时完成,丙队独做20小时完成,开始时三队合作,中途甲队另有任务,由乙、丙二队完成,从开始到工程完成共用了6小时,问甲队实际做了几小时?【分析】甲队做的时间,也是三队合作的时间,等量关系是,甲、乙、丙合作的工作量+乙、丙合作的工作量=1.解:设甲队实际做了x小时,依题意得(1/10+1/15十1/20)x十(1/15十1/20)(6一x)=1解得x=3.答:甲队实际工作了3小时.二.间接设元法(8)数字问题.关键是掌握多位数的表示法,若一个多位数,个位数字为a,十位数字为b,百位数字为c,则这个三位数为100c+10b+a.抓住新数与原数之间的关系列方程.10.有一个两位数,它的十位数字比个位数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数.解:设个位数字为x,则十位数字为(x+5),这个两位数为10(x+5)十x.依题意得10(x+5)十x一8(x十5十x)=5解得x=1,x十5=6,这个两位数为61答:这个两位数是61.三.整体设元法11.一个五位数的个位上的数为4,这个五位数加上6120后所得的新五位数的万位、千位、百位、十位、个位上的数恰巧分别为原五位数的个位、万位、千位、百位、十位上的数,求原五位数.【分析】此题各数位上数字之间没有明确的数量关系,只是位置发生了改变,所以整体设未知数.解:设原五位数去掉个位数后的四位数为x,则原五位数为10x+4,依题意得(10x+4)十6120=4×10000+x解得x=3764,10x+4=37644答:原五位数是37644.四.辅助设元法当题中直接设未知数,不好表示其他量的关系,或一个未知数也不能满足需要,这时不妨再设一个未知数来列方程.12.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总量的10℅,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10℅,为保持总产量与去年相等,则今年新能源汽车的产量应增加的百分数是多少?【分析】此题汽车的总产量未知,知道所占的百分数也不好表示量的关系,所以多设一个辅助未知数,则关系就明朗.解:设去年的总产量为a,今年新能源汽车的产量应增加的百分数为x,则去年普通汽车的产量为90℅a,新能源汽车的产量为10℅a,今年普遍汽车的产量为90a(1一10℅),新能源汽车的产量为10%a(1+x),根据题意得90%a(1一10℅)+10℅a(1十x)=a解得x=0.9=90℅答:今年新能源汽车的产量应增加的百分数为90℅.【总结】以上只是几种常见的题型,还有很多没有列举出来,同学们要活学活用,根据问题的特点,灵活地设未知数,切不可生搬硬套,多总结,多归纳,形成自己的一套设元法。
(完整word版)一元一次方程中常见的等量关系.docx
七年上一元一次方程1、行程行程的基本公式:速度×= 路程常见的等量关系(1) 相遇一般公式:× 速度和= 相遇路程一、由意得例:甲、乙两地相距 1500千米,两汽同从两地相向而行,其中吉普每小行 60 千米,是客速度的 1.5 倍。
注意数学用,如:等于,⋯⋯与⋯⋯相等,一共有,剩余,是⋯⋯(1)几小后两相遇?(2)若吉普先开 40 分,那么客开出两相遇?的几倍,比⋯⋯多几等等。
例 1:一个数的1与 3 的差等于最大的一位数,求个数。
( 2)追及7一般公式:例 2:一个三位数,三个数位上的数字之和是17,百位上的数字比十出地不同,同出:×速度差 = 路程差(追及路程)位上的数大 7,个位上的数字是十位上的三倍,求个三位数。
出地相同,先后出: A× A速度= B× B速度例 3 :从正方形的皮上,截去一个2cm 的方形条,剩余的面是80cm2,,那么原来皮的是多少?例:小明家距离学校 1000米。
一天小明以80 米每分的速度去上学, 5二、前后不分后爸爸小明没文,开始以180米每分的速度去追小明,并在途中追上了他。
例1:在要将一个底面半径 3,高 12 的柱条重新熔成一个底面半径 9的柱,求熔后的柱高。
例 2:小一本,每天( 3)形跑道20 ,需要 12 天完,如果每天多 4分析意,分析两人路程差或者差,将形跑道直,需要多少天完?如果每天少两,需要几天完?相遇或者追及。
三、算公式例:甲乙两人在形跑道上跑步。
已知跑道一圈400 米,乙每例如面公式,公式等等。
3秒跑 6 米,甲的速度是乙的。
4四、数量关系( 1)若甲、乙两人在环形跑道上相距8 米处同时相向出发,经过几秒( 5)火车问题两人相遇?火车过桥总路程= 桥长 + 火车身长( 2)若甲在乙前 8 米处同时同向出发,那么经过多长时间两人首次相火车完全在桥上时的路程= 桥长 - 火车身长遇?火车过隧道总路程= 隧道长 + 火车身长火车完全在隧道里的路程= 隧道长 - 火车身长(4)顺流(风)逆流(风))以及上下坡问题例:一座桥长1000 米,一列火车从桥上通过,从上桥到离开桥公用1静水速度是指船在静水中的速度,也就是船自身的速度。
一元一次方程如何找等量关系
一元一次方程如何找等量关系列方程找等量关系的关键就是找到题目中的不变量,不变量有不同的表现形式分为两种,题目中的已知数,也就是具体的数值,这种是比较简单的,一眼就能看出来的;有的是通过未知数与题目中的数字运算结果作不变量。
当然理解题意非常重要,只有理解了,才能分清等量关系。
好,下面我就一些例题详细作以讲解1.找题目中已知数或者是题目中的一个或多个数字的运算结果作为不变量,让它作为等量关系的一边,把它放在方程的右边(也可以在左边,为了方便叙述,就把它放在右边),然后设未知数,通过未知数和题目中数字的运算列出代数式,使代数式的意义和右边不变量的意义相同,把代数式放在方程的左边,这样方程就会轻而易举的列了出来。
例题1.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?这个题目中有两个数字,这两个数字都是不变量,任何题目中的数字都是不变量,找到一个不变量,放在方程的右边,我们再用x与题目中的数字把它表示出来。
这个题目中的我们把98作为不变量放在方程的右边,98代表的含义是甲乙两班共有学生的人数,根据题意可以设甲班人数为x,根据第二个条件“甲班比乙班多6人”,就可以用x表示出乙班的人数为x-6,这样就可以用x把98所代表的含义表示出来x+(x-6),这样就可以把方程列出来了: x+(x-6)=98同样,我们可以把6作为不变量来列方程,这里不再叙述,同学们自己可以根据这个思路列出方程来。
例题2.甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B 地返回,在途中遇到乙,这时距他们出发时已过了3小时。
求两人的速度。
这个题目中的不变量就是两地之间的距离,这里不做过多解释了。
解:设乙的速度是x 千米/时,3x+3 (2x+2)=25.5×22.先把未知数设出来,然后直接把它放在方程的右边或者与题目中的一个或多个数字的运算结果(代数式)放在方程的右边(也可以在左边,为了方便叙述,就把它放在右边),接着通过未知数和题目中数字的运算列出代数式,使代数式的意义和右边代数式的意义相同,放在方程的左边,这样方程就会轻而易举的列了出来。
一元一次方程应用题常见类型及等量关系
一元一次方程应用题常见类型及等量关系湖北翟升华搜集整理班级姓名一、和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
二、等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h=πr2h②长方体的体积:V=长×宽×高=abc三、行程问题基本量之间的关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
(1)相遇问题:①甲行距+乙行距=原距;②(甲速+乙速)×相遇时间=相遇距离。
(2)追及问题:①快行距-慢行距=原距;②(快速-慢速)×追及时间=追及距离。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度;静水(风)速度=(顺水(风)速度+逆水(风)速度)÷2;水流(风)速度=(顺水(风)速度-逆水(风)速度)÷2。
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.(4)环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
(5)车上(离)桥(隧道)问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个车长;③车过桥指车头接触桥到车尾离开桥的一段路程,所走路程为:一个车长 +桥长;④车完全在桥上指车尾接触桥到车头离开桥的一段路程,所行路程为:桥长 - 一个车长。
四、工程问题基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元一次方程经典例题讲解解析
一元一次方程知识点梳理1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. 2.等式的基本性质(1)等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。
用字母表示若a=b ,则a+m=b+m ,a-m=b-m(2)等式的两边都乘以同一个数或都除以同一个数(除数不为0),所得的结果仍是等式. 用字母表示:若a=b,则am=bm,n a =nb(n 不为0) 3.解一元一次方程的基本步骤:例1、解方程(1)y-522-=例2、由两个方程的解相同求方程中子母的值已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例3 、解方程知识与绝对值知识综合题型 解方程:73|12|=-x一元一次方程应用题(找出等量关系) 一 、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案. 1、数字问题要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
例1、 若三个连续的偶数和为18,求这三个数。
例2、 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数例3、有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
一元一次方程解决问题公式大全
一元一次方程应用题公式大全1、行程问题 *基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
2、工程问题 *一、工程问题中的数量关系:(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率=(3)工作效率工作总量工作时间= (4)各队工作量之和全部工作量之和=(5)各队工作效率之和各队合作工作效率=二、考点归纳考点1 工作总量 = 工作效率×工作时间一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙的工作效率分别为x 1、y 1;甲、乙合作m 天可以完成的工作量为y m x m +或 m y x ⎪⎪⎭⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和相等关系:全部工作量=甲独做工作量+甲、乙合作工作量考点3 甲完成工作量+乙完成工作量=1变式:甲x 天完成的工作量 + 乙y 天完成的工作量 = 13、利润问题 *利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,【知识点一】折扣问题常用数量:原价, 现价 ,折扣,常用数量关系:现价=原价×折扣折扣=现价÷原价【知识点二】通过了解利润问题的数量关系解决实际问题利润中常用数量及等量关系:.进价(成本)、售价(定价。
标价。
)、利润、利润率 的关系式:利润 = 售价 —售价=标价×折扣数 ()利润 ×100%=利润率 定价=进价×(1+利润率)利润=进价×利润率4、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
初一上册数学一元一次方程所有题型等量关系式
初一上册数学一元一次方程所有题型等量关系式
(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:
①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速顺风速度-逆风速度=2×风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速顺水速度-逆水速度=2×水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
(9)浓度问题:溶质=溶液×浓度(),溶液=溶质+溶剂。
1。
一元一次方程等量关系式
顺风飞行:路程=顺风速度(无风速度+风速)×时间
逆风飞行:路程=逆风速度(无风速度-风速)×时间
顺风速度-逆风速度=2×风速
无风速度=(顺风速度+逆风速度)÷2风速=(顺流速度-逆流速度)÷2
五、航行问题,基本等量关系:
顺水航行:航程=顺航速度(静水速度+水速)×时间
逆水航行:航程=逆水速度(无风速度-风速)×时间
一元一次方程的等量关系式:
寻找等量关系的常见方法
(1)抓住数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:如:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2X-4=50.
顺水速度-逆水速度=2×水速
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
2)工程问题:
工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,
工作效率(每天工作量)=工作总量÷工作时间;
工作总量=工Байду номын сангаас效率×工作时间;
工作时间=工作总量÷工作效率
单位时间生产量×生产时间=已生产量
(2)根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系。
七年级数学一元一次方程应用题怎么列等量关系
七年级数学一元一次方程应用题怎么列等量关系
一元一次方程的应用题是数学中的一个重要部分,它涉及到实际生活中的各种问题。
为了解决这类问题,我们首先需要找出等量关系。
等量关系是方程的基础,它表示两个量是相等的。
在应用题中,等量关系通常表示两个数学量之间的关系,例如:路程=速度×时间。
以下是一些常见的列等量关系的方法:
1. 直接描述法:如果题目中直接给出了两个量之间的关系,我们可以直接写出这个关系作为等量关系。
例如,题目说“小明走了10分钟,每分钟走100米”,那么等量关系就是“路程=速度×时间”。
2. 列表法:如果题目中有多个未知数和已知数,我们可以先列出所有的已知数和未知数,然后找出它们之间的关系。
例如,题目说“一个工人每小时可以生产10个零件,他工作了3小时”,那么我们可以列出“工人每小时生产的零件数”和“工作的小时数”,然后写出等量关系“生产的零件数=每小时生产的零件数×工作的小时数”。
3. 图示法:对于一些几何问题,我们可以使用图形来帮助我们找出等量关系。
例如,题目说“一个三角形的底是6厘米,高是4厘米”,那么我们可以画出这个三角形,然后写出等量关系“三角形的面积=底×高÷2”。
4. 转化法:有时候题目中的问题不容易直接转化为等量关系,这时我们可以尝试将问题转化为更容易处理的形式。
例如,题目说“一个长方形的长是5厘米,宽是3厘米,求它的周长”,我们可以将问题转化为“求两个长和两个宽的总和”,这样就可以写出等量关系“周长=2×长+2×宽”。
通过以上方法,我们可以更好地理解和解决一元一次方程的应用题。
一元一次方程应用题及复习知识点
(2)若该用户九月份的平均电费为0.36元,则九月份共 用电多少千瓦? 应交电费是多少元?
解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元.
解:设这种三色冰淇淋中咖啡色配料为2x克, 那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色 配料分别是10克,15克和25克.
某地区居民生活用电基本价格为每千瓦时0.40元,若 每月用电量超过a千瓦时,则超过部分按基本电价的70%收 费.
百位上的数为3,十位上的数为6,个位上的数为5
7/5/2024
7
4.市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率= 商品利润 商品成本价
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售, 如商品打8折出售,即按原标价的80%出售.
根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件.
9、比例分配问题
这类问题的一般思路为: 设其中一份为x ,利用已知的比, 写出相应的代数式。 常用等量关系:各部分之和=总量。
7/5/2024
列一元一次方程解应用题的几种常见题型及其特点
列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是初一数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元一次方程等量关系式
一元一次方程的等量关系式:寻找等量关系的常见方法(1)抓住数学术语找等量关系应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:如:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2 X-4=50.(2)根据常见的数量关系找等量关系常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系。
(3)根据常用的计算公式找等量关系常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4 =19.(4)根据文字关系式找等量关系例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:一班+二班+三班=总数36+37+X =108一班+二班=总数-三班36+37=108-X一班+三班=总数-二班36+X =108-37二班+三班=总数-一班37+X=108-36(5)根据图形找等量关系例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图,从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2 X=400.常见等量关系式的类型1)行程关系:基本等量关系(路程=速度×时间)一、相遇问题:甲、乙相向而行(方向不同,出发地不同)总路程=甲走的路程+乙走的路程。
一元一次方程知识点和常考题型解析
一元一次方程知识点和常考题型一知识点复习巩固知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)2、解一元一次方程的一般步骤:常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项等式基本性质1 移项要变号,不移不变号;要变号)合并同类项 把方程化成ax =b(a ≠0)的形式合并同类项法则计算要仔细,不要出差错; 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解x = 等式基本性质2 计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a ≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b ≠0时,方程无解。
知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
一元一次方程应用题基本类型及解题所需等量关系
一元一次方程应用题基本类型及解题所需等量关系第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量 (3)快行距+慢行距=原距2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量(3)快行距-慢行距=原距3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题(1)顺水(风)速度=静水(风)速度+水流(风)速度(2)逆水(风)速度=静水(风)速度-水流(风)速度(3)水流速度=(顺水速度-逆水速度)÷2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①°/分②分针的速度是6°/分③秒针的速度是6°/秒第二类:工程问题的基本关系:1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.第二类:商品利润问题(市场经济问题或利润赢亏问题(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。
中考数学复习指导:常见一元一次方程应用题中的等量关系
常见一元一次方程应用题中的等量关系等量关系是列方程解应用题的重要依据.一元一次方程应用题中的等量关系通常有哪些呢?下面结合例题归纳出十类常见的等量关系,供同学们学习时参考:第一类:相遇问题相遇问题中的等量关系:甲(从A出发)所走的路程+乙(从B出发)所走的路程=A、B两地间的路程.在求解时,应注意灵活运用公式:路程=速度×时间.例1 A、B两地相距700千米,甲车从A出发行使120千米后,乙车行使6小时后两车相遇.若乙车速度是甲车速度的32,则甲车速度是多少千米/小时?解设甲车速度是x千米/小时,则乙车速度是32x千米/小时,依题意得:6x+6×32x+120=720,解这个方程得x=40.答:甲车速度是40千米/小时.第二类:追及问题①同地不同时:前者走的路程=追者走的路程;②同时不同地:前者走的路程+两地间的距离=追者走的路程.例2 小明、小亮两人相距5千米,按照小明在前小亮在后的顺序两人同时出发同向而行.已知小明的速度是3千米/小时,小亮的速度是4千米/小时,那么经过多少小时后小亮能追上小明?解设经过x小时后小亮能追上小明,依题意得:3x+5=4x,解这个方程得x=5.答:经过5小时后小亮能追上小明.第三类:航行问题抓住两地距离不变,静水速度不变的特点考虑相等关系建立方程.在求解时往往会用到以下两道公式:①顺水速度=静水速度+水流速度;②逆水速度=静水速度-水流速度,例3 某轮船往返于A 、B 两个港口之间,逆水航行时需3小时,顺水航行时需2小时,若水流速度是3千米/小时,那么轮船在静水中的速度是多少千米/小时?解 设轮船在静水中的速度是x 千米/小时,则轮船在顺水中的速度是(x +3)千米/小时,轮船在逆水中的速度是(x -3)千米/小时,依题意得:2(x +3)=3(x -3),解这个方程得x =15.答:轮船在静水中的速度是15千米/小时.第四类:立体几何问题当立体几何图形发生变化时,其高度、底面积等都可能随之变化,但是图形的体积保持不变.这是我们列一元一次方程解立体几何图形问题的关键.例4 用直径为90mm 的圆钢,铸造一个底面边长都是131mm ,高度是81mm 的长方体钢锭,请问需要截取多长的一段圆钢?(结果保留π)解 设需要截取x mm 的一段圆钢,依题意得:解这个方程得x =686.44π 答:需要截取686.44πmm 的一段圆钢.第五类:商品销售问题①利润=销售价-成本价;②商品的销售额=销售价×销售量;③销售价=进价×(1+提价的百分数)或者销售价=进价×(1-降价的百分数); ④打折后的销售价=标价×打折的百分数(其中,打几折就是按原价的十分之几出售). 例5 小华的妈妈为爸爸买了一件上衣和一条裤子,共用了306元,其中上衣按标价打七折,裤子按标价打八折,上衣的标价为300元,那么裤子的标价为多少元?解 设裤子的标价为x 元,依题意得:300×0.7+0.8x =306,解这个方程得x =120.答:裤子的标价为120元,第六类:利息问题①利息=本金×利率×期数;②本息和=本金+利息,其中本金是指顾客存入银行的钱;利息指银行付给顾客的报酬;期数指存入银行的时间;利率指每个期数内的利息与本金的比,而本金与利息的和叫做本息和.例6 六年前妈妈为小英存了一个6年期的教育储蓄,现在取出时共得本息和18240元.如果当时的年利率为3.6%,请问妈妈当时存入银行多少钱?解设妈妈当时存入银行x元,依题意得:x+x·3.6%×6=18240.解这个方程得x=15000.答:妈妈当时存入银行15000元.第七类:数字调位问题抓住新数与原数之间的联系,寻找相等关系.例7有一个两位数,两个数位上的数字之和是3.如果把个位数字与十位数字对调,得到的新两位数比原数大9,那么这个两位数是多少?解设个位数字为x,则十位数字为3-x,依题意得:10x+(3-x)=10(3-x)+x+9,解这个方程得x=2,则3-x=1.答:这个两位数是12.第八类:浓度问题利用变化后的溶质的不同表示方法作为等量关系.例8 浓度为25%的一杯盐水中,加入1.25克盐后,盐水浓度为35%,那么原来那杯浓度为25%的盐水的质量为多少克?解设原来那杯浓度为25%的盐水的质量为x克,则其中含盐的质量为25%x,加入1. 25克盐后,盐水的质量为x+1.25克,依题意得:25%x+1.25=(x+1.25)×35%,解这个方程得x=8.125.答:原来那杯浓度为25%的盐水的质量为8.125克.第九类:调派问题此类问题中一般有两个未知数,等量关系也有两个.如果设一个未知数为x,则利用其中一个等量关系把另一个未知数用含x的代数式表示,然后利用另一个等量关系列出方程.例9在甲处工作的有21人,在乙处工作的有12人.为加快进度,又派来18人分到甲、乙两处,使甲处工作的人数是乙处工作人数的2倍,请问应往甲、乙两处各派多少人?解设派往甲处x人,则派往乙处18-x人.调派后甲处有21+x人,乙处有[12+(18-x)]人,依题意得:21+x=2[12+(18-x)],解这个方程得x=13,则18-x=5.答:派往甲处13人,则派往乙处5人.第十类:工程问题两个或几个工作效率不同的对象所完成的工作量的和等于工作总量.其中工作量=工作效率×工作时间,而在求解时往往把工作总量看作单位“1”.例10 一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成,开始时三队合作,中途甲队另有任务,剩下的由乙和丙两队完成,从开始到工程完成共用6小时,请问甲队实际做了多少小时?解设甲队实际做了x小时,则乙和丙两队合作了6-x小时,依题意得:=1.解这个方程得x=3.答:甲队实际做了3小时.综上可见,一元一次方程应用题中的等量关系是多种多样的,我们在解题时要认真审题,仔细分析,找出问题中的等量关系,灵活运用解题策略,才能顺利解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题归类汇集
一、列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)
二. 1.一般行程问题(相遇与追击问题)
(1).行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间(2).行程问题基本类型
相遇问题:快行距+慢行距=原距
追及问题:快行距-慢行距=原距
2.行船与飞机飞行问题:
航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
3.工程问题
工程问题中的三个量及其关系为:
工作总量=工作效率×工作时间
=工作总量
工作效率
工作时间
=
工作总量工作时间
工作效率
经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.
4.市场经济问题
(1)商品利润=商品售价-商品成本价(2)商品利润率=
商品利润
商品成本价
×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
5.存贷问题。
存贷问题中有本金、利息、利息税三个基本量,还有与之相关的利率、本息和、税率等量。
其关系式有:①利息=本金×利率×期数;
②利息税=利息×税率;
③本息和(本利)=本金+利息-利息税。
6.和差倍分问题
增长量=原有量×增长率现在量=原有量+增长量
7.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h= r2h
②长方体的体积 V=长×宽×高=abc
8.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.。