2012普通高校招生全国统一试卷文科数学(新课标卷)
2012年高考试题:文科数学(新课标卷)
2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅(2)复数z =-3+i 2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18。
2012年全国高考文科数学试题及答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动。
用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3。
回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后。
将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2<0},B={x|-1<x〈1},则(A)A错误!B (B)B错误!A (C)A=B (D)A∩B=(2)复数z=错误!的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)错误!(D)1(4)设F1、F2是椭圆E:错误!+错误!=1(a〉b〉0)的左、右焦点,P为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)错误!(B)错误!(C)错误!(D)错误!5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-错误!,2)(B)(0,2) (C)(错误!-1,2)(D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则(A)A+B为a1,a2,…,a N的和(B)错误!为a1,a2,…,a N的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B )4错误!π (C )4错误!π (D )6错误!π(9)已知ω>0,0<φ<π,直线x =错误!和x =错误!是函数f (x )=sin (ωx +φ)图像的两条相邻的对称轴,则φ=(A )错误! (B )错误! (C )错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=4错误!,则C 的实轴长为(A )错误! (B )2错误! (C )4 (D)8(11)当0<x ≤错误!时,4x <log a x ,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D)(错误!,2)(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年全国统一高考数学试卷(文科)(新课标)(含解析版)
2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。
2012年高考数学试卷及解析新课标卷(文科)
2012年普通高等学校招生全国统一考试文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A∩B=∅(2)复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1 4、设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6、如果执行右边的程序框图,输入正整数N(N≥2)和实数a 1,a 2,…,a N ,输出A,B ,则(A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )188、平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π9、已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A )π4 (B )π3 (C )π2 (D )3π410、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )811、当0<x ≤124x <log a x ,则a 的取值范围是 (A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12、数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年全国高考文科数学试题及答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动。
用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3。
回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4。
考试结束后。
将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2〈0},B={x|-1<x〈1},则(A)A错误!B (B)B错误!A (C)A=B (D)A∩B=(2)复数z=错误!的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)错误!(D)1(4)设F1、F2是椭圆E:错误!+错误!=1(a〉b>0)的左、右焦点,P为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)错误!(B)错误!(C)错误!(D)错误!5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-错误!,2) (B)(0,2) (C)(错误!-1,2)(D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则(A)A+B为a1,a2,…,a N的和(B)错误!为a1,a2,…,a N的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为错误!,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω〉0,0〈φ〈π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为(A)错误!(B)2错误!(C)4 (D)8(11)当0<x≤错误!时,4x〈log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1)(C)(1,错误!) (D)(错误!,2)(12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年全国高考文科数学试题及答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2。
问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动。
用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时。
将答案写在答题卡上。
写在本试卷上无效·4.考试结束后。
将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2<0},B={x|-1〈x〈1},则(A)A错误!B (B)B错误!A (C)A=B (D)A∩B=(2)复数z=错误!的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)错误!(D)1(4)设F1、F2是椭圆E:错误!+错误!=1(a>b〉0)的左、右焦点,P为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为( )(A)错误!(B)错误!(C)错误!(D)错误!5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-错误!,2) (B)(0,2)(C)(错误!-1,2)(D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则(A)A+B为a1,a2,…,a N的和(B)错误!为a1,a2,…,a N的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为错误!,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω>0,0〈φ〈π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为(A) 2 (B)2 2 (C)4 (D)8(11)当0<x≤错误!时,4x<log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1)(C)(1,错误!) (D)(错误!,2)(12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
2012年高考新课标全国卷文科数学试题附答案
学习资料收集于网络,仅供参考 2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题分,在每小题给同的四个选项中,只有一项是符一、选择题:本大题共12小题,每小题5 合题目要求的。
2 |?1<x<1},则?x?2<0},B={xx|A={(1)已知集合x??∩B=?(D)A (C)A=B (A)AA B (B)B??i?3?=的共轭复数是(2)复数z i2?i1???i1?i?2?i2 C ())(D(A)(B)不全相等)的,xx,x,…,…,(x,y)(n≥2,,(3)在一组样本数据(x,y),(xy)n121nn12211y??x 上,则这组样本)(i=1,2,…,n)都在直线,散点图中,若所有样本点(xy ii2数据的样本相关系数为11)(D )0 (C)B?(A)1 (222yxa b?FFE是椭圆>:0=1((4)设)的,>2122baa3PFF?x P上一点,△为直线左、右焦点,122030E的离心率为的等腰三角形,则是底角为4231D.(B)C(A))(5423ABC在第一象限,若点(x,y)在△)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C(5y??x?z内部,则的取值范围是3) (0,1+ (D)(C)(3-1,2) 2) B (1(A),-32) ()(0,NN和实2)≥(6)如果执行右边的程序框图,输入正整数(aaaBA,输出,数,,则,…,N12aaa BA+的和为,,…,(A)N12BA?aaa,…,B(),的算术平均数为N122aaa BA中的最大数,…,)(C和分别为,N12和最小数学习资料.学习资料收集于网络,仅供参考aaaBA,(D)中的最小数和最大数和,…,分别为N12,粗线画出的是)如图,网格上小正方形的边长为1(7某几何体的三视图,则此几何体的体积为(A)6B)9 ()12 (C18(D)??,则此球的体积2到平面(8)平面的距离为截球O的球面所得圆的半径为1,球心O 为(D)π6C()346π(A()6πB)43π??5?????xx)x?f(?x?)?sin(0图像的两条=是函数,直线9)已知和>0,=(44?=相邻的对称轴,则3ππππ(D))(C A()(B)44322x CC x16y?A、的中心在原点,焦点在轴上,的准线交于与抛物线(10)等轴双曲线C34|AB|B两点,=,则的实轴长为2228 D))((C)4 (A)(B1x xxlog4?,则a的取值范围是(11)当0<时,≤2a222) ,)( (D1) ,(C)2(1(A)(0,,) (B)2) (22n aa1n??1)a?2a?(项和为的前,则{60}(12)数列{}满足nnn1n?1830 D)()(C1845 (A)3690 (B)36605分。
2012年全国高考文科数学试题及答案-新课标word版
绝密 * 启用前2012 年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题 )两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 .用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合 A={x| x 2- x - 2<0}, B={x| -1<x<1},则( A )A B(B )B A(C )A=B(D )A ∩B=- 3+i ( 2)复数z =的共轭复数是 2+i( A ) 2+i( B )2- i( C )- 1+i( D )- 1- i3、在一组样本数据( x 1 ,y 1 ),(x 2 ,y 2 ),⋯,( x n ,y n )( n ≥ 2,x 1,x 2, ⋯ ,x n 不全相等)的散点图中,若所有样本点( x i , y i ) (i=1,2, ⋯ , n) 都在直线 1y= x+1 上,则这组样本数据的样本相关系数为2(A )- 1(B )0(C )1( D )12223a上一点,△ F( 4)设 F 、 F 是椭圆 E :x2y 2是底角12a +b= 1(a>b>0)的左、右焦点, P 为直线 x= 2 1PF 2为 30°的等腰三角形,则 E 的离心率为()( A )12342 (B )3 ( C )4 (D ) 55、已知正三角形 ABC 的顶点 A(1,1),B(1,3),顶点 C 在第一象限,若点( x ,y )在△ ABC 内部,则z=-x+y 的取值范围是 ( A )(1- 3, 2)( B ) (0, 2) ( C )( 3-1,2) ( D ) (0, 1+ 3)( 6)如果执行右边的程序框图,输入正整数 N(N ≥2)和实数 a 1,a 2,⋯,a N ,输出 A,B ,则( A )A+B 为 a 1,a 2,⋯,a N 的和 ( B )A + B为 a 1,a 2,⋯ ,a N 的算术平均数2( C )A 和 B 分别是 a 1,a 2,⋯ ,a N 中最大的数和最小的数( D ) A 和 B 分别是 a 1,a 2,⋯ ,a N 中最小的数和最大的数开始输入 N ,a 1,a 2,⋯,a Nk=1,A=a 1,B=a 1x =a kk=k+1是x > A否A=x是x<B否B=x否k ≥ N是输出 A ,B结束( 7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积 为 ( A )6 ( B )9 ( C )12( D ) 18(8)平面 α 截球 O 的球面所得圆的半径为 1,球心 O 到平面 α的距离为 2,则此球的体积为( A ) 6π ( B ) 4 3π (C ) 4 6π (D ) 6 3ππ 5π( 9)已知 ω>0, 0<φ<π,直线 x= 和 x=是函数 f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=44( A )πππ3π4(B ) 3(C ) 2(D ) 4( 10)等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y 2=16x 的准线交于 A ,B 两点,|AB|=4 3,则 C 的实轴长为(A ) 2(B )2 2(C )4(D )8(11)当 0<x ≤1时, 4x <log a x ,则 a 的取值范围是2( A )(0, 22,1) (C ) (1, 2) (D )( 2, 2) 2 ) (B )( 2( 12)数列 {a n }满足 a n+1 + (- 1)n a n = 2n - 1,则 {a n }的前 60 项和为 ( A )3690( B ) 3660( C )1845( D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2012年普通高等学校招生全国统一考试新课标卷(数学文)word有答案
绝密*启用前2012年普通高等学校招生全国统一考试 文科数学 注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分·答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上·2.问答第Ⅰ卷时·选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑·如需改动.用橡皮擦干净后,再选涂其它答案标号·写在本试卷上无效.3.回答第Ⅱ卷时·将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回· 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的· 1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i 2+i的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8 (11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷本卷包括必考题和选考题两部分·第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答·二.填空题:本大题共4小题,每小题5分·(13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________ (14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______(15)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=(16)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M,最小值为m ,则M+m =____三、解答题:解答应写出文字说明,证明过程或演算步骤· (17)(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,c = 3a sinC -c cosA(1)求A(2)若a =2,△ABC 的面积为3,求b ,c18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售·如果当天卖不完,剩下的玫瑰花做垃圾处理·(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式·(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率·(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比·B 1 DC 1A 1(20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D 两点·(I)若∠BFD=90°,△ABD的面积为42,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值·(21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号·(22)(本小题满分10分)选修4-1:几何证明选讲如图,D,E 分别为△ABC 边AB,AC 的中点,直线DE 交△ABC 的外接圆于F,G 两点,若CF//AB,证明:FG(Ⅰ)CD=BC ; (Ⅱ)△BCD ∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A、B、C、D 的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围·(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x) = |x + a| + |x-2|.(Ⅰ)当a =-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围·。
2012年普通高等学校招生全国统一考试新课标卷(数学文)word有答案
绝密*启用前2012年普通高等学校招生全国统一考试 文科数学 注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分·答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上·2.问答第Ⅰ卷时·选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑·如需改动.用橡皮擦干净后,再选涂其它答案标号·写在本试卷上无效.3.回答第Ⅱ卷时·将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回· 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的· 1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i 2+i的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12(D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y )在△ABC 内部,则z=-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8 (11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷本卷包括必考题和选考题两部分·第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答·二.填空题:本大题共4小题,每小题5分·(13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________ (14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______(15)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=(16)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M,最小值为m ,则M+m =____三、解答题:解答应写出文字说明,证明过程或演算步骤· (17)(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,c = 3a sinC -c cosA(1)求A(2)若a =2,△ABC 的面积为3,求b ,c18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售·如果当天卖不完,剩下的玫瑰花做垃圾处理·(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式·(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率·(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比·B 1 DC 1A 1(20)(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D 两点·(I)若∠BFD=90°,△ABD的面积为42,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值·(21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号·(22)(本小题满分10分)选修4-1:几何证明选讲如图,D,E 分别为△ABC 边AB,AC 的中点,直线DE 交△ABC 的外接圆于F,G 两点,若CF//AB,证明:FG(Ⅰ)CD=BC ; (Ⅱ)△BCD ∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3)(Ⅰ)求点A、B、C、D 的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围·(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x) = |x + a| + |x-2|.(Ⅰ)当a =-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围·。
2012年全国高考文科数学试题及答案-新课标word版
绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2。
问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时。
将答案写在答题卡上。
写在本试卷上无效·4.考试结束后。
将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-x-2<0},B={x|-1〈x<1},则(A)A错误!B (B)B错误!A (C)A=B (D)A∩B=(2)复数z=错误!的共轭复数是(A)2+i (B)2-i (C)-1+i (D)-1-i3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=错误!x+1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)错误!(D)1(4)设F1、F2是椭圆E:错误!+错误!=1(a〉b〉0)的左、右焦点,P为直线x=错误!上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()(A)错误!(B)错误!(C)错误!(D)错误!5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是(A)(1-3,2)(B)(0,2)(C)(错误!-1,2)(D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则(A)A+B为a1,a2,…,a N的和(B)错误!为a1,a2,…,a N的算术平均数(C)A和B分别是a1,a2,…,a N中最大的数和最小的数(D)A和B分别是a1,a2,…,a N中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6(B)9(C)12(D)18(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为错误!,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω>0,0<φ<π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4错误!,则C的实轴长为(A)错误!(B)2错误!(C)4 (D)8(11)当0〈x≤错误!时,4x<log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1) (C)(1,错误!) (D)(错误!,2)(12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答,第22—24题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分。
(完整word版)2012年全国高考新课标1卷数学文科高考试题
2012年新课标1卷数学(文科)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.每小题有且只有一个选项是符合题目要求的. 1.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .A B φ=2.复数32iz i-+=+的共轭复数是( ) A .2i + B .2i -C .1i -+D .1i --3.在一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y )(2n ≥,1x ,2x ,…,n x 不全相等)的散点图中,若所有样本点(i x ,i y )(i =1,2,…,n )都在直线112y x =+上,则这组样本 数据的样本相关系数为( ) A .-1B .0C .12D .14.设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .455.已知正三角形ABC 的顶点A (1,1),B (1,3),顶 点C 在第一象限,若点(x ,y )在△ABC 内部, 则z x y =-+的取值范围是( )A .(13-,2)B .(0,2)C .(31-,2)D .(0,13+)6.若执行右边和程序框图,输入正整数N (2N ≥)和 实数1a ,2a ,…,N a ,输出A ,B ,则( )A .AB +为1a ,2a ,…,N a 的和B .2A B +为1a ,2a ,…,N a 的算术平均数C .A 和B 分别是1a ,2a ,…,N a 中最大的数和最小的数否是是1k k =+B x=A x=结束输出A ,B ?k N ≥?x B <kx a =?x A >开始输入N ,1a ,2a ,…,N a1k =,1A a =,1B a =否是 否D .A 和B 分别是1a ,2a ,…,N a 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .158.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的 距离为2,则此球的体积为( ) A .6πB .43πC .46πD .63π9.已知0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .4π B .3πC .2πD .34π 10.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2B .22C .4D .811.当102x <≤时,4log xa x <,则a 的取值范围是( ) A .(0,22) B .(22,1) C .(1,2) D .(2,2) 12.数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为( )A .3690B .3660C .1845D .1830第Ⅱ卷(共90分)本试卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高校招生考试新课标全国数学卷文科
1、已知集合A={x|x 2-x-2<0},B={x|-1<x<1},则
A 、A
B B 、BA
C 、A=B
D 、A ∩B=φ
2、复数z=的共轭复数是
A 、2+i
B 、2-i
C 、-1+i
D 、-1-i
3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2, x 1,x 2,…,x n 不全相等)的散
点图中,若所有样本点(x i ,y i )(i=1,2,…,n)都在直线y=x+1上,则这组样本数据
的样本相关系数为
A 、-1
B 、0
C 、
D 、1
4、设F 1,F 2是椭圆E :的左、右焦点,P 为直线x=上一点,∆F 1PF 2是底角为30⁰
的等腰三角形,则E 的离心率为
A 、
B 、
C 、
D 、
5、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一
象限,若点(x,y)在△ABC ;内部,则z=-x+y 的取值范围是
A 、(1-)
B 、(0,2)
C 、(-1,2)
D 、(0,1+)
6、如果执行右边的程序框图,输入正整数N(N ≥2)和实数
a 1,a 2,…,a N ,输出A ,B ,则 A 、A+B 为a 1,a 2,…,a N 的和 B 、为a 1,a 2,…,a N 的算术平均数 C 、A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D 、A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 7、如图,网格纸上小正方形的边长为1,粗线画出的是某
几何体的三视图,则此几何体的体积为
A 、6
B 、9
C 、12
D 、18 8、平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为
A 、
B 、
C 、
D 、
9、已知ω>0,0<ϕ<π,直线x=
和x=是函数图象的两条相邻的对
称轴,则ϕ=
A 、
B 、
C 、
D 、
10、等轴双曲线C 的中心在原点,
焦点在x 轴上,C 与抛物线y 2=16x
的准线交于A ,B 两点,|AB|=,
则C 的实轴长为
A 、
B 、2
C 、4
D 、8
11、当0<x ≤时,,则a 的取值范
围是
A 、(0,)
B 、(,1)
C 、(1,)
D 、(,2)
12、数列{a n }满足
a n+1+(-1)n a n =2n-1,则{a n }的前60
项和为
A 、3690
B 、3660
C 、1845
D 、
1830
G
13、曲线y=x(3lnx+1)在点(1,1)处的切线方程为__________
14、等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q=_______
15、已知向量,夹角为45⁰,且||=1,|-|=,则||=________
16、设函数在最大值为M ,最小值为m,则M+m=________
17、已知a,b,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC-c cosA (I)求A ;(II)若a=2,△ABC 的面积为,求b,c 。
18、某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花作垃圾处理。
(I)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式;
元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
19、如图,三棱柱ABC-A 1B 1C 1中,侧棱垂直底面,∠ACB=90⁰,AC=BC=AA 1,D 是棱AA 1的中点。
(I)证明:平面BDC 1⊥平面BDC ;
(II)平面BDC 1分此棱柱为两部分,求这两部分体积的
比。
20、设抛物线C :x 2=2py(p>0)的焦点为F ,准线为l 。
A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
(I)若∠BFD=90⁰,△ABD 的面积为,求p 的值及圆F 的方程;
(II)若A ,B ,F 三点在同一直线m 上,直线n 与m 平
行,且n 与C 只有一个公共点,求坐标原点到m,n 距离的比值。
21、设函数.
(I)求的单调区间;
(II)若a=1,k 为整数,且当x>0时,,求k 的最大值。
22、如图,
D ,
E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于
F ,
G 两点。
若CF//AB ,
证明:
(I)CD=BC ; (II)△BCD △GBD 。
23、已知曲线C 1的参数方程是为参数),以坐标原
点为极点,x 轴的正半轴为极轴建立极坐标系,曲
线C 2的极坐标方程是。
正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极
1A
坐标为(2,).
(I)求点A,B,C,D的直角坐标;
上任意一点,求|PA|2|PB|2+|PC|2+|PD|2的取值范围。
(II)设P为C
1
24、已知函数f(x)=|x+a|+|x-2|
(I)当a=-3时,求不等式f(x)≥3的解集;
(II)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。