八上考试题
八年级上册语文期中考试试题(含答案)
八年级上册语文期中考试试题(含答案)一、选择题1. 下面哪个成语的意思是“飞黄腾达”?A. 一帆风顺B. 马到成功C. 青云直上D. 水到渠成答案:C2. 下面哪个词的读音与其他三个不同?A. 鞍B. 庵C. 俺D. 按答案:D3. 下面哪个句子的语序是错误的?A. 山上有一个石洞。
B. 她把书放到了书架上。
C. 他正在院子里种花。
D. 真热!天上没有一片云。
答案:D4. “渐行渐远渐无书”这句诗的作者是谁?A. 苏轼B. 杜牧C. 王之涣D. 王安石答案:C5. “一去二三里,烟村四五家”这句诗描绘的是什么景象?A. 农村生活B. 农田景色C. 道路风景D. 城市街道答案:A二、填空题1. 中华人民共和国的国旗共有__五__颗星,颜色有:__红__色、__黄__色。
2. 《西游记》的作者是__吴__承__恩__。
3. 一年有__四__个季节,分别是:__春__、__夏__、__秋__、__冬__。
4. 成语“一去__二__三__里__”表示行走的距离远,为了强调这一点,现在也常用来表示离开的距离远。
5. 《水浒传》中,宋江是__梁山泊__的好汉之一。
三、简答题1. 简述一个你喜欢的中国古代文学作品,并说明你喜欢它的原因。
答案略。
2. 解释词语“山河”在文学创作中的象征意义。
答案略。
3. 请从古代诗词中选择一首你喜欢的,并写出其中的两句。
答案略。
四、作文题请根据以下要点,以“我的梦想”为题,写一篇不少于100字的作文。
- 我的梦想是什么- 为什么我有这个梦想- 我会怎么样去实现这个梦想答题略。
The document above provides a sample of "Midterm Chinese Exam Questions for Grade 8 (with answers)". It includes multiple-choice questions, fill-in-the-blank questions, short-answer questions, and an essay question related to the topic "My Dream".。
苏科版八年级上册数学期中考试试题含答案
苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。
语文八上考试卷子
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音完全正确的一项是()A. 热闹非凡翩翩起舞B. 震耳欲聋一蹴而就C. 精神抖擞红红火火D. 欣欣向荣雪中送炭2. 下列句子中,没有语病的一项是()A. 由于天气原因,原定于昨天的会议被迫延期。
B. 我们要认真学习,不断提高自己的综合素质。
C. 为了确保这次活动的顺利进行,我们提前做好了各项准备工作。
D. 他不仅学习好,还热心帮助同学。
3. 下列各句中,运用了比喻修辞手法的一项是()A. 这条河像一条绿色的丝带。
B. 夜晚的星空,星星闪烁,犹如无数颗明珠。
C. 他的声音洪亮,像打雷一样。
D. 那座山高耸入云,仿佛直插云霄。
4. 下列各句中,用词准确、恰当的一项是()A. 她的微笑如同春天的阳光,温暖人心。
B. 这本书内容丰富,值得一读再读。
C. 他的演讲非常精彩,赢得了在场所有人的热烈掌声。
D. 这件衣服颜色鲜艳,很适合夏天穿。
5. 下列各句中,语言表达得体的一项是()A. 老师您好,我想请教您一个问题。
B. 你怎么这么笨,这么简单的问题都不会。
C. 这件事你怎么不早点告诉我?D. 你的想法太天真了,别再浪费时间了。
6. 下列各句中,句式正确、通顺的一项是()A. 我昨天去了公园,看到了很多美丽的景色。
B. 这个问题很难,我们需要认真思考。
C. 他不仅学习好,而且性格开朗。
D. 我去图书馆借了几本书,准备回家看。
7. 下列各句中,成语使用正确的一项是()A. 他勤奋好学,成绩一直名列前茅。
B. 这个消息传来,大家议论纷纷。
C. 他做事总是优柔寡断,让人很失望。
D. 这个办法很好,可以一试。
8. 下列各句中,标点符号使用正确的一项是()A. 他叫小明,今年12岁,是班上的优秀学生。
B. 我喜欢读书,尤其是文学作品。
C. 他的学习成绩一直很好,受到了老师和同学们的赞扬。
D. 她说:“这件事很重要,你必须马上去做。
”二、填空题(每空1分,共10分)9. 《春》一文中,作者用“、、、”四个字描绘了春天的美好。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
八年级上学期期末考试数学试卷(附答案解析)
八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
苏科版八年级上册数学期中考试试题含答案
苏科版八年级上册数学期中考试试卷一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是()A .一B .中C .王D .语2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A .2,3,4B .6,8,10C .5,12,14D .1,1,23.如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,则E ∠的度数为()A .80°B .35°C .70°D .30°4.如图,在△ABC 中,∠B=36°,AB =AC ,AD 是△ABC 的中线,则∠BAD 的度数是()A .36°B .54°C .72°D .108°5.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .8B .12C .18D .206.如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为()A.2.5km B.4.5km C.5km D.3km7.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形∠+∠+∠=)8.如图为6个边长相等的正方形的组合图形,则123(A.90 B.135 C.150 D.180二、填空题9.用一根长12cm的铁丝围成一个等边三角形,那么这个等边三角形的边长为___cm.10.在△ABC中,AB=AC,∠A=40°,则∠B的度数为_____°.11.木工师傅要做一扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”)12.若(a-4)2+|b-2|=0,则有两边长为a、b的等腰三角形的周长为________.13.如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC 的长为_____.14.如图,△ABC中,边AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AC =2cm,BC=5cm,则△AEC的周长是_____cm.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字______的格子内.16.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_____cm2.17.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.三、解答题18.如图,△ABC中,AB=AC,∠1=∠2,BC=6cm,那么BD的长_____cm.19.如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.20.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.21.已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:△OEF是等腰三角形.22.如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC=16m,上弦长AB=10m,求中柱AD的长.23.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.24.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.25.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;=15,求DE的长.(2)若AB+AC=10,S△ABC26.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.27.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.参考答案1.D【解析】【分析】直接利用轴对称图形的定义得出答案,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、“一”是轴对称图形,故本选项不合题意;B、“中”是轴对称图形,故本选项不合题意;C、“王”是轴对称图形,故本选项不合题意;D、“语”不是轴对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【解析】【分析】先求出较小两边的平方和,再求出最长边的平方,判断是否相等即可.【详解】解:A.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;B.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项符合题意;C.∵52+122≠142,∴5,12,14为边不能组成直角三角形,故本选项不符合题意;D.∵12+12≠22,∴以1,1,2为边不能组成直角三角形,故本选项不符合题意;故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理逆定理的内容是解题关键,注意:如果一个三角形的两边,a b的平方和等于第三边的平方,即222a b c,那么这个三角形是直角三角+=形.3.D【解析】【分析】根据全等三角形的性质即可求出∠E.【详解】解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.B【解析】【分析】利用等腰三角形的三线合一和直角三角形的两个锐角互余解决问题即可.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD ⊥BC ,∵∠B=36°,∴∠BAD=90°-∠B=90°-36°=54°,故选:B .【点睛】本题考查等腰三角形的性质和直角三角形的性质,解题的关键是掌握等腰三角形的三线合一的性质,属于中考常考题型.5.D【解析】【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键.6.D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC ,BC 互相垂直,∴∠ACB =90°,∵M 为AB 的中点,∴CM =12AB ,∵AB =6km ,∴CM =3km ,即M ,C 两点间的距离为3km ,故选:D .7.B【解析】利用全等的定义分别判断后即可得到正确答案.【详解】解:A 、两个等边三角形不一定全等,例如两个等边三角形的边长分别为3和4,这两个三角形就不全等,故此选项错误;B 、两个全等的图形面积是一定相等的,故此选项正确;C 、形状相等的两个图形不一定全等,例如边长为3和4的正方形,故此选项错误;D 、两个正方形不一定全等,例如边长为3和4的正方形,故此选项错误.故选B.8.B【分析】标注字母,利用“边角边”判断出△ABC 和△DEA 全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【详解】解:如图,在△ABC 和△DEA中,90AB DE ABC DEA BC AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ABC ≌△DEA (SAS ),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选B.【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.9.4【解析】【分析】根据等边三角形的定义“三条边都相等的三角形”即可求出答案.【详解】=÷=cm.根据等边三角形的三条边相等可知其边长1234故答案为:4.【点睛】本题考查等边三角形的定义.掌握其定义是解答本题的关键.10.70【解析】【分析】根据等腰三角形的性质可得到∠B=∠C,已知顶角的度数,根据三角形内角和定理即可求解.【详解】解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故答案为:70.【点睛】本题主要是考查了等腰三角形的性质,熟练地利用等边找到底角,然后利用三角形内角和定理求解角度,这是解决本题的关键.11.不合格【分析】根据勾股定理的逆定理,若一个三角形的两边的平方和等于第三边的平方,则这个三角形为直角三角形,即可解答.【详解】解:根据矩形的性质得:矩形的长、宽、对角线三边能构成直角三角形,∵长为6分米,宽为4分米,对角线为7分米,∴22264527+=≠,∴长为6分米,宽为4分米,对角线为7分米的三边不能构成直角三角形,即这扇纱窗不合格.故答案为:不合格.【点睛】本题主要考查了矩形的性质,勾股定理的逆定理,能根据勾股定理的逆定理判断三条边长能否构成直角三角形是解题的关键.12.10【解析】【分析】先根据非负数的性质列式求出a、b,再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-2=0,解得a=4,b=2,①若2是腰长,则底边为4,三角形的三边分别为2、2、4,不能组成三角形,②若4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.13.2【分析】根据全等三角形的性质得出AC=FD=3,再求出FC即可.【详解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案为:2.【点睛】本题主要是考查了全等三角形的性质,熟练应用全等三角形的性质,找到对应相等的边,是求解该问题的关键.14.7【解析】【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是线段AB的垂直平分线,∴EA=EB,∴△AEC的周长=AC+EC+EA=AC+EC+EB=AC+BC=7(cm),故答案为:7.【点睛】本题主要是考查了垂直平分线的性质,熟练地应用垂直平分线的性质,找到相等边,是求解该类问题的关键.15.3【解析】【分析】根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,根据题意,阴影应该涂在标有数字3的格子内;故答案为3.【点睛】本题考查了轴对称图形的性质,沿着虚线进行翻折后能够重合,进而求出答案.16.120【解析】【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.17.8【解析】【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC•B′H即可求得答案.AC=B'H=4,则有S△AB'C=12【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A =90°,∠BAC+∠CAB'=90°,∴∠HB'A =∠CAB ,在△ACB 和△B'HA 中,ACB AHB CAB AB H AB AB ∠=∠'⎧⎪∠=∠'⎨⎪='⎩,∴△ACB ≌△B'HA (AAS ),∴AC =B'H ,∵∠ACB =90°,AB =5,BC =3,∴AC 22BA BC -2253-4,∴AC =B'H =4,∴S △AB 'C =12AC•B′H =12×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB ≌△B'HA 是解决问题的关键.18.3【解析】【分析】由AB =AC ,得出△ABC 是等腰三角形,由∠1=∠2,得出AD 是顶角平分线,再由等腰三角形底边上的中线与顶角平分线重合求解即可.【详解】解:∵AB=AC,∴△ABC是等腰三角形,∵∠1=∠2,∴12BD CD BC==,∵BC=6cm,∴1632BD=⨯=(cm).故答案为:3.【点睛】本题考查了等腰三角形,比较简单,解题的关键是掌握等腰三角形的性质.19.(1)见解析;(2)3【解析】【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,直线l即为所求;(2)S△ABC =2×4﹣12×1×2﹣12×2×2﹣12×1×4=3.20.见解析【解析】由AB∥CD,得∠B=∠C,再利用SAS证明△ABE≌△DCF,从而得出AE=DF.证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 与△DCF 中,AB CD B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE =DF .【点睛】本题考查了全等三角形的性质与判定,平行线的性质,掌握SAS 证明三角形全等是解题的关键.21.见解析【分析】证明Rt △ABF ≌Rt △DCE ,根据全等三角形的性质得到∠AFB =∠DEC ,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE ,在Rt △ABF 和Rt △DCE 中,AB DC BF CE =⎧⎨=⎩,∴Rt △ABF ≌Rt △DCE (HL )∴∠AFB =∠DEC ,∴OE =OF ,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.22.6mAD =【分析】由等腰三角形的性质得BC=CD=12BC=8(m),再由勾股定理求解即可.【详解】解:∵AB=AC,AD⊥BC,BC=16m,∴BC=CD=12BC=8(m),∠ADB=90°,∴AD6(m),即中柱AD的长为6m.23.(1)见解析;(2)4AC=【解析】(1)利用线段垂直平分线的性质可得CD=BD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可.【详解】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC4=.【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键.24.该零件的面积为37cm 2.【解析】【分析】首先证明△ADC ≌△CEB ,根据全等三角形的性质可得DC=BE=7cm ,再利用勾股定理计算出AC 长,然后利用三角形的面积公式计算出该零件的面积即可.【详解】解:∵△ABC 是等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,D E DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴DC=BE=7cm ,∴(cm ),∴cm ,∴该零件的面积为:12(cm 2).故答案为37cm 2.【点睛】本题考查全等三角形的应用,等腰直角三角形以及勾股定理的应用,关键是掌握全等三角形的判定方法.25.(1)见解析;(2)3DE =【解析】【分析】(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论;(2)根据DE =DF ,得111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,代入计算即可.【详解】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD AD DE DF=⎧⎨=⎩,∴Rt △AED ≌Rt △AFD (HL ),∴AE =AF ,∵DE =DF ,∴AD 垂直平分EF ;(2)解:∵DE =DF ,∴111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,∵AB+AC =10,∴DE =3.26.(1)见解析;(2)AC 的长为17.【解析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF ,即可判定Rt △BCE ≌Rt △DCF ;(2)首先由(1)中全等三角形的性质得出DF=EB ,然后判定Rt △AFC ≌Rt △AEC ,得出AF=AE ,构建方程得出CF ,再利用勾股定理即可得出AC.【详解】(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF (角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.27.(1)当M、N运动6秒时,点N追上点M;(2)①2t=,△AMN是等边三角形;②当32t=或125时,△AMN是直角三角形;(3)8t=【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN 的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;②分别就∠AMN=90°和∠ANM=90°列方程求解可得;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵AB=AC=BC=6cm,∴∠A=60°,当AM=AN时,△AMN是等边三角形,∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得32 t ;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得125t .综上所述,当t为32或125s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.。
海淀区八上期中考试卷语文
一、选择题(每题2分,共20分)1. 下列词语中,字形、字音都完全正确的一项是()A. 惊慌失措(chù)B. 眼花缭乱(liáo)C. 恣意妄为(wàn)D. 纵情挥霍(huò)2. 下列句子中,没有语病的一项是()A. 他的学习成绩一直名列前茅,这与他刻苦努力是分不开的。
B. 随着科技的发展,智能手机已经普及,为人们的生活带来了极大的便利。
C. 我国近年来在科技创新方面取得了举世瞩目的成就,这充分体现了我国人民的智慧和勇气。
D. 由于长时间的学习,他的身体感到非常疲劳。
3. 下列词语中,形近音同的一组是()A. 端庄懒散恣意欣喜B. 妩媚纤巧沉默欢快C. 美丽丑陋傲慢勇敢D. 聪明懒惰善良美丽4. 下列句子中,使用了比喻修辞手法的一项是()A. 雨后的彩虹绚丽多彩,宛如一座七彩桥。
B. 他的笑声像银铃一样清脆。
C. 那片云朵像棉花糖一样柔软。
D. 他的眼神坚定如炬。
5. 下列词语中,多音字注音正确的一项是()A. 搬(bān)家悲(bēi)伤摆(bǎi)脱摆(bài)设B. 修(xiū)理稳(wěn)重妩(wǔ)媚妩(wù)媚C. 拥(yōng)抱恐(kǒng)惧拥(yōng)护恐(kòng)惧D. 竭(jié)力竭(jié)泽竭(jié)尽竭(jié)泽6. 下列句子中,使用了拟人修辞手法的一项是()A. 月亮升起来了,仿佛一位慈祥的老人,静静地注视着大地。
B. 雨后的草地,像一块绿色的地毯,让人感到心旷神怡。
C. 那只小鸟在枝头欢快地歌唱,仿佛在向人们展示它的美丽歌喉。
D. 这座山就像一位巨人,静静地矗立在天地之间。
7. 下列词语中,形近义近的一组是()A. 端庄懒散恣意欣喜B. 妩媚纤巧沉默欢快C. 美丽丑陋傲慢勇敢D. 聪明懒惰善良美丽8. 下列句子中,使用了排比修辞手法的一项是()A. 雨后的彩虹绚丽多彩,宛如一座七彩桥。
八上语文课外古诗考试题及答案
八上语文课外古诗考试题及答案一、填空题1. “床前明月光,疑是地上霜。
”出自唐代诗人______的《静夜思》。
2. “春眠不觉晓,处处闻啼鸟。
”出自唐代诗人______的《春晓》。
3. “独在异乡为异客,每逢佳节倍思亲。
”出自唐代诗人______的《九月九日忆山东兄弟》。
二、选择题1. 下列诗句中,哪一项不是王之涣的《登鹳雀楼》中的诗句?A. 白日依山尽,黄河入海流。
B. 欲穷千里目,更上一层楼。
C. 会当凌绝顶,一览众山小。
D. 举头望明月,低头思故乡。
2. “青青子衿,悠悠我心。
”这句诗出自《诗经》中的哪一篇?A. 《关雎》B. 《蒹葭》C. 《子衿》D. 《采薇》三、简答题1. 请简述《静夜思》的主要内容和表达的情感。
2. 《春晓》一诗中,诗人是如何描绘春天的景象的?四、翻译题1. 将《九月九日忆山东兄弟》翻译成现代汉语。
五、鉴赏题1. 请分析《登鹳雀楼》的艺术特色。
答案一、填空题1. 李白2. 孟浩然3. 王维二、选择题1. C(“会当凌绝顶,一览众山小”出自杜甫的《望岳》)2. C(“青青子衿,悠悠我心”出自《诗经·郑风·子衿》)三、简答题1. 《静夜思》是李白在夜晚思念家乡时所作,诗中通过明月、床前、地上霜等意象,表达了诗人对故乡的深深思念和孤独感。
2. 《春晓》通过“春眠不觉晓”、“处处闻啼鸟”等描绘,表现了春天的生机勃勃和诗人对春天的喜爱。
四、翻译题《九月九日忆山东兄弟》独在异乡为异客,每逢佳节倍思亲。
遥知兄弟登高处,遍插茱萸少一人。
翻译:独自在外地作为客人,每到节日就更加思念家乡的亲人。
远远地想到兄弟们登上高处,插着茱萸,却少了一个人。
五、鉴赏题《登鹳雀楼》是王之涣的代表作之一,这首诗以登高远望的视角,展现了壮丽的自然景观和诗人的壮志豪情。
诗中的“白日依山尽,黄河入海流”描绘了日落时分的壮美景象,而“欲穷千里目,更上一层楼”则表达了诗人追求更高境界的志向。
整首诗语言简练,意境深远,给人以强烈的视觉和心灵震撼。
八年级数学上册期末考试题(含答案)
八年级数学上册期末考试题(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.下列图形中,是轴对称图形的是( )A .B .C .D .8.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.因式分解:2218x -=__________.3.因式分解:2a 2﹣8=________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x=+(2)3111xx x=-+-2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.如图,在△ABC中,∠B=40°,∠C=80°,AD是BC边上的高,AE平分∠BAC,(1)求∠BAE的度数;(2)求∠DAE的度数.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、A6、C7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、2(x+3)(x﹣3).3、2(a+2)(a-2).4、425、56.6、13 2三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、1 23、0.4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。
八上英语期中考试卷学林
姓名:__________ 班级:__________ 学号:__________考试时间:90分钟满分:100分一、选择题(每题2分,共20分)1. How are you today?A. I'm fine, thank you.B. I'm happy.C. I'm sorry.2. What's your favorite color?A. Red.B. Blue.C. Both.3. I like playing basketball. Do you?A. Yes, I do.B. No, I don't.C. I like playing football.4. It's a sunny day. Let's go to the park.A. Good idea!B. No, let's not.C. I don't know.5. How many students are in your class?A. Twenty.B. Twenty-five.C. Thirty.6. What time is it now?A. 7:00.B. 8:00.C. 9:00.7. I have a pen, a pencil, and a ruler.A. Yes, you do.B. No, you don't.C. I have a book.8. She is a teacher. She teaches English.A. Yes, she is.B. No, she isn't.C. She is a doctor.9. I like apples and bananas. What about you?A. I like oranges.B. I like both.C. I like neither.10. Where is the library?A. It's behind the school.B. It's near the school gate.C. It's on the second floor.二、完形填空(每题2分,共20分)My name is Li Ming. I am a student in Class 8. I like school very much. Every day, I go to school by bus. There are many students in my class. We have four classes in the morning and two classes in the afternoon.Our teachers are very kind. They teach us English, math, Chinese, and other subjects.On weekends, I like to visit my grandparents. They live in the countryside. There is a big garden in their house. We often play in the garden and eat delicious food. My grandparents are very healthy. They like to exercise every day.I have a good friend named Zhang Hua. We are in the same class. We often help each other with our homework. We also like playing sports together. We are good friends.My favorite subject is English. I like to learn new words and sentences.I hope I can speak English well in the future.11. A. by bus12. A. many13. A. teachers14. A. countryside15. A. exercise16. A. friend17. A. homework18. A. sports19. A. English20. A. future三、阅读理解(每题2分,共20分)Passage 1Last weekend, my family went to the beach. It was a sunny day. Wearrived at the beach at 9:00 a.m. There were many people there. We played beach volleyball, swam in the ocean, and built sandcastles. We had a picnic and ate sandwiches, fruits, and drinks. It was a great day!21. Where did the writer go last weekend?A. The beach.B. The mountains.C. The park.22. How did the writer arrive at the beach?A. By car.B. By bus.C. By train.23. What did the writer and his family do at the beach?A. They went swimming.B. They played beach volleyball.C. They built sandcastles.24. What did the writer and his family have for lunch?A. Pizza.B. Sandwiches.C. Pasta.25. How did the writer feel about the trip?A. Tired.B. Happy.C. Sad.Passage 2The Internet is a wonderful invention. It helps us in many ways. We can use it to learn new things, communicate with friends, and do ourhomework. However, the Internet can also be dangerous. We should be careful when using it.The Internet is a great tool for learning. We can find information about any subject on the Internet. We can also watch educational videos and listen to podcasts. This can help us improve our knowledge and skills.However, the Internet can also be harmful. Some websites contain inappropriate content. We should avoid these websites and only visit safe websites. We should also be careful about sharing our personal information online.In conclusion, the Internet is a powerful tool. We should use it wisely and responsibly.26. What is the main idea of the passage?A. The Internet is a wonderful invention.B. The Internet is a dangerous place.C. The Internet can be used for learning and communication.27. What is one way the Internet can help us learn?A. We can find information about any subject.B. We can communicate with friends.C. We can watch movies and TV shows.28. What should we be careful about when using the Internet?A. We should avoid visiting unsafe websites.B. We should share our personal information online.C. We should only use the Internet for learning.29. What is the writer's opinion about the Internet?A. It is a wonderful invention.B. It is a dangerous place.C. It is a great tool for learning and communication.30. Which sentence is NOT true according to the passage?A. The Internet is a great tool for learning.B. The Internet is a dangerous place.C. We should share our personal information online.四、短文改错(每题2分,共10分)My friend, Lily, has a dog. His name is Bingo. He is two years old. He is very clever and cute. He likes to play with me. We often play hide-and-seek. He is also very good at catching balls. One day, I threw a ball for him. He ran after it and caught it. I was very happy. Bingo is a good dog.1. His -> Its2. has -> have3. two years old -> two years old.4. clever -> cleverly5. play with me -> play with Lily6. often play -> often plays7. good at -> good at catching8. day -> that day9. very happy -> I was very happy10. good dog -> good dog.五、书面表达(10分)Write a short passage about your favorite hobby. You should include the following points:1. What is your hobby?2. How often do you do it?3. Why do you like it?4. What are some of the things you enjoy about it?(答案仅供参考,具体内容可根据个人实际情况进行修改。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(共10个小题,每小题3分,满分30分:每小题给出的四个选项中,只有一个是正确的.)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.在下列长度的三条线段中,能围成三角形的是()A.2,3,4 B.2,3,5 C.3,5,9 D.8,4,43.如果一个多边形的内角和等于720°,则它的边数为()A.3 B.4 C.5 D.64.下列运算中正确的是()A.2a3﹣a3=2 B.2a3•a4=2a7C.(2a3)2=4a5D.a8÷a2=a45.在△ABC中,∠C=90°,∠A=60°,AC=2.则AB的长为()A.1 B.2 C.3 D.46.分式的值为0,则y的值是()A.5 B.C.﹣5 D.07.若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8 B.8 C.±4 D.48.如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF9.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.如图,△ABC和△ADE是等腰直角三角形,且∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.则下列结论不正确的是()A.BD=CE B.BD⊥CE C.AF平分∠CAD D.∠AFE=45°二、填空题(共6个小题,每小题3分,共18分.)11.已知点P的坐标为(﹣2,3).则它关于y轴对称的点P'的坐标是.12.已知x+y=6,xy=7,则x2y+xy2的值是.13.如图,已知△ABC≌△DEF,∠B=57°,∠D=77°,则∠F=.14.(a2)﹣1(a﹣1b)3=.15.等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.16.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.三、解答题(共7小题,共48分,解答要求写出文字说明,证明过程或计算步骤.)17.(4分)计算:a÷b×.18.(4分)计算:(x+1)(x﹣1)﹣(x+2)2.19.(6分)如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;(2)在x轴上找一点P,使得PB+PA的值最小.(要求写作法)20.(6分)先化简,再求值:已知(+)÷,其中x满足x2+2x﹣5=0.21.(8分)如图,在△ABC中,∠C=90°,点D,点E在边BC上,且满足AD=BD,AE 平分∠BAD,若∠CAE=42°.求∠AEC和∠B的度数.22.(10分)某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km.而步行路程是骑车路程的.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.(10分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AE⊥DE.四、解答题(共2小题,共24分,解答要求马出文字说明。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.已知△ABC 中,AB =6,BC =4,那么边AC 的长可能是下列哪个值()A .11B .5C .2D .12.下面四个图形中,线段BE 是⊿ABC 的高的图是()A .B .C .D .3.如图,已知ABC EFG ∆≅∆,则∠α等于()A .72°B .60°C .58°D .50°4.下列图形具有稳定性的是()A .梯形B .长方形C .直角三角形D .平行四边形5.下列图形中,是轴对称图形的是()A .B .C .D .6.下列命题正确的是()A .三角形的一个外角大于任何一个内角B .三角形的三条高都在三角形内部C .三角形的一条中线将三角形分成两个三角形面积相等D .两边和其中一边的对角相等的三角形全等7.如图,若ABE ACF V V ≌,且AB =8,AE =3,则EC 的长为()A .2B .3C .5D .2.58.如图,ABC DEF ≅ ,DF 和AC ,EF 和BC 为对应边,若A 123∠=︒,F 39∠= ,则DEF ∠等于()A .18°B .20°C .39°D .123°9.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .410.如图,点C 为线段AB 上一点,△ACM 和△CBN 是等边三角形.下列结论:①AN=BM;②CE=CF;③△CEF 是等边三角形;④∠ECF=60°∘.其中正确的是()A .①B .①②C .①②③D .①②③④11.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .二、填空题12.一个三角形的三个内角的度数的比是1:2:3,这个三角形是________三角形;13.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.14.如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.15.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的4个外角,若1234310∠+∠+∠+∠=︒,则B Ð的度数为_________.16.如图,在△ABC 中,已知点D 、E 、F 分别是边BC 、AD 、CE 上的中点,且S △ABC =4,则S △BFF =_____.17.如图,等腰三角形ABC 的底边BC 长为4,面积是18,腰AC 的垂直平分线EF 分别交AC ,周长的最小AB边于E,F点.若点D为BC边的中点,点G为线段EF上一动点,则CDG值为______.三、解答题+++-----.18.已知a,b,c为三角形三边的长,化简:a b c b c a c a b19.如图,两个三角形成轴对称,画出对称轴.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∆ABC关于直线l成轴对称的△AB'C';(2)以AC为边作与∆ABC全等的三角形,则可作出个三角形与∆ABC全等;(3)在直线l上找一点P,使PB+PC的长最短.21.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:AB∥DE.22.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .23.如图,在△ABC 中,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,E ,F 为垂足.AE =CF ,求证:∠ACB =90°.24.如图,△ABC 中,AB =AC ,∠BAC +∠BDC=180°.(1)求证:AD 为∠BDC 的平分线;(2)若∠DAE=12∠BAC ,且点E 在BD 上,直接写出BE 、DE 、DC 三条线段之间的等量关系_______.25.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.(问题解决)(1)如图1,若点D在边BC上,求证:CE+CF=CD;(类比探究)(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.参考答案1.B【详解】试题分析:由三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选B.考点:三角形三边关系.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A 选项符合.故选A .3.A【分析】根据全等三角形的性质求解即可.【详解】∵ABC EFG ∆≅∆,∴∠ACB =∠EGF ,故72ACB α∠=∠=︒.故答案为:72︒.【点睛】本题考查了全等三角形的性质,对应边相等,对应角相等,对应线段相等,特别要注意“对应”两字.4.C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.5.D【分析】根据轴对称图形的定义判断即可【详解】A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、不是轴对称图形,不合题意;D 、是轴对称图形,符合题意;故选:D .【点睛】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.6.C【分析】根据三角形的外角定理即可判断①;根据三角形的高的定义即可判断②;根据三角形中线的性质即可判断③;根据全等三角形的判定方法即可判断④,进而可得答案.【详解】解:A 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项命题错误,不符合题意;B 、钝角三角形有两条高在三角形的外部,故本选项命题错误,不符合题意;C 、三角形的一条中线将三角形分成两个三角形面积相等,故本选项命题正确,符合题意;D 、两边和其中一边的对角相等的两个三角形不一定全等,故本选项命题错误,不符合题意.故选:C .【点睛】本题考查了真假命题、三角形的外角性质、中线的性质、高的定义和全等三角形的判定等知识,属于基础题型,熟练掌握基本知识是解题的关键.7.C【分析】由ABE ACF V V ≌可得,AB AC =从而利用线段的和差可得答案.【详解】解:,8ABE ACF AB = ≌,8,AB AC ∴==3,AE = 83 5.CE AC AE ∴=-=-=故选C .【点睛】本题考查的是三角形全等的性质,线段的和差,掌握以上知识是解题的关键.8.A【分析】根据全等三角形的性质求出∠D ,再用三角形的内角和定理即可求解.【详解】解:∵ABC DEF ≅ ,∴∠D=∠A=123°,又F 39∠= ,∴DEF ∠=180°-∠D-∠F=180°-123°-39°=18°,故答案为:A .【点睛】本题考查全等三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质是解答的关键.9.C【分析】根据三角形面积公式由点D 为BC 的中点得到S △ABD =S △ADC =12S △ABC =6,同理得到S △EBD =S △EDC =12S △ABD =3,则S △BEC =6,然后再由点F 为EC 的中点得到S △BEF =12S △BEC =3.【详解】解:∵点D 为BC 的中点,∴S △ABD =S △ADC =12S △ABC =6,∵点E 为AD 的中点,∴S △EBD =S △EDC =12S △ABD =3,∴S △EBC =S △EBD +S △EDC =6,∵点F 为EC 的中点,∴S △BEF =12S △BEC =3,即阴影部分的面积为3cm 2.故选:C .【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.10.D【分析】由等边三角形可得其对应线段相等,对应角相等,进而可由SAS 得到△CAN ≌△CMB ,再由△CAN ≌△CMB 可得∠CAN=∠CMB ,进而得出∠MCF=∠ACE ,由ASA 得出△CAE ≌△CMF ,即CE=CF ,又ECF=60°,所以△CEF 为等边三角形结论得以验证.【详解】解:(1)∵△ACM ,△CBN 是等边三角形,∴AC=MC ,BC=NC ,∠ACM=60°=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB在△CAN 和△MCB 中,AC MC ACN MCB NC BC =⎧⎪∠=∠⎨⎪=⎩,∴△CAN ≌△CMB (SAS ),∴AN=BM ,①正确;∵△CAN ≌△CMB ,∴∠CAN=∠CMB ,又∵∠ECF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠ECF=∠ACE ,在△CAE 和△CMF 中,CAE CMF CA CM ACE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAE ≌△CMF (ASA ),∴CE=CF ,∴△CEF 为等腰三角形,又∵∠ECF=60°,∴△CEF 为等边三角形,所以②③④正确,故选:D .【点睛】本题考查了全等三角形的性质和判定及等边三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.11.B【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC、2、只有选项B的各边为1B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.12.直角【分析】依据三角形的内角和为180°,直接利用按比例分配求得最大的角,根据三角形的分类即可判断.【详解】解:3 18090123︒︒⨯=++因为三角形中有一个角是90°,所以该三角形是直角三角形;故答案为直角.【点睛】此题主要考查三角形的内角和定理以及三角形的分类方法.13.10cm<x<70cm【解析】试题分析:三角形的第三边长大于两边之差,小于两边之和,则x的取值范围为:10cm x70cm<<.14.AB ED=,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC∆和Rt EDF∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:两直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL 等.15.130°【分析】根据多边形外角是360︒可求得B Ð的外角,即可得到结果.【详解】由题可得B Ð的外角=()1234360-=360-310=50︒︒︒∠+∠+∠+∠︒,∴=180-50=130B ∠︒︒︒.故答案为130︒.【点睛】本题主要考查了多边形的外角定理,准确理解外角和及邻补角的性质是解题的关键.16.1【分析】根据三角形中线的性质可得S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,进而可根据()()12BEC DBE DCE ABD ADC S S S S S =+=+ 求出BEC S ,再利用三角形中线的性质解答即可.【详解】解:∵D 、E 分别为BC 、AD 的中点,∴S △ABE =S △DBE =S △DCE =S △AEC =14S △ABC ,∴()()11222BEC DBE DCE ABD ADC ABC S S S S S S ==+=+= ,∵F 是边CE 的中点,∴211122BEF BEC S S ==⨯= .故答案为:1.【点睛】本题考查了三角形中线的性质,属于常考题型,熟练掌握三角形的中线性质是解题的关键.17.11【分析】连接AD ,AG ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,GA=GC ,推出GC+DG=GA+DG≥AD ,故AD 的长为BG+GD 的最小值,由此即可得出结论.【详解】解:连接AD ,AG .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD=12×4×AD=18,解得AD=9,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,GA=GC ,∴GC+DG=GA+DG≥AD ,∴AD 的长为CG+GD 的最小值,∴△CDM 的周长最短=(CG+GD )+CD=AD+12BC=9+12×4=9+2=11.故答案为:11.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.a+c-b【分析】根据三角形的三边关系得出a+b>c,a+c>b,再去绝对值符号,合并同类项即可.【详解】解:∵a、b、c为三角形三边的长,∴a+b>c,a+c>b,+-+-+--+∴原式=(a b)c b(c a)c(a b)=a+b-c-b+c+a+c-a-b=a+c-b【点睛】本题考查的是三角形的三边关系以及整式的加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.见解析.【分析】连接一对对应点AB,作AB的垂直平分线即可得出答案【详解】解:连接一对对应点AB,作AB的垂直平分线即可得出答案.【点睛】此题主要考查了利用轴对称设计图案,解决此类问题的关键是熟练掌握其性质,根据要求找出对应点再画图形.20.(1)见解析;(2)3;(3)见解析【分析】(1)分别作各点关于直线l 的对称点,再顺次连接即可;(2)根据勾股定理找出图形即可;(3)连接B′C 交直线l 于点P ,则P 点即为所求.【详解】(1)如图,△AB 'C '即为所求;(2)如图,△AB 1C ,△AB 2C ,△AB 3C 即为所求,故填:3;(3)如图,P 点即为所求.【点睛】本题考查的是作图−轴对称变换,熟知轴对称的性质是解答此题的关键.21.见详解.【分析】利用“HL”定理可证明ABC EDF ≅ ,由全等可得B D ∠=∠易证AB ∥DE .【详解】解: AC ⊥BD ,EF ⊥BD90,90ACB EFD ︒︒∴∠=∠= CD =BFCD CF BF CF∴+=+BC DF∴=在Rt ABC 和Rt EDF 中{BC DF AB DE==Rt ABC Rt EDF∴≅ B D∴∠=∠AB DE∴ 【点睛】本题考查了直角三角形的判定,熟练掌握直角三角形特殊的判定方法“HL”定理是解题的关键.22.见解析【分析】由AE ⊥BC ,DF ⊥BC ,得出∠AEB=∠DFC=90°,再由CE=BF ,AB=DC 得Rt △AEB ≌Rt △DFC ,即可得∠B=∠C ,即可得出结论.【详解】∵AE ⊥BC ,DF ⊥BC ,∴∠AEB=∠DFC=90°.∵BF=CE ,∴BF-EF=CE-EF ,即BE=CF ,在Rt △AEB 和Rt △DFC 中,BE CF AB DC =⎧⎨=⎩,∴Rt △AEB ≌Rt △DFC (HL ),∴∠B=∠C ,∴AB ∥CD .【点睛】本题主要考查了全等三角形的判定及性质,平行线的判定等知识;熟练掌握全等三角形的判定及性质是解决问题的关键.23.见解析【分析】根据题意易得Rt △ACE ≌Rt △CBF ,则有∠EAC =∠BCF ,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF =⎧⎨=⎩,∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.24.(1)见解析;(2)DE=B E+DC.【分析】(1)过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,先证明∠BAG=∠CAF ,然后证明△BAG ≌△CAF 得到AG=AF ,最后由角平分线的判定定理即可得到结论;(2)过A 作∠CAH=∠BAE ,证明△EAD ≌△HAD ,得到AE=AH ,再证明△EAB ≌△HAC 中,即可得出BE 、DE 、DC 三条线段之间的等量关系.【详解】证明:(1)如图1,过A 作AG ⊥BD 于G ,AF ⊥DC 于F ,∵AG ⊥BD ,AF ⊥DC ,∴∠AGD=∠F=90°,∴∠GAF+∠BDC=180°,∵∠BAC+∠BDC=180°,∴∠GAF=∠BAC ,∴∠GAF-∠GAC=∠BAC-∠GAC ,∴∠BAG=∠CAF ,在△BAG 和△CAF 中90AGB F BAG CAF AB AC⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△BAG ≌△CAF (AAS ),∴AG=AF ,∴∠BDA=∠CDA ,(2)BE 、DE 、DC 三条线段之间的等量关系是DE=B E+DC ,理由如下:如图2,过A 作∠CAH=∠BAE 交DC 的延长线于H,∵∠DAE=12∠BAC ,∴∠DAE=∠BAE+∠CAD ,∵∠CAH=∠BAE ,∴∠DAE=∠CAH+∠CAD=∠DAH ,在△EAD 和△HAD 中EAD HADAD AD ADE ADH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EAD ≌△HAD (ASA ),∴DE=DH ,AE=AH ,在△EAB 和△HAC 中BAE CAH AE AH ⎪∠=∠⎨⎪=⎩,∴△EAB ≌△HAC (SAS ),∴BE=CH ,∴DE=DH=DC+CH=DC+BE ,∴DE=DC+BE.故答案是:DE=DC+BE.【点睛】本题考查了全等三角形的性质和判定,角平分线的判定定理,线段和差的证明,掌握截长法和补短法是解答此题的突破口.25.(1)见解析;(2)FC =CD+CE ,见解析【分析】(1)在CD 上截取CH =CE ,易证△CEH 是等边三角形,得出EH =EC =CH ,证明△DEH ≌△FEC (SAS ),得出DH =CF ,即可得出结论;(2)过D 作DG ∥AB ,交AC 的延长线于点G ,由平行线的性质易证∠GDC =∠DGC =60°,得出△GCD 为等边三角形,则DG =CD =CG ,证明△EGD ≌△FCD (SAS ),得出EG =FC ,即可得出FC =CD+CE .【详解】(1)证明:在CD 上截取CH =CE ,如图1所示:∵△ABC 是等边三角形,∴∠ECH =60°,∴△CEH 是等边三角形,∴EH =EC =CH ,∠CEH =60°,∵△DEF 是等边三角形,∴DE =FE ,∠DEF =60°,∴∠DEH+∠HEF =∠FEC+∠HEF =60°,∴∠DEH =∠FEC ,在△DEH 和△FEC 中,DEH FEC EH EC⎪∠=∠⎨⎪=⎩,∴△DEH ≌△FEC (SAS ),∴DH =CF ,∴CD =CH+DH =CE+CF ,∴CE+CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD+CE ;理由如下:∵△ABC 是等边三角形,∴∠A =∠B =60°,过D 作DG ∥AB ,交AC 的延长线于点G ,如图2所示:∵GD ∥AB ,∴∠GDC =∠B =60°,∠DGC =∠A =60°,∴∠GDC =∠DGC =60°,∴△GCD 为等边三角形,∴DG =CD =CG ,∠GDC =60°,∵△EDF 为等边三角形,∴ED =DF ,∠EDF =∠GDC =60°,∴∠EDG =∠FDC ,在△EGD 和△FCD 中,ED DFEDG FDC DG CD=⎧⎪∠=∠⎨⎪=⎩,∴△EGD ≌△FCD (SAS ),∴EG =FC ,∴FC =EG =CG+CE =CD+CE .21【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.。
八上物理考试试题及答案
八上物理考试试题及答案一、选择题(每题2分,共40分)1. 下列现象中,属于光的反射的是:A. 小孔成像B. 影子的形成C. 镜子中的影像D. 透镜成像答案:C2. 声音在空气中的传播速度是:A. 340m/sB. 1000m/sC. 2000m/sD. 3000m/s答案:A3. 以下哪种物质是导体?A. 橡胶B. 玻璃C. 塑料D. 铜答案:D4. 用放大镜观察物体时,物体应该放在:A. 放大镜的焦点之内B. 放大镜的焦点之外C. 放大镜的焦点上D. 放大镜的焦距之外5. 以下哪种现象不是由于惯性引起的?A. 汽车刹车时,乘客向前倾B. 抛出的篮球在空中继续飞行C. 汽车突然加速,乘客向后仰D. 跳伞运动员在空中匀速下降答案:D6. 以下哪种情况不属于能量的转化?A. 摩擦生热B. 电灯发光C. 食物消化D. 植物光合作用答案:C7. 以下哪种物质是绝缘体?A. 铁B. 银C. 陶瓷D. 铝答案:C8. 以下哪种情况不属于光的折射现象?A. 看水中的鱼比实际位置浅B. 通过凸透镜看物体C. 看水中的物体比实际位置深D. 看水中的物体时,物体的像在物体的上方答案:C9. 以下哪种现象属于光的直线传播?B. 影子C. 镜子中的影像D. 透镜成像答案:B10. 以下哪种物质是半导体?A. 铁B. 银C. 陶瓷D. 硅答案:D11. 以下哪种现象不属于电磁感应?A. 发电机发电B. 电动机转动C. 磁铁吸引铁钉D. 电磁铁的磁性答案:C12. 以下哪种情况不属于热传递?A. 热水袋取暖B. 太阳晒热地面C. 电热器加热D. 摩擦生热答案:D13. 以下哪种物质是超导体?A. 铁B. 银C. 陶瓷答案:D14. 以下哪种现象不属于光的反射?A. 镜子中的影像B. 影子的形成C. 倒影D. 透镜成像答案:B15. 以下哪种物质是绝缘体?A. 橡胶B. 玻璃C. 塑料D. 铜答案:C16. 以下哪种现象属于光的折射?A. 影子的形成B. 小孔成像C. 看水中的物体比实际位置深D. 透镜成像答案:D17. 以下哪种现象不属于电磁感应?A. 发电机发电B. 电动机转动C. 磁铁吸引铁钉D. 电磁铁的磁性答案:C18. 以下哪种物质是半导体?A. 铁B. 银C. 陶瓷D. 硅答案:D19. 以下哪种现象属于光的直线传播?A. 彩虹B. 影子C. 镜子中的影像D. 透镜成像答案:B20. 以下哪种物质是超导体?A. 铁B. 银C. 陶瓷D. 汞答案:D二、填空题(每题2分,共20分)1. 光在真空中的传播速度是_______m/s。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。
八上数学考试题目及答案
八上数学考试题目及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bx + cD. y = ax^2 + bx^3 + cx + d答案:A2. 计算下列哪个表达式的值等于4?A. 2^2B. (-2)^2C. 2^(-2)D. (-2)^(-2)答案:B3. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A4. 以下哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个正数,不等号方向不变B. 不等式两边同时乘以一个负数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个负数,不等号方向不变答案:C5. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 45°B. 60°C. 90°D. 135°答案:C6. 以下哪个选项是完全平方数?A. 36B. 49C. 50D. 51答案:B7. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 所有选项答案:D8. 以下哪个选项是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 对应边相等D. 面积相等答案:B9. 一个圆的半径是5cm,那么它的直径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:B10. 以下哪个选项是勾股定理的表达式?A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 * b^2 = c^2D. a^2 / b^2 = c^2答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是它本身的数是非负数。
2. 一个数的平方根有两个,一个是正数,另一个是负数。
3. 一个数的立方根只有一个,且与原数的符号相同。
八年级上册数学考试题及答案
八年级上册数学考试题及答案八年级上册数学考试题及答案本次八年级上册数学考试共有十道大题,包括一道选择题、三道填空题、一道解答题、五道计算题。
下面是本次考试的试题及答案。
一、选择题:题目:如果|x-2|<1,那么x的取值范围是()A、[-1,3]B、[1,3]C、(-3,-1)D、(-1,-3)答案:A。
二、填空题:(1)若圆锥的底面半径为3,高为2,则体积为______(2)将1kg的淡水从最高处自由落体,其落下的高度是______(3)将一个角为50°的三角形的第二条边延长三倍,得到的角数为______答案:(1)18; (2)9.8m; (3)100°。
三、解答题:设函数 f (x)=ax2+bx+c中,a>0,则f (x)在]-∞,+∞]上的单调性是()答案:由a>0,可知函数 f (x)在]-∞,+∞]上是递增的。
四、计算题:a )若Sin357°=a,写出a的值b )若//ABC,∠A=60°,BC=4,求AB的长度c )若x2-3x+2=0,求x的值d )若椭圆x2+y2=9上一点P(2,1)到直线3x-2y=6的距离e )若函数f (x)=x+a,求f (2)=答案:a )a=sin357°=√3/2;b )AB=√32+12=4√3;c )x=1,3;d )距离=3/√13;e )f (2)=2+a。
本次八年级上册数学考试,旨在考察学生的基本知识的认知能力,以及解决习题的应用能力。
以上就是本次八年级上册数学考试的试题和答案,希望学生能够认真研读试题,成功迎接本次考试。
成都市八年级上Unit+2+考试题(新题型)2024-2025学年人教版英语八年级上册
成都市2024-2025学年八年级上学期Unit 2考试题(新题型)英语第一部分听力略第二部分语言知识运用五、阅读下面短文,从方框内的选项中选出可以填入空白处的最佳选项。
A. a fewB. do houseworkC. hardly everD. less thanE. living habitsThere is a special survey. It's about how often students _____26_____ at home. We thought most students would always help their parents with housework at home. But the results were quite different. Only _____27_____ students help their parents with housework every day. Other students_____28_____ do housework. They said that they might do housework _____29_____ twice a year. The others said they never do that because it isn't their work and it is also boring. Sometimes it's good to do housework because good_____30_____ can help students develop(发展) better.六、补全对话。
根据对话内容,从方框中选出最佳选项补全对话。
A: Hello! I'm a reporter from English Weekly. May I ask you some questions?B: Of course.A: _____31_____B: I exercise every day. I like running in the morning and taking a walk after dinner.A: _____32_____B: No. I never eat it. _____33_____ I also like drinking milk. They can help me keep healthy.A: _____34_____B: About eight hours. I never stay up late.A: _____35_____ Keep them up!B: OK. I will.A.Do you eat junk food?B.You have good habits.C.How often do you exercise?D.. I eat vegetables and fruit every day.E. How many hours do you usually sleep at night?七、完形填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I. 在下列各句空白处填入一个适当的词, 使句子意思完整,语法正确。
(5分)1. They are still working on the farm, a________ it is raining.2. You should e_______ more to keep healthy.3. She always feels w_______ about the exams.4. The hall can hold(容纳) two h______ people to eat in it.5. There are sixty m______ in an hour.II. 选择方框内合适的词或短语,并用其适当形式填空。
(5分)west take quick heavy get6. It’s not far. You don’t need _______ a bus.7. _______ up early is good for your health.8. Tom is ______ than his brother.9. The lake lies(位于) in the ______ part of the city.10. You should have breakfast _______, or you’ll be late.Ⅲ. 单项选择(15分)()11. ---________ do you watch TV every week? --- Three times.A.How oftenB. How longC.How many timesD.How soon()12. My hair is shorter than ______.A.my sisterB.herC.my sister’sD.Tom()13. You should finish ______ your homework before the vacation is over.A.doB.to doC.doingD.did()14. ---There is ______ water in my glass. Can I get some from you?---Sure. Here you are.A.littleB.fewC.a littleD.a few()15. She doesn’t want to ______ so much money on the shoes.A.takeB.costC. spendD. pay()16. ---How often does Laura play the trumpet?---_______ once or ________ a week, I’m not sure.A. May be: twiceB. Maybe; twiceC. Maybe; two timesD. May be; two times ()17. He is going to Tibet _______ December ______ a month.A.on; ofB.on; forC.in; forD.in; of()18. ---I’m sorry I forgot _______ the letter for you.---It doesn’t matter. I’ll post it myself.A. postB.postingC.to postD.posted()19. It took him about a week _______ to play tennis.A. learnB.to learnC.learnedD.learning()20. ---_______ go to the concert tonight? You’re too stressed out. ---You’re right.A. What aboutB. How aboutC. Why notD. Why don’t()21.We’re going for a picnic this weekend. ---Let’s _______ Tom _______ with us.A.invite; to goB.to invite; to goC.invite; goD.to invite; go()22. It is _______ cold today. Please wear more clothes.A.too manyB. too muchC.many tooD. much too()23. ---Look at that girl, is she Nina? ---No, it _____ her, she is in Japan now.A.must beB.mustn’t beC.can beD.can’t be()24. _______ students ride to school every day.A. The number of theB. Number ofC. A numberD. A number of()25. It is three miles _______ here.A.awayB.far fromC. far awayD. away fromⅣ.交际运用(15分)A.从方框中选出五个恰当的选项补全对话。
(5分)A.OK. I'll take your advice. B. I've only had a cup of tea. C. How are you feeling now?D. No, but I have a terrible stomachache.E. How much cake, and how many Cokes?F. Aren' t you going to give me any medicine?Dr Lee: So you've been sick, David. How many times?David: Twice. Once before breakfast, and once five minutes ago.Dr Lee: Do you have a headache? David: 26. __________Dr Lee: You don't have a temperature, right? And how much food have you had today?David: Food! You must be joking! 27.________ That's all.Dr Lee: And last night? What did you have then?David: I had a pizza, three hamburgers, two hot-dogs, lots of French fries and two cheese sandwiches. And then I had some cake and lots of Cokes. Dr Lee: 28.___________ David: A big piece of chocolate cake and five Cokes.Dr Lee: David, I don't think you're really ill. You've had too much to eat, that's all.David: 29.__________Dr Lee: No. You should stay in bed today, and have a good rest.David: 30.__________B.根据对话内容,在空白处填写适当的话语(话语可能是一个句子,也可能是一个短语或一个词),使对话完整。
(10分)Jack : Hello, Lucy! Lucy : Hello, Jack!Jack : 1. ______________________________? Lucy : Fine, thanks! And you?Jack : I'm fine, too. Um, Lucy, would you like to go out to dinner on Saturday night?There's a new restaurant near the station.Lucy : Yes, I'd love to. But I'm sorry 2.__________________________. I have tovisit my grandparents.Jack : Oh, that's too bad. Well, 3.___________________________?Lucy : Sunday? Let me see. Yes, I think I'm free.Jack : Great. 4._________________________are we going to meet? Lucy : At six o'clock.? Jack : Sounds good. Let's meet at the station at six o'clock.Lucy :5._____________________. See you on Sunday at six o'clock.Jack : Right. I'm looking forward to it. Lucy : Me, too. Bye, Jack! Jack : Bye, Lucy!Ⅴ. 选词填空(10分)从下面方框中选择适当的选项填入短文中,使短文通顺、完整。
选项中有两个选项是多余选项。
A. forB.goodC.badD.dayE. returnF.strongG. needeI. studyJ. sayK.have L. strongerB.What is the best way to study? This is a very important question. Some Chinese students often _ _36__ very hard __37 __ long hours. This is a __38___habit, but it is not a better way to study. A good student must __39__ enough sleep, enough food and enough rest. Every __40__you __41__ to take a walk or play basketball or ping-pong or sing a song. When you __42__to your studies, you’ll find yourself __43__ than before and you’ll learn more.Perhaps we can __44__ that learning English is like taking Chinese medicine,we mean that like Chinese medicine, the effects(效果) of your study __45__ slowly but surely. Learn every day and effects will come just like Chinese medicine.36._____ 37._____ 38.______ 39.______ 40._______41._____ 42._____ 43.______ 44.______ 45._______Ⅵ. 阅读理解(30分)( A ) Take a Bath(洗澡)In the United States, most people take a shower once a day in the morning. The showerhead is usu ally on the wall and cannot be moved(移动). The bather stands under the water, gets wet, scrubs (洗擦) with soap and often a washcloth, and then rinses off.(冲洗)Children often take a bath each night and enjoy playing with small toys such as boats and rubber (橡胶) ducks.It is important to remember that when you take a shower or bath in the United States, you should b e careful to keep the water inside the bathtub(浴缸).Unlike bathrooms in many countries, there is no drain(排水沟) in the floor.If water gets on the floor it cannot go anywhere and must be cleaned up at once. So be careful.根据短文内容回答问题。