数学人教版九年级上册24.1.2《垂直于弦的直径》的教学设计

合集下载

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计

人教版数学九年级上册24.1.2《垂直于弦的直径》教学设计一. 教材分析人教版数学九年级上册24.1.2《垂直于弦的直径》是圆的一部分性质的教学内容。

本节课主要让学生了解并掌握垂直于弦的直径的性质,能灵活运用这一性质解决相关问题。

教材通过实例引导学生探究,培养学生的观察、思考和动手能力,为后续圆的弦和圆弧的学习打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和定理有一定的理解。

但垂直于弦的直径这一性质较为抽象,学生可能难以理解。

因此,在教学过程中,要注重引导学生通过观察、操作、思考、讨论等方式,逐步掌握性质,提高学生的空间想象和逻辑思维能力。

三. 教学目标1.了解垂直于弦的直径的性质,能证明并运用这一性质解决相关问题。

2.培养学生的观察、思考、动手和合作能力。

3.提高学生对圆的一部分性质的兴趣,为后续圆的学习打下基础。

四. 教学重难点1.垂直于弦的直径的性质及其证明。

2.灵活运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.情境教学法:通过实例引导学生观察、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生探究,培养学生的解决问题能力。

3.合作学习法:分组讨论,共同完成任务,提高学生的团队协作能力。

4.实践操作法:让学生动手操作,加深对性质的理解。

六. 教学准备1.教学课件:制作课件,展示实例和动画,辅助教学。

2.教学素材:准备相关的几何图形,便于学生观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用实例引入课题,展示垂直于弦的直径的性质,激发学生的兴趣。

2.呈现(10分钟)展示垂直于弦的直径的性质,引导学生观察、思考,并提出问题。

3.操练(10分钟)分组讨论,让学生动手操作,证明垂直于弦的直径的性质。

4.巩固(10分钟)出示练习题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)出示一些实际问题,让学生运用垂直于弦的直径的性质解决,提高学生的应用能力。

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计

人教版数学九年级上册《24.1.2垂直于弦的直径》教学设计一. 教材分析《24.1.2垂直于弦的直径》是人教版数学九年级上册第24章《圆》的第二个知识点。

本节课主要学习了圆中一条特殊的直径——垂直于弦的直径,并探究了它的性质。

教材通过实例引导学生发现垂直于弦的直径的性质,并运用这一性质解决一些与圆有关的问题。

二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的周长和面积计算、圆的性质等知识。

他们具备了一定的观察、分析和解决问题的能力。

但对于垂直于弦的直径的性质及其应用,可能还比较陌生。

因此,在教学过程中,需要注重引导学生发现和总结垂直于弦的直径的性质,并通过实例让学生体会其在解决实际问题中的应用。

三. 教学目标1.理解垂直于弦的直径的性质。

2.学会运用垂直于弦的直径的性质解决与圆有关的问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.垂直于弦的直径的性质。

2.运用垂直于弦的直径的性质解决实际问题。

五. 教学方法1.引导发现法:通过实例引导学生发现垂直于弦的直径的性质。

2.实践操作法:让学生动手画图,加深对垂直于弦的直径性质的理解。

3.问题驱动法:设置问题,引导学生运用垂直于弦的直径的性质解决问题。

六. 教学准备1.课件:制作课件,展示相关实例和问题。

2.练习题:准备一些与垂直于弦的直径性质有关的练习题。

3.圆规、直尺等画图工具:为学生提供画图所需的工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:在一个圆形池塘中,怎样找到一个点,使得从该点到池塘边缘的距离最远?引导学生思考,并提出解决问题的方法。

2.呈现(10分钟)展示几个与垂直于弦的直径性质相关的实例,引导学生观察和分析这些实例,发现垂直于弦的直径的性质。

3.操练(10分钟)让学生动手画图,验证垂直于弦的直径的性质。

在这个过程中,引导学生运用圆规、直尺等画图工具,提高他们的动手能力。

人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案

人教版九年级数学上册《24.1.2 垂直于弦的直径》 教案

第二十四章圆24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标1.理解圆的对称性;掌握垂径定理.2.利用垂直于弦的直径的性质解决相关实际问题.二、教学重点及难点重点:垂直于弦的直径所具有的性质以及证明.难点:利用垂直于弦的直径的性质解决实际问题.三、教学用具多媒体课件,三角板、直尺、圆规。

四、相关资源《赵州桥》图片.五、教学过程【合作探究,形成知识】探究圆的对称性1.学生动手操作问:大家把事先准备好的一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?师生活动:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.教师在学生归纳的过程中注意学生语言的准确性和简洁性.2.探索得出圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.师生活动:学生总结操作结论,教师强调圆的对称轴是直径所在的直线.3.问:圆有几条对称轴?师生活动:学生回答,教师强调圆有无数条对称轴.4.你能证明这个结论吗?师生活动:四人一小组,小组合作交流,尝试证明.让学生注意要证明圆是轴对称图形,只需证明圆上任意一点关于对称轴的对称点也在圆上.教师板书分析及证明过程.设计意图:在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,掌握证明轴对称图形的方法.探究垂径定理按下面的步骤做一做,回答问题:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,垂足为点M;第四步,将纸打开,设AM的延长线与圆交于另一点B,如图1.图1 图2问题1在上述操作过程中,你发现了哪些相等的线段和相等的弧?为什么?师生活动:学生动手操作,观察操作结果,得出结论,看哪个小组做得又快、又好,记入今天的英雄榜.最后师生共同演示、验证猜想的正确性,从而解决本节课的又一难点——垂径定理的证明,此时再板书垂径定理及其推理的过程.证明:如上图2所示,连接OA,OB,得到等腰△OAB,即OA=OB.因为CD⊥AB,所以△OAM与△OBM都是直角三角形.又因为OM为公共边,所以这两个直角三角形全等.所以AM=BM.又因为⊙O关于直径CD所在的直线对称,所以A点和B点关于直线CD对称.所以当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC.同 .理可得AD BD垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.问题2 你能用符号语言表达这个结论吗?师生活动:学生尝试将文字转变为符号语言,用数学符号表达定理的逻辑关系.教师更正并板书.符号语言表达:AM MB CD O AC BC CD AB M AD BD=⎧⎪⎫⇒=⎬⎨⊥⎭⎪=⎩,是圆的直径,,于点⇒ 设计意图:增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学知识最深刻的感受,体会成功的乐趣,发展思维能力.【例题应用 提高能力】例1 如图,AB 所在圆的圆心是点O ,过点O 作OC ⊥AB 于点D .若CD =4 m ,弦AB = 16 m ,求此圆的半径.师生活动:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC ⊥AB ,则有AD =BD ,且△ADO 是直角三角形.在直角三角形中可以利用勾股定理构造方程.教师在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.解:设圆的半径为R ,由题意可得OD =R -4,AD =8 m .在Rt △ADO 中,222AO OD AD =+,即222(4)8R R =-+.解得R =10(m ).答:此圆的半径是10 m .设计意图:增加一道引例,是基础应用题,为课本例题的实际应用作铺垫,有过渡作用,不但让学生掌握了知识,又增加了学习数学的兴趣,更体会到成功的喜悦.例2如图,赵州桥是我国隋代建造的石拱桥,距今约有1 400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,求赵州桥主桥拱的半径(结果保留小数点后一位).【教学图片】《二次函数》图片6赵州桥的图片,用于教学过程。

人教版数学九年级上册24.1.2 垂直于弦的直径 教案

人教版数学九年级上册24.1.2 垂直于弦的直径  教案

24.1.2垂直于弦的直径●情景导入课件出示关于赵州桥的引例引例:你知道赵州桥吗?它是我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦长)为37 m,拱高(弧的中点到弦的距离)为7.23 m,现在有个人想要知道它主桥拱的半径是多少.同学们,你们能帮他求出来吗?学完了本节课的内容,我们一起来解决这个问题.【教学与建议】教学:通过赵州桥引例,导入圆的轴对称性及垂径定理.建议:学生提前收集有关圆的对称图形.●归纳导入(1)操作1:拿出准备的圆,沿着圆的直径折叠圆,你有什么发现?【归纳】圆是__轴对称__图形,__任何一条直径所在直线__都是圆的对称轴.(2)操作2:将这个圆二等分、四等分、八等分.(3)操作3:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两部分重合;第二步,展开,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作折痕CD的垂线,沿垂线将纸片折叠;第四步,将纸打开,得到新的折痕,其中点M是两条折痕的交点,即垂足,新的折痕与圆交于另一点B,如图.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?【归纳】垂直于弦的直径平分弦,并且平分弦所对的两条弧.【教学与建议】教学:通过对剪圆和折叠圆的操作,活跃课堂气氛.建议:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质.命题角度1垂径定理及推论的辨析根据圆的轴对称性得到垂直于弦的直径所具有的性质.【例1】(1)如图,⊙O的弦AB垂直于半径OC,垂足为D,则下列结论中错误的是(C)A.∠AOD=∠BOD B.AD=BDC.OD=DC D.AC=BC(2)下列命题中错误的命题有__②③④__.(填序号)①弦的垂直平分线经过圆心;②平分弦的直径垂直于弦;③梯形的对角线互相平分;④圆的对称轴是直径.命题角度2直接利用垂径定理进行计算构造以半径、弦长的一半、弦心距为三边长的直角三角形,利用勾股定理求解.【例2】(1)如图,⊙O的半径OA=4,以点A为圆心,OA为半径的弧交⊙O于点B,C,则BC的长为(A) A.43B.52C.23D.32[第(1)题图][第(2)题图](2)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,则AC的长是__8-27__.命题角度3垂径定理的实际应用圆弧形拱桥等问题,常通过作辅助线,使之符合垂径定理的直角三角形,运用勾股定理求解.【例3】好山好水好绍兴,石拱桥在绍兴处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB 宽度16 m 时,拱顶高出水平面4 m ,货船宽12 m ,船舱顶部为矩形并高出水面3 m.(1)请你帮助小明求此圆弧形拱桥的半径;(2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.解:(1)连接OB .∵OC ⊥AB ,∴D 为AB 中点.∵AB =16 m ,∴BD =12AB =8 m .又∵CD =4 m ,设OB =OC =r ,则OD =(r -4)m.在Rt △BOD 中,根据勾股定理,得r 2=(r -4)2+82,解得r =10.答:此圆弧形拱桥的半径为10 m ;(2)连接ON .∵CD =4 m ,船舱顶部为矩形并高出水面3 m ,∴CE =4-3=1(m),∴OE =r -CE =10-1=9(m).在Rt △OEN 中,EN 2=ON 2-OE 2=102-92=19,∴EN =19 (m),∴MN =2EN =219 m <12 m ,∴此货船B 不能顺利通过这座拱桥.魔术蛋魔术蛋是九块板,这九块板合起来是一个椭圆,形如鸟蛋,用它可以拼出各种鸟形,因而又名“百鸟拼板”.要制作一个魔术蛋,先绘制一个椭圆形鸟蛋:上部为半圆,下部为椭圆.(1)作一个圆,圆心为O ,并通过圆心,作直径AB 的垂线MN ;(2)连接AN .并适当延长,再以A 为圆心,AB 的长为半径作圆弧交AN 的延长线于点C ;(3)连接BN .并适当延长,再以B 为圆心,BA 的长为半径作圆弧交BN 的延长线于点D ;(4)以N 为圆心,NC 为半径,作圆弧CD ,于是下部成为椭圆;(5)在OM 上作线段MF 等于NC ,以F 为圆心,MF 为半径作圆弧,交AB 于点G ,H ,连接FG ,FH ,这样魔术蛋便制好了.高效课堂 教学设计1.探索并了解圆的对称性和垂径定理.2.能运用垂径定理解决几何证明、计算问题,并会解决一些实际问题. ▲重点垂径定理、推论及其应用. ▲难点发现并证明垂径定理.◆活动1 新课导入1.请同学们把手中的圆对折,你会发现圆是一个什么样的图形? 答:圆是轴对称图形,每一条直径所在的直线都是圆的对称轴.2.请同学们再把手中的圆沿直径向上折,折痕是圆的一条什么呢?通过观察,你能发现直径与这条折痕的关系吗?答:折痕是圆的一条弦,直径平分这条弦,并且平分弦所对的两条弧. ◆活动2 探究新知 1.教材P 81 探究. 提出问题:(1)通过上面的折纸,圆是轴对称图形吗?有几条对称轴?(2)“圆的任意一条直径都是它的对称轴”这种说法对吗?若不对,应该怎样说? 学生完成并交流展示.2.教材P 82 例2以上内容. 提出问题:(1)证明了圆是轴对称图形后,观察图24.1-6,对应线段、对应弧之间有什么关系?由此可得到什么结论?(2)若把P 81的条件“直径CD ⊥AA ′于点M ”改为“直径CD 平分弦AA ′(不是直径)于点M ”,还能证明出图形是轴对称图形吗?此时对应线段、对应弧之间有什么关系?(3)当第(2)问中的弦AA ′为直径时,相关结论还成立吗?为什么? 学生完成并交流展示. ◆活动3 知识归纳1.圆是__轴__对称图形,任何一条__直径所在的直线__都是它的对称轴,它也是中心对称图形,对称中心为__圆心__.2.垂直于弦的直径__平分__弦,并且__平分__弦所对的两条弧,即一条直线如果满足:①__AB 经过圆心O 且与圆交于A ,B 两点__;②__AB ⊥CD 交CD 于点E __;那么可以推出:③__CE =DE __;④CB =DB ;⑤CA =DA .3.__平分弦(不是直径)__ 的直径垂直于弦,并且__平分__弦所对的两条弧.提出问题:“推论”里的被平分的弦为什么不能是直径? 学生完成并交流展示. ◆活动4 例题与练习 例1 教材P 82 例2.例2 如图,D ,E 分别为AB ,AC 的中点,DE 交AB ,AC 于点M ,N .求证:AM =AN .证明:连接OD ,OE 分别交AB ,AC 于点F ,G .∵D ,E 分别为AB ,AC 的中点,∴∠DFM =∠EGN =90°.∵OD =OE ,∴∠D =∠E ,∴∠DMB =∠ENC .∵∠DMB =∠AMN ,∠ENC =∠ANM ,∴∠AMN =∠ANM ,∴AM =AN .练习1.教材P 83 练习第1,2题.2.已知弓形的弦长为6 cm ,弓形的高为2 cm ,则这个弓形所在的圆的半径为__134__cm__.3.如图,AB 为⊙O 的直径,E 是BC 的中点,OE 交BC 于点D ,BD =3,AB =10,则AC =__8__. 4.如图,⊙O 中弦CD 交半径OE 于点A ,交半径OF 于点B ,若OA =OB ,求证:AC =BD .证明:过点O 作OG ⊥CD 于点G . ∵OG 过圆心,∴CG =DG . ∵OA =OB .∴AG =BG ,∴CG -AG =DG -BG ,∴AC =BD . ◆活动5 课堂小结 垂径定理及其推论,以及常用的辅助线(作垂径)和解题思路(构造由半径、半弦、弦心距组成的直角三角形).1.作业布置(1)教材P 90 习题24.1第8,11题; (2)对应课时练习. 2.教学反思。

24.1.2垂直于弦的直径 教案 人教版数学九年级上册

24.1.2垂直于弦的直径  教案 人教版数学九年级上册

人教版数学九年级上册24.1.2 垂直于弦的直径教学目标:1.知识与技能:(1)通过观察以及动手操作,理解圆的轴对称性。

(2)掌握垂径定理的内容及几何语言。

(3)会用垂径定理解决有关的证明与计算问题。

2.过程与方法:(1)通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力。

(2)经历探究垂径定理的过程,体会和理解研究几何图形的多种方法。

3.情感态度与价值观:(1)通过探究垂径定理的活动, 并引入实际问题,使学生知道数学在实际生活中的用处,激发学生探究、发现数学问题的兴趣。

(2)培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。

教学重难点:【重点】垂径定理及其应用【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题。

教学准备:多媒体课件、自制圆形纸片、导学案、作图工具一、情境引入我校总务处的李师傅遇到一件麻烦事,因我校一处圆形下水道破裂,他准备更换新管道,但只知道污水面宽60cm,水面至管道顶部10cm ,你能帮李师傅计算一下他应准备内径多大的管道吗?二、实践探究1.活动1: 我们在学轴对称的时候已经学过圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

将你手中的圆形纸片沿着它的任意一条直径对折,重复做几次,验证圆的这一特性。

课本中有证明圆是轴对称图形的方法,课前已经让大家预习过了,现在大家再来看一下,进行巩固。

2.活动2: 在圆形纸片上操作:①找出圆心,记作O②作出一条直径,与⊙O交于C、D③在⊙O上的任意找一点A,过点A作一条弦AB使AB⊥CD, 交⊙O于点B,垂足为E。

沿着直径CD对折,你发现了什么?有哪些相等的线段和弧?观察发现:点A与重合,AE与重合,弧AC与重合,弧AD与重合。

相等的线段: ,相等的弧: .思考:如果AB是⊙O的一条直径呢?以上结论还会成立吗?【证明定理】动手操作之后,我们现在来进行理论证明。

学生用自己的方法证明,之后同学之间分享方法。

人教版数学九年级上册《24.1.2 垂直于弦的直径》教案

人教版数学九年级上册《24.1.2 垂直于弦的直径》教案

《24.1.2 垂直于弦的直径》教案教学目标1.通过观察实验,使学生理解圆的轴对称性;掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;掌握辅助线的作法——作弦心距。

2.通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;向学生渗透“由特殊到一般”的基本思想方法。

3.通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质。

4.培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验。

教学重点垂径定理及其推论的发现、记忆与证明。

教学难点垂径定理及其推论的运用。

课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知同学们,赵州桥位于现在的历史文化名城河北省赵县,是世界上现存最早、保存最好的巨大石拱桥,距今已有1400多年历史,被誉为“华北四宝之一”,它的结构是当时世界桥梁界的首创,这充分显示了我国古代劳动人民的创造智慧。

赵州桥的桥拱呈圆弧形的,它的跨度(弧所对的弦长)为37米,拱高(弧的中点到弦AB的距离,也叫弓形高)为7.23米。

请问:桥拱的半径(即AB所在圆的半径)是多少?这节课,我们就一起来学习《24.1.2 垂直于弦的直径》。

(板书课题)二、探究新知(学生活动)请同学按要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD⊥AB,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由.(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵,即直径CD 平分弦AB ,并且平分AB ︵及ADB ︵.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB ,且CD⊥AB 垂足为M.求证:AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵.分析:要证AM =BM ,只要证AM ,BM 构成的两个三角形全等.因此,只要连接OA ,OB 或AC ,BC 即可.证明:如图,连接OA ,OB ,则OA =OB ,在Rt △OAM 和Rt △OBM 中,∴Rt △OAM ≌Rt △OBM ,∴AM =BM ,∴点A 和点B 关于CD 对称,∵⊙O 关于直径CD 对称,∴当圆沿着直线CD 对折时,点A 与点B 重合,AC ︵与BC ︵重合,AD ︵与BD ︵重合.∴AC ︵=BC ︵,AD ︵=BD ︵.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(本题的证明作为课后练习)例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.解:不需要采取紧急措施,设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R-18)2,R2=900+R2-36R+324,解得R=34(m),连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,162+342-68x+x2=342,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍去),∴DE=4,∴不需采取紧急措施.三、归纳新知垂径定理及其推论以及它们的应用.四、教后反思。

人教版九年级上册 数学 教学设计 24.1.2垂直于弦的直径

人教版九年级上册 数学 教学设计 24.1.2垂直于弦的直径

24.1.2垂直于弦的直径教学设计一、教学目标:1、知识与技能目标(1)通过观察实验,使学生理解圆的轴对称性;(2)掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;(3)掌握辅助线的作法——连半径,作弦的垂线段。

2、过程与方法目标:通过定理探究、证明和应用的过程,发展学生的数学思维,培养学生的观察、分析、逻辑思维和归纳概括能力。

3、情感、态度与价值观(1)通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质;(2)培养学生观察能力,激发学生的好奇心和求知欲,从数学学习活动中获得成功的体验。

二、教学重点、难点:重点:垂径定理及其应用难点:区分垂径定理的题设与结论三、教具准备:圆形纸片、三角板、圆规。

四、教学过程:五、探究活动探究3:在圆上任意作一条弦AB,你能否找到平分弦AB的直径CD?思考:此时AB与CD的位置关系?想一想:如果弦AB是过圆心的弦呢?平分弦AB的直径CD一定会垂直弦AB吗?思考:已知CD是直径,且平分弦AB,能否得到,且平分弧ACB及弧AB?猜想:CD是圆O的直径AE=BE通过动手作图,引导学生感受在圆O中平分弦AB的弦无数条,而满足过圆心O的弦只有一条,这一条弦就是直径。

在接下来的想一想中,为了让学生对“弦AB不能是直径”的认识有深刻的印象,特意动手让学生画一画,用实践来体验为什么“弦AB不能是直径”,从而得出垂径定理的推论。

CD⊥AB垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

六、应用定理,解决问题问题:你知道赵州桥吗?它是我国隋代建造的石拱桥, 距今有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?分析:如图,用表示主桥拱,设所在圆的圆心为O,半径为R.经过圆心O作弦AB 的垂线OC,D为垂足,OC与AB相交于点D,根据前面的结论,D 是AB的中点,C是的中点,CD 就是拱高.方法总结:1、作辅助线:作垂直、连半径2、构造直角三角形以垂径定理的图形为基本模型,根据实际问题的条件,建立数学几何模型,来解决赵州桥问题。

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿

人教版九年级数学上册24.1.2《垂直于弦的直径》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的1.2节《垂直于弦的直径》是本章的重要内容。

这部分主要介绍了垂径定理及其推论,为后续学习圆的性质和圆的方程打下基础。

本节内容通过探究垂直于弦的直径的性质,引导学生利用几何推理证明结论,培养学生的逻辑思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对圆的基本概念和性质有所了解。

但学生在解决几何问题时,往往缺乏推理证明的能力。

因此,在教学过程中,教师需要关注学生的思维过程,引导学生掌握几何推理的方法。

三. 说教学目标1.知识与技能:掌握垂径定理及其推论,能运用垂径定理解决简单几何问题。

2.过程与方法:通过观察、探究、推理,培养学生的逻辑思维能力和几何直观能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养合作探究的精神。

四. 说教学重难点1.教学重点:垂径定理及其推论的证明和应用。

2.教学难点:垂径定理的证明,以及如何引导学生运用几何推理方法。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂讨论。

2.教学手段:利用多媒体课件辅助教学,直观展示几何图形的性质和推理过程。

六. 说教学过程1.导入新课:通过回顾圆的基本性质,引出垂直于弦的直径的性质。

2.探究垂直于弦的直径的性质:让学生分组讨论,观察几何图形,引导学生发现垂直于弦的直径的性质。

3.推理证明:引导学生运用几何推理方法,证明垂径定理及其推论。

4.应用拓展:举例说明垂径定理在解决实际问题中的应用。

5.总结归纳:对本节课的主要内容进行总结,强调垂径定理及其推论的重要性。

七. 说板书设计板书设计如下:垂直于弦的直径性质:垂直于弦的直径平分弦,且平分弦所对的弧。

八. 说教学评价本节课通过课堂提问、学生作业、小组讨论等方式进行教学评价。

主要评价学生在掌握垂径定理、运用几何推理方法以及解决实际问题方面的表现。

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

2024年人教版九年级数学上册教案及教学反思第24章24.1.2 垂直于弦的直径

24.1 圆的有关性质24.1.2 垂直于弦的直径一、教学目标【知识与技能】1.通过观察实验,使学生理解圆的轴对称性.2.掌握垂径定理及其推论.理解其证明,并会用它解决有关的证明与计算问题.【过程与方法】通过探索垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.【情感态度与价值观】1.结合本课特点,向学生进行爱国主义教育和美育渗透.2.激发学生探究、发现数学问题的兴趣和欲望.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】垂径定理及其推论,会运用垂径定理等结论解决一些有关证明,计算和作图问题.【教学难点】垂径定理及其推论.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课你知道赵州桥吗?它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,你能求出赵州桥主桥拱的半径吗?(出示课件2)(二)探索新知探究一圆的轴对称性教师问:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?(出示课件4)学生通过自己动手操作,归纳出结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.出示课件5:教师问:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?学生答:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.思考:如何来证明圆是轴对称图形呢?出示课件6:已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E.教师问:此图是轴对称图形吗?学生答:是轴对称图形.教师问:满足什么条件才能证明圆是轴对称图形呢?师生共同解答如下:(出示课件7)证明:连结OA、OB.则OA=OB.又∵CD⊥AB,∴直径CD所在的直线是AB的垂直平分线.∴对于圆上任意一点,在圆上都有关于直线CD的对称点,即⊙O关于直线CD对称.师生进一步认知:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.探究二垂径定理及其推论出示课件8:如图,AB是⊙O的一条弦, 直径CD⊥AB, 垂足为E.你能发现图中有哪些相等的线段和劣弧?为什么?学生独立思考后口答:线段:AE=BE弧:AC⌒=BC⌒,AD⌒=BD⌒学生简述理由:把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A 与点B重合,AE与BE重合,重合.教师总结归纳:(出示课件9)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推导格式:∵CD是直径,CD⊥AB,∴AE=BE, AC⌒=BC⌒,AD⌒=BD⌒教师强调:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.想一想:下列图形是否具备垂径定理的条件?如果不是,请说明为什么?(出示课件10)学生独立思考后口答:1图是;2图不是,因为没有垂直;3图是;4图不是,因为CD没有过圆心.教师强调:垂径定理的几个基本图形:(出示课件11)出示课件12:如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?学生思考后教师总结:深化认知:(出示课件13)如图,①CD是直径;②CD⊥AB,垂足为E;③AE=BE;④AC⌒=BC⌒;⑤AD⌒=BD⌒.举例证明其中一种组合方法.学生思考后独立解决,并加以交流,教师加以指导,并举例.(出示课件14)如图,AB是⊙O的一条弦,作直径CD,使AE=BE.(1)CD⊥AB吗?为什么?⑵AC⌒与BC⌒相等吗?AD⌒与BD⌒相等吗?为什么?证明:⑴连接AO,BO,则AO=BO,又AE=BE,OE=OE∴△AOE≌△BOE(SSS),∴∠AEO=∠BEO=90°,∴CD⊥AB.(2)由垂径定理可得AC⌒=BC⌒,AD⌒=BD⌒教师归纳总结:(出示课件15)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.思考:“不是直径”这个条件能去掉吗?如不能,请举出反例.教师强调:圆的两条直径是互相平分的.出示课件16:例1 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm.学生思考后师生共同解答:连接OA,∵OE⊥AB,巩固练习:(出示课件17)如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.学生自主思考后,独立解答如下:解:连接OA,∵CE⊥AB于D,,∴设OC=xcm,则OD=x-2,根据勾股定理,得x2=42+(x-2)2,∴22221068AE OA OE=-=-=cm.1184(cm)22AD AB==⨯=解得x=5,即半径OC的长为5cm.出示课件18:例2 已知:⊙O中弦AB∥CD,求证:学生思考后师生共同解答.证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则(垂直于弦的直径平分弦所对的弧)教师强调:平行弦夹的弧相等.师生共同归纳总结:(出示课件19)解决有关弦的问题,经常是过圆心作弦的弦心距(垂线段),或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件.巩固练习:(出示课件20)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.学生独立解答,一生板演.证明:∵OE⊥AC,OD⊥AB,AB⊥AC,∴∠OEA=∠EAD=∠ODA=90°.∴四边形ADOE为矩形,AE=12AC,AD=12AB.又∵AC=AB,∴AE=AD.∴四边形ADOE为正方形.出示课件21:例3 根据刚刚所学,你能利用垂径定理求出导入中赵州桥主桥拱半径的问题吗?教师引导学生分析题意,先把实际问题转化为数学问题,然后画出图形进行解答.解:如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC垂足为D,与弧AB交于点C,则D是AB的中点,C 是弧AB的中点,CD就是拱高.∴AB=37m,CD=7.23m.AB=18.5m,OD=OC-CD=R-7.23.∴AD=12OA2=AD2+OD2,R2=18.52+(R-7.23)2,解得R≈27.3.即主桥拱半径约为27.3m.巩固练习:(出示课件23)如图a、b,一弓形弦长为,弓形所在的圆的半径为7cm,则弓形的高为_______.学生独立思考后解答:如图,分两种情况,弓形的高为5cm或12cm.教师归纳:1.涉及垂径定理时辅助线的添加方法(出示课件24)在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.2.弓形中重要数量关系弦a,弦心距d,弓形高h,半径r之间有以下关系:⑴d+h=r;⑵2 222ar d⎛⎫=+ ⎪⎝⎭.(三)课堂练习(出示课件25-29)1.2.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.3.⊙O的直径AB=20cm, ∠BAC=30°则弦AC= .4.(分类讨论题)已知⊙O的半径为10cm,弦MN∥EF,且MN=12cm,EF=16cm,则弦MN和EF之间的距离为.5.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点.你认为AC和BD有什么关系?为什么?6.如图,一条公路的转弯处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD,垂足为F,EF=90m.求这段弯路的半径.参考答案:1.C2.5cm3.4.14cm或2cm5.证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE.∴AE-CE=BE-DE.即AC=BD.6.解:连接OC.设这段弯路的半径为Rm,则OF=(R-90)m.,OE CD ⊥11600300(m)22CF CD ∴==⨯=,根据勾股定理,得222,OC CF OF =+ ()22230090.R R =+- 解得R=545.∴这段弯路的半径约为545m.(四)课堂小结通过这节课的学习,你有哪些收获和体会?(五)课前预习预习下节课(24.1.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.这节课的教学从利用垂径定理来解决赵州桥桥拱半径问题开始,引入课题从实验入手,得到圆的轴对称性,进而推出垂径定理及推论.教学设计中,从具体、简单、特殊到抽象、复杂、一般,层层递进,以利于提高学生的数学思维能力,同时,注意加强对学生的启发和引导,培养学生们大胆猜想,小心求证的科学研究素质.2.本课的教学方法是将垂径定理和勾股定理有机结合,将圆的问题转化为直角三角形,常作的辅助线是半径或垂直于弦的直径.。

人教版九年级数学上册24.1.2垂直于弦的直径教学设计

人教版九年级数学上册24.1.2垂直于弦的直径教学设计
2.重点:运用垂径定理解决实际问题。
难点:学生在解决具体问题时,能够将垂径定理与所学知识综合运用,形成系统的解题思路。
3.重点:培养学生的几何直观和空间想象能力。
难点:如何设计教学活动,使学生在探索圆的性质过程中,提升几何直观和空间想象能力。
(二)教学设想
1.创设情境,导入新课
在教学开始时,通过展示生活中的圆形物体,如硬币、圆桌等,引导学生观察并思考其中所包含的几何性质。在此基础上,提出本节课要探讨的问题:垂直于弦的直径有哪些性质?
3.注重培养学生的几何直观和空间想象能力,帮助他们将几何知识与实际图形相结合,更好地理解和运用垂径定理。
4.鼓励学生积极参与课堂讨论,分享解题思路和经验,提高他们的合作能力和交流能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:垂直于弦的直径的性质及其应用。
难点:如何引导学生发现并理解垂直于弦的直径平分弦且平分弦所对的两条弧这一性质,并能灵活运用该性质解决相关问题。
4.布置课后作业,要求学生运用垂径定理解决实际问题,巩固课堂所学。
5.教师对本节课的教学进行反思,为下一节课做好准备。
五、作业布置
为了巩固本节课所学的垂径定理及其应用,特此布置以下作业:
1.请同学们完成课本第24.1.2节后的习题1、2、3,并尝试用垂径定理解决实际问题。
2.设计一道关于垂径定理的应用题,要求包含弦长、圆心角等元素,并尝试自己解答。
3.结合生活中的圆形物体,观察并思考其中可能涉及的垂径定理问题,将观察到的现象和问题记录下来,下节课与同学们分享。
4.针对本节课的学习内容,撰写一篇学习心得,内容包括:你对垂径定理的理解、学习过程中的困难与收获、对今后学习的期望等。
5.预习下一节课的内容,提前了解圆中其他相关性质,为课堂学习做好准备。

数学人教版九年级上册《24.1.2垂直于弦的直径》 教案设计

数学人教版九年级上册《24.1.2垂直于弦的直径》 教案设计

人教版九年级数学上册第二十四章《24.1.2垂直于弦的直径》教学设计瑞金四中陶辛子1.知识与技能:(1)通过观察试验,理解圆的轴对称性.(2)掌握垂径定理及其推论.(3)会用垂径定理解决有关的证明与计算问题.2.过程与方法:(1)通过探索圆的对称性及相关性质,培养学生动手操作能力及观察、分析、逻辑推理和归纳概括能力.(2)经历探究垂径定理及其推论的过程,进一步体会和理解研究几何图形的各种方法.3.情感态度与价值观:(1)通过探究垂径定理的活动,激发学生探究、发现数学问题的兴趣,培养学生大胆猜想、乐于探究的良好品质.(2)培养学生观察能力,激发学生的好奇心和求知欲,并从数学学习活动中获得成功的体验.教材分析:与三角形、四边形一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形.学生在前面学习了一些基本的直线型——三角形、四边形等图形的基础上,进一步研究一个基本的曲线图形——圆,对圆的概念和性质进行系统梳理,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力.在已经对圆进行初步认识的基础上,进一步学习研究圆的概念和性质,圆的许多性质比较集中地反映了事物内部量变与质变、一般与特殊、矛盾的对立统一等关系,把这种针对具体图形的结论和方法推广,能使学生实现由具体到抽象、由特殊到一般的认识上的飞跃,提高学生的思维能力,学情分析:学生已经通过对三角形、四边形的学习具备了一定的逻辑思维能力,能够较好的用数学符号语言进行推理证明。

前一课时让学生对圆已经有了巩固认识,也能够熟悉圆的一些基本概念,对深入学习圆奠定了基础。

但是通过对图形的探究过程理解垂径定理以及推论,并熟练应用于实际问题计算和证明仍然存在一定难度。

【重点】垂径定理及其应用.【难点】探索并证明垂径定理,利用垂径定理解决一些实际问题教学准备:【教师准备】多媒体课件、自制圆形卡纸【学生准备】预习教材P81—83和导学案、圆形纸片、作图工具教学过程:一:探究活动活动1:将你手中的圆形纸片沿着它的任意一条直径对折,重复做几次,你发现了什么?由此你能得到圆的什么特性?圆是图形,都是圆的对称轴.【师生活动】教师拿出自制的圆形卡纸,引导学生自己试验操作,思考后小组合作交流,学生回答后教师点评,指出“直径是圆的对称轴”这种说法错误的原因.【设计意图】通过所有学生自己动手操作,吸引学生对本节数学课的学习兴趣,让学生不知不觉参与投入课堂.活动2: 在圆形纸片上作⊙O的任意一条弦AB, 再作直径CD⊥AB, 垂足为E.沿着直径CD对折,你发现了什么?有哪些相等的线段和弧?观察发现:点A与重合,AE与重合,弧AC与重合,弧AD与重合.相等的线段: ,相等的弧: .如果AB是⊙O的一条直径呢?以上结论还会成立吗?你能证明结论AE=BE吗?【师生活动】引导学生自己作图试验操作,仔细观察思考后小组合作交流,学生回答并展示自己的证明过程后教师点评,补充完善.【设计意图】通过对AE=BE的证明过程,让学生回忆前面在三角形、四边形中的逻辑思维和证明思路的书写,为圆中的计算和证明问题做好铺垫.二:获得新知垂径定理:,.数学符号语言:∵ , ,∴ , , .【设计意图】教师鼓励学生自己组织文字语言说出探究出的结论,也就是今天要学习的垂径定理,让学生体验到学习的成就感。

人教版数学九年级上册24.1.2垂直于弦的直径教案

人教版数学九年级上册24.1.2垂直于弦的直径教案
3.重点难点解析:在讲授过程中,我会特别强调垂直于弦的直径的性质和垂径定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与垂直于弦的直径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示垂直于弦的直径的基本原理。
本节课的核心素养目标旨在培养学生的逻辑推理、空间想象、数学建模和合作交流能力,使之具备扎实的数学学科素养。
直接输出
二、教学难点与重点
1.教学重点:垂直于弦的直径性质的探究与应用,圆心角、弧、弦之间关系的理解。
2.教学难点:垂直于弦的直径性质的证明过程,以及将垂径定理应用于解决实际问题。
本节课的教学难点与重点紧密结合新教材要求,旨在帮助学生扎实掌握圆的基本性质,提高数学学科素养。
人教版数学九年级上册24.1.2垂直于弦的直径教案
一、教学内容
人教版数学九年级上册24.1.2节,本节课主要围绕垂直于弦的直径开展教学,内容包括:
1.确定垂直于弦的直径的性质:通过实例引导学生发现并证明垂直于弦的直径平分弦,并且平分弦所对的两条弧。
2.探索圆的有关性质:利用垂径定理,让学生通过画图、观察、推理等活动,探索圆中的其他性质,如圆心角、弧、弦之间的关系。
2.提升学生的空间想象能力:借助图形观察、分析和推理,让学生在脑海中构建圆的图像,培养空间想象力和几何直观。
3.增强学生的数学建模意识:将实际问题引入课堂,引导学生运用垂径定理建立数学模型,提高解决实际问题的能力,增强数学应用意识。
4.培养学生的合作交流能力:在学习过程中,鼓励学生积极参与小组讨论,分享观点,倾听他人意见,提高合作交流能力。

人教版数学九年级上册第24.1.2垂直于弦的直径优秀教学案例

人教版数学九年级上册第24.1.2垂直于弦的直径优秀教学案例
2.鼓励学生相互评价,学会欣赏他人的优点,提高自己的综合素质。
3.教师对学生的学习情况进行评价,关注学生的全面发展,不仅仅是知识的掌握。
4.设置一些拓展性问题,对学生进行课后思考,提高他们的创新能力。
在教学过程中,我将注重发挥教师的主导作用,充分调动学生的积极性。通过情景创设、问题导向、小组合作等教学策略,引导学生主动参与课堂,提高他们的实践能力。同时,注重学生的个性化发展,鼓励他们提出自己的见解,培养他们的创新精神。在教学过程中,我还将对学生进行积极的评价,关注他们的全面发展,为他们的成长提供良好的指导。
在教学过程中,我采用了问题驱动的教学方法。首先,我通过引入一些实际问题,让学生感受到垂直于弦的直径的重要性。然后,我引导学生观察和分析一些几何图形,并通过小组合作探究的方式,让学生发现垂直于弦的直径的性质。最后,我通过一些练习题,帮助学生巩固所学知识,并提高解决问题的能力。
在教学过程中,我还注重了学生思维能力的培养。我鼓励学生从不同的角度去思考问题,培养他们的发散思维能力。同时,我也引导学生通过逻辑推理和数学证明来得出结论,培养他们的推理能力。
五、案例亮点
1.情景创设:本节课通过实物模型和多媒体课件的运用,成功地创设了与学生生活实际紧密相关的问题情境,激发了学生的学习兴趣,提高了他们的学习积极性。
2.问题导向:本节课以问题为导向,教师设计了一系列具有启发性的问题,引导学生从不同角度去思考和探究垂直于弦的直径的性质。这样的教学策略不仅提高了学生的逻辑推理能力,还培养了他们的问题意识。
2.鼓励学生提出自己的见解,让每个小组展示自己的研究成果。
3.教师对学生的研究成果进行点评,关注学生的全面发展。
4.总结本节课的主要内容,强调垂直于弦的直径的性质及推论。

初中数学人教版九年级上册 24.1.2 垂直于弦的直径 教学设计(表格式)

初中数学人教版九年级上册 24.1.2  垂直于弦的直径 教学设计(表格式)

垂直于弦的直径教学设计【观察思考】赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶. 的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m你能求出州桥主桥拱的半径吗?教师PPT展示赵州桥的图片,并提出问题,引导学生思考.注意:这里只提出问题,学生暂时还不解答.【证明】教师引导学生发现,要证明圆是轴对称图形,只需要证明圆上任意一点关于直径所在的直线(对称的对称点也在圆上即可.如图,设CD是⊙O的任意一条直径,A为⊙O上点C,D以外的任意一点.证明点A关于直线CD的对称点仍在⊙O上.证明:过点A作AA'⊥CD,交⊙O于点A',垂足为M,连接OA,OA'在△OAA'中,∵OA=OA'∴△OAA'是等腰三角形又∵AA'⊥CD∴AM=MA',即CD是AA'的垂直平分线.教师可在圆上任取若干个点进行说明,进一步验证前面得到的结论.在刚刚的证明过程中,你能发现图中有哪些相等的线段、弧吗?预设答案:AM=A'M,AC A C'=,AD A D'=教师再次动态展示折纸的过程,让学生观察,并在此基础上得出结论.并尝试让学生用语言描述所到的结论,教师引导并补充完善.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.教师带领学生分析垂径定理的题设,结论.并试着结合图形把文字语言转化为数学语言.【想一想】下列图形是否具备垂径定理的条件?预设答案:(1)(3)满足;(2)(4)不满足.教师提出问题,学生抢答.对于不具备垂径定理条件的图形,引导学生说出原因,并追问:怎样修改图(2)、(4)能够满足垂径定理的条件?预设答案:教师带领学生观察修改后的图片,引导学生总结:垂直于弦的直径平分弦,并且平分弦所对的两弧.其中,直径并不是必要条件,只要满足过圆心即可.当直径CD平分一条弦AB(不是直径)时,能否得出CD⊥AB?教师提出问题,引导学生仿照前面的证明方法证明.并用文字语言描述所得结论,得出垂径定理的推论:垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.教师追问:为什么强调“不是直径”呢?预设答案:圆的任意两条直径都互相平分,但它们不一定互相垂直.【想一想】【典型例题】通过这节课的学习,现在你能解决课程一开始的问题了吗?教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适点拨,最终教师展示答题过程.例1:赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,求州桥主桥拱的半径(结果保留小数点后一位).解:如图AB表示主桥拱,设AB所在的圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为足,OC与AB相交于点C,连接OA,根据垂径定理,D是AB的中点,C是AB的中点,CD就是拱高.由题设可知:AB=37,CD=7.23,∴AD=12AB=12⨯37=18.5,OD=OC-CD=R-7.23,在Rt△OAD中,由勾股定理得:OA2=AD2+OD2,即:R2=18.52+(R-7.23)2解得:R≈27.3.因此,赵州桥的主桥拱半径约为27.3m.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解1.在⊙O中,若CD⊥AB于M,AB为直径,则下列结论不正确的是( )A.AC AD=B.BC BD=C. AM=OMD. CM=DM答:C2.已知⊙O的直径AB=10,弦CD⊥AB于M,OM=3,则CD=.答:8.3.在⊙O中,弦CD⊥AB于M,AB为直径,若CD=10,AM=1,则⊙O的半径为.答:13.4.⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm,求AB和CD之间的距离.解:过点O向AB,CD作垂线,垂足分别为M,N,连接OB,OD.由垂径定理可得:BM=12AB=12cm,DN=12CD=5cm又∵OB=OD=13cm在Rt△OBM,Rt△ODN中,由勾股定理得:OM=5cm,ON=12cm∴AB和CD之间的距离MN=OM-ON=7cm 或MN=OM+ON=17cm思维导图的形式呈现本节课的主要内容:教科书第83页练习第1、2题.。

人教版九年级上册数学24.1.2垂直于弦的直径优秀教学案例

人教版九年级上册数学24.1.2垂直于弦的直径优秀教学案例
(一)导入新课
在导入新课时,我会利用多媒体展示一些生活中的实例,如圆形的桌面、车轮等,引导学生观察并思考:“在这些实例中,你能否找到一条特殊的直径,它垂直于连接圆上两点的线段?”通过这个问题,激发学生的兴趣和好奇心,引出本节课的主题——垂直于弦的直径。
(二)讲授新知
在讲授新知时,我会结合垂径定理,引导学生观察、思考、推理垂直于弦的直径的性质。首先,我会让学生观察圆形纸片,尝试找出一条垂直于弦的直径,并观察它与弦的关系。然后,我会引导学生通过推理、论证,得出垂直于弦的直径会平分弦,并且平分弦所对的弧。在这个过程中,我会引导学生运用已学的知识,如垂径定理,来解释和论证垂直于弦的直径的性质。
(四)反思与评价
在教学过程中,我会定期进行反思和评价,以了解学生的学习情况,并调整教学策略。例如,在讲解完一个知识点后,我会设计一些练习题,让学生进行练习,然后对他们的答案进行评价,找出他们的错误,并进行针对性的讲解。同时,我还会鼓励学生进行自我评价,让他们发现自己的不足,并找到改进的方法。
四、教学内容与过程
(三)学生小组讨论
在学生小组讨论环节,我会让学生分成小组,共同探讨垂直于弦的直径的性质。每个小组需要通过观察、推理等方式,得出垂直于弦的直径的性质,并用自己的语言进行解释。这样既可以培养学生的合作意识,又可以提高他们的数学思维能力和解决问题的能力。
(四)总结归纳
在总结归纳环节,我会让学生发表自己小组讨论的结果,并对各组的结论进行评价、分析、归纳。在这个过程中,我会引导学生运用归纳推理的方法,总结出垂直于弦的直径的性质,并强调其在几何图形中的应用。
4.反思与评价提高学习效果:在教学过程中,我定期进行了反思和评价,以了解学生的学习情况,并调整教学策略。例如,在讲解完一个知识点后,我设计了练习题,让学生进行练习,然后对他们的答案进行评价,找出他们的错误,并进行针对性的讲解。同时,我还鼓励学生进行自我评价,让他们发现自己的不足,并找到改进的方法。这种方式能够帮助学生及时发现和纠正自己的错误,提高学习效果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《垂直于弦的直径》的教学设计
【教材分析】
《垂直于弦的直径》是人教版义务教育课程标准实验教材九年级上册第二十四章第24.1.2节内容。

垂径定理及其推论反映了圆的重要性质,是证明线段、角相等、垂直关系的重要依据,也为进行一些圆的计算和作图问题提供了方法和依据.
【学情分析】
1、学生已学过轴对称图形的概念及其性质;数的范围已经扩充到实数,能灵活运用勾股定理解决实际问题.
2、学生在第24.1.1节学习了圆的定义和弦、弧、等弧等概念.
3、学生已具备动手操作、观察思考和合作交流的能力,初步具备了运用建模思想将实际问题转化为数学数学问题的能力.
【教学目标】
1、知识与技能目标:
①理解圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
②掌握垂径定理及其推论.
③学会运用垂径定理及其推论解决一些有关证明、计算和作图问题.
2、过程与方法目标:
经历探索发现圆的对称性,证明垂径定理及其推论的过程,锻炼学生的思维品质,学习几何证明的方法.
3、情感与态度目标:
在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识.
【教学重点】
垂径定理及其推论的发现、记忆与证明.
【教学难点】
垂径定理及其推论的运用.
【教学用具】
圆形纸张、圆规、直尺、多媒体课件.
【教学过程】
圆形纸张、圆规、直尺、投影仪.
【教学过程】
一、创设问题情境:
教师提问:世界上最著名的割圆拱桥首推中国赵州桥,你知道赵州桥吗?它的设计者是谁?在学生回答的基础上,教师播放幻灯片,显示赵州桥图片,向学生介绍有关赵州桥的知识.
学生:回答问题之后,一边观看图片,一边聆听老师的讲述,引发思考.
(通过赵州桥知识的简单介绍,使学生认识到数学总是与现实问题密不可分,激发学生的好奇心和获得新知的欲望.)
教师指出:欲解决此问题,必须具备圆中“垂直于弦的直径”的一些重要性质.
二、探究学习新知:
活动一:教师播放幻灯片,显示实践探究内容及要求.
将圆形纸张沿着它的任意一条直径所在的直线对折,重复做几次,你发现了什么?由此你能得到什么结论?
学生按要求动手折叠圆形纸张若干次,经历观察、思考、归纳等数学活动过程,得到结论.教师利用幻灯片,显示结论:圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

(此设计是让学生亲自动手折叠圆形纸张,发现“直径两边的两个半圆完全重合”,给学生直观感受,易于接受和掌握.)
活动二、垂径定理及推论的发现与证明.
1、(思考)如图(1),AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足E.①这个图形是轴对称图形吗?
②你能发现图中有哪些相等的线段和弧?为什么?
教师播放幻灯片显示问题,引导学生采用小组合作的学习方式,前后四
人一组,分组讨论.教师巡回指导,适时给予点拨.之后教师投影显示问题的答案.师生归纳总结垂径定理.
(垂径定理中的“??平分弦”的证明,学生易发现多种证明方法,但对于“平分??两条弧”的证明学生第一次遇到,接受起来比较困难.因此,幻灯片显示用叠合法证明垂径定理的过程,不仅使学生易接受和初D 步理解,而且规范学生几何证明的书写过程.)
(1)
2、如图(2),AB是⊙O的一条(非直径)的弦,点E是AB的中点,
过点E作直径CD.问:直径CD⊥弦AB吗?为什么?你还能得出什么结论?
解:直径CD⊥弦AB.理由:连接OA和OB.由OA=OB可知△AOB 是等腰三角形.又因为点E是AB的中点,所以直径CD⊥弦AB.
由垂径定理知直径CD平分弦AB所对的两条弧.
教师提出问题,引导学生进行思考和讨论,总结出垂径定理的推论.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.想一想:如果弦AB是直径,以上结论还成立吗?(采用画图举反例
的方法让学生明白“弦是直径时此结论不一定成立”.)3、教师再次强调,垂径定理及其推论的题设和结论的区别与联系,播放幻灯片显示垂径定理及其推论的几何语言表达,使学生进一步将这D 部分知识理解.(2)
活动三、实践应用
教师启发引导学生分析解决求赵州桥半径问题后,反思小结此类问题的解决规律.
三、巩固提高,灵活运用:课本P82 练习1、2.
四、小结升华:
(1)本节课你学到了哪些数学知识?
(2)在利用垂径定理解决问题时,你掌握了哪些数学方法?
(3)这些方法中你又用到了哪些数学思想?
学生围绕三个问题进行所学知识小结.师生相互交流补充,明确本节课学习的基本知识和解题方法.教师强调运用垂径定理解决问题时,一定要明白“知二得三”、“半弦半径弦心距”的含义,务必做到准确灵活运用.(采用问题形式进行小结,使学生在回顾本节课所学知识的同时,掌握基本的解题方法,养成梳理知识的习惯.)
五、布置书面作业:
(1)课本P88页第8题、第9题、第10题.。

相关文档
最新文档