数学人教版八年级下册利用勾股定理和逆定理解决实际问题

合集下载

人教版八年级数学下册17.1.1《勾股定理》教学设计

人教版八年级数学下册17.1.1《勾股定理》教学设计
4.教师点评:针对学生的讨论成果进行点评,强调解题过程中的关键步骤和注意事项。
(四)课堂练习
1.设计具有层次性和挑战性的练习题,让学生在课堂上巩固所学知识。
2.练习题包括:
a.直接应用勾股定理求解直角三角形边长的问题。
b.结合生活实际,运用勾股定理解决实际问题。
c.勾股定理的逆向应用,判断三角形是否为直角三角形。
5.能够运用勾股定理的逆定理判断一个三角形是否为直角三角形。
(二)过程与方法
在教学过程中,采用以下方法引导学生学习:
1.利用历史背景和数学故事激发学生的学习兴趣,如介绍毕达哥拉斯是如何发现勾股定理的。
2.采用探究式学习,鼓励学生通过小组合作、讨论和自主尝试来发现勾股定理。
3.运用多媒体和实物模型,进行直观教学,让学生在观察、操作中理解并记忆勾股定理。
4.设计具有层次性的练习题,由浅入深地引导学生掌握勾股定理的应用,提高解决问题的能力。
5.引导学生通过比较、分析、归纳等方法,掌握勾股定理及其逆定理之间的关系。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发他们学习数学的热情。
2.培养学生的团队合作精神,使他们学会在合作中互相学习、共同进步。
(6)设计一道综合性的应用题,要求学生结合勾股定理和之前学过的几何知识进行解答,培养学生的综合分析能力。
4.创新思维:
(7)鼓励学生自编一道关于勾股定理的题目,并与同学进行交流、讨论,激发学生的创新意识。
(8)引导学生思考勾股定理在古代建筑、艺术等方面的应用,撰写一篇短文,分享自己的发现和感悟。
5.合作学习:
2.生活实际应用:
(3)请学生观察生活中存在的直角三角形,测量相关数据,并运用勾股定理解决问题。例如,测量学校旗杆的高度、篮球架的倾斜角度等。

人教版数学八年级下册《勾股定理及其逆定理的综合应用》说课稿1

人教版数学八年级下册《勾股定理及其逆定理的综合应用》说课稿1

人教版数学八年级下册《勾股定理及其逆定理的综合应用》说课稿1一. 教材分析《勾股定理及其逆定理的综合应用》是人教版数学八年级下册的一章内容。

本章主要介绍了勾股定理及其逆定理的定义、证明和应用。

通过本章的学习,学生能够理解勾股定理和逆定理的含义,掌握它们的应用方法,并能够运用它们解决实际问题。

本章内容在数学学习中起到了承前启后的作用,为后续学习其他数学知识打下了基础。

二. 学情分析在八年级下册的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。

他们具备一定的逻辑思维能力和问题解决能力,但对于一些抽象的概念和证明过程可能还存在一定的困难。

因此,在教学过程中,我需要注意引导学生从具体实例中抽象出勾股定理和逆定理的概念,并通过讲解和示例来帮助他们理解和掌握定理的应用。

三. 说教学目标1.知识与技能目标:学生能够理解勾股定理和逆定理的定义,掌握它们的证明方法,并能够运用它们解决实际问题。

2.过程与方法目标:学生通过观察、实验、证明等方法,培养直观思维和逻辑推理能力。

3.情感态度与价值观目标:学生能够体验到数学在实际生活中的应用,增强对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解勾股定理和逆定理的定义,掌握它们的证明方法,并能够运用它们解决实际问题。

2.教学难点:学生对于勾股定理和逆定理的证明过程的理解和运用,以及对于实际问题的解决能力的培养。

五. 说教学方法与手段在教学过程中,我将采用讲授法、示例法、讨论法和实践法等多种教学方法。

通过讲解和示例,引导学生理解和掌握勾股定理和逆定理的概念和证明方法。

通过讨论和实践,培养学生的逻辑思维和问题解决能力。

同时,我还将利用多媒体教学手段,如PPT和几何画板等,来进行直观的图形的演示和操作,帮助学生更好地理解和应用定理。

六. 说教学过程1.引入新课:通过一个实际问题,引出勾股定理和逆定理的概念,激发学生的兴趣和好奇心。

2.讲解与示例:讲解勾股定理和逆定理的定义和证明过程,通过示例来展示它们的应用方法。

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1

人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。

这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。

这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。

但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。

因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。

三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。

2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。

五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。

通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。

同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。

2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。

3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。

人教版八年级数学下册17.1章勾股定理(教案)

人教版八年级数学下册17.1章勾股定理(教案)
二、核心素养目标
1.培养学生的逻辑推理能力和空间想象力,通过对勾股定理的证明过程,让学生理解数学知识的严谨性和逻辑性;
2.提高学生的数据分析能力,通过解决实际问题,使学生能够运用勾股定理分析问题、解决问题;
3.培养学生的数学抽象和数学建模素养,让学生在探索勾股定理的过程中,学会从实际问题中抽象出数学模型;
五、教学反思
今天我们在课堂上一起探讨了勾股定理,我发现学生们对定理的概念和应用表现出很大的兴趣。在讲授过程中,我尽量用生动的语言和具体的例子来解释抽象的数学概念,希望这样能帮助他们更好地理解。通过让学生们分组讨论和实验操作,我也试图让他们亲身体验数学知识的形成过程,增强他们的实践能力。
课堂上,我注意观察学生的反应,发现大部分同学能够跟随我的讲解思路,但对于定理证明部分,尤其是面积法和相似三角形法的推导,有些同学还是感到困惑。这让我意识到,在今后的教学中,我需要更加细致地讲解这些难点,通过更多的图示和实际操作,帮助他们克服理解上的障碍。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两个直角边的平方和等于斜边的平方。它在几何学中具有重要地位,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如测量墙角、搭建模型等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计

人教版数学八年级下册17.2《勾股定理的逆定理》教学设计
-让学生分组讨论,尝试发现并总结勾股定理的逆定理。
-教师提供指导性的问题,引导学生通过画图、计算、推理等手段探索定理的正确性。
-分享探究成果,各组展示不同的解题思路和方法,促进学生之间的相互学习和启发。
3.知识讲解,深化理解
-教师对勾股定理的逆定理进行系统的讲解,强调定理的条件和结论。
-通过多媒体演示或实物模型展示,帮助学生形象化理解定理的内涵。
3.创新思维题:
-设立1-2道开放性问题,鼓励学生从不同角度思考,探索多种解题方法。
-鼓励学生尝试自己编写与勾股定理的逆定理相关的题目,并与同学分享,激发学生的学习兴趣和创造力。
4.小组合作任务:
-分配一个小组研究课题,例如“讨论研究,并在下节课上进行汇报展示。
4.设计具有层次性的练习题,使学生在不同难度层次的题目中逐步提高自己的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发学生学习数学的积极性。
2.培养学生勇于探索、善于发现的精神,使学生体验数学探究的乐趣。
3.培养学生严谨、踏实的科学态度,养成认真思考、独立解决问题的习惯。
4.通过勾股定理的逆定理的学习,使学生感受数学在现实生活中的广泛应用,体会数学的价值。
2.学生在证明过程中可能出现的逻辑错误,需要教师及时指导纠正。
3.学生对于勾股定理与逆定理之间的联系和区别的把握。
教学设想:
1.创设情境,引入新课
-通过呈现一些生活中的实际例子,如建筑物的直角结构、直角三角形的艺术品等,引导学生观察并思考这些直角三角形的特征,自然引入勾股定理的逆定理。
2.自主探究,合作交流
2.强调勾股定理与逆定理之间的联系,提醒学生注意在解决问题时灵活运用。
3.鼓励学生主动探索数学问题,培养他们勇于挑战、不断进取的精神。

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用
75÷25=3(h).
答:从 C 岛沿 CA 方向返回 A 港所需的时
D
北 N
A东
间为 3 h.
B
(2)C 岛在 A 港的什么方向?
分析:(2)由勾股定理的逆定理推知∠BAC=90°,由方向
角的定义作答即可.
解:(2)∵AB2+AC2=1002+752=15 625,
BC2=1252=15 625,
分析:(2)利用勾股定理得出 ED 以及 EF 的长,进而可得 出拖拉机噪声影响该学校持续的时间.
B
C
F
D
E
A
解:(2)如图,取 EC=130 m,FC=130 m,当拖拉机在 EF
上时学校会受噪声影响.
∵ED2=EC2-CD2=1302-1202=502,
∴ED=50(m), ∴EF=100(m).
第3课时 勾股定理及其 逆定理的综合应用
1.勾股定理:
如果直角三角形的两条直角边长分别为 a,b,斜边长为 c, 那么 a2+b2=c2.
2.勾股定理的逆定理:
如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角 形是直角三角形.
在△ABC 中,BC=a,AC=b,AB=c,设 c 为最长边,当 a2+b2=c2 时,△ABC 是直角三角形;当 a2+b2≠c2 时,利用代 数式 a2+b2 和 c2 的大小关系,探究△ABC 的形状(按角分类).
AC CD,
∴△ABC≌△CED(AAS). ∴AB=CE,BC=ED.
∵AB=6,BC=8,
D
∴CE=6,ED=8.
A
∴BE=BC+CE=8+6=14.
∴BD BE2 ED2 142 82 2 65.B

《17.2勾股定理的逆定理》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《17.2勾股定理的逆定理》教学设计教学反思-2023-2024学年初中数学人教版12八年级下册

《勾股定理的逆定理》教学设计方案(第一课时)一、教学目标本课旨在使学生掌握勾股定理的逆定理内容,能够通过实践理解逆定理的实际意义和应用方法。

培养学生从问题出发,主动运用数学工具和理论解决问题的习惯,强化学生逻辑推理与综合运用能力,使学生对数形结合有更深的理解。

二、教学重难点教学重点:理解并掌握勾股定理的逆定理,能够正确运用其进行相关计算和证明。

教学难点:培养学生的逻辑思维能力,让他们理解并运用数形结合思想解决实际问题。

让学生学会分析问题的条件和结论,根据所给条件构造合适的几何图形进行推导和验证。

三、教学准备1. 教材准备:初中数学教材及辅助资料。

2. 教具准备:多媒体课件、几何图形模型、白板等教学工具。

3. 学生准备:课前预习教材,熟悉基本概念及公式的运用方法,同时思考实际生活中的数学问题与本节课的联系。

4. 课堂环境:营造积极互动的课堂氛围,鼓励学生主动提问和参与讨论。

通过建立课堂环境的联系。

在课堂上,积极的互动与热烈的讨论往往能够更好地帮助学生学习知识、深化理解。

为此,教师在课堂环境中应当注重创设积极互动的氛围,使每一个学生都能感受到自己是被重视的、被关注的。

当学生主动提问时,教师应及时回应并给予鼓励,这不仅能够激发学生的学习兴趣和好奇心,还能帮助他们培养独立思考和解决问题的能力。

在讨论环节中,鼓励学生积极参与讨论,分享自己的观点和看法。

这种互动式的学习方式能够让学生更加深入地理解知识,同时也能培养他们的团队协作能力和沟通能力。

在讨论中,学生可以相互学习、相互启发,从而形成更加全面、深入的理解。

这样的课堂环境不仅有助于学生掌握本节课的知识点,还能为他们的未来发展打下坚实的基础。

因此,与本节课的联系在于,通过营造积极互动的课堂氛围,可以更好地促进学生的学习和发展。

四、教学过程:一、引入环节本节课开始,我们首先要带领学生进入课题。

为了吸引学生的注意力,可以先从实际生活中举例。

例如,讨论校园内的花坛设计或运动场地是否符合勾股定理的原理。

勾股定理及其逆定理的综合运用-八年级数学下册课件(人教版)

勾股定理及其逆定理的综合运用-八年级数学下册课件(人教版)
分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向
航行,能知道“海天”号沿哪个方向航行吗?
N
Q
R
2
1
P
E
新知探究
思考:
1.已知什么?
“远航”号的航向、两艘船的航行时间、速度及距

2.解题的关键是什么?
两艘船的航向所成的角。
3.题目中已知距离,要求角,需要用到数学的什么思想?
转化思想
4.题目中可能用到的转化是什么?

审题,明确已知和所求

构建几何模型,转化为数学问题

应用数学知识求解.
巩固练习
1A,B,C 三地的两两距离如图,A 地在 B 地的正东方向,则 C 地在
正北
B 地的__________方向.
巩固练习
2.小红从 A 地向东北方向走 100
m 到 B 地,再从 B 地向
正西方向走 200 m 到 C 地,那么小红此时在 A 地的(D )


= ·+ AD·CD=234(m2).
234×1 000=234 000(元).
答:学校征收这块地需要 234 000 元.
课堂练习
7.红星中学计划把一块形状如图所示的废弃荒地开辟为生物园,测
得 AC=75 m,BC=100 m,AB=125 m.如果沿 CD 修一条水渠且 D 点
在边 AB 上,水渠的造价为 10 元/m,问:D 点在什么位置时,水渠的造价
勾股定理逆定理
新知探究
N
解:根据题意得
PQ=16×1.5=24(海里),
PR=12×1.5=18(海里),
QR=30海里.
R
Q
2 1

第十七章-人教版勾股定理教案

第十七章-人教版勾股定理教案

第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。

勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。

在理论和实践上都有广泛的应用。

勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。

在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。

2、教材特点:①在呈现方式上,突出实践性与研究性。

(对勾股定理是通过问题引出加以探索认识的。

②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。

③对实际问题的选取,注意联系学生的实际生活。

④注意扩大学生的知识面。

(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。

(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。

2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。

3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。

4、运用勾股定理及其逆宣解决简单的实际问题。

情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。

(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3

人教版数学八年级下册17.1《勾股定理》教学设计3一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中数学的重要内容,它揭示了直角三角形三边之间的数量关系,为学生提供了解决实际问题的工具。

本节课的内容是在学生已经掌握了三角形性质、勾股定理的逆定理等知识的基础上进行学习的。

教材通过丰富的例题和练习,帮助学生深入理解和掌握勾股定理,并能够运用它解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形性质、勾股定理的逆定理等知识,具备了一定的逻辑思维能力和空间想象能力。

但是,对于勾股定理的证明和应用,部分学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导和指导。

三. 教学目标1.知识与技能目标:使学生理解和掌握勾股定理,能够运用勾股定理解决实际问题。

2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的探究能力和合作意识。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.教学重点:勾股定理的证明和应用。

2.教学难点:勾股定理的证明过程和运用。

五. 教学方法1.情境教学法:通过创设丰富的教学情境,激发学生的学习兴趣和积极性。

2.探究教学法:引导学生通过观察、操作、猜想、验证等过程,主动探究勾股定理的证明和应用。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学方案和教学活动。

2.学生准备:预习教材,了解勾股定理的基本概念。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形性质、勾股定理的逆定理等知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示勾股定理的定义和表述,引导学生理解直角三角形三边之间的数量关系。

3.操练(10分钟)教师提出一些运用勾股定理的问题,学生独立解答,培养学生的运用能力和解决问题的能力。

7.2勾股定理的逆定理教案

7.2勾股定理的逆定理教案
其次,我发现学生在小组讨论中非常活跃,他们乐于分享自己的想法,并从同伴那里学习。但我也注意到,有些学生在讨论中较为沉默,可能是因为他们对自己的想法不够自信,或者是在小组中不够积极主动。为了解决这个问题,我计划在未来的课程中,更多地鼓励和引导这些学生,让他们在小组合作中发挥更大的作用。
此外,我发现在讲解难点时,尽管我尝试通过不同的方式来解释,但仍有部分学生难以理解。这可能是因为我讲解的节奏过快,或者举例不够贴近学生的生活实际。因此,我打算在下一次的教学中,放慢讲解的速度,使用更多的直观教具和动画,以便学生能够更直观地理解勾股定理逆定理的原理。
3.内容列举:
a.勾股定理的逆定理表述:若一个三角形的三边满足a²+b²=c²(a、b、c为三角形的三边,c为最长边),则这个三角形是直角三角形;
b.举例说明勾股定理的逆定理的应用;
c.练习:判断给定三角形是否为直角三角形,并解释原因;
d.实践活动:运用勾股定理的逆定理解决实际问题,如测量距离、计算高度等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过勾股定理的逆定理的学习,使学生能够运用逻辑推理方法,判断一个三角形是否为直角三角形,提高学生分析问题和解决问题的能力。
2.增强学生的空间想象力:通过勾股定理的逆定理在实际问题中的应用,培养学生的空间想象力,提高学生对几何图形的认识和运用能力。
3.培养学生的数学运算能力:让学生掌握勾股定理的逆定理,并进行相关练习,提高学生的数学运算速度和准确性。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理逆定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理逆定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版八年级数学下册课件 17-2-2 勾股定理的逆定理的应用

人教版八年级数学下册课件 17-2-2   勾股定理的逆定理的应用
100 m 回到原地.
B2

随堂练习
(2)小明从O走到A,再走到B2,最终由B2回到O.
同理,△AOB2是直角三角形,且∠OAB2 =90〫


因此小明向东走 80m 后,又向南走了 60m,再走
B1
100m 回到原地.
综上所述,小明向东走 80m 后,又向南或向北走
了 60m,最后走 100m 回到原地.
分别位于点Q,R处,且相距30海里. 如果知道“远
航” 号沿东北方向航行,能知道“海天” 号沿哪个
方向航行吗?
典例精析
解:根据题意,
PQ=16×1.5=24,
PR=12×1.5=18 ,
QR=30 .
∵ 242+182=302,
即PQ 2+PR2=QR2, ∴ ∠QPR=90°,
由远航号沿东北方向航行可知∠1=45°.
2. 标注有用信息(或添加必要的辅助线),明确已知和所求.
3. 应用数学知识解决问题.
随堂练习

1.如图所示,甲、乙两船从港口 A 同时出发,甲船以
30 海里/时的速度向北偏东 35〫
的方向航行,乙船以
C
35〫
40 海里/时的速度向另一方向航行,2 小时后,甲船
到达 C 岛,乙船到达 B 岛,若 C,B 两岛相距 100
A
海里,则乙船航行的方向是南偏东多少度?
B
随堂练习

解:由题意得:AC=30×2=60(海里),
AB=40×2=80(海里).
C
35〫
因为 + = + = =,
所以∠BAC=90〫.
A
因为 C 岛在港口 A 的北偏东 35〫方向,所
以 B 岛在港口 A 的南偏东 55〫方向.

人教版八年级数学下册17.1第1课时勾股定理教学设计

人教版八年级数学下册17.1第1课时勾股定理教学设计
-定期进行课堂测验,了解学生的学习进度,针对学生的薄弱环节进行有针对性的辅导。
6.教学拓展:
-结合勾股定理,引入其他数学文化知识,如勾股定理的历史背景、勾股数在其他领域的应用等,丰富学生的数学视野。
-鼓励学生参加数学竞赛、实践活动,提高他们运用勾股定理解决实际问题的能力。
四、教学内容与过程
(一)导入新课
2.新课讲解:
-采用数形结合的方法,引导学生通过直观的图形推导出勾股定理。
-通过具体实例,讲解勾股定理在实际问题中的应用,如计算斜边长度、判断一组数是否为勾股数等。
3.教学策略:
-采用分组合作学习,让学生在小组内讨论勾股定理的推导和应用,培养他们的合作意识和解决问题的能力。
-设计梯度性练习题,针对不同层次的学生,提高他们的运算速度和准确性,巩固勾股定理的知识点。
在教学过程中,教师应以学生为主体,关注学生的个体差异,因材施教,充分调动学生的积极性、主动性和创造性。同时,注重启发式教学,引导学生通过自主探究、合作交流等方式,达到教学目标。在教学评价中,要关注学生的知识掌握、能力培养和情感态度价值观的形成,全面提高学生的数学素养。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了直角三角形的性质、三角形内角和等基本知识,具备了一定的几何图形识别和逻辑推理能力。在此基础上,学习勾股定理,学生能够更好地理解直角三角形边长之间的关系,为后续学习相似三角形、解直角三角形等知识打下坚实基础。
五、作业布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.必做题:
-根据勾股定理,计算给定直角三角形的斜边长度,并简要说明计算过程。
-列举三组勾股数,并验证它们是否符合勾股定理。
-从实际生活中选取一个直角三角形的应用实例,运用勾股定理解决问题,并写出解题过程。

人教版八年级数学下册第17章勾股定理单元整体教学设计

人教版八年级数学下册第17章勾股定理单元整体教学设计
4.学生的团队合作和沟通能力:通过小组合作、讨论等形式,培养学生相互协作、共同解决问题的能力,同时提高他们的数学表达和沟通能力。
5.学生对数学的兴趣和情感态度:在本章节教学中,教师应关注学生的情感态度,激发他们对数学的兴趣,使他们能够积极主动地投入到勾股定理的学习中。
三、教学重难点和教学设想
(一)教学重难点
8.教学评价,关注成长
教师对学生的学习过程进行评价,关注他们在知识掌握、能力提升、情感态度等方面的成长。通过评价,为学生提供反馈,帮助他们不断调整学习方法,提高学习效果。
四、教学内容与过程
(一)导入新课,500字
1.教师通过一个生活实例,如测量学校旗杆的高度,引出问题:如何用一根绳子测量旗杆的高度?从而引发学生对直角三角形边长关系的思考。
1.学生对勾股定理的认知程度:大部分学生可能对勾股定理的概念较为陌生,教师需要通过生动的实例和形象的解释,帮助学生理解并掌握这一重要定理。
2.学生在实际问题中的应用能力:八年级学生在解决实际问题过程中,可能对如何运用勾股定理感到困惑。教师应设计丰富的例题和练习,引导学生将理论知识运用到实际情境中。
3.学生的数学思维和逻辑推理能力:在本章节教学中,教师应关注学生的数学思维发展,引导他们通过观察、分析、归纳等方法发现勾股定理及其逆定理,提高学生的逻辑推理能力。
2.自主探究,发现定理
教师组织学生进行自主探究,引导他们观察直角三角形的性质,发现勾股定理。在此过程中,教师给予适当的提示和指导,帮助学生理解定理的本质。
3.精讲精练,掌握方法
教师通过讲解典型例题,让学生掌握勾股定理的运用方法。同时,设计具有梯度性的练习题,使学生在实践中逐步提高解题能力。
4.小组合作,交流分享
教师在教学过程中关注学生的情感态度,通过表扬、鼓励等方式,激发学生对数学学习的兴趣。同时,让学生认识到勾股定理在生活中的广泛应用,增强他们的学习动力。

八年级数学勾股定理的逆定理课件-应用

八年级数学勾股定理的逆定理课件-应用

人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册

期末复习专题勾股定理与折叠问题教学设计人教版数学八年级下册

期末复习专题勾股定理与折叠问题教学设计人教版数学八年级下册
-采用小组合作学习,让学生在讨论、交流中解决折叠问题,提高合作能力。
-教师巡回指导,针对学生的疑惑和困难,给予及时解答和指导。
4.实践应用,巩固知识
-设计具有挑战性的实际问题,让学生运用勾股定理及其逆定理解决问题,提高学以致用的能力。
-通过变式练习,引导学生发现勾股定理在不同情境下的应用,巩固知识。
4.结合实际生活中的例子,引导学生将勾股定理与折叠问题应用于实际,培养学生的学以致用能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们热爱数学的情感。
2.通过勾股定理与折叠问题的学习,让学生体会到数学的实用性和美感,提高审美情趣。
3.培养学生勇于探索、敢于创新的精神,增强他们面对困难、解决问题的信心。
期末复习专题勾股定理与折叠问题教学设计人教Βιβλιοθήκη 数学八年级下册一、教学目标
(一)知识与技能
1.理解并掌握勾股定理的内容、证明和应用,能熟练运用勾股定理解决实际问题。
2.学会运用折叠方法,将复杂的几何问题转化为简单的勾股定理问题,提高解决问题的能力。
3.能够运用勾股定理及折叠问题,解决生活中的实际问题,如建筑、工程等领域。
4.培养学生的团队协作精神,让他们在合作中学会互相尊重、互相帮助,形成良好的集体氛围。
5.引导学生关注生活中的数学,体会数学在现实世界中的广泛应用,增强学生的社会责任感。
本章节教学设计以勾股定理与折叠问题为核心,旨在帮助学生巩固知识、提高能力、培养情感。在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,让每个学生都能在愉快的氛围中学习、成长。
2.选做题:
-鼓励学有余力的学生探索勾股定理在其他领域的应用,例如艺术、工程等,并撰写一篇小报告,分享他们的发现和体会。

人教版八年级下数学17.2勾股定理逆定理的五种应用

人教版八年级下数学17.2勾股定理逆定理的五种应用

勾股定理逆定理的五种应用
“如果一个三角形的三条边长分别为a、b、c,且有
,那么这个三角形是直角三角形。

”这
就是勾股定理的逆定理。

它是初中几何中极其重要的一个定理,有着广泛的应用。

下面举例说明。

一. 用于判断三角形的形状
例1. 如图1,中,


,求证:
是直角三角形
证明:由已知得:
,即c是最长边
是直角三角形二. 用于求角度
例2. 如图2,点P是等边内一点,且,

,求的度数
解:因,以点B为定点,将
旋转
到达
的位置,连结PP”,则
为等边三角形在中
由勾股定理的逆定理知
三. 用于求边长
例3. 如图3,在中,D是BC边上的点,已知,


,求DC的长。

解:在中,由
可知
又由勾股定理的逆定理知
在中
四. 用于求面积
例4. 如图4,已知,AB=3,BC =4,CD=12,DA=13。

求四边形ABCD的面积。

解:连结AC,在中,由勾股定理得
在中
由勾股定理的逆定理知
五. 用于证明垂直
例5. 如图5,已知正方形ABCD中,

,求证:
证明:连结FC,设AF=1,则DF=3,

在、


由勾股定理的逆定理知即。

人教版八年级数学下册《勾股定理及其逆定理的综合应用》评课稿

人教版八年级数学下册《勾股定理及其逆定理的综合应用》评课稿

人教版八年级数学下册《勾股定理及其逆定理的综合应用》评课稿一、课程背景介绍本课程是八年级数学下册的内容,主要涉及到勾股定理及其逆定理的综合应用。

通过本课程的学习,学生将深入理解和掌握勾股定理的基本概念和运用方法,进一步提高数学思维能力和解决实际问题的能力。

二、教学目标本课程的教学目标主要包括以下几个方面:1.理解勾股定理的原理和几何意义;2.掌握勾股定理的运用方法;3.能够运用勾股定理解决实际问题;4.了解勾股定理的逆定理及其应用。

三、教学内容概述本课程主要包含以下几个重点内容:1.勾股定理的引入:通过对直角三角形的认识,引出勾股定理的概念和表达方式;2.勾股定理的运用:通过实例的演示,让学生掌握勾股定理的运用方法;3.勾股定理的证明:介绍勾股定理的几种证明方法,培养学生的逻辑思维能力;4.勾股定理综合应用:通过多个实际问题的解决,培养学生运用勾股定理解决实际问题的能力;5.勾股定理的逆定理:讲解勾股定理的逆定理及其应用,拓展学生的数学知识。

四、教学重点和难点本课程的教学重点主要包括以下几个方面:1.勾股定理的运用方法;2.实际问题的解决;3.勾股定理的逆定理及其应用。

本课程的教学难点主要包括以下几个方面:1.勾股定理的证明方法;2.实际问题的转化和解决;3.勾股定理逆定理的理解和应用。

五、教学方法与教学过程本课程采用课堂讲授和实例演示相结合的教学方法,以下为具体的教学过程:1.引入阶段:–通过对直角三角形的认识,引出勾股定理的概念;–通过一个简单的实例,让学生感受到勾股定理的应用。

2.讲解阶段:–介绍勾股定理的表达方式和运用方法;–演示如何利用勾股定理求解直角三角形的边长;–讲解勾股定理的几种证明方法,引导学生进行思考和讨论。

3.练习阶段:–给学生一些练习题,巩固勾股定理的运用能力;–设计一些实际问题,让学生应用勾股定理解决问题;–引导学生运用勾股定理进行实际问题的转化和解决。

4.拓展阶段:–介绍勾股定理的逆定理及其应用领域;–给学生展示一些勾股定理逆定理的实际应用案例;–引导学生思考勾股定理逆定理的证明和推广。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄羊镇二坝九年制学校八年级数学学科课堂教学设计
一、引入新课
教师活动:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数。

学方法,其中勾股定理以及逆定理是常用的数学知识.
二、进行新课
教师活动:出示例2.
例2某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港
口,各自沿一条固定方向航行,“远航”号每小时航行16海里,“海天”号每小时
航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北
方向航行,能知道“海天”号沿哪个方向航行吗?
学生活动:认真审题,理解题意,并根据题意画出如下图所示的草图

教师活动:解释方位角及方位名词. 学生活动:学生写出解题过程.
教师活动:巡视,帮助学有困难的学生.教师在巡视的过程中可能发现有的学生
会考虑两种情况.即PQ 在PE 以南的情况.教师应提醒学生注意考虑实际问题,PE 是海岸线,它以南就是陆地了.
教师活动:出示例3(补充).
例3 一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.
师生共同分析:要判断三角形的形状,先求三角形的三边长; 学生活动:写出解题过程.
教师活动:巡视,帮助学有困难的学生. 三、课堂练习
1.如果三条线段长a ,b ,c 满足.这三条线段组成的三角形是不是直角三角形?为什么?
2.说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等;
(2)如果两个实数相等,那么它们的绝对值相等; (3)全等三角形的对应角相等;
(4)角的内部到角的两边距离相等的点在角的平分线上.
3.A ,B ,C 三地的两两距离如图所示,A 地在B 地的正东方向,C 地在B 地的什么方向?
四、课堂总结、点评
利用勾股定理和勾股定理的逆定理解决实际问题,我们一定要注意深入生活,从实际情况出发认真思考;还要养成见到“已知三边求角,就利用勾股定理的逆定理”的习惯.
教研(备课)组长检查: 学校领导检查(签章):
2
2
2
a c
b =-。

相关文档
最新文档