第2章液力自动变矩器的结构和工作原理

合集下载

教学设计:自动变速器教案

教学设计:自动变速器教案

教学设计:自动变速器教案第一章:自动变速器概述1.1 自动变速器的发展历程1.2 自动变速器的优点1.3 自动变速器的组成和工作原理1.4 自动变速器的主要类型及应用第二章:液力变矩器2.1 液力变矩器的结构与工作原理2.2 液力变矩器的性能参数2.3 液力变矩器的维护与检修2.4 液力变矩器在使用过程中应注意的问题第三章:行星齿轮机构3.1 行星齿轮机构的结构与工作原理3.2 行星齿轮机构的性能参数3.3 行星齿轮机构的维护与检修3.4 行星齿轮机构在使用过程中应注意的问题第四章:液压控制系统4.1 液压控制系统的组成与工作原理4.2 液压控制系统的性能参数4.3 液压控制系统的维护与检修4.4 液压控制系统在使用过程中应注意的问题第五章:电子控制系统5.1 电子控制系统的组成与工作原理5.2 电子控制系统的性能参数5.3 电子控制系统的维护与检修5.4 电子控制系统在使用过程中应注意的问题第六章:自动变速器故障诊断与排除6.1 自动变速器常见故障现象与原因6.2 自动变速器故障诊断方法6.3 自动变速器故障排除步骤与技巧6.4 典型自动变速器故障案例分析第七章:自动变速器零件的检修与更换7.1 自动变速器零件的检查与评估7.2 自动变速器零件的检修方法7.3 自动变速器零件的更换步骤7.4 常见自动变速器零件的检修与更换案例第八章:自动变速器油液与冷却系统8.1 自动变速器油液的类型与性能要求8.2 自动变速器油液的更换与检查8.3 自动变速器冷却系统的作用与结构8.4 自动变速器冷却系统的维护与检修第九章:自动变速器与车辆性能的关系9.1 自动变速器对车辆动力性的影响9.2 自动变速器对车辆经济性的影响9.3 自动变速器对车辆稳定性的影响9.4 自动变速器与车辆驾驶性能的优化第十章:自动变速器技术的未来发展10.1 自动变速器技术的发展趋势10.2 先进自动变速器技术的应用10.3 自动变速器技术在新能源汽车中的应用10.4 自动变速器技术在智能交通领域的展望第十一章:自动变速器故障诊断与排除实践11.1 自动变速器故障诊断工具与设备11.2 自动变速器故障诊断与排除流程11.3 自动变速器故障诊断案例分析11.4 自动变速器故障排除实践技巧第十二章:自动变速器零件检修与更换操作12.1 自动变速器零件检修工具与方法12.2 自动变速器主要零件的更换步骤12.3 自动变速器零件检修与更换实践案例12.4 自动变速器零件检修与更换的安全注意事项第十三章:自动变速器油液与冷却系统维护13.1 自动变速器油液的类型与性能检测13.2 自动变速器油液更换与检查操作13.3 自动变速器冷却系统的结构与功能13.4 自动变速器冷却系统的维护与检修实践第十四章:自动变速器与车辆性能优化14.1 自动变速器对车辆动力性的影响分析14.2 自动变速器对车辆经济性的影响评估14.3 自动变速器对车辆稳定性的影响研究14.4 自动变速器性能优化技术与应用第十五章:自动变速器技术未来发展趋势15.1 自动变速器技术发展趋势分析15.2 先进自动变速器技术在新能源汽车中的应用前景15.3 自动变速器技术在智能交通领域的创新展望15.4 自动变速器技术发展的挑战与机遇重点和难点解析本文主要介绍了自动变速器的基本概念、结构原理、故障诊断与排除、零件检修与更换、油液与冷却系统维护、与车辆性能的关系以及未来发展趋势。

第2章 液力自动变矩器的结构和工作原理讲解

第2章 液力自动变矩器的结构和工作原理讲解
图2-2 液力偶合器工作示意图
2.1.2 液力耦合器的工作原理
当发动机运转时,曲轴带动液力偶合器的壳体和泵轮 旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同旋 转。在离心力的作用下,液压油从泵轮叶片内缘被甩向外 缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作用 下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动, 返回到泵轮的内缘,被泵轮再次甩向外缘。
即成为机械传动,此时传动效率略低于100%。
锁止控制阀的操纵,可以根据车速、节气 门参数按比例转换的液压信号进行控制。现在 在多采用的是根据车速、节气门参数按比例转 换的电压信号,邮电脑控制。
2.2.5 液力变矩器的冷却补偿系统
液力变矩器工作时总存在一些功率损失, 这些损失的能量大都被变矩器内的油液以内部 摩擦的形式转变为热量。如果这些热量不及时 散出,变矩器内的油液温度就会急剧升高,导
致变矩器不能工作,因此必须对变矩器内的油
液进行强制冷却。
图2-13 变矩器冷却补偿油路系统图
本章小结
1.液力偶合器只传递转矩而不能改变转矩,而液力 变矩器,既可传递转矩又可改变转矩。 2.液力偶合器传递动力的过程是:泵轮接受发动机 传来的机械能,在液体从泵轮叶片内缘向外缘流 动的过程中,将能量传给油液,使其动能提高工 作效率然后再通过高速流动的油液冲击涡轮叶片 ,将动能传给涡轮。 3.与液力偶合器不同的是,在液力变矩器的泵轮和 涡轮之间,安装有导轮。
2、四元件综合式液力变矩器 具备双导轮,使得高效率的区域更宽。
图2-11 四元件综合式液力变矩器
两个导轮 具有不同 的叶片进 口角度
图2-11 四元件综合式液力变矩器
工作原理:
两个导轮具有不同的叶片进口角度,在 低转速比时,两个导轮均被单向离合器锁住, 按变矩器工作。在中转速比时,涡流出口液流 开始冲击第一导轮叶片背面,第一单向离合器 松开,第一导轮与涡轮同向旋转,仅第二导轮 仍在起变矩作用。在高转速比时,涡轮出口液 流冲击第二导轮叶片背面,其单向离合器松开 ,第二导轮也与涡轮作同向旋转,变矩器全部 转入偶合器工况工作。

液力变速器的工作原理

液力变速器的工作原理

液力变速器的工作原理
液力变速器是一种使用液体媒介传递动力并实现变速的装置。

它主要由泵轮、涡轮、展速器和液力耦合器组成。

液力变速器的工作过程如下:
1. 引擎输出动力通过曲轴传递给液力变速器的泵轮。

泵轮是固定在曲轴上的,它会随着发动机的转速而旋转。

2. 泵轮的旋转会产生离心力,将液体(通常是液体自动变速器油)从泵轮的中心向外推。

3. 这些被推出的液体进入液力耦合器,液力耦合器由外壳、泵轮和涡轮组成。

4. 液体进入涡轮后,会被压缩并迅速加速转动。

涡轮是连接至车辆传动系统的组件。

5. 涡轮吸取了液体的动能,并将其传输给车辆传动系统,驱动车辆前行。

6. 同时,涡轮由于同步运转,使得液体重新回到液力耦合器。

7. 液体再次进入液力耦合器后,会被重新推回至泵轮,并循环往复,形成了一个闭合的动力传输回路。

通过调整泵轮和涡轮的形状和大小,液力变速器可以实现不同
的变速比,从而实现速度的调节。

当驾驶员需要加速时,液力变速器会增加泵轮和涡轮之间的液体压力,使得涡轮加速。

相反,当需要减速或停车时,液力变速器会减小液体压力,降低涡轮的转速。

总的来说,液力变速器通过液体传递动力,并通过调节液体压力来实现不同的变速比,从而满足驾驶员在不同行驶条件下的需求。

液力变矩器的结构、作用、常见故障快速诊断技巧

液力变矩器的结构、作用、常见故障快速诊断技巧

液力变矩器的结构、作用、常见故障快速诊断技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!液力变矩器是一种常见的车辆传动装置,它的结构复杂,但是它的作用非常重要。

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理(一)液力变矩器的结构液力变矩器以液体作为介质,传递和增大来自发动机的扭矩液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。

各件用铝合金精密铸造或者用钢板冲压焊接而成。

泵轮与变矩器壳成一体。

用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。

所有工作轮在装配后,形成断面为循环圆的环状体。

(二)液力变矩器的工作原理导涡泵液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成为了液力偶合器,它能传轴,并不增扭。

变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到妨碍,可使涡轮受到反作用力F2,由于F1、F2 都作用于涡轮,所以使涡轮所受扭矩得到增大。

涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。

所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。

导轮下端装有单向离合器,可增大其变扭范围。

(三)锁止式变矩器是用液力来传递汽车动力的,而液压油的内部磨擦会造成一定的能量损失,因此传动效率较低。

为提高汽车的传动效率,减少燃油消耗,现代不少轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。

这种变矩器内有一个由液压油控制的锁止离合器。

锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向挪移的压盘,它通过花键套与涡轮连接(如图 2.3) .压盘背面(如图 2.3 右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力) ;压盘左侧(压盘与变矩器壳体之间) 的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。

锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。

自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,控制锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。

液力变矩器的结构

液力变矩器的结构

1、三元一级双相型液力变矩器三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。

一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。

双相是指液力变矩器的工作状态分为变矩区和偶合区。

图4-1为液力变矩器三个主要元件的零件图。

2、液力变矩器的结构和作用泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。

变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。

发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的主动元件。

观看液力变矩器油液流动图上通过箭头示意液体流动方向。

油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰好和泵轮的旋转方向一致。

*3、液力变矩器的锁止和减振液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。

其余的动力都被转化为热量,散发到油液里。

为提高偶合工况的传动效率,变矩器设置了锁止离合器。

液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。

而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。

可以避免液力传动过程中不可避免的动力损失,提高液力变矩器的工作效率。

液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离心力锁止和粘液离合器锁止三种形式。

(1)液力锁止离合器液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器锁止形式。

液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。

液力锁止离合器进入锁止工况的示意图,见图4-4。

进入锁止工况时,变矩器内工作油液压加大,油液将压盘用力推向变矩器的后壳体,在油压和摩擦环摩擦力矩的双重作用下,压盘开始和变矩器同步旋转。

而压盘外端的卡口和涡轮上的卡口是相互咬合的,于是涡轮在压盘的带动下,也开始随变矩器壳同步旋转。

底盘电控系统——第二章 电控液力自动变速器教学教案

底盘电控系统——第二章 电控液力自动变速器教学教案

第二章电控液力自动变速器一、教学目的和基本要求通过此章内容的教学,让学生了解电控液力变速器的优、缺点,组成及分类;掌握电控液力变速器的结构和工作原理及典型轿车液力变速器的结构形式;了解电控液力自动变速器的使用注意事项,检查、试验的方法,分析常见故障的现象、原因及诊断排除方法。

二、教学内容第一节概述。

第二节电控液力自动变速器的结构与工作原理。

第三节典型轿车电控液力自动变速器。

第四节电控液力自动变速器的使用与检修。

三、教学重点及难点重点:电控液力自动变速器各机构和控制系统的分类、结构及工作原理;电子控制系统的电路及工作情况;电控液力自动变速器的性能检查方法。

难点:组合式行星齿轮系统的动力传递路线。

四、教学基本方法和教学过程此内容采用理实一体化教学方法,在教学中先理论后实践;性能检查授课理论实践同步进行。

五、作业1.液力变矩器的结构、工作原理。

2.齿轮变速机构变速原理。

3.执行机构的组成及工作原理。

4.液压控制系统的结构、原理。

5.电子控制系统的分类、结构。

6.辛普森式行星齿轮系统的动力传递路线。

7.拉维纳式行星齿轮系统的动力传递路线。

8.电控液力自动变速器的油压与失速试验的方法第二章电控液力自动变速器第一节概述一、电控液力变速器的优缺点(一)液力变矩器安装在发动机与变速器之间,将发动机转矩传给变速器输入轴。

可改变发动机转矩,并能实现无级变速。

(二)齿轮变速机构可形成不同的传动比,组合成电控自动变速器不同是挡位。

绝大部分采用行星齿轮机构进行变速,也有采用普通齿轮机构变速的。

(三)换挡执行机构其功用与同步器相似。

包括:离合器、制动器、单向离合器。

(四)液压控制系统主要控制换挡执行机构的工作,由液压泵及各种液压控制阀和液压管路等组成。

(五)电子控制系统与液压控制系统合称为电液控制系统。

包括:电子控制单元、各类传感器及执行器等。

三、电控液力自动变速器的控制原理(一)按驱动方式分类:前驱动自动变速器(即自动驱动桥)、后驱动自动变速器(二)按前进挡的挡位数不同分类:3个前进挡、4个前进挡、5个前进挡(三)齿轮变速器的类型分类:行星齿轮式自动变速器、平行轴式自动变速器。

第2章 液力自动变矩器的结构和工作原理

第2章 液力自动变矩器的结构和工作原理

工作原理:以ATF作为传动介质, 利用液体在主、从动元件之间循 环流动过程中动能的变化来传递 动力。
能量传递的线路:
发动机飞轮——液力耦合器外壳——泵轮——ATF——涡轮— —齿轮机构输入轴
2.1.2 液力耦合器的工作原理
2.1.2 液力耦合器的工作原理
⑵液力偶合器的工作原理 ①动力传输:将电扇A与电扇B隔开 几厘米,相对放置,然后打开电扇A, 则A会在两电扇间产生流动的空气,由 电扇A产生的气流冲击电扇B的叶片,使 电扇B转动。 换句话说,电扇A与B之间的动力传 送是以空气为介质而实现的。偶合器的 工作原理也是如此,泵轮相当于电扇A, 涡轮相当于电扇B。只是现在是以变速 器液为介质,而不是以空气。
2.2.4 典型液力变矩器介绍
1.三元件综合式液力变矩器
综合式液力变矩器:可以转入液力
偶合器工况工作的变矩器。 组成:泵轮、涡轮、导轮、单向离合器 特点:变矩器壳体由前半部外壳与泵轮两
部分焊接而成。
图2-9 液力变矩器的单向离合器
图2-8 三元件综合式液力变矩器
为什么要使用综合式液力变矩器? 因为当涡轮处于低速和中速段时,可利用 液力变矩器能增大输入转矩的特点,而在涡轮 处于高速段时,可利用液力偶合器高效率的特 点,即结合了普通液力变矩器和偶合器的优点 。
致变矩器不能工作,因此必须对变矩器内的油
液进行强制冷却。
图2-13 变矩器冷却补偿油路系统图
本章小结
1.液力偶合器只传递转矩而不能改变转矩,而液力 变矩器,既可传递转矩又可改变转矩。 2.液力偶合器传递动力的过程是:泵轮接受发动机 传来的机械能,在液体从泵轮叶片内缘向外缘流 动的过程中,将能量传给油液,使其动能提高工 作效率然后再通过高速流动的油液冲击涡轮叶片 ,将动能传给涡轮。 3.与液力偶合器不同的是,在液力变矩器的泵轮和 涡轮之间,安装有导轮。

液力偶合器和液力变矩器的结构与工作原理

液力偶合器和液力变矩器的结构与工作原理

液力偶合器和液力变矩器的结构与工作原理作者:发布时间:2009-7-10 9:23:12 来源:点击数:649一、液力偶合器和液力变矩器的结构与工作原理现代汽车上所用自动变速器,在结构上虽有差异,但其基本结构组成和工作原理却较为相似,前面已介绍了自动变速器主要由液力变矩器、变速齿轮机构、供油系统、自动换挡控制系统、自动换挡操纵装置等部分组成。

本章将分别介绍自动变速器中各组成部分的常见结构和工作原理,为自动变速器的拆装和故障检修提供必要的基本知识。

汽车上所采用的液力传动装置通常有液力偶合器和液力变矩器两种,二者均属于液力传动,即通过液体的循环液动,利用液体动能的变化来传递动力。

(一)液力偶合器的结构与工作原理1、液力偶合器的结构组成液力偶合器是一种液力传动装置,又称液力联轴器。

在不考虑机械损失的情况下,输出力矩与输入力矩相等。

它的主要功能有两个方面,一是防止发动机过载,二是调节工作机构的转速。

其结构主要由壳体、泵轮、涡轮三个部分组成,如图1所示。

图1 液力偶合器的基本构造1-输入轴 2-泵轮叶轮 3-涡轮叶轮 4-轮出轴液力偶合器的壳体安装在发动机飞轮上,泵轮与壳体焊接在一起,随发动机曲轴的转动而转动,是液力偶合器的主动部分:涡轮和输出轴连接在一起,是液力偶合器的从动部分。

泵轮和涡轮相对安装,统称为工作轮。

在泵轮和涡轮上有径向排列的平直叶片,泵轮和涡轮互不接触。

两者之间有一定的间隙(约3mm~4mm);泵轮与涡轮装合成一个整体后,其轴线断面一般为圆形,在其内腔中充满液压油。

2、液力偶合器的工作原理当发动机运转时,曲轴带动液力偶合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。

液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。

变矩器的工作原理

变矩器的工作原理

变矩器的工作原理变矩器是一种汽车传动系统中的重要组成部分,它承担着将发动机的动力传递到车轮的重要任务。

本文将详细介绍变矩器的工作原理,包括变矩器的结构以及其内部液力传递的工作机制。

一、变矩器的结构变矩器由涡轮、泵轮、输入轴和液力离合器组成。

涡轮由发动机排气流产生的废气驱动;泵轮则由发动机旋转输出轴驱动。

液力离合器连接输入轴和泵轮,用于控制动力的传递。

二、液力传递的工作机制当发动机启动并运转时,废气通过流过涡轮来施加动力,将其带入旋转状态。

同时,引擎转速的增加也会导致泵轮的转动,产生液体流动。

涡轮和泵轮通过液体介质相互连接,形成了一个连续的液力传递系统。

液体介质在涡轮和泵轮之间的流动产生了液力耦合。

在液力耦合的作用下,液体流体传递了发动机产生的动力,将其传递到车轮驱动系统。

当车辆需要加速时,液力离合器将输入轴和泵轮连接在一起,实现动力传递。

在行驶过程中,液力传递系统可以自动调整转矩和变速器的输出,使车辆在不同速度和负载下都能够保持稳定的工作。

三、变矩器的驱动模式变矩器有两种基本的驱动模式:液力传动模式和直接传动模式。

1.液力传动模式在低速行驶和起步时,变矩器处于液力传动模式。

泵轮和涡轮之间的液体流通产生了液力耦合,使得发动机的动力传递到车轮系统。

这种模式下,转速比较低,能够提供较大的驱动力矩,使车辆能够顺利启动。

2.直接传动模式当车辆达到一定的速度时,变矩器会自动进入直接传动模式。

在这种模式下,液体介质的液力传递被减小,发动机动力直接传递到车轮系统,提高了传动的效率和车辆的燃油经济性。

直接传动模式的实现是通过液力离合器来实现的。

液力离合器可以使输入轴和泵轮分离,从而断开液力传递。

这样一来,变矩器转矩放大器的功率传递效率就会提高,车辆的燃油消耗也会得到降低。

四、变矩器的优缺点变矩器作为汽车传动系统的重要组成部分,具有一定的优缺点。

1.优点变矩器具有扭矩放大作用,在起步和低速行驶时,能够提供较大的驱动力矩,使得车辆顺利启动。

汽车构造电子教案pdf下

汽车构造电子教案pdf下
nT 小时,导轮不转,产生反作用力矩。以增加涡轮输出力矩。
nT 大时,单向离合器松开,导轮旋转,无反作用力矩, MT= MB 特点:
§ 低速比时为变矩器,输出转矩大 § 高速比时为偶合器,输出效率高
三、闭锁式液力变矩器 1. 原理
§ 液力变矩器有液流损失,最高效率约 90%。 § 变矩器在汽车起步、爬坡等低速工况有较大作用,但在汽车高速行驶时,优点不明显。 § 在泵轮和涡轮之间安装闭锁离合器,变液力连接成为机械连接。 § 闭锁离合器由锁止电磁阀控制 闭锁式液力变矩器原理简图
M D = r Q(vuD 2 RD 2 - vuT 2 RT 2 )
5.外特性曲线(M-nT 特性) 用于汽车传动系分析: § 起步 § 正常行驶 6. 无因次参数和特性
不同的 nB,有不同的 M-nT 曲线 § § 变矩系数
K=MT/ MB § 转速比
i= nT/nB § 效率
η=MTnT/(MBnB) =Ki 原始特性曲线
第三节 液力变矩器的类型
一、普通式液力变矩器 二、综合式液力变矩器 能使涡轮出口液流冲击导轮叶片背部时,导轮不起作用,可避免负的导轮转矩工况出现。
导轮上安装单向离合器(超越离合器、自由轮机构) 导轮上安装的滚柱弹簧式单向离合器
§ 楔块式(支柱式)单向离合器 俗称 8 字轮,楔块有长短两条对角线。
主动叉和从动叉凹槽的中心线是以 O1、O2 为圆心的两个半径相等的圆,而圆心 O1、O2 与万向 节中心 O 的距离相等。因此,在主动轴和从动轴以任何角度相交的情况下,传动钢球中心始终位于 两圆的交点上,亦即所有传动钢球都位于角平分面上,因而保证了等角速传动。
其缺点是:寿命短,钢球与凹槽的磨损快;采用压力装配的球叉式等速万向节的拆卸不便。 2)球笼式等速万向节 球笼式等速万向节按主、从动叉在传递转矩的过程中是否产生轴向位移分为:固定型球笼式万 向节(RF 节)和伸缩型球笼式万向节(VL 节) 固定型球笼式万向节(RF 节)的结构见下图

cvt液力变矩器工作原理

cvt液力变矩器工作原理

cvt液力变矩器工作原理哇塞!朋友们,今天咱们来好好聊聊CVT 液力变矩器的工作原理!这可真是个超有趣的话题呢!首先啊,咱们得知道啥是CVT 液力变矩器?它就像是汽车动力传递系统中的一个神奇小助手!那它到底是咋工作的呢?第一,咱先来说说它的结构。

CVT 液力变矩器主要由泵轮、涡轮和导轮这几个重要部件组成。

泵轮就像一个大力士,拼命地把液体甩出去!涡轮呢,则像是个接招的高手,接收着泵轮甩过来的液体力量。

而导轮呢,它在中间起着调节和优化的作用,可重要啦!那这几个部件是怎么配合工作的呢?当发动机运转时,泵轮跟着飞快地转动起来,它把液体甩出去,形成一股强大的液流!这股液流冲向涡轮,推动涡轮转动!哎呀呀,这过程是不是很神奇?第二,咱们讲讲液力变矩器的工作原理。

它其实就是利用液体的流动来传递动力的!比如说,当车辆起步或者低速行驶的时候,涡轮的转速比泵轮慢得多。

这时候,液力变矩器能起到增大扭矩的作用,让车子更容易起步和爬坡!你想想,如果没有这个功能,车子起步得多费劲啊!而且哦,液力变矩器还有一个很棒的特点,就是它能在一定范围内实现无级变速!这意味着啥?意味着车辆的行驶更加平稳、舒适!不会有那种突然的顿挫感,是不是很棒?第三,咱们来谈谈CVT 液力变矩器的优点。

它能有效地减少发动机的震动和冲击,保护发动机和传动系统!这可太重要啦,能延长车辆的使用寿命呢!另外,它还能提高车辆的燃油经济性,让咱们的油钱花得更值!但是呢,CVT 液力变矩器也不是完美无缺的。

比如说,它在传递效率上可能不如一些机械变速器。

不过,随着技术的不断进步,这些问题也在逐渐得到解决!总之啊,CVT 液力变矩器的工作原理虽然有点复杂,但是真的很神奇、很重要!它让我们的汽车驾驶变得更加轻松、舒适和高效!朋友们,你们是不是对它有了更深的了解啦?哎呀,希望我讲得够清楚,能让大家都明白!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档