6高一物理临界极值问题

合集下载

高中物理中的临界与极值问题

高中物理中的临界与极值问题

高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。

与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。

极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。

临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。

因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。

高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。

从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。

也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。

可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。

物理临界极值问题归纳总结

物理临界极值问题归纳总结

物理临界极值问题归纳总结在物理学中,临界极值问题是一类重要而常见的问题,涉及到各种自然现象和物理过程。

在本文中,我们将对一些典型的临界极值问题进行归纳总结,探讨其背后的物理原理和应用。

1. 能量最小问题当一个物体在受到外力作用下移动时,其可能存在最小能量的位置。

例如,在沿着一条曲线从A点到B点的过程中,求物体在这条曲线上,哪个位置可以实现最小的势能状态。

这种求解问题可以使用变分法或者利用物理原理进行分析。

2. 速度最大问题速度最大问题在机械运动学中经常出现。

例如,一个物体自由下落,求其在离地面一定高度时的速度达到最大值。

这类问题可以通过求解速度函数的导数为零的点,找到极值点,并验证其是否是最大值。

3. 加速度最大问题加速度最大问题与速度最大问题类似,但是关注的是物体的加速度达到最大值的情况。

例如,在自由下落的过程中,求物体离地面一定高度时其加速度达到最大值。

可以通过求解加速度函数的导数为零的点来找到极值点。

4. 碰撞问题碰撞问题是临界极值问题中的一个重要分支,涉及到两个或多个物体之间的相互作用。

例如,求两个物体碰撞后的速度以及碰撞瞬间的能量损失。

这类问题可以通过守恒定律和碰撞动量定律来分析,从而得到系统的临界极值情况。

5. 光线折射问题光的折射现象也涉及到一种临界极值问题。

例如,光线从一个介质进入另一个介质时,求解光线的入射角和折射角之间的关系。

这类问题可以利用斯涅尔定律和临界角的概念来解决。

6. 流体力学中的临界极值问题流体力学研究中也存在临界极值问题。

例如,在管道中液体流动速度达到最大值的问题,或者通过调整管道中的形状,使得流体的流量达到最大值。

这类问题可以通过应用伯努利方程和连续性方程来解决。

通过对上述几类典型的临界极值问题进行总结与归纳,我们可以看到它们在物理学研究和应用中的重要性。

在实际问题中,临界极值问题的解决可以帮助我们了解自然现象背后的物理规律,并且为工程设计和科学研究提供有力支持。

高中物理专题讲解——在动力学中临界极值问题的处理

高中物理专题讲解——在动力学中临界极值问题的处理

在动力学中临界极值问题的处理二.匀变速运动规律中与临界极值相关问题的解读在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。

【例1】速度大小是5m/s 的甲、乙两列火车,在同一直线上相向而行。

当它们相隔2000m 时,一只鸟以10m/s 的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。

问:(1) 当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程?【灵犀一点】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。

【解析】飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt 求路程。

(1)设甲、乙相遇时间为t ,则飞鸟的飞行时间也为t ,甲、乙速度大小相等v 甲= v 乙=5m/s ,同相遇的临界条件可得:s = (v 甲+v 乙)t则:2000=20010s ts s v v ==+乙甲(3)这段时间,鸟飞行的路程为:10200s vtm '==⨯【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。

【例2】在平直公路上一汽车的速度为15m/s ,从某时刻汽车开始刹车,在阻力作用下,汽车以2m/s 2的加速度做匀减速运动,则刹车后第10s 末车离刹车点的距离是 m.【灵犀一点】在汽车刹车问题中,汽车速度为0后将停止运动,不会反向运动。

在分析此类问题时,应先确定刹车停下来这个临界状态所用的时间,然后在分析求解。

【解析】 设汽车从刹车到停下来所用时间为t 0, 由运动学规律得:0000150,7.52t tv v v v at t s s a --=-=== 由于t 0<10s ,所以在计算时应将t=7.5s 代入公式求解。

则有:22011(157.527.5)56.2522sv t at m m =-=⨯-⨯⨯=【思维总结】本题经常犯的错误是不考虑汽车刹车后速度为零所需时间这一临界状态,直接把题目中所给的时间代入公式。

临界极值问题(解析版)--动力学中九类常见问题

临界极值问题(解析版)--动力学中九类常见问题

动力学中的九类常见问题临界极值问题【问题解读】1.题型概述在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态即临界问题。

问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都会涉及临界问题,隐含相应的临界条件。

2.临界问题的常见类型及临界条件(1)接触与分离的临界条件:两物体相接触(或分离)的临界条件是弹力为零且分离瞬间的加速度、速度分别相等。

临界状态是某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,有关的物理量将发生突变,相应的物理量的值为临界值。

(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力。

(3)绳子断裂与松弛的临界条件:绳子断与不断的临界条件是实际张力等于它所能承受的最大张力;绳子松弛的临界条件是绳上的张力恰好为零。

(4)出现加速度最值与速度最值的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度。

当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值。

【方法归纳】求解临界、极值问题的三种常用方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学方法将物理过程转化为数学公式,根据数学表达式解出临界条件解题此类题的关键是:正确分析物体的受力情况及运动情况,对临界状态进行判断与分析,挖掘出隐含的临界条件。

【典例精析】1(2024河北安平中学自我提升)如图所示,A、B两个木块静止叠放在竖直轻弹簧上,已知m A=m B =1kg,轻弹簧的劲度系数为100N/m。

若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2m/s2的加速度竖直向上做匀加速直线运动,从木块A向上做匀加速运动开始到A、B分离的过程中。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高一物理牛顿定律运用中的临界和极值

高一物理牛顿定律运用中的临界和极值
1例4全解A
F1 解:(1)研究物块1上升的过程。以物块1为研究对象,其 受力分析和运动过程分析如图1所示。物块1在最高点A O 处,加速度最大,且方向竖直向下,F1+m1g=mam F1 F2 ’ 最大。以物块2为研究对象,其受力分析如图2所示。F1 最大时,N=0,即F1’=m2g 因F1’=F1 所以, B m1 g m2 g m1g+m2g=m1am 图1 am
300 图1
分析:讨论涉及静摩擦力的临界问题的一般方法是:1、抓住静摩擦力方向的
可能性。2、物体即将由相对 静止的状态即将变为相对 滑动状态的条件是 f=μN(最大静摩擦力)。本题有两个临界状态,当物体具有斜向上的 运动趋 势时,物体受到的摩擦力为最大静摩擦力;当物体具有斜向下的运动趋势时, 物体受到的摩擦力为最大静摩擦力。 N y f1 当物体具有斜向下的运动趋势时,受力分析如图2所示, sin300 N1 - f1 cos300=ma0 (1) f1 sin300+N1 cos300=mg (2) f 1 =μN1 (3) a 01=? 当物体具有斜向上的运动趋势时,受力分析如图3所示, N2sin300+ f2 cos300=ma0 (1) N2 cos300=mg + f2 sin300(2) f 2 =μN2 (3) a 02=? (求出加速度的取值范围)
f1
图2
mgsinθ
f2
图3 mgsinθ
牛顿定律运用中的临界和极值问题
例题分析:4、如图所示,两块质量分别m1是m2和,用劲度系数为k的轻弹簧 连在一起,放在水平面上,将木块1下压一段距离后释放,它在做简谐运 动,在运动过程中,木块2始终没有离开水平面,且对水平面的最小压力 为零,则木块1的最大加速度的大小是多大?木块2对水平面的最大压力是 多大?

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。

1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。

2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。

(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。

则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。

物理临界和极值问题总结

物理临界和极值问题总结

物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。

下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。

- 临界问题常见于相变、相平衡和相变点等领域。

- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。

2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。

- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。

- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。

无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。

对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。

总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。

这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。

高中物理课件(人教版2019必修第一册)专题 临界(极值)问题(课件)

高中物理课件(人教版2019必修第一册)专题  临界(极值)问题(课件)

F2
F1
AB
解 :由题意分析可得两物体分离的临界条件是:两物体之间刚好无相互作用的
弹力,且此时两物体仍具有相同的加速度。 分别以A、B为研究对象,水平方向受力分析如图
由牛顿第二定律得
a
F1 BBB
F1=ma
F2=2ma
则 F2=2 F1
a
F2 A
即(40-4t) =2(10+4t)
解得 t=5/3 (s)
向右运动时,绳对小球的拉力及斜面对小球的弹力各为多大?
a
解:小球即将脱离斜面支持力FN =0 对小球进行受力分析,得合力: F=mgcotθ =ma a=gcotθ= 4g/3
θG
FT F=ma
因为a1=g< 4g/3,所以斜面对小球有弹力
则沿x轴方向 沿y轴方向
FTcosθ-FNsinθ=ma FTsinθ+FNcosθ=mg
第四章 运动和力的关系
专题 临界(极值)问题
人教版(2019)
目录
contents
01 临界问题
02
实例分析
03 典例分析
01
临界问题
1、动力学中临界问题的特征 在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转
折状态即为临界问题。问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都 会涉及临界问题,隐含相应的临界条件。(涉及临界状态的问题叫做临界问题)
假设法 中可能出现临界条件,也可能不出现临界条件时,往往用假设法解 决问题
数学方法 将物理过程转化为数学表达式:三角函数式、二次函数的判别 式,根据数学表达式解出临界条件
解决临界问题的基本思路
(1)认真审题,仔细分析研究对象所经历的变化的物理过程, 找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题。

动力学中的临界极值问题

动力学中的临界极值问题

动力学中的临界极值问题
临界极值问题在动力学中是指系统的某个物理量在经过变化时达到临界值的问题。

这个物理量可以是系统的能量、动量、速度等等。

临界极值问题在动力学中有很多应用,下面以力学中的临界速度问题为例进行解释。

在力学中,临界速度是指物体在某个运动过程中速度达到临界值时的问题。

通常情况下,物体的速度会随着时间的增加而增加,但当速度达到某个临界值时,物体的运动状态会发生突变。

临界速度问题可以通过求解物体受到的合力和运动方程来解决。

当物体受到的合力等于零时,即达到了临界速度。

在这个临界速度下,物体的加速度为零,速度不再改变,达到了稳定的运动状态。

临界速度问题在实际生活中有很多应用。

例如,在过山车设计中,设计师需要确定过山车的速度达到临界值时的运动状态,以保证乘客的安全。

同样,在飞行器设计中,确定飞行器起飞和降落时的临界速度也是一个关键问题。

总之,临界极值问题在动力学中是指系统的某个物理量达到临界值时的问题,通过求解物体受力和运动方程可以解决问题。

临界速度问题是其中的一个重要应用。

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

《高中物理---动力学中的临界极值问题和传送带问题》优秀文档

《高中物理---动力学中的临界极值问题和传送带问题》优秀文档

动力学中的临界极值问题动力学中极值问题的临界条件和处理方法1.“四种”典型临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.2.“四种”典型数学方法 (1)三角函数法; (2)根据临界条件列不等式法;(3)利用二次函数的判别式法;(4)极限法. 【练习】1.如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mg hD .在B 与A 分离之前,它们做匀加速直线运动2. (多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3.如图所示,物体A 放在物体B 上,物体B 放在光滑的水平面上,已知m A =6 kg ,m B =2 kg.A 、B 间动摩擦因数μ=0.2.A 物体上系一细线,细线能承受的最大拉力是20 N ,水平向右拉细线,下述中正确的是(g 取10 m/s 2)( )A .当拉力0<F <12 N 时,A 静止不动B .当拉力F >12 N 时,A 相对B 滑动C .当拉力F =16 N 时,B 受到A 的摩擦力等于4 ND .在细线可以承受的范围内,无论拉力F 多大,A 相对B 始终静止 4.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小. (2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?“传送带模型”问题分析传送带问题的三步走1.初始时刻,根据v物、v带的关系,确定物体的受力情况,进而确定物体的运动情况.2.根据临界条件v物=v带确定临界状态的情况,判断之后的运动形式.3.运用相应规律,进行相关计算.【练习】5.(多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g=10 m/s2,则煤块从A运动到B的过程中()A.煤块到A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 sC.划痕长度是0.5 m D.划痕长度是2 m6.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a≥g sinθ7.(多选)如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是()A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,有可能等于3 m/s8.如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8.g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.9.如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物体从A点到达B点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少?。

高中物理中的临界与极值问题

高中物理中的临界与极值问题

有关“物理”的临界与极值问题高中物理中的临界与极值问题涉及到多个知识点,包括牛顿第二定律、圆周运动、动量守恒等。

有关“物理”的临界与极值问题如下:1.牛顿第二定律与临界问题:●牛顿第二定律描述了物体的加速度与合外力之间的关系。

当物体受到的合外力为零时,物体处于平衡状态。

●在某些情况下,物体受到的合外力不为零,但物体仍然处于平衡状态,这是因为物体受到的合外力恰好等于某个临界值。

这种状态被称为“临界平衡”。

●在解决与临界平衡相关的问题时,通常需要考虑物体的平衡条件和牛顿第二定律。

通过分析物体的受力情况,可以确定物体是否处于临界平衡状态,以及需要施加多大的力才能使物体离开临界平衡状态。

2.圆周运动中的极值问题:●圆周运动中的极值问题通常涉及向心加速度和线速度的最大值和最小值。

●当物体在圆周运动中达到最大速度时,其向心加速度最小。

此时,物体的线速度最大,而向心加速度为零。

●当物体在圆周运动中达到最小速度时,其向心加速度最大。

此时,物体的线速度最小,而向心加速度为最大值。

●在解决与圆周运动中的极值问题相关的问题时,通常需要考虑向心加速度和线速度之间的关系,以及如何通过分析物体的受力情况来确定其最大速度和最小速度。

3.动量守恒与极值问题:●动量守恒定律描述了系统在不受外力作用的情况下,系统内各物体的动量之和保持不变。

●在某些情况下,系统受到的外力不为零,但系统仍然保持动量守恒。

这是因为系统受到的外力恰好等于某个临界值。

这种状态被称为“临界动量守恒”。

在解决与临界动量守恒相关的问题时,通常需要考虑系统的动量守恒条件和外力的作用。

通过分析系统的受力情况,可以确定系统是否处于临界动量守恒状态,以及需要施加多大的外力才能使系统离开临界动量守恒状态。

超级经典实用的临界问题和极值问题(吐血整理)

超级经典实用的临界问题和极值问题(吐血整理)

如图3—51所示,把长方体切成质量分别为m和M的 两部分,切面与底面的夹角为θ长方体置于光滑的 水平地面,设切面亦光滑,问至少用多大的水平力 推m,m才相对M滑动?
如图1所示,质量均为M的两个木块A、B在水平力F 的作用下,一起沿光滑的水平面运动,A与B的接触面 光滑,且与水平面的夹角为60°,求使A与B一起运 动时的水平力F的范围。
临界问题和极值问题
一、临界状态
在物体的运动状态发生变化的过程中,往往 达到某一特定的状态时,有关物理量将发生 变化,此状态即为临界状态,相应物理量的 值为临界值。【讨论相互作用的物体是否会 发生相对滑动,相互接触的物体是否会分离 等问题就是临界问题】 注意:题目中出现“最大、刚好、恰好、最 小”等词语时,常有临界问题。
F
A
ห้องสมุดไป่ตู้
B 60°
图1
1、在水平向右运动的小车上,有一倾角θ=370的光 滑斜面,质量为 m 的小球被平行于斜面的细绳系住 而静止于斜面上,如图所示。当小车以(1)a1=g, (2) a2=2g 的加速度水平向右运动时,绳对小球的拉 力及斜面对小球的弹力各为多大?
a
θ
二、动力学中常见的临界问题
1、接触的两物体发生脱离(分离)临界条件: 弹力FN=0; 2、两相对静止的物体发生相对滑动的临界条 件:静摩擦力达到最大值,即f=fMax; 3、绳子断裂和松弛的临界条件:(1)断裂 的临界条件:绳子受的拉力达到它能承受拉 力的最大值;(2)松弛临界条件:绳子受的 拉力为零,即FT=0
4、加速度达到最大和最小的临界条件:物体 受到变化的合外力作用,加速度不断变化, 当所受合外力最大时,加速度最大;合外力 最小时,加速度最小; 5、速度最大或最小的临界条件:加速度为零, 即a=0

高中物理中的临界与极值问题

高中物理中的临界与极值问题

下中物理中的临界与极值问题之阳早格格创做宝鸡文理教院附中何治专一、临界与极值观念所谓物理临界问题是指百般物理变更历程中,随着条件的渐渐变更,数量聚集达到一定程度便会引起某种物理局里的爆收,即从一种状态变更为另一种状态爆收量的变更(如齐反射、光电效力、超导局里、线端小球正在横直里内的圆周疏通临界速度等),那种物理局里恰佳爆收(或者恰佳不爆收)的过分转合面即是物理中的临界状态.与之相关的临界状态恰佳爆收(或者恰佳不爆收)的条件即是临界条件,有关此类条件与截止钻研的问题称为临界问题,它是形而上教中所道的量变与量变顺序正在物理教中的简直反映.极值问题则是指物理变更历程中,随着条件数量连绝渐变越过临界位子时或者条件数量连绝渐变与鸿沟值(也称端面值)时,会使得某物理量达到最大(或者最小)的局里,有关此类物理局里及其爆收条件钻研的问题称为极值问题.临界与极值问题虽是二类分歧的问题,但是往往互为条件,即临界状态时物理量往往博得极值,反之某物理量与极值时恰佳便是物理局里爆收转合的临界状态,除非该极值是单调函数的鸿沟值.果此从某种意思上道,那二类问题的界线又隐得非常的朦胧,并不是泾渭明隐.下中物理中的临界与极值问题,虽然不正在教教大目或者考查道明中粗确提出,但是连年下考查题中却频频出现.从往常的试题形式去瞅,有些间接正在题搞中时常使用“恰佳”、“最大”、“起码”、“不相碰”、“不摆脱”……等词汇语对付临界状态给出了粗确的表示,审题时,要抓住那些特定的词汇语收挖其内含的物理顺序,找出相映的临界条件.也有一些临界问题中本去不隐含上述罕睹的“临界术语”,具备一定的湮出性,解题机动性较大,审题时应力图还本习题的物理情景,粗细计划状态的变更.可用极限法把物理问题或者物理历程推背极度,进而将临界状态及临界条件隐性化;或者用假设的要领,假设出现某种临界状态,领会物体的受力情况及疏通状态与题设是可相符,终尾再根据本量情况举止处理;也可用数教函数极值法找出临界状态,而后抓住临界状态的特性,找到粗确的解题目标.从往常试题的真量去瞅,对付于物理临界问题的考查主要集结正在力战疏通的关系部分,对付于极值问题的考查则主要集结正在力教或者电教等权沉较大的部分.二、罕睹临界状态及极值条件解问临界与极值问题的关键是觅找相关条件,为了普及解题速度,不妨明白并记着一些罕睹的要害临界状态及极值条件:1.雨火从火仄少度一定的光润斜里形屋顶流淌时间最短——2.从少斜里上某面仄扔出的物体距离斜里最近——速度与斜里仄止时刻3.物体以初速度沿牢固斜里恰佳能匀速下滑(物体冲上牢固斜里时恰佳不再滑下)—μ=tgθ.4.物体刚刚佳滑动——静摩揩力达到最大值.5.二个物体共背疏通其间距离最大(最小)——二物体速度相等.6.二个物体共背疏通相对付速度最大(最小)——二物体加速度相等.7.位移一定的先开用后制动分段疏通,正在初、终速及二段加速度一定时欲使齐程历时最短——中间无匀速段(位移一定的先开用后制动分段匀变速疏通,正在初速及二段加速度一定时欲使能源效率时间最短——到终面时终速恰佳为整)8.二车恰不相碰——后车逃上前车时二车恰佳等速.9.加速疏通的物体速度达到最大——恰佳不再加速时的速度.10.二交战的物体刚刚佳分散——二物体交战但是弹力恰佳为整.11.物体所能到达的最近面——直线疏通的物体到达该面时速度减小为整(直线疏通的物体轨迹恰与某鸿沟线相切)12.正在排球场合3米线上圆火仄打球欲乐成的最矮位子——既触网又压界13.木板或者传递戴上物体恰不滑降——物体到达终端时二者等速.14.线(杆)端物正在横直里内搞圆周疏通恰能到圆周最下面15.横直里上疏通的非拘束物体达最下面——横直分速度为整.16.细线恰佳推直——细线绷直且推力为整.17.已知一分力目标及另一分力大小的领会问题中若第二分力恰为极小——二分力笔直.18.动背力领会的“二变一恒”三力模型中“单变力”极小——二个变力笔直.19.度目标的分力.20.渡河中时间最短——船速笔直于河岸,即船速与河岸笔直(相称于静火中渡河).21.船速大于火速的渡河中航程最短——“斜顺航止”且船速顺进与止分速度与火速对消.22.船速小于火速的渡河中航程最短——“斜顺航止”且船速与合速度笔直.23.“圆柱体”滚上台阶最省力——使能源臂达最大值2R.24.25.益坏动能最小(大)的碰碰——真足弹性(真足非弹性)碰碰.26.简谐疏通速度最大——位移(回复力、加速度)为整.27.受迫振荡振幅恰佳达最大——驱能源的频次与振荡系统的固有频次相等.28.二个共相相搞波源连线上振幅最大的面——二边距连线中…29.惟有板滞能与电势能相互转移时,沉力势能与电势能之战最小时,动能最大.30.粒子恰不飞出匀强磁场——圆形轨迹与磁场鸿沟相切.31.杂电阻背载时电源输出功率最大——内中电阻阻值相等.32.滑动变阻器对付称式接法中阻值达最大——滑至中面.33.倾斜安顿的光润导轨上的通电导体棒停止时,所加匀强磁场目标若笔直于斜里的情况下磁感强度最小.34.光从介量射背气氛时恰不射出——进射角等于临界角.35.刚刚佳爆收光电效力——进射光频次等于极限频次.36.戴电粒子恰佳被速度采用器选中(霍我效力、等离子收电)——电场力与洛力仄稳.37.“大天卫星”(氢本子处于基态)时,势能最小、总能量最小、疏通周期、角速度均最小;速度、背心力、加速度均最大.38.等量共本量面电荷连线的中垂线上场强最大的位子供解.三、临界与极值问题普遍解法临界问题常常以定理、定律等物理顺序为依据,领会所钻研问题的普遍顺序战普遍解的形式及其变更情况,而后找出临界状态,临界条件,进而通过临界条件供出临界值,再根据变更情况,间接写出条件.供解极值问题的要领从大的圆里可分为物理要领战数教要领.物理要领即用临界条件供极值.数教要领包罗(1)利用矢量图供极值(2)用正(余)弦函数供极值;(3)扔物线顶面法供极值;(4)用基础不等式供极值.(5)单调函数端面值法供极值(6)导数法供解.普遍而止,用物理要领供极值简朴、直瞅、局里,对付构修物理模型及动背领会等圆里的本领央供较下,而用数教要领供极值思路宽紧,对付数教修模本领央供较下,若能将二者给予混合,则将相得亦彰,对付巩固解题本领大有裨益.四、典型问题领会例题1.某屋顶横断里是一等腰三角形ABC ,横梁AC=2L (定值),欲使雨火从屋顶里下贵下去时间最短,供屋里的倾斜角(摩揩忽略不计,雨火初速为0)剖析:设倾斜角α,AB=s ∵F=mgsinα=ma ,∴a=gsinα∵s== ∴当α=45°时,等号创制所以α=45°,雨火从屋顶(光润)下贵下所用的时间最短解法2.21sin cos 2L g t αα=⋅∴解恰当0=45α时 t 有最小值. 例题2.从倾角为θ的牢固少斜里顶面以初不计气氛阻力供自扔出经多万古间小球离斜里最近?解法一:设经t 秒小球距离斜里最近,此时速度必与斜里仄止,则所以. 解法二:近离斜里目标的所以近离斜里的速度减小至整时相距最近.时相距最近.解法四:剖析法.选初速度目标为x 轴正背,沉力目标为y 轴正仄扔物体轨迹圆故隐然二次函数有极大概的条件为即例题3.一个品量为3kg的物体搁正在少木板上,当木板一端抬起使它与火仄目标成30°的牢固斜里时,物体正佳不妨沿斜里匀速下滑.当木板火仄牢固时,用多大的火仄推力能将该物体推动?剖析:正在斜里上物体所受摩揩力与沉力沿斜里背下的分力仄稳即F=mgsin30°而滑动摩揩力f=μmgcos30°所以μ=tan30°正在火仄里上推的时间压力大小等于沉力大小.则火仄里上的摩揩力f=μmg=mgtan30°所以推力起码要达到那个值才搞推动物体,例题4-1.某物体所受沉力为200 N,搁正在火仄大天上,它与大天间的动摩揩果数是,它与大天间的最大静摩揩力是80 N,起码要用_________N的火仄推力,才搞将此物体推动,若推动之后脆持物体搞匀速直线疏通,火仄推力应为_________N;物体正在大天上滑动历程中,若将火仄推力减小为50 N,直到物体再次停止前,它所受到的摩揩力为_________N;物体停止后,此50 N的火仄推力并已撤去,物体所受的摩揩力大小为_________N.剖析:从停止推物体时推力起码达到最大静摩揩力80N才不妨推动物体;推动后当推力大小与滑动摩揩力等值(200×0.38=76N)时物体将搞匀速直线疏通;正在物体滑动历程中火仄推力若减小至50N,物体受到的滑动摩揩力仍跟本去一般为76N;物体停止后此50N的火仄推力并已撤去时物体受静摩揩力大小等于此时的火仄推力大小50N.例题4-2. 如图所示,U 形导线框牢固正在火仄里上,左端搁有品量为m 的金属棒ab ,ab 与导轨间的动摩揩果数为μ,它们围成的矩形边少分别为1L 、2L ,回路的总电阻为R.从t=0时刻起,正在横直进与目标加一个随时间匀称变更的匀强磁场B=kt ,(k>0)那么正在t 为多大时,金属棒开初移动.剖析:当磁场爆收变更的时间,有感触电动势爆收,正在回路中便会爆收感触电流,ab 棒会受到安培力的效率,则ab 有背左疏通的趋势,则ab 便会受到背左的静摩揩力的效率.当ab 棒受到安培力战静摩揩力的效率仄稳时,由12E kL L t ∆Φ==∆可知,回路中感触电动势是恒定的,电流大小也是恒定的,但是由于安培力F=BIL ∝B=kt ∝t ,所以安培力将随时间而删大,所以ab 受到的静摩揩力也删大,二者终究是等值反背的,只消安培力的大小不超出最大静摩揩力,ab 便终究处于停止状态.当安培力大于最大静摩揩力之后,ab 便会疏通起去.正在停止到疏通之间便存留着一个从停止到疏通的临界状态,此状态的临界条件便是安培力删大到等于最大静摩揩力.此时有:1212212,kL L mgR kt L mg t R k L L μμ⋅⋅==所以例题4-3.如图3所示二根仄止的金属导轨牢固正在共一火仄里上,磁感触强度的匀强磁场与导轨仄里笔直,导轨电b a L 1 L 2阻不计,导轨间距;二根品量均为电阻均为的仄止金属杆甲、乙可正在导轨上笔直于导轨滑动,与导轨间的动摩揩果数均为;现有一与导轨仄止大小为的火仄恒力效率于甲杆使金属杆正在导轨上滑动,已知210m g s = 供(1)领会甲、乙二杆的疏通的情况?(2)杆疏通很万古间后开初,则再通过5秒钟二杆间的距离变更了几?剖析:(1)金属杆甲正在火仄恒力(那里0.5f mg μ==甲牛为甲杆所受的最大静摩揩力)效率下将背左加速疏通并切割磁感线爆收顺时针目标的感触电流,果而使甲杆共时受到火仄背左的安培阻力;乙杆中也果为有了电流而受到火仄背左的安培能源,二个安培力等值反背;开初时甲杆的切割速度较小故安培力=均较小,随的删大则回路中的感触电流删大,所以二杆所受的安培力=均删大,故甲杆将背左做加速度减小的变加速疏通;当时乙杆也将开初背左做加速度渐渐删大的变加速疏通;直到甲、乙二杆的加速度相等时(此时甲乙二杆速度好v ∆最大,回路中动死电流最大即0.50.2=0.44m BL v v v I R ⋅∆⨯⨯∆∆==总, 每杆受安培力最大即0.50.2440Bm m v v F BI L ∆∆==⨯⨯=乙杆的加速度最大即max 54Bm F mg v a m μ-∆==-乙甲杆的加速度最小即min 154Bm F F mg v a m μ--∆==-甲图5所以甲乙二杆以共共的加速度,恒定的速度好背左搞匀加速直线疏通.即甲相对付乙将背左搞匀速直线疏通而近离.(2)依据上述领会知疏通很万古间后甲乙二杆将以共共的加速度背左搞匀加速直线疏通,亦即5秒例题4-4.如图5一端施一大小为20N 的恒力FM 可视为量面,问木块从较近处背左疏通到离定滑轮多近时加速度最大?最大加速度为几?剖析: 设当沉绳与火仄目标成角θ时,对付M 有A 与最大值时a 最大.利用三角函数知识有:此时木块离定滑轮的火仄距离为:cm=θcot≈S25h道明:此题并不是正在所有条件下皆能达到上述最大加速度,当木块达到一定值时,有大概使物体摆脱大天,今后物体将不正在沿着火仄里疏通.果此,F、M、μ必须谦足θsinF≤Mg.此题所给数据谦足上述条件,不妨达到最大加速度.例题4-5.如图3所示,品量为m=1kg的物块搁正在倾角为的斜里体上,斜里品量为,斜里与物块间的动摩揩果数为,大天光润,现对付斜里体施一火仄推力F,要使物体m相对付斜里停止,试决定推力F的与值范畴.()图3剖析:此题有二个临界条件,当推力F较小时,物块有相对付斜里背下疏通的大概性,此时物体受到的摩揩力沿斜里进与;当推力F较大时,物块有相对付斜里进与疏通的大概性,此时物体受到的摩揩力沿斜里背下.找准临界状态,是供解此题的关键.(1)设物块处于相对付斜里背下滑动的临界状态时的推力为F1,此时物块受力如图4所示,与加速度的目标为x轴正目标.图4对付物块领会,正在火仄目标有横直目标有对付真足有代进数值得(2)设物块处于相对付斜里进与滑动的临界状态时的推力为F2图4-6 对付物块领会,正在火仄目标有 横直目标有, 对付真足有代进数值得.综上所述可知推力F 的与值范畴为: 例题4-6.如图4-6所示,跨过定滑轮的沉绳二端,分别系着物体A 战B ,物体A 搁正在倾角为α的斜里上,已知物体A 的品量为m ,物体B 战斜里间动摩揩果数为μ(μ<t an θ),滑轮的摩揩不计,要使物体停止正在斜里上,供物体B 品量的与值范畴.剖析:物体正在斜里上大概恰佳不上滑,也大概恰佳不下滑,所以摩揩力大概有二个目标.以B 为钻研对付象,由仄稳条件得:B T m g =再以A 为钻研对付象,它受沉力、斜里对付A 的收援力、绳的推力战斜里对付A 的摩揩效率.假设A 处于临界状态,即cos N mg θ=0,m m T f mg f N μ--==或者:0,m m T f mg f N μ+-==(sin cos )(sin cos )B m m m θμθθμθ-≤≤+例题5-1.甲物体以=4m v s 甲搞匀速直线疏通,乙物体正在其后里5m 处沿共背去线共一目标搞初速为整加速度22m a s =的匀加速直线疏通,问乙物体是可不妨逃上甲物体?并供出其间距离的最大值.解法一:(1)乙物体一定不妨逃上甲物体.(2)用临界法领会供极值:乙物体加速至=4m v s 甲前,速度小于其前圆的甲物体疏通速度,此阶段其间距离不竭删大,当乙物体加速至=4m v s 甲后,速度大于其前圆的甲物体疏通速度,所以正在尚已逃上甲物体前,其间距离不竭减小,故等速时其间距离最大.令a t v ⋅=甲 解得4==22v t s a =甲 此时相距最近 解法二:(2)用扔物线顶面坐标法供极值:依据甲乙二物体各自疏通顺序可得出其间的距离函数222011+5424522S S v t at t t t t =⋅-=+-⨯=-++甲 422(1)t =-=-s 时 例题5-2.(宝鸡2012年二模)如图所示,品量为6kg 的小球A 与品量为3kg 的小球B ,用沉弹簧贯串后正在光润火仄里上共共以速度0v 背左匀速疏通,正在A 球与左侧横直墙壁碰后二球继承疏通的历程中,弹簧的最大弹性势能为4J ,若A 球与左侧墙壁碰碰前后无板滞能益坏,试供0v 的大小.剖析:那里弹性势能最大时即簧压缩量最大,亦即A 与左侧0v 为初速(碰墙壁无板滞能益坏)背左减速疏通,B 仍以0v 为初速背左减速,但是B 球品量小先减至整又反背背左加速疏通,二者均背左疏通等速时其间距离最小,此时簧的弹性势能最大.果为碰墙壁后背左疏通历程A+B 系统总动量守恒,如果选背左为正目标则又果为碰墙壁后背左疏通历程A+B (含簧)系统总板滞能守恒则联坐供解并代进数值得01m v s = (13AB m v s =) 例题5-3.(90年世界卷)正在光润的火仄轨道上有二个半径皆是r 的小球A 战B ,品量分别为m 战2m ,当二球心间距离大于L (L 比2r 大得多)时,二球之间无相互效率力;当二球心间距离等于或者小于L 时,二球间存留相互效率的恒定斥力F.设A 球从近离B 球处以速度0v 沿二球连心线背本去停止的B 球疏通,如图12-2所示,欲使二球不爆收交战,0v 必须谦足什么条件剖析 : 据题意,当A 、B 二球球心间距离小于L 时,二球间存留相互效率的恒定斥力 F.故A 减速而B 加速.B A v v >时,A 、B 间距离减小;当B A v v <时,A 、B 间距离删大.可睹,当B A v v =时,A 、B相距迩去.若此时A 、B 间距离r x 2>,则A 、B 不爆收交战(图12-3).上述状态即为所觅找的临界状态,B A v v =时r x 2>则为临界条件.二球不交战的条件是:B A v v = (1) 2B A L S S r +- (2)其中A v B v 为二球间距离最小时,A 、B球的速度;A S 、B S为二球间距离从L 变至最小的历程中,A 、B 球通过的路途. 设0v 为A 球的初速度,对付于A+B 系统由动量守恒定律得 B A mv mv mv 20+= (3)对付于A 球由动能定律得022011cos18022A A F S mv mv ⋅=- (4)对付于B 球由动能定律得 021cos0(2)2B B F S m v ⋅= (5) 联坐解得:m r L F v )2(30-<评析 本题的关键是粗确找出二球“不交战”的临界状态,为B A v v =且此时r x 2>例题6.(09年江苏卷)如图所示,二品量相等的物块A 、B 通过一沉量弹簧对接,B 足够少、搁置正在火仄里上,所有交战里均光润.弹簧开初时处于本少,疏通历程中终究处正在弹性极限内.正在物块A 上施加一个火仄恒力,A 、B 从停止开初疏通到第一次速度相等的历程中,下列道法中粗确的有 ( )A .当A 、B 加速度相等时,系统的板滞能最大B .当A 、B 加速度相等时,A 、B 的速度好最大C .当A 、B 的速度相等时,A 的速度达到最大D .当A 、B 的速度相等时,弹簧的弹性势能最大剖析:领会本题的关键是对付物体举止受力领会战疏通历程领会,使用图象处理则不妨使问题越收简朴.A 、B 物块正在火仄目标受力如左图上下,F 1为弹簧的推力.A 从停止开初背左搞加速度减小的变加速直线疏通,B 从停止开初背左搞加速度删大的变加速直线疏通,当二物块加速度相等时它们的速度好最大(果为该阶段A 速度的减少值经常大于B 速度的减少值),————选B.该历程可视为B 板后沿(量面)逃打A 物块,果为前里A 物体的速度经常大于后里B 物体的速度,所以其间距离不竭删大(共一时间内A 物的位移经常大于B 物的位移),当二物体等速时其间距离最大即弹簧伸少量最大,所以弹簧的弹性势能最大.————选D据前领会该历程A 物体终究搞加速度减小的加速疏通(B 物也终究加速但是加速度删大),那种疏通背去持绝到A 物体加速度减为整(此时B 物体加速度删至F/m ),即A 物体速度单调减少,故终时刻速度最大.————选C.又果中力F 不竭搞正功,所以系统板滞能不竭删大,终时刻板滞能最大.————排除A. 1t 时刻2A B F a a m ==2t 时刻A B v v =且A 物加速度=0例题7-1.消防队员为了收缩下楼时间,往往抱着直坐于大天的横直滑杆间接滑下(设滑杆正在火仄目标不克不迭移动),假设一名品量为60kg 的消防队员从离大天18m 的七楼抱着横直的滑杆以最短的时间滑下.已知消防队员的脚战足对付杆之间的压力最大为1800N ,脚战足与滑杆之间动摩揩果数为0.5,消防队员着天的速度不克不迭大于6m/s ,当天(1)消防队员下滑的最短时间?(2)消防队员下滑历程中最大速度?解法一(基础不等式极值法):设消防队员先搞自由降体疏900N 大于沉力600N佳减速至=6m/s ,则下滑时间①且..② 又依牛顿第二定律知消防队员减速下滑的加速度最大值为..③ 将②③式代进①式并整治有即消防队员下滑的最短时间为2.4 s ,即加速1.2s 、匀速0s 、减速1.2s.(2)消防队员下滑的最大速度即自由降体段下滑的终速度解法二18m ,那种临界状态的v-t 图像如下图中真线OAB 所示,其与横轴所围成的图形“里积”恰佳为18m ,隐然其余任性一个含有匀速疏通段的图形若里积与其相等(比圆OPQM),则底边少度必大于24s.所以先加速后减速中间无匀速疏通段,历时最短.例题7-2.(06年上海卷) (辨析题):央供摩托车由停止开初正在尽管短的时间内走完一段直道,而后驶进一段半圆形的直道,但是正在直道上止驶时车速不克不迭太快,免得果离心效率而偏偏出车道,供摩托车正在直道上止驶所用的最短时间.有关数据睹表1.某共教是那样解的:要使摩托车所用时间最短,应先由静,而后再减速,您认为那位共教的解法是可合理?若合理,请完毕估计;若分歧理,请道明缘由,并用您自己的要领算出粗确截止.剖析:故分歧理.40),又以加速度218m 的直道距离止驶,即为最短时间.例题7-3.(2013年宝鸡市一检试题)如图所示,火仄大天上有A 、B 二面,且二面间距离LAB=15m,品量m=2kg 的物体(可视为量面)停止正在A 面,为使物体疏通到B 面,现给物体施加一火仄F =10N 的推力,供推力F 效率的最短时间.(已知大天与物块的滑动摩揩果数μ=0.2,g 与10m/s2)剖析:可证要使F 效率时间最短,则F B 面恰佳停止(道明睹后).设匀加速直线疏通的加速度为a1可得:(1)(2)设撤去F(3)(4)(5)(6)(7)道明:设恒力F滑止段-2,设滑止段即恒力效率时间最小需要2s.亦即滑止至终速恰佳为整所需的时间为2s (也可通过v-t图像证略).例题8.后圆距离甲车S驶速度脆持稳定,为了保证二车不相碰,乙车搞匀减速直线疏通的加速度大小起码为多大?解法一:.设a ,恰逃上时历时0t 则20=v v at -乙令201==v v at v -乙 解得210v v t a-=又果为21101=v v s v t v a -=⋅甲2222212121200211s =()222v v v v v v v t at v a a a a----=⋅-⋅=乙 令+s s s =乙甲 解得221()2v v a s-=解法二:以甲车为参照物,乙车的相对付初速度为21v v -,设加速度(亦即相对付加速度)为a相对付终速度为0,相对付位移为S ,则有2221()02v v as --=所以 221()2v v a s-=例题9.如图所示,横直搁置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻皆忽略不计).磁感触强度为B 的匀强磁场目标笔直于纸里背中.金属棒ab 的品量为m ,与导轨交战良佳,不计摩揩.从停止释搁后ab 脆持火仄下滑.试供ab 下滑的最大速度m v .剖析:释搁瞬间ab 只受沉力,开初背下加速疏通,只消ab 有速度,正在ab 上便会爆收动死电动势,正在回路中便会爆收电流,由左脚定则知,ab 会受到进与的安培力的效率.动死电动势会随着速度的删大而不竭的删大,回路中电流便会不竭的删大,根据=F BIL 安,安培力会不竭的删大,则ab 搞加速0F mg -=安时,其加速度便形成0,速度达到最大,开初搞匀速直线疏通.果此,正在从变速疏通状态变到匀速状态之间有一个速度达到最大的状态,此状态的临界条件便是ab 受的的沉力大小等于安培力大小.m gR v L B F m==22,可得22L B mgRv m =例题10-1.如图所示,m=4kg 的小球挂正在小车后壁上,细线与横直目标成37°角.要使后壁对付小球不爆收力的效率小车的加速度应谦足的条件?剖析:小车背左加速或者背左减速时,后壁对付小球的效率力N 有大概减为整,那时小球将离开后壁而“飞”起去.那时细线跟横直目标的夹角会改变,果此细线推力F 的目标会改变.所以必须先供出那个临界值.领会知正在该临界状态下, 小球横直目标仄稳, 则0cos37=F mg细线推力火仄分量使得小球正在火仄目标加速,则0sin37F ma =联坐解得 小车背左加速或者背左减速的加速度大小起码为0a=g tg37⋅例题10-2.一根劲度系数为k,品量不计的沉弹簧,上端牢固,下端系一品量为m 的物体,有一火仄板将物体托住,并使弹簧处于自然少度.如图所示.现让木。

2024年高中物理:带电粒子在磁场中运动的临界极值问题

2024年高中物理:带电粒子在磁场中运动的临界极值问题

2024年高中物理:带电粒子在磁场中运动的临界极值问题临界状态是指物体从一种运动状态(或物理现象)转变为另一种运动状态(或物理现象)的转折状态,它既具有前一种运动状态(或物理现象)的特点,又具有后一种运动状态(或物理现象)的特点,起着承前启后的转折作用.由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,常常出现临界和极值问题.1、临界问题的分析思路临界问题的分析对象是临界状态,临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点,此转折点即为临界状态点.与临界状态相关的物理条件则称为临界条件,临界条件是解决临界问题的突破点.临界问题的一般解题模式:(1)找出临界状态及临界条件;(2)总结临界点的规律;(3)解出临界量;(4)分析临界量列出公式.2、极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:一是根据题给条件列出函数关系式进行分析、讨论;二是借助于几何图形进行直观分析.例、如图甲所示,在真空中坐标xOy平面的x>0区域内,有磁感应强度B=1.0×10-2T的匀强磁场,方向与xOy平面垂直,在x轴上一点P(10,0)有一放射源,能在xOy平面内向各个方向发射速率v=1.0×104m/s的带正电的粒子,粒子的质量m=1.0×10-25kg(重力不计),粒子带电荷量q=1.0×10-18C,则带电粒子能打到y轴上的范围为多少?解析:粒子的速率一定,故它在磁场中运动的半径一定,本题的关键是找出由于速度方向的变化而导致该圆周与y轴在正、负方向上交点的最高位置与最低位置。

设粒子速度方向开始沿x轴正方向沿逆时针变化,则洛伦兹力方向将沿y轴正方向向逆时针方向变化,当过P点的直径与y轴正方向相交时,粒子打在y轴上的A点距原点O的距离最大,由于x轴负方向无磁场,随着粒子速度方向的继续变化(沿逆时针),粒子打在y轴上的点距原点的距离逐渐减小(不可能打在图中虚线所示直径为PA′的圆交y轴负方向的A′点),当速度方向沿x轴负方向时,圆轨道与y轴负方向相切于C,以后轨道将不与y轴相交,粒子与y轴的交点在A、C之间,如图乙所示。

物理临界与极值问题

物理临界与极值问题
• 分析与解答
• 电荷的运动情况如下:0到T/4匀加速,T/4到T/2匀减速
• T/2时刻速度为零,位移小于等于L/2,电荷在A点或B点
• T/2到3T/4电荷向中点匀加速,3T/4时刻速度最大
• 3T/4到T电荷向中点作匀减速运动,到达中点时速度为零。
• 电荷是向A还是T向B运动由A、B两点的电势上下决定。
样。故 Ema2Bm
• 分析与解答:容器向右加速那么左侧液面上升
• 当左侧液面高为H时加速度到达最大值。
•因液体的体积不变,液面的倾角为45°
•在液面上取一个液滴作为研究对象
由图易见F合=mg=ma
N
F合=ma
最大 加速度a=g
G
θ=45°
例题四
• 如以下图,光滑绝缘程度面上放有一个电量为q的正电荷,电荷处于竖 直放置的A、B板的中点。AB间的间隔 为L,开场电荷处于静止状态。当 两板之间加上一个图示的矩形交变电压时,交流电压的绝对值为U,为 使电荷在运动过程中恰不与A和B板接触,求交流电的最大周期。
加速度最小时刻是落地瞬间。
练习题2
• 悬在O点的长为l的绝缘细线上挂着质量为m、带电 量为+q的小球在程度向右的匀强电场的作用下,向 右偏到45°角的位置平衡,如以下图,求:〔1〕 电场强度;〔2〕小球在平衡位置做小角度摆动的 周期;〔3〕假设要小球能在竖直平面上完成一个 完好的圆周运动,那么应给小球施加的最小的切线 方向的初速度为多少?
例题六分析与解答
• 先画粒子的运动轨迹,关键是查找圆心位置
R1〔1+ cos450 〕
=d,R1=mV01/qB
2 2Bqd
V01
m
由S 图 1 2 R 1 2 可 2 1 d知

考点6——圆周运动的临界极值问题(答案)

考点6——圆周运动的临界极值问题(答案)

考点6——圆周运动的临界极值问题(答案)1.答案:B解析:由于A 和A 、B 整体受到的静摩擦力均提供向心力,故对A ,有μ1m A g ≥m A ω2r ,对A 、B 整体,有(m A +m B )ω2r ≤μ2(m A +m B )g ,解得ω≤√2 rad/s,故选项B 正确。

2.答案:B解析:在最高点过山车对轨道的压力为零时,重力提供向心力,有mg =mv 2r.代入题中数据可得过山车在N 、P 最高点的速度分别为:v 1=gr 1,v 2=gr 2.故v 1v 2=r 1r 2,故选B. 3.答案:C解析:小球恰好能通过圆轨道最高点,由m 2g=m 2v 2R ,得v=√gR ,A 项错误;当小球恰通过圆轨道最高点b 时,悬线拉力为0,此时对人受力分析,得出台秤对人的支持力F=m 1g ,在a 、c 两处时小球受重力和水平指向圆心的拉力,台秤对人的支持力也为F=m 1g ,即台秤的示数也为m 1g ,故C 项正确;小球在a 、c 连线以上(不包括b 点)时,人受到悬线斜向上的拉力,人对台秤的压力小于m 1g ,在a 、c 连线以下时,人受到悬线斜向下的拉力,人对台秤的压力大于m 1g ,人处于平衡状态,人没有超、失重现象,B 、D 两项错误。

4.答案:D解析:物块向右匀速运动时,绳中的张力等于物块的重力Mg ,因为2F 为物块与夹子间的最大静摩擦力,物块做匀速运动时所受的静摩擦力小于2F ,A 项错误;当小环碰到钉子P 时,由于不计夹子的质量,因此绳中的张力等于夹子与物块间的静摩擦力,即小于或等于2F ,B 项错误;如果物块上升的最大高度不超过细杆,则根据机械能守恒可知,Mgh =12Mv 2,即上升的最大高度h =v 22g,C 项错误;当物块向上摆动的瞬时,如果物块与夹子间的静摩擦力刚好为2F ,此时的速度v 是最大速度,则2F -Mg =M v 2L,解得v =2F -Mg L M,D 项正确. 5.答案:C解答:解:设绳长为L ,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg 、支持力N 和绳的拉力T 而平衡,T=mgcosθ≠0,所以A 项、B 项都不正确;ω增大时,T 增大,N 减小,当N=0时,角速度为ω0.当ω<ω0时,由牛顿第二定律得,Tsinθ-Ncosθ=mω2Lsinθ,Tcosθ+Nsinθ=mg , 解得T=mω2Lsin2θ+mgcosθ;当ω>ω0时,小球离开锥子,绳与竖直方向夹角变大,设为β,由牛顿第二定律得Tsinβ=mω2Lsinβ,所以T=mLω2,可知T-ω2图线的斜率变大,所以C 项正确,D 错误.故选:C.6.答案:CD7.答案:(1)12π√μgR(2)3μmgRkR-4μmg解析:(1)若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与摩擦力的合力提供向心力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿运动定律应用——临界与极值问题
例1:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少?
例题2:如图,质量m=2kg
2(1)当斜面以21/5s m a =
(2)当斜面以22/20s m a =

3
练习1.如图所示,在静止的平板车上放置一个质量为拉伸的弹簧一端(弹簧另一端固定)从静止开始向右做加速运动,且加速度逐渐增大,但a ≤1m/s 2。


( )
A .物体A 相对于车仍然静止
B .物体A 受到的弹簧的拉力逐渐增大
C .物体A 受到的摩擦力逐渐减小
D .物体A 受到的摩擦力先减小后增大
2.如图,一小车的表面由一光滑水平面和光滑斜面连接而成,其上放一球,球与水平面的接触点为a ,与斜面的接触点为b .当小车和球一起在水平桌面上做直线运动时,下列结论正确的是( )
A .球在a 、b 两点处一定都受到支持力
B .球在a 点一定受到支持力,在b 点处一定不受支持力
C .球在a 点一定受到支持力,在b 点处不一定受到支持力
D .球在a 点处不一定受到支持力,在b 点处也不一定不受到支持力
3、所示,质量为M 的框架放在水平地面上,一个轻质弹簧固定在框架上,下端拴一个质量为m 的小球,当小球上下振动时,框架始终没有跳起,在框架对地面的压力为零的瞬间,小球加速度大小为( )
A .g
B .
()M m g m - C .0 D .()M m g m +
4、一光滑的圆柱体处在一光滑的圆槽中,图示直径和竖直方向成θ角,求:为使圆柱体不从圆槽中滚出,系统水平方向的加速度不能超过多少?
5、一弹簧一端固定在倾角为37°的光滑斜面的底端,另一端拴住质量为m 1=4 kg 的物块P ,Q 为一重物,已知Q 的质量为m 2=8 kg ,弹簧的质量不计,劲度系数k =600 N/m ,系统处于静止,如图.现给Q 施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力,求:力F 的最大值与最小值.(sin 37°=0.6,g =10 m/s 2)。

相关文档
最新文档