2020—2021学年第一学期八年级数学阶段练习(含答案)

合集下载

湖北恩施龙凤民族初级中学2020-2021学年下学期八年级学第一阶段检数学测试题(图片版有答案)

湖北恩施龙凤民族初级中学2020-2021学年下学期八年级学第一阶段检数学测试题(图片版有答案)

答案一、选择题(本大题共12小题,共36.0分)1.下列根式中是最简二次根式的是A. B. C. D.【答案】D【解析】A、,即该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式故本选项错误;C、,则该二次根式中的被开方数中含有能开得尽方的因数所以它不是最简二次根式故本选项错误;D、该二次根式符合最简二次根式的定义故本选项正确.故选D.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.适合下列条件的中,直角三角形的个数为;;;.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】解:,不能构成直角三角形;,不一定是直角三角形;,则,是直角三角形;,能构成直角三角形;能构成直角三角形的个数为2个,故选:A.根据勾股定理的逆定理:如果三角形的三边长满足,那么这个三角形就是直角三角形;三角形内角和为进行分析即可.主要考查了直角三角形的判定,关键是掌握勾股定理的逆定理.3.化简的结果为A. B. C. D.【答案】C【解析】解:原式.故选:C.利用积的乘方以及同底数幂的乘法运算法则将原式变形求出即可.主要考查了二次根式的混合运算,正确利用积的乘方进行运算是解题关键.4.【答案】B5.对任意实数a,则下列等式一定成立的是A. B. C. D.【答案】D【解析】试题分析:根据二次根式的化简、算术平方根等概念分别判断.A、a为负数时,没有意义,故本选项错误;B、a为正数时不成立,故本选项错误;C、,故本选项错误.D、故本选项正确.故选D.6.如图所示,的顶点A,B,C在边长为1的正方形网格的格点上,于点D,则BD的长为( )C.B.A.D.【答案】C【解析】解:的面积,由勾股定理得,,则,解得,故选:C.根据图形和三角形的面积公式求出的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.7.平行四边形一边的长是10cm,那么这个平行四边形的两条对角线长可以是A. B. C. D.【答案】D【解析】解:A、,不能够成三角形,故此选项错误;B、,不能够成三角形,故此选项错误;C、,不能构成三角形,故此选项错误;D、,能够成三角形,故此选项正确;故选:D.平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.主要考查了平行四边形的性质,关键是掌握平行四边形的对角线互相平分.8.【答案】B9.若代数式在实数范围内有意义,则x的取值范围是A. B. C. D. 且【答案】A【解析】解:由题意得,,解得.故选A.根据被开方数大于等于0,分母不等于0列式计算即可得解.考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.10.某校的校园内有一块尺寸如图所示的三角形空地,现计划将这块空地建成一个花园已知每平方米的造价为30元则学校建这个花园需要投资A. 7794元B. 7820元C. 7822元D. 7921元【答案】A【解析】解:作于H,如图,,,在中,,,每平方米学校建这个花园需要投资额元.故选A.作于H,根据邻补角得到,在中,根据的正弦可计算出,再计算每平方米,然后用面积乘以单价即可得到学校建这个花园需要的投资额.考查了二次根式的应用:二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 6【答案】C【解析】解:如图所示:,,大正方形的面积为13,,小正方形的面积为.故选:C.观察图形可知,小正方形的面积大正方形的面积个直角三角形的面积,利用已知,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.12.如图,平行四边形ABCD的对角线交于点平分交BC于点E,且,连接OE。

2020-2021学年沪科版八年级数学第一徐诶第15章轴对称图形与等腰三角形单元测试卷(含答案)

2020-2021学年沪科版八年级数学第一徐诶第15章轴对称图形与等腰三角形单元测试卷(含答案)

《第15章轴对称图形与等腰三角形》单元测试卷一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.62.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个5.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.106.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格7.如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=时,满足条件的点C恰有三个.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.17.如图所示的商标有条对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为点分.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.23.(1)当a=时,代数式2a+5的值为3;(2)等边三角形有条对称轴.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.6【分析】根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE =15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半,即可得到EF的长,进而得出OF的长.【解答】解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.【分析】由等腰三角形的性质得出∠ABC=∠ACB=72°,由三角形内角和定理得出∠A =36°,由作图得出BC=BD,得出∠BDC=∠C=72°,证出∠A=∠ABD,得出AD =BD=BC即可.【解答】解:∵AB=AC,∠C=72°,∴∠ABC=∠ACB=72°,∴∠A=180°﹣72°﹣72°=36°,∵以点B为圆心,BC为半径画弧,交AC于点D,∴BC=BD,∴∠BDC=∠C=72°,∴∠CBD=180°﹣72°﹣72°=36°,∴∠ABD=72°﹣36°=36°,∴∠A=∠ABD,∴AD=BD=BC=;故选:C.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的判定与性质,证出AD=BD=BC是解题的关键.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【分析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选:D.【点评】本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.如图,△ABC 中,BC =10,AC ﹣AB =4,AD 是∠BAC 的角平分线,CD ⊥AD ,则S △BDC 的最大值为( )A .40B .28C .20D .10【分析】延长AB ,CD 交点于E ,可证△ADE ≌△ADC (ASA ),得出AC =AE ,DE =CD ,则S △BDC =S △BCE ,当BE ⊥BC 时,S △BEC 最大面积为20,即S △BDC 最大面积为10.【解答】解:如图:延长AB ,CD 交点于E ,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,∵CD ⊥AD ,∴∠ADC =∠ADE =90°,在△ADE 和△ADC 中,,∴△ADE ≌△ADC (ASA ),∴AC =AE ,DE =CD ;∵AC ﹣AB =4,∴AE ﹣AB =4,即BE =4;∵DE =DC ,∴S △BDC =S △BEC ,∴当BE ⊥BC 时,S △BDC 面积最大,即S △BDC 最大面积=××10×4=10.故选:D .【点评】本题考查了角平分线定义、全等三角形的判定与性质、等腰三角形的性质等知识;利用三角形中线的性质得到S △BDC =S △BEC 是解题的关键.6.如图的方格纸中,左边图形到右边图形的变换是( )A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C .绕AB 的中点旋转180°,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称,再向右平移7格.故选:D .【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.7.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( )A .B .C .D .【分析】连接CC '并延长交A 'B '于D ,连接CB ',CA ',依据AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',可得△ABC ≌△A 'B 'C ,进而得出S △ABC =S △A 'B 'C ,再根据CD =CE =EC ',可得S △A 'B 'C =S △A 'B 'C ',进而得到S △ABC =S △A 'B 'C '.【解答】解:如图,连接CC '并延长交A 'B '于D ,连接CB ',CA ',∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',AB 垂直平分CC ',∴△ABC ≌△A 'B 'C (SAS ),∴S △ABC =S △A 'B 'C ,∠A =∠AA 'B ',AB =A 'B ',∴AB ∥A 'B ',∴CD ⊥A 'B ',∴根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ',∴S △A 'B 'C =S △A 'B 'C ',∴S △ABC =S △A 'B 'C ',∴△ABC 与△A ′B ′C ′的面积之比为,故选:B .【点评】本题考查的是轴对称的性质、三角形的面积及等积变换,解答此题的关键是熟知对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,在平面镜中的顺序与现实中的恰好相反,且关于镜面对称,则小球在平面镜中的像是以1m/s的速度,做竖直向下运动.故选:B.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧,充分发挥想象能力.9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选:C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为4.【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE =PD,再根据两直线平行,内错角相等可得∠POD=∠OPC,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE=PC=4,根据角平分线的性质得到答案.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造含30°角的直角三角形是解题的关键.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为100°.【分析】根据线段的垂直平分线的性质得到BE=BA,得到∠E=∠A=50°,根据三角形的外角的性质计算即可.【解答】解:∵BD垂直平分AE,∴BE=BA,∴∠E=∠A=50°,∴∠EBC=∠E+∠A=100°,故答案为:100°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=15°.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=或2时,满足条件的点C恰有三个.【分析】分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l ∥AB,分别交两圆于点C2,C3;分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,再根据三角形的面积公式计算即可.【解答】解:(1)如图所示:分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l∥AB,分别交两圆于点C2,C3,此时满足条件的点C恰好有3个,△ABC1为边长为2的等边三角形,其高为∴S=×2×=(2)如图所示:分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,点C1为l与线段AB的垂直平分线的交点,此时满足条件的点C恰好有3个,△ABC2和△ABC3均为腰长为2的等腰直角三角形,△ABC1为底边为2,高为2的等腰三角形∴S=×2×2=2故答案为:或2.【点评】本题考查了等腰三角形的判定,构造圆,结合圆的切线性质及平行线的性质分类讨论,是解题的关键.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为3步.【分析】根据题意:分别计算出两种跳法所需要的步数,比较就可以了.【解答】解:如图中红棋子所示,根据规则:①点A从右边通过3次轴对称后,位于阴影部分内;②点A从左边通过4次轴对称后,位于阴影部分内.所以跳行的最少步数为3步.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.【分析】连接BP、BQ、BM,过点B作BD⊥PQ于点D,由对称性可知PB=BM=BQ、△PBQ等腰三角形,进而即可得出PD=PB,再根据BM的取值范围即可得出线段PQ长的取值范围.【解答】解:∵∠A=75°,∠C=45°,∴∠ABC=180°﹣75°﹣45°=60°,连接BP、BQ、BM,过点B作BD⊥PQ于点D,如图所示.∵点M关于直线AB、BC的对称点分别为P、Q,∴BP=BQ=BM,∠PBA=∠MBA,∠MBC=∠QBC,∴∠PBQ=120°,∵PB=BQ,∴∠BPQ=∠BQP=30°,∴cos30°==,∴PD=PB,∵BC=4,∠C=45°,∴2≤BM≤4,∵BM=PB,∴2≤PB≤4,∴2≤PD≤4×,即≤PD≤2,∵PQ=2PD,∴2≤PQ≤4.故答案为:2≤PQ≤4.【点评】本题考查了轴对称的性质,等腰三角形的判定和性质,直角三角形30度角的性质和三角函数,解题的关键是证得△BPQ是等腰三角形.17.如图所示的商标有两条对称轴.【分析】根据轴对称图形的对称轴的意义结合图形画出,即可得出答案.【解答】解:有两条对称轴,如图所示:直线AB和直线CD.故答案为:两.【点评】本题考查了对轴对称图形的应用,注意:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形图形叫做轴对称图形轴对称图形,这条直线叫对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为9点30分.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【解答】解:2:30时,分针竖直向下,时针指23之间,根据对称性可得:与9:30时的指针指向成轴对称,故实际时间是9:30.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.【分析】(1)依据角平分线的定义以及平行线的性质,即可得到∠DAE=∠ADE,进而得出AE=DE=5;(2)过D作DG⊥AC于G,依据角平分线的性质以及三角形面积公式,即可得到△ACD 的面积.【解答】解:(1)∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE∥AB,∴∠ADE=∠DAB,∴∠DAE=∠ADE,∴AE=DE=5;(2)如图,过D作DG⊥AC于G,又∵DF⊥AB,AD平分∠BAC,∴DG=DF=4,∵CE=6,∴AC=AE+CE=5+6=11,∴△ACD的面积=×AC×DG=×11×4=22.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.【分析】连接BD,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接BD,∵E为AB的中点,DE⊥AB于点E,∴AD=BD,∴∠DBA=∠A,∴∠DBA=66°,∵∠ABC=90°,∴∠DBC=∠ABC﹣∠ABD=24°∵AD=BC,∴BD=BC,∴∠C=∠BDC,∴∠C==78°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.【分析】(1)根据等腰三角形的性质可求∠C,再根据等腰三角形的性质可求∠CAE,根据等腰三角形三线合一的性质和三角形内角和定理可求∠CAD,再根据角的和差关系可求∠DAE的度数;(2)等腰三角形三线合一的性质可得BD=CD,FD=ED,再根据线段的和差关系即可求解.【解答】解:(1)∵AB=AC,∠ABC=35°,∴∠C=35°,∴∠CAE=35°,∵D是BC边上的中点,∴AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣35°=55°,∴∠DAE=∠DAC﹣∠C=55°﹣35°=20°;(2)证明:∵D是BC边上的中点,∴BD=CD,∵∠AFE=∠AEF,∴AF=AE,∵AD⊥BC,∴D是EF边上的中点,∴FD=ED,∴BD﹣FD=CD﹣ED,即BF=CE.【点评】考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等;③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【分析】(1)当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,依据点P运动的路程为6.5cm,即可得到x的值以及CP的长;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,依据勾股定理即可得到x的值.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.【点评】本题考查了等腰三角形的判定与性质、勾股定理的应用,熟练掌握等腰三角形的判定与性质,利用勾股定理列方程是解决问题的关键.23.(1)当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.【分析】(1)根据题意得2a+5=3,解方程即可;(2)轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:(1)由题意得:2a+5=3,解得:a=﹣1,故当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.故答案为:﹣1,3.【点评】本题考查了轴对称的性质及解一元一次方程的知识,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【分析】(1)根据轴对称变换的性质作图;(2)根据关于y轴对称的点的坐标特点解答;(3)根据矩形的面积公式和三角形的面积公式计算.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.(3)S△ABC【点评】本题考查的是轴对称变换的性质,掌握轴对称变换中坐标的变化特点是解题的关键,注意坐标系中不规则图形的面积的求法.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或 解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB :y =﹣x +7再向上平移12个单位得直线AB :y =﹣x +19∴Q (0,19)综上所述,y 轴上存在点Q 使得△QAB 的面积等于△PAB 的面积,Q 的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.1、人生如逆旅,我亦是行人。

山西省2020-2021学年第一学期八年级阶段性测评数学答案

山西省2020-2021学年第一学期八年级阶段性测评数学答案

2020-2021学年八年级期中质量监测数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案ACBBCABCDD二、填空题(每小题3分,共15分)11.(-2,-3)12.3213.1914.<15.A.(524-,0)B.(0,-3)三、解答题(共8道小题,共55分)16.计算(本题含4个小题,每小题3分,共12分)解:1()原式·························································································1分=36.·······························································································3分222-()原式····················································································1分=3-5·····························································································2分=-2. (3)分3()原式·····································································1分=6-3······························································································2分=3.·······································································································3分43-()原式··········································································2分=3-.··························································································3分17.(本题5分)解:(1)如图:············································································································2分(2)(2,-2)········································································································2分(3)△A′B ′C ′如图所示:··················································································4分△A ′B ′C ′与△ABC 关于y 轴对称.························································5分yxO 1234-1-2-3-4-1-2-312318.(本题4分)解:将d =980,g =9.8代入公式gd v =,得v =8.9980´·······································································································1分=9898´=98.···················································································································3分答:海啸的行进速度为98m/s.············································································4分19.(本题6分)解:将x =0代入y =21x +2中,得y =2....................................................1分所以点B 的坐标为(0,2).................................................................2分将y =0代入y =21x +2中,得21x +2=0,解,得x =-4..................................................................................3分所以点A 的坐标为(-4,0)................................................................4分一次函数y =21x +2的图象如图所示(略)...........................................6分20.(本题6分)解:∵点P 是BC 的中点,BC =24,∴BP =CP =21BC =12........................................................................1分在Rt △ABP 中,∠B =90°,AB =16,∴AP 2=AB 2+BP 2=162+122=400......................................................2分在Rt △DCP 中,∠C =90°,DC =9,∴DP 2=DC 2+CP 2=92+122=225.......................................................3分在△APD 中,∵AD 2=252=625,AP 2+DP 2=400+225=625,..................................4分∴AD 2=AP 2+DP 2............................................................................5分∴△APD 是直角三角形,其中∠APD =90°..........................................6分21.(本题6分)解:(1)由题意,得11616(200)2y x x =´+-................................................1分化简,得y=-8x +3200...............................................................2分(2)将x =50代入y =-8x +3200中,得y =2800.............................................................................................3分答:当天该小学午餐订单的总费用为2800元....................................................4分(3)将y =2720代入y =-8x +3200中,得-8x +3200=2720.解,得x =60...........................................................................................5分答:当天该小学午餐订半份餐60份.................................................................6分22.(本题6分)解:验证过程补充如下:=b a b ab ab )(212121-++....................................................................1分=ab b 21212+....................................................................................2分S 四边形ABCE =S △ABE +S △BCE=)(21212a b a c -+...........................................................................3分=22212121a ab c -+...........................................................................4分∴ab b 21212+=22212121a ab c -+.................................................................5分∴221122b c =-212a ,∴222,bc a =-∴2+2=2..........................................................................................6分23.(本题10分)解:(1)因为点C (m ,3)在函数y =x 21的图象上,所以m 21=3,........................................................................................1分解,得m =6.........................................................................................2分线段OC 的长为53.................................................................................3分(2)A.①因为点D 在线段OC 上,所以将=4代入=x 21中,得=2,则点D 的坐标为(4,2),因为DE ⊥x 轴,所以DE =2..................................................................4分因为DE 交线段CB 于点F ,将x =4代入y =621+-x 中,得y =4.则点F 的坐标为(4,4),所以FE =4......................................................................................5分所以DF =FE -DE =4-2=2,即DF =2............................................................................................6分②点P 的坐标为(0,0)或(8,0).....................................................10分B.①因为点D 在线段OC 上,所以>0.因为点D 在线段OC 上,所以将=代入=x 21中,得y =a 21.则点D 的坐标为(,a 21),..................................................................3分因为DE ⊥轴,所以DE =a 21......................................................................................4分因为DE 交线段CB 于点F ,将=代入=621+-x 中,得y =621+-a .则点F 的坐标为(,621+-a ),所以EF =621+-a ...............................................................................5分所以DF =FE -DE =621+-a -a 21=6-.........................................6分②线段CD 将△CEF 的面积分成1:2的两份时,的值为3或524...............10分【以上解答题的其他解法,请参照此标准评分】。

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

2020 学年第一学期八年级期终学业评价调测试卷(2021.1)数学(满分:100 分 考试时间:120 分钟 考试中不允许使用计算器 命题人:姚志敏)一、选择题(每小题 2 分,共 20 分)1.下列二次根式中,是最简二次根式的是( ▲ )A .B . bC .D .2.如果 a >b ,那么下列各式中正确的是( ▲ ) A .a +1<b +1 B .-a+3<-b+3 C .-a >-b D .22a b 3. 如图,点 C ,D 在线段 AB 的同侧,如果∠CAB =∠DBA ,那么下列条件中不能..判定△ABD ≌△BAC 的是( ▲ )A .∠D =∠CB .∠CAD =∠DBC C .AD =BC D .BD =AC4.下列选项中,可以用来证明命题“若 a > 0 ,则 a > 0 ”是假命题的反例的是( ▲ ) A .a=-1 B .a=0 C .a=1 D .a=2 5.关于一次函数 y =5x ﹣3 的描述,下列说法正确的是( ▲ ) A .图象经过第一、二、三象限 B .向下平移 3个单位长度,可得到 y =5x C .函数的图象与 x 轴的交点坐标是(0,﹣3) D .图象经过点(1,2)6.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( ▲ ) A .55°,55° B .70°,40°或 70°,55° C .70°,40° D .55°,55°或 70°,40°7.如图,直线 y 1=x +b 与 y 2=kx -1 相交于点 P ,点 P 的横坐标为-1,则关于 x 的不等式 x +b >kx -1 的解集在数轴上表示正确的是(▲)A. B. C. D.8.如图,已知矩形OABC,A(4,0),C(0,4),动点P 从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P 的运动路程为t,△OAP 的面积为S,则下列能大致反映S 与t 之间关系的图象是(▲)A.B.C.D.9. 如图,在△ABC 中,已知点D,E,F 分别是BC,AD,CE 的中点,且SΔABC=8,则SΔBEF的值是(▲)A.2B. 3C.4D. 510. 已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=1200 时,P 就是△ABC 的费马点.若点P 是腰长为6 的等腰直角三角形DEF 的费马点,则PD+PE+PF=(▲)A .6B + 3C .D .9 二、填空题(每小题 3 分,共 30 分) 11.“对顶角相等”的逆命题是 ▲ .12.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为 ▲ . 13.若点 B (7a +14,a -3)在第四象限,则 a 的取值范围是 ▲ .14.如图,在平面直角坐标系中,已知点 A (1,1),B (- 1,1),C (-1,-2),D (1,-2).现把一条长为 2021 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按A -B -C -D -A - …的顺序紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是 ▲ .15. 如果三角形三边长分别为12,k ,7225k -的结果是 ▲ . 16.2002 年 8 月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 1),且大正方形的面积是 15,小正方形的面积是 3,直角三角形的较短直角边为 a ,较长直角边为 b .如果将四个全等的直角三角形按如图 2 的形式摆放,那么图 2 中最大的正方形的面积为 ▲ .17.如图,等边三角形纸片 ABC ,点 E 在 AC 边上,点 F 在 AB 边上,沿 EF 折叠,使点A 落在 BC 边上的点 D 的位置,且 ED ⊥BC ,则∠EFD = ▲ .18.已知点 P 是直线 y = −2x + 4 上的一个动点,若点 P 到两坐标轴的距离相等,则点 P 的坐标是 ▲ . 19.如图,在△ABC 中,∠ABC 的平分线与 AC 的垂直平分线相交于点 D ,过点 D 作DF ⊥BC ,DG ⊥AB ,垂足分别为 F 、G .若 BG =5,AC =6,则△ABC 的周长是 ▲ .20.如图,在 Rt △ABC 中,CA =CB ,M 是 AB 的中点,点 D 在 BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为 E ,F ,连接 EM .则下列结论中:①BF =CE ; ②∠AEM =∠DEM ;③AE ﹣CE= 2 ME ;④DE 2+DF 2=2DM 2; ⑤若 AE 平分∠BAC ,则 EF :BF=:1; 正确的有 ▲ .(只填序号)三、解答题(本大题共 7 小题 , 共 50 分) 21.(本小题满分 6 分) (1)化简:)11(2)解不等式组 363104x x ⎧<⎪⎨-+≥⎪⎩①②22. (本小题满分 6 分)如图,是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为 1,线段 AC 的两个端点均在小正方形的顶点上.(1)在图1 中画出以AC 为底边的等腰直角三角形ABC,点B 在小正方形顶点上;(2)在图2 中画出以AC 为腰的等腰三角形ACD,点D 在小正方形的顶点上,且△ACD 的面积为8.23.(本小题满分7 分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为▲L,机器工作的过程中每分钟耗油量为▲L.(2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.24.(本小题满分5 分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D 在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F 是CE 的中点,连结AF,求∠F AE 的度数.25.(本小题满分8 分)某商店销售A 型和B 型两种型号的平板,销售一台A 型平板可获利120 元,销售一台 B 型平板可获利140 元.该商店计划一次购进两种型号的平板共100 台,其中 B 型平板的进货量不超过A 型平板的3 倍.设购进 A 型平板x 台,这100 台平板的销售总利润为y 元.(1)求 A 型平板至少多少台?(2)该商店购进A 型、B 型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型平板60 台,则这100 台平板的销售总利润能否为13600元?若能,请求出此时该商店购进A 型平板的台数;若不能,请求出这100 台平板销售总利润的范围.26.(本小题满分8 分)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC 为勾股高三角形,其中 A 为勾股顶点,AD 是BC 边上的高.若BD=1,CD=2,求高AD 的长;(2)如图②,△ABC 中,AB=AC=3,BC=3 3 -3,求证:△ABC 是勾股高三角形.①②27.(本小题满分10 分)如图,平面直角坐标系中,直线m 交x 轴于点A,交y 轴于点B.且点 A (),∠BAO = 60° .点C 为AB 中点,过点C 作直线n 垂直于m,交x轴于点D.(1)请直接写出B、C、D 的坐标.(2)在x 轴上找一点E, 使得S△BCE=6,求点E 的坐标.(3)直线m 上有一点M, y 轴上有一点N, 若△DMN 是等腰直角三角形,求出点M 的坐标.第27 题备用图1 备用图22020学年第一学期期末学业评价调测试卷八年级数学参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共30分)11、 相等的角是对顶角 12、 5 13、 -2<a <3 14、 (0,1) 15、 11-3k 16、 27 17、 45° 18、()444,433⎛⎫- ⎪⎝⎭,, 19、16 20、①②③④⑤ 三、解答题(本大题共7小题 , 共50分)21、 (1)31=--2=(2) 解①得2x <,….1’,解②得:1x ≥- ….1’,∴12x -≤<22、(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23、解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L ), 故答案为:3,0.5;(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,1030605a b a b +=⎧⎨+=⎩,解得,0.535a b =-⎧⎨=⎩, 即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40. 24、(1)∵∠BAD=∠CAE ∴∠BAD+∠DAC=∠CAE+∠DAC 即∠BAC=∠DAE ∵AB=AD ,AC=AE∴△ABC ≌△ADE (SAS ) (2)∵∠B +∠ACB +∠BAC=180° ∴∠ACB=180°-∠B -∠BAC=50° ∵△ABC ≌△ADE∴∠ACB=∠AED=50° ∵点F 是CE 的中点 ∴AF ⊥CE∴∠F AE=90°-∠E=40°25、解:(1)100﹣x ≤3x ,解得x ≥25 ∴A 型平板至少25台。

北师大版2020-2021学年八年级数学上册第七章《平行线的证明》单元同步试卷(含答案)

北师大版2020-2021学年八年级数学上册第七章《平行线的证明》单元同步试卷(含答案)

《平行线的证明》单元测试卷时间:90分钟满分:100分一.选择题(每题3分,共36分)1.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角必相等B.如果两条直线被第三条直线所截,那么同位角的角平分线必平行C.如果同旁内角互补,那么它们的角平分线必互相垂直D.如果两角的两边分别平行,那么这两个角必相等2.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.妈妈让小明给客人烧水沏茶,洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,放茶叶要用2分钟,给同学打电话要用1分钟.为使客人早点喝上茶,小明最快可在几分钟内完成这些工作?()A.19分钟B.18分钟C.17分钟D.16分钟4.如图,“因为∠1=∠2,所以a∥b”,其中理由依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行5.下列命题中,()是真命题.A.相等的角是对顶角B.9的算术平方根是±3C.垂直于同一条直线的两条直线互相平行D.点A(a,0)在x轴上6.下列说法正确的是()A.相等的两个角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.过一点有且只有一条直线与已知直线垂直7.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()A.25°B.50°C.65°D.70°8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.189.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠ABC=∠ADC,∠3=∠4D.∠BAD+∠ABC=180°10.如图,在△ABC中,A D是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC 于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个B.3个C.2个D.1个11.给出下列命题:①对角线相等且互相平分的四边形是矩形②对角线平分一组对角的平行四边形是菱形③对角线互相垂直的矩形是正方形④对角线相等的菱形是正方形其中是真命题的有()个.A.1个B.2个C.3个D.4个12.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二.填空题(每题3分,共12分)13.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.14.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.15.已知AD为△ABC的高线,AE为角平分线,当∠B=40°,∠ACD=60°时,∠EAD =度.16.如图,已知∠1=∠2=∠3=65°,则∠4的度数为.三.解答题(共52分)17.如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.18.如图,∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC外,若∠AEC'=22°,求∠BDC'的度数.19.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.20.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.21.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.23.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.参考答案一.选择题1.解:A、两条被截直线平行时,内错角相等,故本选项错误;B、如果两条相互平行直线被第三条直线所截,那么同位角的角平分线必平行,故本选项错误;C、如果同旁内角互补,那么这个角的两条边相互平行,则它们的角平分线必互相垂直,故本选项正确;D、如果两角的两边分别平行,那么这两个角相等或互补,故本选项错误;故选:C.2.解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.3.解:小明应先洗开水壶用1分钟,再烧开水用15分钟,在烧水期间,洗茶壶用1分钟,洗茶杯用1分钟,放茶叶用2分钟,给同学打电话用1分钟,一共用5分钟,不用算入总时间,故为使客人早点喝上茶,小明最快可在16分钟内完成这些工作.故选:D.4.解:因为∠1=∠2,所以a∥b(内错角相等,两直线平行),故选:B.5.解:A、相等的角不一定是对顶角,故错误,是假命题;B、9的算术平方根是3,故错误,是假命题;C、平面内垂直于同一条直线的两条直线互相平行,故错误,是假命题;D、点A(a,0)在x轴上,正确,是真命题,故选:D.6.解:A、对顶角相等,但是相等的两个角不一定是对顶角,故本选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故本选项错误;C、从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短,符合垂线段的定义,故本选项正确;D、在平面内过一点有且只有一条直线与已知直线垂直,故本选项错误.故选:C.7.解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°﹣∠DAC=65°故选:C.8.解:∵∠A=60°,∠B=48°,∴∠ACB=180°﹣∠A﹣∠B=72°,∵CD平分∠ACB,∴∠BCD=∠ACB=36°,∵DE∥BC,∴∠CDE=∠BCD=36°;故选:B.9.解:A、∵∠1=∠2,∴AD∥CB,故本选项错误;B、∵∠BAD=∠BCD,不能得出AB∥CD,故本选项错误;C、∵∠ABC=∠ADC,∠3=∠4,∠ABD=∠BDC,∴AB∥CD,故本选项错误;D、∵∠BAD+∠ABC=180°,∴AD∥BC,故本选项错误;故选:C.10.解:∵AD⊥BC,∴∠ADC=90°,∴∠C+∠CAD=90°,∵∠BAD=∠C,∴∠B AD+∠CAD=90°,∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE,∠DAE=∠CAE,∠BAD=∠C,∴∠BAE=∠C+∠CAE=∠BEA,故③正确,∵EF∥AC,∴∠AEF=∠CAE,∵∠CAD=2∠CAE,∴∠CAD=2∠AEF,∵∠CAD+∠BAD=90°,∠BAD+∠B=90°,∴∠B=∠CAD=2∠AEF,故④正确,无法判定EA=EC,故②错误.故选:B.11.解:①对角线相等且互相平分的四边形是矩形,是真命题②对角线平分一组对角的平行四边形是菱形,是真命题③对角线互相垂直的矩形是正方形,是真命题④对角线相等的菱形是正方形,是真命题;故选:D.12.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.二.填空题13.解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.14.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.15.解:①如图1,∵∠B=40°,∠ACD=60°,∴∠BAC=180°﹣60°﹣40°=80°,∵AE为∠BAC角平分线,∴∠BAE==80°×=40°,∵AD为△ABC的高,∴∠ADB=90°,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∴∠E AD=∠EAC﹣∠DAC=40°﹣30°=10°,②如图2,在△ABC中,∵∠ACD=∠B+∠BAC,∴∠BAC=60°﹣40°=20°,∵AE平分∠BAC,∠BAC=10°,∴∠AED=∠B+∠BAE=40°+10°=50°,∵AD为高,∴∠ADE=90°,∴∠EAD=90°﹣∠AED=90°﹣50°=40°.故答案为:10或40.16.解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.三.解答题17.解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.18.解:如图设AE交DC′于F.在△ABC中,∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,由折叠可知∠C'=40°,∴∠DFE=∠AEC'+∠C=22°+40°=62°,∴∠BDC'=∠DFE+∠C=62°+40°=102°.19.解:∵AE⊥BC,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°.∵AD平分∠EAC,∴∠DAE=∠CAD=∠CAE=25°,∴∠ADE=∠CAD+∠ACD=25°+40°=65°.20.证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.21.已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D22.解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.23.(1)解:∵∠C=50°,∠B=30°,∴∠BAC=180°﹣50°﹣30°=100°.∵AE平分∠BAC,∴∠CAE=50°.在△ACE中∠AEC=80°,在Rt△ADE中∠EFD=90°﹣80°=10°.(2)∠EFD=(∠C﹣∠B)证明:∵AE平分∠BAC,∴∠BAE==90°﹣(∠C+∠B)∵∠AEC为△ABE的外角,∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C)∵FD⊥BC,∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B)(3)∠EFD =(∠C ﹣∠B ).如图,∵AE 平分∠BAC ,∴∠BAE =.∵∠DEF 为△ABE 的外角,∴∠DEF =∠B +=90°+(∠B ﹣∠C ), ∵FD ⊥BC ,∴∠FDE =90°.∴∠EFD =90°﹣90°﹣(∠B ﹣∠C )∴∠EFD =(∠C ﹣∠B ).1、人不可有傲气,但不可无傲骨。

2020-2021学年苏科版八年级上学期数学4.4近似数 培优训练卷(含答案)

2020-2021学年苏科版八年级上学期数学4.4近似数  培优训练卷(含答案)

2020-2021学年苏科版八年级上学期数学4.4近似数培优训练卷(含答案)一、选择题1、下列数据中是近似数的是()A.七(2)班有54名学生B.足球比赛开始时每方各有11名球员C.杨老师在交通银行存入1000元D.我国最长的河流是长江,全长6300km2、下列数据中,准确数是( )A.王敏体重40.2千克B.七年级(3)班有47名学生C.珠穆朗玛峰高出海平面8 844m D.太平洋最深处低于海平面11 023 m10精确到()3、近似数1.23×3A.百分位B.十分位C.个位D.十位4、3.14精确到个位为()A.3B.3.1C.3.14D.45、用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052B.0.005C.0.0051D.0.005196、用四舍五入得到的近似数为4.007万,下列说法正确的是( )A.它四舍五入到千分位B.它四舍五入到0. 001C.它精确到万位D.它精确到十位7、实验中学九年级一班期末数学平均成绩约为90.1分,则该班期末数学的平均成绩的范围是()A.大于90.05分且小于90.15分B.不小于90.05分且小于90.15分C.大于90分且小于90.05分D.大于90分且小于或等于90.1分8、16 489的近似数是( )A.1.6×104B.1.7×104C.1.6×105D.1.7×1059、我州今年参加中考的学生人数大约为5.08×104人,对于这个用科学记数法表示的近似数,下列说法正确的是( )A.精确到百分位,有3个有效数字B.精确到百分位,有5个有效数字C.精确到百位,有3个有效数字D.精确到百位,有5个有效数字10、用四舍五入法按要求对2.07801分别取近似值,其中错误的是()A.2.1(精确到0.1)B.2.08(精确到千分位)C.2.08(精确到百分位)D.2.0780(精确到0.0001)11、已知有理数x的近似值是5.4,则x的取值范围是( )A.5.35<x<5.44 B.5.35<x≤5.44 C.5.35≤x<5.45 D.5.35≤x≤5.4512、下列说法正确的是()A.近似数3.58精确到十分位B.近似数1000万精确到个位C.近似数20.16万精确到0.01 D.2.77×104精确到百位二、填空题13、(1) 对398.15取近似值,精确到百分位是,精确到个位是.(2) 近似数0.020精确到位;近似数3.10×104精确到位.(3) 2.598精确到百分位是;23 560精确到千位是.14、近似数1.02,精确到_______位;近似数1.010,精确到_______位;2.4万四舍五入到_______位.15、8 200 000 000,这个数据用科学记数法可表示为元.16、我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是毫米.17、用四舍五入法,将圆周率 3.1415926π=⋯精确到千分位,结果是18、用四舍五入法把9.456精确到百分位,得到的近似值是9.4619、在等腰直角三角形ABC中,∠C=90°,AC=2 cm,它的斜边上的高为cm (精确到0.01).20、对非负有理数数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最(填大或小)值,这个值为三、解答题21、用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.22、阅读下列材料:设x=0.3=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即x=13.所以0.3=0.333…=13.根据上述提供的方法:把(1) 0.7;(2) 1.3化成分数.2020-2021学年苏科版八年级上学期数学4.4近似数培优训练卷(答案)一、选择题1、下列数据中是近似数的是(D )A.七(2)班有54名学生B.足球比赛开始时每方各有11名球员C.杨老师在交通银行存入1000元D.我国最长的河流是长江,全长6300km2、下列数据中,准确数是( B )A.王敏体重40.2千克B.七年级(3)班有47名学生C.珠穆朗玛峰高出海平面8 844m D.太平洋最深处低于海平面11 023 m10精确到( D )3、近似数1.23×3A.百分位B.十分位C.个位D.十位4、3.14精确到个位为()A.3B.3.1C.3.14D.4【解答】解:3.14精确到个位为3.故选:A.5、用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052B.0.005C.0.0051D.0.00519【解答】解:0.00519精确到千分位的近似数是0.005.故选:B.6、用四舍五入得到的近似数为4.007万,下列说法正确的是( D)A.它四舍五入到千分位B.它四舍五入到0. 001C.它精确到万位D.它精确到十位7、实验中学九年级一班期末数学平均成绩约为90.1分,则该班期末数学的平均成绩的范围是()A.大于90.05分且小于90.15分B.不小于90.05分且小于90.15分C.大于90分且小于90.05分D.大于90分且小于或等于90.1分【解答】解:该班期末数学的平均成绩的范围为不小于90.05分且小于90.15分.故选B.8、16 489的近似数是( A )A.1.6×104B.1.7×104C.1.6×105D.1.7×1059、我州今年参加中考的学生人数大约为5.08×104人,对于这个用科学记数法表示的近似数,下列说法正确的是( C )A.精确到百分位,有3个有效数字B.精确到百分位,有5个有效数字C.精确到百位,有3个有效数字D.精确到百位,有5个有效数字10、用四舍五入法按要求对2.07801分别取近似值,其中错误的是()A.2.1(精确到0.1)B.2.08(精确到千分位)C.2.08(精确到百分位)D.2.0780(精确到0.0001)【解答】解:A、2.1(精确到0.1),所以A选项的结论正确;B、2.08(精确到百分位),所以B选项的结论错误;C、2.08(精确到百分位),所以C选项的结论正确;D、2.0780(精确到0.0001),所以D选项的结论正确;故选:B.11、已知有理数x的近似值是5.4,则x的取值范围是( C )A.5.35<x<5.44 B.5.35<x≤5.44 C.5.35≤x<5.45 D.5.35≤x≤5.4512、下列说法正确的是()A.近似数3.58精确到十分位B.近似数1000万精确到个位C.近似数20.16万精确到0.01 D.2.77×104精确到百位【解答】解:A、近似数3.58精确到百分位,所以A选项错误;B、近似数1000万精确到万位,所以B选项错误;C、近似数20.16精确到百位,所以C选项错误;D、2.77×104精确百位,所以D选项正确.故选D.二、填空题13、(1) 对398.15取近似值,精确到百分位是,精确到个位是.(2) 近似数0.020精确到位;近似数3.10×104精确到位.(3) 2.598精确到百分位是;23 560精确到千位是.答案:(1)398.15 398 (2)千分百(3)2.60 2.414、近似数1.02,精确到_______位;近似数1.010,精确到_______位;2.4万四舍五入到_______位.答案:百分千分位千位15、8 200 000 000,这个数据用科学记数法可表示为8.2×109元.16、我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是32.510-⨯毫米.17、用四舍五入法,将圆周率 3.1415926π=⋯精确到千分位,结果是 3.14218、用四舍五入法把9.456精确到百分位,得到的近似值是9.4619、在等腰直角三角形ABC中,∠C=90°,AC=2 cm,它的斜边上的高为1.41cm (精确到0.01).20、对非负有理数数x“四舍五入”到个位的值记为<x>.例如:<0>=<0.48>=0,<0.64>=<1.493>=1,<18.75>=<19.499>=19,….解决下列问题:(1)<π>=3(π为圆周率);(2)如果<2x﹣1>=3,则有理数x有最小(填大或小)值,这个值为三、解答题21、用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.【解答】解:(1)精确到千位;377985654.32米≈377986000米,即3.77986×108米(2)精确到千万位;377985654.32米≈380000000米,即3.8×108米(3)精确到亿位;377985654.32米≈400000000米,即4×108米.22、阅读下列材料:设x=0.3=0.333…①,则10x=3.333…②,则由②-①得:9x=3,即x=13.所以0.3=0.333…=13.根据上述提供的方法:把(1) 0.7;(2) 1.3化成分数.答案:(1) 79(2)43。

扬州树人学校2020-2021 学年第一学期第一次月考八年级数学(含答案)

扬州树人学校2020-2021 学年第一学期第一次月考八年级数学(含答案)

扬州树人学校2020-2021 学年第一学期第一次月考八年级数学 2020.9一、选择题(本大题共 8小题,每小题 3 分,共24分)1.下列图形是轴对称图形的是()A B C D2.下列命题中,真命题的个数是()①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4B.3C.2D.13.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC4.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于()A.10B.7C.5D.4第3题第4题第6题第7题5.有一个等腰三角形的周长为18,其中一边长为8,则这个等腰三角形的底边长为()A.5B.8C.2D.2或86.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°7.如图,△ABC中,D、E两点分别在AC、BC上,DE为BC的垂直平分线,DB为∠ADE的角平分线.若∠A=50°,则∠ABD的度数是()A.70° B.50° C.60° D.80°8.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D =30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A .10°B .20°C .25°D .15°二、填空题(本大题共有10小题,每小题3分,共30分)9.在Rt △ABC 中,斜边上的中线长为5cm ,则斜边长为 .10.如图,A 、B 两点分别位于一个池塘的两端,点C 是AD 的中点,也是BE 的中点,若DE =20米,则AB = .11.如图,△ABC 和△DEF 是全等三角形,则BC 的对应边是.第10题 第11题 第13题第14题 12.已知等腰三角形中,一个角为80°,则该等腰三角形底角的度数为°.13.如图,在△ABC 中,AB =AC ,∠DBC =28°,且BD ⊥AC ,则∠A = °.14.如图,∠C =90°,DE 垂直平分AB 交BC 于点E ,EC =1,AE =2,则BC =.15.下列说法正确的有 个.(1)两边对应相等的两直角三角形全等;(2)有一锐角和斜边对应相等的两直角三角形全等;(3)一条直角边和一个锐角对应相等的两直角三角形全等;(4)面积相等的两个直角三角形全等.第16题 第17题 第18题16.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE .AD =5,DE =3,则BE=.17.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.18.如图,在△ABC 中,∠ACB=90°,AC=BC=10cm ,AD=8cm ,BE=6cm .点M 以3cm/秒的速度从点C 出发沿边CA 运动,到终点A ,点N 以8cm/秒的速度从点B 出发沿着线BC-CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ,当△PCM 与△QCN 全等时,则t = .三.解答题(本大题共有10小题,共96分)19.(8分)已知:如图,AB =AD ,∠C =∠E ,∠BAE =∠DAC .求证:△ABC ≌△ADE .第8题20.(8分)如图,BC=20cm,DE是线段AB的垂直平分线,与BC交于点E,AC=12cm,求△ACE的周长.21.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.22.(8分)如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=50°,求∠BCD的度数.23.(10分)如图,∠ACB=∠ADB=90°,AC=AD,PC=6,求PD的长度.24.(10分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.25.(10分)如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得△PAC的周长最小;(3)在(1)问的结果下,连接BB1、CC1,求四边形BB1C1C的面积.26.(10分)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD.(2)若四边形AEDF的周长为24,AB=15,求AC的长;27.(12分)如图,△ABC中,AB=BC=AC=24cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M,N运动秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.28.(12分)如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=140°.(1)求证:OB=DC;(2)求∠DCO的大小;(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形?扬州树人学校2020-2021 学年第一学期阶段练习八年级数学参考答案一.选择题A.A.A.C.D.B.A.D二.填空题9.10; 10.20; 11.EF ; 12.80或50; 13.56;14.3; 15.3; 16.2; 17.45°; 18.1110或2. 三.解答题19.证明:∵∠BAE =∠DAC ,∴∠BAE ﹣∠EAC =∠DAC ﹣∠EAC ,即∠BAC =∠DAE ,在△ABC 和△ADE 中, ,∴△ABC ≌△ADE (AAS ).................................................................(8分)20.解:∵DE 是AB 的垂直平分,∴BE =AE .∴△ACE 的周长=AE+EC+AC =BE+CE+AC =BC+AC =12+20=32(cm )..........(8分) 21.解:∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵S △ABC =S △ABD +S △ACD =AB ×DE+AC ×DF ,∴S △ABC =(AB+AC )×DE , 即×(16+12)×DE =28,解得DE =2(cm ).............................................(8分)22.(1)证明:∵AC ∥DE ,∴∠ACD =∠D ,∠BCA =∠E ,又∵∠ACD =∠B ,∴∠B=∠D,在△ABC和△CDE中,,∴△ABC≌△CDE(AAS),∴BC=DE.............................(4分)(2)解:∵△ABC≌△CDE,∴∠A=∠DCE=50°,∴∠BCD=180°﹣50°=130°.............................(4分)23.解:证明:在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL).............................(4分)∴BC=BD,∠CBA=∠DBA.∵BP=BP,∴△CBP≌△DBP(SAS).............................(4分)∴PD=PC=6.............................(2分)24.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);..........................(5分)(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF...........................(5分)25.解:(1)图略;...................(3分)(2)图略;...................(3分)(3)S梯形BB1C1C=(2+4)×4=12....................(4分)26.(1)证明:∵AD是高,∴∠ADB=∠ADC=90°,又E、F分别是AB、AC的中点,∴DE=AB=AE,DF=AC=AF,∴EF垂直平分AD;...................(5分)(2)解:由(1)得,DE=AE=AB=,DF=AF=AC,∵四边形AEDF的周长为24,∴AE+ED+DF+FA=24,∴DF+FA=24﹣15=9,∴AC=9....................(5分)27.(1)24...................(4分)(2)当AM=AN时,△MNA是等边三角形.设运动时间为t秒则有:t=24﹣2t,解得t=8,故答案为8....................(4分)(3)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.则有:t﹣24=72﹣2t,解得t=32,故答案为32....................(4分)28.(1)证明:∵∠BAC=∠OAD=90°∴∠BAC﹣∠CAO=∠OAD﹣∠CAO∴∠DAC=∠OAB在△AOB与△ADC中∴△AOB≌△ADC,∴OB=DC;...................(4分)(2)∵∠BOC=140°,∴∠BOA+∠AOC=360°﹣140°=220°,∵△AOB≌△ADC∠AOB=∠ADC,∴∠ADC+∠AOC=220°,又∵△AOD是等腰直角三角形,∴∠DAO=90°,∴四边形AOCD中,∠DCO=360°﹣90°﹣220°=50°;...................(4分)(3)当CD=CO时,∴∠CDO=∠COD=65°∵△AOD是等腰直角三角形,∴∠ODA=45°,∴∠CDA=∠CDO+∠ODA=65°+45°=110°又∠AOB=∠ADC=α∴α=110°;当OD=CO时,∴∠DCO=∠CDO=50°∴∠CDA=∠CDO+∠ODA=50°+45°=95°∴α=95°;当CD=OD时,∴∠DCO=∠DOC=40°∠CDO=180°﹣∠DCO﹣∠DOC=180°﹣50°﹣50°=80°∴∠CDA=∠CDO+∠ODA=80°+45°=125°∴α=125°;综上所述:当α的度数为110°或95°或125°时,△COD是等腰三角形.............(4分)11。

2021-2022学年安徽省合肥市长丰县八年级(上)段考数学试卷(二)(解析版)

2021-2022学年安徽省合肥市长丰县八年级(上)段考数学试卷(二)(解析版)

2021-2022学年安徽省合肥市长丰县八年级第一学期段考数学试卷(二)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.如图,△ABC≌△DEF,BC=5,EC=3,则CF的长为()A.1B.2C.3D.53.如图,已知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是()A.AAS B.SAS C.ASA D.HL4.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,则这根木条不应钉在()A.E,F两点处B.B,D两点处C.H,F两点处D.A,F两点处5.如图,直线EF经过AC中点O,交AB于点E,交CD于点F,下列哪个条件不能使△AOE≌△COF()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF6.将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10°B.15°C.20°D.25°7.已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣18.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图所示的方法进行测量,其中OA=OD,OB=OC,测得AB=4厘米,EF=6厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.3厘米D.4厘米9.在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l 上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,1)B.(2,0)C.(2,﹣1)D.(2,3)10.如图,AB=AC,点D、E分别在AC、AB上,且AE=AD,连接EC,BD,EC交BD 于点M,连接AM,过点A分别作AF⊥CE,AG⊥BD,垂足分别为F、G,则下列结论错误的是()A.△EBM≌△DCMB.若S△BEM=S△ADM,则E是AB的中点C.MA平分∠EMDD.若E是AB的中点,则BM+AC<EM+BD二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的函数y=﹣x+3+m是正比例函数,则m=.12.如图,将△AOB沿x轴方向向右平移得到△CDE,点B的坐标为(3,0),DB=1,则点E的坐标为.13.如图,△ABD≌△ACE,∠A=53°,∠B=22°,则∠COD的度数为.14.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A →B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t (s).(1)AP的长为cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=s.三、(本大题共2小题,每小题8分,满分16分)15.如图,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)若∠ACB=90°,求证:BC∥DE.16.如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.四、(本大题共2小题,每小题8分,满分16分)17.如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4,A8,A12.(2)写出点A4n的坐标(n为正整数).(3)蚂蚁从点A2020到点A2021的移动方向是.(填“向上”、“向右”或“向五、(本大题共2小题,每小题10分,满分20分)19.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.20.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF∥AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.六、(本题满分12分)21.如图1,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD(不与点A,D重合)上的一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=20°,求∠C的度数.(2)求证:∠C﹣∠B=2∠DEF.(3)如图2,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD上一点,EF⊥AD交BC延长线于点F,∠ACB=m°,∠B=n°,直接写出∠F的度数(用含m,n的代数式七、(本题满分12分)22.如图,在平面直角坐标系中,点A(2,0),B(0,6),C(﹣6,0),D是线段AB 上一点,CD交y轴于点E,且S△BCE=2S△AOB.(1)求直线AB的函数表达式.(2)求点D的坐标.(3)猜想线段CE与线段AB的关系,并说明理由.八、(本题满分14分)23.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.下列各组中的两个图形属于全等图形的是()A.B.C.D.【分析】利用全等图形的定义进行判断即可.解:A、两个图形属于全等图形,故此选项符合题意;B、两个图形不属于全等图形,故此选项不符合题意;C、两个图形不属于全等图形,故此选项不符合题意;D、两个图形不属于全等图形,故此选项不符合题意;故选:A.2.如图,△ABC≌△DEF,BC=5,EC=3,则CF的长为()A.1B.2C.3D.5【分析】利用全等三角形的性质可得EF=BC=5,然后利用等式性质求得答案即可.解:∵△ABC≌△DEF,∴EF=BC=5,∵EC=3,∴CF=3,故选:C.3.如图,已知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是()A.AAS B.SAS C.ASA D.HL【分析】根据HL证明Rt△ABD和Rt△CDB全等即可.解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:D.4.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了稳固,需要在窗框上钉一根木条,则这根木条不应钉在()A.E,F两点处B.B,D两点处C.H,F两点处D.A,F两点处【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释.解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在H、F两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:C.5.如图,直线EF经过AC中点O,交AB于点E,交CD于点F,下列哪个条件不能使△AOE≌△COF()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF【分析】根据题意和各个选项中的条件,可以判断是否使得△AOE≌△COF,从而可以解答本题.解:由题意可得,AO=CO,∠AOE=∠COF,当添加条件∠A=∠C时,△AOE≌△COF(ASA),故选项A不符合题意;当添加条件AB∥CD时,则∠A=∠C,△AOE≌△COF(ASA),故选项B不符合题意;当添加条件AE=CF时,无法判断△AOE≌△COF,故选项C符合题意;当添加条件OE=OF时,△AOE≌△COF(SAS),故选项D不符合题意;故选:C.6.将一副三角板按如图所示的方式放置,使两个直角重合,则∠AFD的度数是()A.10°B.15°C.20°D.25°【分析】根据三角形的外角性质计算,得到答案.解:∵∠FDC是△ADF的外角,∴∠AFD=∠FDC﹣∠A=45°﹣30°=15°,故选:B.7.已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣1【分析】由点A,A'间的关系,可得出点A'的坐标为(﹣1,4),由点A'在直线y=x+b 上,利用一次函数图象上点的坐标特征可得出关于b的方程,解之即可得出b的值.解:∵点A(2,4)沿水平方向向左平移3个单位长度得到点A',∴点A'的坐标为(﹣1,4).又∵点A'在直线y=x+b上,∴4=﹣1+b,∴b=5.故选:C.8.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图所示的方法进行测量,其中OA=OD,OB=OC,测得AB=4厘米,EF=6厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.3厘米D.4厘米【分析】只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=4(厘米),∵EF=6厘米,∴圆柱形容器的壁厚是×(6﹣4)=1(厘米),故选:A.9.在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l 上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,1)B.(2,0)C.(2,﹣1)D.(2,3)【分析】根据经过点A的直线l∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.解:如图所示,∵a∥x轴,点C是直线a上的一个动点,点A(0,3),∴设点C(x,3),∵当BC⊥直线l时,BC的长度最短,点B(2,1),∴x=2,∴点C的坐标为(2,3).故选:D.10.如图,AB=AC,点D、E分别在AC、AB上,且AE=AD,连接EC,BD,EC交BD 于点M,连接AM,过点A分别作AF⊥CE,AG⊥BD,垂足分别为F、G,则下列结论错误的是()A.△EBM≌△DCMB.若S△BEM=S△ADM,则E是AB的中点C.MA平分∠EMDD.若E是AB的中点,则BM+AC<EM+BD【分析】根据题目的已知条件,先证明△ABD≌△ACE,得出∠B=∠C,再根据已知得到BE=CD,从而证明△EBM≌△DCM,又得出对应角或对应边相等,再逐一判断即可.解:①∵AB=AC,AE=AD,∠BAD=∠CAE,∴△BAD≌△CAE,∴∠B=∠C,∵AB=AC,AE=AD,∴BE=CD,∵∠BME=∠CMD,∴△EBM≌△DCM,故A正确;②∵△EBM≌△DCM,∴EM=DM,∵AE=AD,AM=AM,∴△AEM≌△ADM,∵S△BEM=S△ADM,∴S△BEM=S△AEM,∴BE=AE,∴点E是AB的中点,故B正确;③∵△AEM≌△ADM,∴∠AME=∠AMD,∴MA平分∠EMD,故C正确;④延长ME至点N,使NE=ME,连接AN,∵E是AB的中点,∴AE=BE,∵∠AEN=∠BEM,∴△AEN≌△BEM,∴BM=AN,在△ANC中,∵AN+AC>CN,∴BM+AC>NE+CE,∴BM+AC>EM+BD,故D错误;故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x的函数y=﹣x+3+m是正比例函数,则m=﹣3.【分析】根据正比例函数的定义得到3+m=0,然后解方程可得m的值.解:∵关于x的函数y=﹣x+3+m是正比例函数,∴3+m=0,解得m=﹣3.故答案为:﹣3.12.如图,将△AOB沿x轴方向向右平移得到△CDE,点B的坐标为(3,0),DB=1,则点E的坐标为(4,0).【分析】直接利用对应点的变化,进而得出平移距离,即可得出答案.解:∵B的坐标为(3,0),∴OB=3,∵DB=1,∴OD=3﹣1=2,∴D(2,0)∴△AOB向右平移了2个单位长度,∴点E的坐标为:(4,0).故答案为:(4,0).13.如图,△ABD≌△ACE,∠A=53°,∠B=22°,则∠COD的度数为83°..【分析】根据全等三角形的性质得出∠C=∠B,再求出答案即可.解:∵△ABD≌△ACE,∴∠C=∠B=22°,∵∠A=53°,∴∠BEC=∠A+∠C=22°+53°=75°,∴∠COD=∠BOE=180°﹣∠B﹣∠BEC=180°﹣22°﹣75°=83°.故答案为:83°.14.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A →B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t (s).(1)AP的长为2t(0≤t≤)cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=s.【分析】(1)根据点P从点A出发,沿A→B方向以2cm/s的速度运动即可得AP=2t;(2)由SAS证明△ABC≌△EDC(SAS),即可得AB=ED=5cm,证△ACP≌△ECQ(ASA),得AP=EQ=2t,当0≤t≤时,t=5﹣2t,解出即可.解:(1)∵点P从点A出发,沿A→B方向以2cm/s的速度运动,设点P的运动时间为t(s).∴AP的长为2(0≤t≤)cm.故答案为:2t(0≤t≤);(2)在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴AB=ED=5cm,∠A=∠E,当线段PQ经过点C时,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),∴AP=EQ,∵AP的长为2tcm(0≤t≤).DQ=tcm,∴t=5﹣2t,解得:t=.故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.如图,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)若∠ACB=90°,求证:BC∥DE.【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据全等三角形的性质得出∠E=∠ACB=90°,即可得出∠BCE=∠E,根据平行线的判定得出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵△ABC≌△DAE,∴∠ACB=∠E,∵∠ACB=90°,∴∠BCE=∠E=90°,∴BC∥DE.16.如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.【分析】(1)取AB的中点D,连接CD即可;(2)根据网格即可画出△CBE.使△CBE≌△CBD.解:(1)如图,线段CD即为所求;(2)如图,△CBE即为所求.四、(本大题共2小题,每小题8分,满分16分)17.如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC边的取值范围.【分析】证明BC=EF=6,根据三角形的三边关系即可得到结论.【解答】结:∵BF=CE,∴BF+CF=CE+CF,即BC=EF=6.∵AB=4,∴6﹣4<AC<6+4,∴AC边的取值范围为:2<AC<10.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4(2,0),A8(4,0),A12(6,0).(2)写出点A4n的坐标(n为正整数)(2n,0).(3)蚂蚁从点A2020到点A2021的移动方向是向上.(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A8(4,0),A12(6,0);故答案为:(2,0),(4,0),(6,0);故答案为:2,1,4,1,6,1;(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);故答案为:(2n,0);(3)因为每四个点一个循环,所以2021÷4=505…1.所以从点A2020到点A2021的移动方向是向上.故答案为:向上.五、(本大题共2小题,每小题10分,满分20分)19.李华同学用11块高度都是1cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD(∠ABC=90°,AB=BC),点B在EF上,点A和C分别与木墙的顶端重合,求两堵木墙之间的距离EF.【分析】根据∠ABE的余角相等求出∠EAB=∠CBF,然后利用“角角边”证明△ABE 和△BCF全等,根据全等三角形对应边相等可得AE=BF,BE=CF,于是得到结论.解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°,∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠EAB=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=5cm,BE=CF=6cm,∴EF=5+6=11(cm).20.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF∥AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.【分析】(1)根据平行线的性质得到∠EAM=∠FBM,∠E=∠BFM,即可利用AAS证明△AEM≌△BFM,再根据全等三角形的性质即可得解;(2)根据平行线的性质得出∠BFM=90°,再根据平角的定义得到∠BFD=90°,进而得出∠AEC=∠BFD,即可利用ASA证明△ACE≌△BDF,根据全等三角形的性质得到CE=DF,再根据线段的和差即可得解.【解答】(1)解:∵BF∥AE,∴∠EAM=∠FBM,∠E=∠BFM,在△AEM和△BFM中,,∴△AEM≌△BFM(AAS),∴AE=BF,∵AE=5,∴BF=5;(2)证明:∵BF∥AE,∴∠AEC=∠BFM,∵∠AEC=90°,∴∠BFM=90°,∴∠BFD=180°﹣90°=90°,∴∠AEC=∠BFD,由(1)知AE=BF,在△ACE和△BDF中,,∴△ACE≌△BDF(ASA),∴CE=DF,∴DF﹣CF=CE﹣CF,即CD=FE.六、(本题满分12分)21.如图1,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD(不与点A,D重合)上的一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=20°,求∠C的度数.(2)求证:∠C﹣∠B=2∠DEF.(3)如图2,在△ABC中,∠B<∠C,AD平分∠BAC,E为AD上一点,EF⊥AD交BC延长线于点F,∠ACB=m°,∠B=n°,直接写出∠F的度数(用含m,n的代数式表示).【分析】(1)首先求出∠EDF=90°﹣∠DEF=70°,得出∠BAD=70°﹣40°=30°,再利用三角形内角和定理可得答案;(2)由(1)同理可知∠C﹣∠B=∠ADB﹣∠ADF,而∠ADB=∠EFD+∠DEF=90°+∠DEF,∠ADF=90°﹣∠DEF,代入即可;(3)用m、n的代数式表示∠BAD==,∠ADC=∠B+∠BAD=n°+,从而解决问题.【解答】(1)解:∵EF⊥BC,∴∠EFD=90°,∴∠DEF+∠EDF=90°,∵∠DEF=20°,∴∠EDF=90°﹣∠DEF=70°,∵∠BAD=∠EDF﹣∠B,∠B=40°,∴∠BAD=70°﹣40°=30°,∵AD平分∠BAC,∴∠BAC=2∠BAD=2×30°=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣60°=80°;(2)证明:∵∠C=∠ADB﹣∠DAC,∠B=∠ADF﹣∠BAD,∴∠C﹣∠B=∠ADB﹣∠DAC﹣∠ADF+∠BAD,∵AD平分∠BAC,∴∠DAC=∠BAD,∴∠C﹣∠B=∠ADB﹣∠ADF,∵EF⊥BC,∴∠EFD=90°,∵∠ADB=∠EFD+∠DEF=90°+∠DEF,∠ADF=90°﹣∠DEF,∴∠C﹣∠B=90°+∠DEF﹣(90°﹣∠DEF)=2∠DEF,∴∠C﹣∠B=2∠DEF;(3)解:∵∠BAC=180°﹣∠ACB﹣∠B,∠ACB=m°,∠B=n°,∴∠BAC=180°﹣m°﹣n°,∵AD平分∠BAC,∴∠BAD==,∴∠ADC=∠B+∠BAD=n°+,即∠EDF=n°+,∵∠DEF=90°,∴∠F=90°﹣[n°+],=()°.七、(本题满分12分)22.如图,在平面直角坐标系中,点A(2,0),B(0,6),C(﹣6,0),D是线段AB 上一点,CD交y轴于点E,且S△BCE=2S△AOB.(1)求直线AB的函数表达式.(2)求点D的坐标.(3)猜想线段CE与线段AB的关系,并说明理由.【分析】(1)设直线AB的函数解析式为:y=kx+b,代入A、B坐标;(2)设E(0,t),根据S△BCE=2S△AOB,得×6×(6﹣t)=12,从而E(0,2),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得出直线CE的解析式,与直线AB联立即可;(3)通过SAS证明△COE≌△BOA,得CE=AB,∠OCE=∠OBA.解:(1)设直线AB的函数解析式为:y=kx+b,则,∴,∴直线AB的函数解析式为:y=﹣3x+6;(2)设E(0,t),∵A(2,0),B(0,6),∴OA=2,OB=6,∴S△AOB==6,∵S△BCE=2S△AOB,∴S△BCE=12,∴×6×(6﹣t)=12,解得t=2,∴E(0,2),设直线CE的函数解析式为:y=mx+n,将C、E的坐标代入得:,∴,∴直线CE的函数解析式为:y=x+2,当x+2=﹣3x+6时,∴x=,则y=,∴D(,);(3)猜想:CE=AB,CE⊥AB,理由如下:∵OE=OA=1,OC=OB=3,∠COE=∠BOA=90°,∴△COE≌△BOA(SAS),∴CE=AB,∠OCE=∠OBA,∵∠OBA+∠BAO=90°,∴∠OCE+∠BAO=90°,∴∠CDA=90°,∴CE⊥AB.八、(本题满分14分)23.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD与CE交于点O,BD与AC交于点F.(1)求证:BD=CE.(2)若∠BAC=48°,求∠COD的度数.(3)若G为CE上一点,GE=OD,AG=OC,且AG∥BD,求证:BD⊥AC.【分析】(1)根据AB=AC,AD=AE,∠BAC=∠EAD,从而得出∠BAD=∠CAE,即可得出△BAD≌△CAE,进而可以解决问题;(2)结合(1)证明∠COF=∠BAC=48°,进而可以解决问题;(3)连接AO,证明△ADO≌△AEG,可得AG=AO,∠DAO=∠EAG,然后证明∠COF =∠OAG,根据AG∥BD,可得∠AOF=∠OAG,再根据等腰三角形的性质即可解决问题.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠AFB=∠CFO,∴∠COF=∠BAC=48°,∴∠COD=180°﹣∠COF=180°﹣48°=132°,答:∠COD的度数为132°.(3)证明:如图,连接AO,∵△BAD≌△CAE,∴∠ADB=∠AEC,∵AD=AE,GE=OD,在△ADO和△AEG中,,∴△ADO≌△AEG(SAS),∴AG=AO,∠DAO=∠EAG,∵AG=OC,∴OA=OC,∵∠OAG=∠DAO+∠DAG,∴∠OAG=∠EAG+∠DAG=∠DAE=∠BAC,由(2)知:∠COF=∠BAC,∴∠COF=∠OAG,∵AG∥BD,∴∠AOF=∠OAG,∴∠COF=∠AOF,∵OA=OC,∴BD⊥AC.。

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

第11章 三角形 同步练习题 2020-2021学年人教版数学八年级上册(含答案)

第11章 三角形 同步练习题  2020-2021学年人教版数学八年级上册(含答案)

2020-2021年八年级数学人教版(上)三角形同步练习题(含答案)一、选择题(本大题共10道小题)1. 五边形的内角和是( )A .180°B .360°C .540°D .600°2. 已知三角形的两边分别为4和9,则此三角形的第三边可能是( )A .4B .5C .9D .133. 下列命题是假命题的是( )A .三角形的三条角平分线相交于一点,并且这一点到三边距离相等B . 等腰三角形底边的中点到两腰的距离相等C . 面积相等的两个三角形全等D . 一个三角形中至少有两个锐角4. 如图,∠BDC=98°,∠C=38°,∠B=23°,∠A 的度数是( )A .61°B .60°C .37°D .39°5. (2021广东汕头)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【 】A . 5 B.6 C .11 D.166. 下列各组线段能构成三角形的是( )A .2 cm ,2 cm ,4 cmB .2 cm ,3 cm ,4 cmC .2 cm ,2 cm ,5 cmD .2 cm ,3 cm ,6 cm7. 如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP 、CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°8. (2021 云南省昆明市) 如图,在ABC △中,6733B C ==∠°,∠°,AD 是ABC △的角平分线,则CAD ∠的度数为( ).(A )40° (B )45° (C )50° (D )55°9. 如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cmB.32cmC.30cmD.28cm10. 已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+21∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-21∠A.上述说法正确的个数是()A.0个 B.1个 C.2个 D.3个二、填空题(本大题共7道小题)11. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.12. n边形的每个外角都等于45°,则n=______.13. 正多边形的一个外角是°,则这个多边形的内角和的度数是______.14. 若4,5,x是一个三角形的三边,则x的值可能是________ (填写一个即可)15. (2021·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是____.16. 如图,小明从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.17. (2021•贵港二模)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠A n﹣1BC的平行线与∠A n﹣1CD的平分线交于点A n,设∠A=θ,则∠A n= .三、解答题(本大题共5道小题)18. 如图,求证:∠A+∠B+∠C+∠D+∠E=180°.19. 【题目】(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.20. 取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?21. (2021春•苏州期末)观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.22. (12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD 的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】B7. 【答案】A8. 【答案】A9. 【答案】C ;【解析】图中小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是正三角形的周长的23,正六边形的周长为90×3×23=180cm,所以正六边形的边长是180÷6=30cm.10. 【答案】C二、填空题(本大题共7道小题)11. 【答案】三角形的稳定性;12. 【答案】813. 【答案】540°14. 【答案】 x满足1<x<9即可15. 【答案】540°16. 【答案】【答案】12017. 【答案】;【解析】解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,同理可得∠A2=∠A1==,…,∠A n=.三、解答题(本大题共5道小题)18. 【答案】解:延长BE,交AC于点H,易得∠BFC=∠A+∠B+∠C再由∠EFC=∠D+∠E,上式两边分别相加,得:∠A+∠B+∠C+∠D+∠E=∠BFC+∠EFC=180°.即∠A+∠B+∠C+∠D+∠E=180°19. 【答案】腰长为10cm ,底边长为4cm20. 【答案】解:∵ BD =CD ,∴ ABD ACD S S =△△.∴ ABD ADG ACD ADG S S S S -=-△△△△.∴ ADG BGD S S =△△.21. 【答案】解:(1)BP+PC <AB+AC ,理由:三角形两边之和大于第三边,或两点之间线段最短.(2)△BPC 的周长<△ABC 的周长.理由如下:如图,延长BP 交AC 于M ,在△ABM 中,BP+PM <AB+AM ,在△PMC 中,PC <PM+MC ,两式相加得BP+PC <AB+AC ,于是得:△BPC 的周长<△ABC 的周长.(3)四边形BP 1P 2C 的周长<△ABC 的周长.理由如下:如图,分别延长BP 1、CP 2交于M ,由(2)知,BM+CM <AB+AC ,又P 1P 2<P 1M+P 2M ,可得,BP 1+P 1P 2+P 2C <BM+CM <AB+AC ,可得结论.或:作直线P 1P 2分别交AB 、AC 于M 、N (如图),△BMP 1中,BP 1<BM+MP 1,△AMN 中,MP 1+P 1P 2+P 2M <AM+AN ,△P 2NC 中,P 2C <P 2N+NC ,三式相加得:BP 1+P 1P 2+P 2C <AB+AC ,可得结论.(4)四边形BP 1P 2C 的周长<△ABC 的周长.理由如下:将四边形BP 1P 2C 沿直线BC 翻折,使点P 1、P 2落在△ABC 内,转化为(3)情形,即可.(5)比较四边形B 1P 1P 2C 1的周长<△ABC 的周长.理由如下:如图,分别作如图所示的延长线交△ABC 的边于M 、N 、K 、H ,在△BNM 中,NB 1+B 1P1+P 1M <BM+BN ,又显然有,B 1C 1+C 1K <NB 1+NC+CK ,及C 1P 2+P 2H <C 1K+AK+AH ,及P 1P 2<P 2H+MH+P 1M ,将以上各式相加,得B 1P 1+P 1P 2+P 2C+B 1C 1<AB+BC+AC ,于是得结论.22. 【答案】解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB ∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D +∠E=180°。

2020-2021学年度人教版八年级数学上册11.1.1三角形的边课时练习(含答案解析)

2020-2021学年度人教版八年级数学上册11.1.1三角形的边课时练习(含答案解析)

2020-2021学年度人教版八年级数学上册11.1.1三角形的边课时练习一、选择题1.三角形的两边长分别为3和5,则周长C 的范围是( )A .615C <<B .616C << C .1113C <<D .1016C << 2.已知三角形的两边长分别是2cm 、3cm ,则该三角形的周长l 的取值范围是( ). A .15cm l cm <<B .26cm l cm <<C .59cm l cm <<D .610cm l cm << 3.下列数据能够组成三角形的是( )A .1,2,3B .3,4,5C .4,4,8D .4,5,10 4.已知a ,b ,c 是ABC 的三条边长,化简a b c b a c +----的结果为( ). A .22a c - B .2a C .22b c - D .05.下列各组数分别是三根小木棒的长度,将它们首尾相连能摆成三角形的是( ) A .3cm ,4cm ,8cmB .4cm ,4cm ,8cmC .5cm ,6cm ,8cmD .5cm ,5cm ,12cm6.下列四根木棒中,能与5cm ,8cm 长的两根木棒钉成一个三角形的是( ) A .3cm B .8cm C .13cm D .15cm 7.现有四根木棒,长度分别为6cm ,9cm ,10cm ,15cm ,从中任取三根木棒,能组成三角形的个数为( )A .1B .2C .3D .48.已知三角形的三边长分别为2,5,m ,则m 的值可以是( )A .6B .7C .8D .99. 下面各组中的三条线段能组成三角形的是( )A .3cm ,4cm ,5cmB .8cm ,6cm ,15cmC .2cm ,6cm ,8cmD .6cm ,6cm ,13cm 10.下列各组线段的长为边,能组成三角形的是( )A .2,5,10B .2,3,4C .2,3,5D .8,4,4二、填空题11.已知a ,b ,c 为ABC 的三边长.b ,c 满足2(2)30b c -+-=,且a 为方程|4|2x -=的解,则ABC 的形状为________三角形.12.若三角形的三边长是三个连续自然数,其周长m 满足10<m <22,则这样的三角形有________个.13.已知三角形的两边3a =,5b =,第三边是c ,则c 的取值范围是__________. 14.已知,三角形的三边长为3,5,m ,则m 的取值范围是________.15.已知三角形三边分别为1,x ,5,则整数x =_____.16.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 17.如图,共有______个三角形.18.三角形的三边长为3、7、x ,则x 的取值范围是______19.在△ABC 中,有两边为2cm 、5cm ,当第三边为整数时,△ABC 周长的最大值为_______. 20.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是____________三、解答题21.已知一个等腰三角形的周长是18cm ,其中一边长是4cm ,求这个三角形的边长. 22.如图,点P 为△ABC 内任意一点,连接PB ,PC ,请说明不等式PB + PC <AB + AC 的理由.23.若a ,b ,c 是△ABC 三边的长,化简:|a+b-c|+|b-a-c|-|c-a-b|.24.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|.25.已知三角形△ABC ,AB=3,AC=8,BC 长为奇数,求BC 的长.26.已知三角形三边的长分别为:5、10、a -2,求a 的取值范围.27.装修店的王师傅将一根长为l 的钢筋条刚好切成三段,然后制作模具ABC ,且ABC 的三边长为整数,周长l 为奇数(不考虑其他因素).(1)若8AC =,2BC =,求l 的值.(2)若5AC BC -=,求l 的最小值.28.如图所示,OB 是某楼房的高度,小明站在距楼房底部O 点30米的点A 处,测得60∠=︒.用1厘米代表10米,画出这个三角形AOB,量出OB的高度,并换BAO算出OB的实际高度.(结果为整数)29.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.⨯的正方形网格,每个小正方形的边长为1,每个小正方30.图①、图②、图③均是33形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图①中画一个钝角三角形,在图②中画一个直角三角形,在图③中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.。

重庆市綦江区2020-2021学年第一学期义务教育质量监测八年级数学试题(图片版、含WORD版)

重庆市綦江区2020-2021学年第一学期义务教育质量监测八年级数学试题(图片版、含WORD版)

重庆市綦江区2020-2021学年上期义务教育质量监测八年级数学试题(含提示答案)21F E D C B A ED C B A 图4图3图2图1一、选择题(本大题12个小题,每小题4分,共48分)1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )A B C D提示:根据轴对称图形的概念.答案:B.2.若分式1x+1有意义,则x 的取值范围是( )A.x ≠0B.x=-1C.x ≠1D.x≠-1提示:根据分式有意义的条件.答案:D.3.下列运算正确的是( )A.a 3∙a 4=a 12B.(a 3)2=a 5C.(3a 2)3=9a 6D.a 6÷a 3=a 3提示:根据幂的运算性质.答案:D.4.已知点B 、C 、F 、E 共线,∠1=∠2,AF=CD ,要使△ABF ≌△DEC ,还需补充一个条件,下列选项中不能满足要求的是( )A.AB=DEB.∠A=∠DC.AB ∥DED.BC=EF 提示:根据三角形全等的判定.答案:A. 5.等腰三角形的两边分别为3和6,则它的周长等于( )A.12B.12或15C.15或18D.15提示:根据等腰三角形的意义及三角形三边关系.答案:D.6.如图,△ABC 中,AB=AC=10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( )A.5B.6C.8D.10提示:线段的中垂线就是线段的垂直平分线根据线段垂直平分线性质及周长计算.答案:B . 7.已知x m =2,x n =3,则x 2m+n =( ) A.12 B.108 C.18 D.36提示:逆用幂的运算性质.答案:A.8.下列各选项中,因式分解正确的是( )A.a 2+b 2=(a+b)2B.x 2-4=(x+2)(x-2)C.m 2-4m+4=(m-2)2D.-2y 2+6y=-2y(y+3) 提示:根据因式分解的意义.答案:C.9.方程12x 2−1−6x−1=1x+1的增根为( )A.1B.1和-1C.-1D.0提示:增根就是分式方程无解时,未知数的值.将原方程化为整式方程解得x=1.答案:A.10.下列图形都是由同样大小的矩形按一定的规律组成,其中第1个图形中一共有6个矩形,第2个图形中一共有11个矩形,第3个图形中一共有16个矩形,⋯,按此规律,第7个图形中矩形的个数为( )A.30B.36C.41D.45F E D CB A提示:矩形就是长方形,第n 个图形中有5n+1个矩形.答案:B.11.若数a 关于x 的不等式组{x 2−1≤13(x −2) 3x −a ≥−2(1+x)恰有三个整数解,且使关于y 的分式方程1−3y y−1−2a 1−y =−2的解为正数,则所有满足条件的整数a 的值之和是( )A.2B.3C.4D.5提示:由不等式组恰有三个整数解得-3<a ≤2;由分式方程的解为正数得a>0.5且a ≠1.所以整数a=2.答案:A.12.如图,在△ABC 中,△ABC 的面积为10,AB=4,BD 平分∠ABC ,E 、F 分别为BC 、BD 上的动点,则CF+EF 的最小值是( )A.2B.3C.4D.5 提示:设D 是E 关于AD 的对称点,则CF+EF=CF+DF ≥CD.当CD 最短即可,此时CD 为△ABC 的高.答案:D. 二、选择题(本大题6个小题,每小题4分,共24分)13.冬季流感病毒爆发的高峰期,流行性感冒病简称流感病毒,流感病毒可引起人、禽、猪、马、蝙蝠等多种动物感染和发病,是人流感、禽流感、猪流感、马流感等人与动物疫病的病原,“綦江少年,健康少年”,请綦江少年们注意保暖,多喝热水,开窗通风,防范流感病,以免生病,已知流感病毒的直径为0.00000009米,请将0.00000009米用科学记数法表示为 米.提示:根据科学记数法的意义.答案:9×10-8.14.因式分解:3m 2-6m= ;a 3+2a 2+a= .提示:根据因式分解的知识方法.答案:3m(m-2);a(a+1)2.15.若a 2+ka+16是一个完全平方式,则k 等于 .提示:根据完全平方式的意义.±8.16.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .提示:利用时间关系列方程.答案:48x+4+48x−4=9.17.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,⋯A 点时,左转了 次,一共走了 米.提示:由题意知,最后形成一个正多边形.答案:11,120. 18.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是 .提示:设无人机组有x 人,则航海组有(2x-3)人,航空组有(21-3x)人.由题意得5≤21-3x ≤9.其整数解为x=4或x=5.当x=4时,航海有5人,费用为5×2×75=750元,航空有9人,费用为9×3×98=2646元,无人机费用为6939-750-2646=3543元.当x=5时,航海有7人,费用为7×2×75=1050元,航空有6人,费用为6×3×98=1764元,无人机费用为F E D C B A F E D C B A GF E D C BA 6939-1050-1764=4125元.因为无人机的费用必是5的倍数.所以3543应舍去.答案:4125元.三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(13)−1+(−2)3×(π−2)0+5;(2)(√5−√2)(√5+√2)+(√3−1)2. 提示:根据负整数指数幂,零指数幂,实数运算,乘法公式.答案:(1)0;(2)7−2√3.20.计算:(1)(x-2)(x+2)-4(2x-1);(2)(1+2a−1)÷a 2+2a+1a−1.提示:根据整式乘法,乘法公式,分式运算的知识.答案:(1)x 2-8x ;(2)1a+1.21.如图,△ABC 在平面直角坐标系中,点A 的坐标为(1)请在图中作出与△ABC 关于x 轴对称的△A /B /C /;(2)写出点A /、B /、C /的坐标;(3)求出△ABC 的面积.提示:根据轴对称作图的知识.答案: (1)如图所示:(2)A /(-3,-1)、B /(4,-2)、C /(3)△ABC 的面积 为1322.如图,AD=CB ,AB=CD ,BE ⊥AC ,垂足为E ,DF ⊥AC ,垂足为F. 求证:(1)△ABC ≌△CDA ;(2)BE=DF. 提示:(1)利用“SSS ”证;(2)证△ADF ≌△CBE. 23.有一个三位数,其百位数字为a ,十位数字为b ,个位数字为c.若这个三位数百位数字的4倍加上十位数字的2倍,再加上个位数字的和能被8整除,则称这个三位数是“航天数”.如:232,2×4+3×2+2=16=2×8,故232是“航天数”.(1)请你写出最小的三位的“航天数” ;并判断448是否是“航天数”;(2)请证明任何一个三位“航天数”能被8整除.提示:(1)百位,十位,个位应最小.答案:最小的三位“航天数”是104.因为4×4+4×2+8=32=4×8,所以448是“航天数”.(2)若三位数100a+10b+c 是“航天数”,则4a+2b+c 能被8整除.又100a+10b+c=96a+8b+c+4a+2b+c=8(12a+b)+(4a+2b+c). ∴三位数100a+10b+c 能被8整除.24.如图,在△ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线分别交AC 、 AB 于点D 、E ,CE 、BD 相交于点F ,连接DE.(1)若AC=BC=7,求DE 的长; (2)求证:BE+CD=BC.提示:(1)若AC=BC=7,则△ABC 是等边三角形,D 、E 分别是AB 、AC 的中点.答案:DE=3.5.(2)在BC 上截取BG ,连接FG ,如图.易证△BFE ≌△BFG.注意由题设条件易得∠BFC=120°,所以∠BFE=∠CFD=60°,图3图2图1E D D D C C C B BB A A A E 图2DC B A E G 图3DC BA 再证△CFD ≌△CFG.25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.提示:(1)设完成这项工程的规定时间为x 天,由题意得4(1x +1x+5)+x−4x+5=1.答案:x=20. 即完成这项工程的规定时间是20天.(2)方案一:所需工程款为20×2.1=42万元;方案二超过了规定时间;方案三:所需工程款为4×2.1+20×1.5=38.4万元.答案:选择方案三.四、解答题(本大题1个小题,共8分)26.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC=5,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 ,△BCD 的面积为 ;(2)探究2,如图2,在一般的Rt △ABC 中,∠ACB=90°,BC=(m+n)2-(m -n)2 (m>0,n>0),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m,n 的式子表示△BCD 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中,AB=AC ,BC=a+b+c (a>0,b>0,c>0),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a,b,c 的式子表示△BCD 的面积,要有探究过程.提示:(1)易得△ABC ≌△BDE ,答案:DE=BC ;△BCD 的面积为12.5;(2)过点D 作BC 边上的高DE ,如图,易证△ACB ≌△BED , BC=DE ,又BC=4mn.答案:△BCD 的面积为8m 2n 2.(3)作AG ⊥BC 于G ,过点D 作BC 边上的高DE ,如图,易证△AGB ≌△BED ,BG=DE ,又BC=a+b+c ,BG=12(a +b +c).答案:△BCD 的面积为14(a +b +c)2。

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。

2020-2021学年人教版八年级数学上册第一次段考试卷含答案

2020-2021学年人教版八年级数学上册第一次段考试卷含答案

2020-2021学年八年级上册数学第一学段考试卷(本试卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1、如右图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( ) A .两点之间直线段最短 B .矩形的稳定性 C .矩形四个角都是直角D .三角形的稳定性2、下面各组线段中,能组成三角形的是( ) A. 1,1,2B. 3,7,11C. 6,8,9D. 3,3,63、正六边形的外角和为( )A. 180°B. 360°C. 540°D. 720° 4、画△ABC 的边AB 上的高,下列画法中,正确的是( )5、在△ABC 中,∠A=36°,AB ⊥BC ,则∠C=( ) A. 36° B. 44° C. 54° D. 56°6、下列说法错误的是( )A.全等三角形的周长相等B.全等三角形的对应角相等C.全等三角形的面积相等D.面积相等的两个三角形全等7、如图,在△ABC 中,BD 是∠ABC 的角平分线,已知∠ABC =80°,则∠DBC =( ) A. 40° B. 50° C. 60° D. 70°8、如图,AD 是△ABC 的中线,已知BC=8,DE=2,则EB 的长为( )A B C D第1题A. 6B. 4C. 3D. 29、一个正多边形的内角和为540°,那么从任一顶点可引()条对角线。

A. 4B. 3C. 2D. 110、如图,在△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 260°C. 180°D. 140°二、填空题(本大题共6小题,每小题4分,共24分)11、如图,可将∠1,∠2,∠3的大小关系表示为。

上海市黄浦区格致初级中学2020-2021学年八年级上学期期中考试数学试卷含解析

上海市黄浦区格致初级中学2020-2021学年八年级上学期期中考试数学试卷含解析
【18题答案】
【答案】 .
【分析】根据点的平移规律可得平移后点的坐标是 , ,再根据正比例函数图象上点的坐标特点可得 ,再解方程即可得到答案.
【详解】解: 坐标为 , ,
将点 沿 轴向左平移 个单位后得到的点的坐标是 , ,
恰好落在正比例函数 的图象上,

解得: .
故答案为: .
【点睛】此题主要考查了正比例函数图象上点的坐标特点,关键是根据点的平移规律解答.
∴x=0或x﹣2=0,
∴x1=0,x2=2.
故答案为:x1=0,x2=2.
【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.
14.在实数范围内因式分解:x2﹣4x﹣3=_____.
【14题答案】
【答案】 .
【分析】利用完全平方公式和平方差公式因式分解可求解.
故答案为m≤1且m≠0.
17.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.
【17题答案】
【答案】3.
【分析】设共有 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.
【详解】解:设共有 个班级参加比赛,
根据题意得: ,
∴该方程有两个相等的实数根;
D、∵△=(﹣5)2﹣4× ×12=9>0,
∴该方程有两个不相等的实数根.
故选:B.
【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.
5.点A(﹣1,y1)、点B(1,y2)在直线y=﹣3x上,则( )
A.y1>y2B.y1=y2
C.y1<y2D. 无法比较y1、y2大小

2020-2021学年度第一学期期中考试八年级数学试卷及答案

2020-2021学年度第一学期期中考试八年级数学试卷及答案

1、算术平方根和立方根都等于本身的数是 , 81的算数平方根是2、已知01a <<,化简21a a --=3、要使式子1x 2-+3x 1- 有意义的X 取值范围是4、菱形有一个内角是120度,有一条对角线长为6 cm ,此菱形的边长是5、一个多边形内角和是540°,那么从一个顶点引出的对角线的条数是6、 如图,GMN ABC ∆∆经过平移后到的位置,BC 上一点D 也同时平移到点H 的位置,若,cm 8AB =_______DAC ,_______GM ,25HGN 0=∠==∠则。

7、如图矩形ABCD 的对角线AC 、BD 相交于点0,过点0的直线交AB 、CD 于E 、F ,AB=6,BC=10,则图中阴影部分的面积为8、如图P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转900 能与△CBP ′重合,若PB=3,则PP ′=ˊ(7题图)(8题图) 二、精心选一选 ,慧眼识金。

(每题3分,共24分)9、在下列各数中是无理数的有( ) -0.333…, 4, 5, π-, 3.1415, 2.010010001…(相邻两个1之间0的个数逐渐增加)A 1个B 2个C 3个D 4题号 9 10 11 12 13 14 15 16 答案个10、下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C. 16的立方根是316D. 0.01的立方根是0.000001 11、. 如图:Rt △ABC 中,∠ACB=900,CD 是高,AC=4cm ,BC=3cm ,则CD=( )A. 5cmB.512cmC. 125cmD.34cm12、在菱形ABCD 中,==∠AC :BC ,120ADC 0则( )A 、2:3 B 、3:3 C 、2:1 D 、1:313、以下列各组数为边长,能组成直角三角形的是( )A.8、15、7B. 8、10、6C. 5、8、10D. 8、39、3814、下列四个图形中,不能通过基本图形平移得到的是( )15、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A 、211 B 、1.4 C 、3D 、2(15题图)16、如图正方形ABCD 的顶点C 在直线a 上,且点B 、D 到a 的距离分别是1、2则这个正方形的边长为 ( ) (16题图)C B DA(11题)图 DCB A -11 A 2A 、1B 、2C 、4D 、5 三、用心做一作,马到成功!(17题20分,18题6分,共26分) 17、计算:(每题5分,共20分)(1)200420032323)()(+- (2)()()131381672-++-(3)40)52(2-+. (4)2101.036813-+- 18、(6分)规律探求,观察522-=58=524⨯=252,即522-=252;1033-=1027=1039⨯=3103,即1033-=3103 (1)猜想2655-等于什么,并通过计算验证你的猜想; (2)写出符合这一规律的一般等式。

2020-2021学年 北师大版八年级数学上册第六章第一节《平均数》同步练习(有答案)

2020-2021学年 北师大版八年级数学上册第六章第一节《平均数》同步练习(有答案)

第一节平均数一、选择题1. 学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100 分,张老师的得分情况如下:领导平均给分80 分,教师平均给分76 分,学生平均给分90 分,家长平均给分84 分,如果按照1∶2∶4∶1 的权进行计算,那么张老师的综合评分为( )A.83.5 分B.84.5 分C.85.5 分D.86.5 分2. 某校规定学生的学期数学成绩满分为100 分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80 分,90 分,则小明这学期的数学成绩是( )A.80 分B.82 分C.84 分D.86 分3. 已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,请你告诉他,他的数学成绩为 ()A.93分B.95分C.94分D.96分4. 某外贸公司要出口一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:-10,+5,0,+5,0,0,-5,0,+5,+10.估计这批食品罐头平均每听的质量为 ()A.453克B.454克C.455克D.456克5. 某班5名同学的数学竞赛成绩(单位:分)如下:76,80,73,92,a,如果这组数据的平均数是79,则a 的值为 ()A.68B.70C.72D.746.某校规定学生的平时作业、期中考试、期末考试三项成绩分别按30%、30%、40%计入学期总评成绩,小明的平时作业、期中考试、期末考试的英语成绩分别是93分、90分、96分,则小明这学期的英语总评成绩是 ()A.92分B.90分C.93分D.93.3分二、填空题7. 若数据1,-2,3,x 的平均数为2,则x=.8. 某餐厅供应单价为10 元、18 元、25 元三种价格的抓饭,下图是该餐厅某月销售抓饭情况的扇形统计图, 根据该统计图可算得该餐厅销售抓饭的平均单价为元.9. 某公司对应聘者 A 进行创新、综合知识、语言三项测试,A 的三项成绩分别为 72 分、50 分、88 分,若给这三个分数分别赋予权 4,3,1,则 A 的测试成绩的加权平均数为 .10. 某学习小组共有 5 人,在一次数学测试中,有 2 人得 85 分,2 人得 90 分,1 人得 70 分,在这次测试中,该学习小组的平均分为 分.11. 某校拟招聘一名优秀的数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占 60%、面试占 40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为 分.12. 从某校参加毕业会考的学生中,随机抽查了20名学生的数学成绩,分数如下: 90 84 88 86 98 78 61 54 100 9795 84 70 71 77 85 72 63 79 48 可以估计该校这次参加毕业会考的数学平均成绩为 . 三、解答题13. 某校要招聘一名学科主任,对两名应聘者进行了四项素质测试,下面是两名应聘者的素质测试成绩(单位:分):学校根据需要,对专业知识、团队精神、外语水平、电脑应用四项测试成绩分别赋予4∶2∶3∶1 的权,问:甲、乙两人谁将被录取?14.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50 位同学参与了民主测评,结果如下表所示:演讲答辩得分表(单位:分)民主测评统计表规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2 分+“较好”票数×1 分+“一般”票数×0 分;综合得分=演讲答辩分×(1-a)+民主测评得分×a(0.5≤a≤0.8).当a=0.6 时,甲和乙的综合得分分别是多少?15. 某次歌唱比赛,三名选手的成绩统计如下:(1)若按算术平均数排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(2)若将唱功、音乐常识、综合知识的得分按6∶3∶1的比例计算加权平均数,排出冠军、亚军、季军,则冠军、亚军、季军各是谁?(3)若将唱功、音乐常识、综合知识的得分按一定的比例计算加权平均数后,排名为王晓丽冠军、李真亚军、林飞扬季军,则这个比例可能是多少?直接写出一个你认为正确的比例.答案1.B2.D3.A4.C5.D6.D7.68. 17 9. 65.75 分10. 84 11. 78.8 12. 7913. ∵4+2+3+1=10,∴四项测试成绩的权可分别写成104,102,103,101, 则甲的平均成绩为 90×104+80×102+60×103+65×101=76.5(分), 乙的平均成绩为 85×104+95×102+70×103+60×101=80(分). 因为 76.5<80,所以乙将被录取. 14. 甲的演讲答辩得分:394+ 92 + 90=92(分); 甲的民主测评得分:40×2+7×1+3×0=87(分); 甲的综合得分:[92(1-a)+87a]分.当 a=0.6 时,92(1-a)+87a=92×(1-0.6)+87×0.6=89. 故甲的综合得分为 89 分. 乙的演讲答辩得分:391+ 87 + 89=89(分); 乙的民主测评得分:42×2+4×1+4×0=88(分); 乙的综合得分:[89(1-a)+88a]分.当 a=0.6 时,89(1-a)+88a=89×(1-0.6)+88×0.6=88.4. 故乙的综合得分为 88.4 分. 15. (1)王晓丽:3808098++=86(分),李真:3909095++≈91.7(分),林飞扬:310010080++≈93.3(分),所以冠军是林飞扬,亚军是李真,季军是王晓丽.(2)王晓丽:1361 80380698++⨯+⨯+⨯=90.8(分),李真:1361 90390695++⨯+⨯+⨯=93(分),林飞扬:1361 1003100680++⨯+⨯+⨯=88(分),所以冠军是李真,亚军是王晓丽,季军是林飞扬.(3)这个比例可能是8∶1∶1(答案不唯一).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020—2021学年第一学期八年级阶段练习
数学试卷
2021年1月




1. 本试卷共6页,共三道大题,30个小题,满分为
100
分,考试时间为
120
分钟.
2. 请在试卷和答题纸上认真填写学校名称、姓名.
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.
5.考试结束后,请将答题卡交回.
一、选择题(本题共10个小题,每小题2分,共20分)每题均有四个选项,符合题意的选项只有一个.
1.当x=1时,下列分式没有意义的是()
A.
1
x
x
+
B.
1
x
x-
C.
1
x
x
-
D.
1
x
x+
2.下列体育运动图案中,属于轴对称图形的是
A.B.C.D.
3.下列说法正确的是
A.16的算术平方根是±4 B.任何数都有两个平方根
C.因为3的平方是9,所以9的平方根是3 D.-1是1的平方根
4.下列事件中,属于随机事件的是
A.用长度分别是4cm,4cm,9cm的细木条首尾顺次相连可组成一个等腰三角形
B.以长度分别是5cm,4cm,3cm的线段为三角形三边,能构成直角三角形
C.分式的分子、分母同乘一个不等于零的整式,分式的值不变
D.任意画一个三角形,恰好是同一条边上的高线与中线重合
5.下列计算正确的是
A.2
(4)2
-=B.2
(2)4
=C.2510
⨯=D.623
÷=
6.如图,点E,点F在直线AC上,AF=CE,AD=CB,下列条件中不能推断△ADF≌△CBE的是
A.∠D=∠B B.∠A=∠C C.BE=DF D.AD∥BC
7. 小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,
E
B
A D
C
F
然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是
A .2.2
B
C
.D
8.如图,在△ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为
A .6
B .3
C . 12
D .4.5
9
表所示:
关于该班学生一周读书时间的数据有下列说法:①一周读书时间数据的中位数是9小时;②一周读书时间数据的众数是8小时;③一周读书时间数据的平均数是9小时;④一周读书时间不少于9小时的人数占抽查学生的50%. 其中说法正确的序号是 A .①②③
B .①②④
C .②③④
D .①③④
10. 如图,在Rt △ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于1
2BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是
A .12
5
B D .
75
二、填空题(本题共10个小题,每小题2分,共20分) 11. 如果
2
3=,那么m 的值是 .
12.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,如果从中任意摸出一个球,那
么摸到红球的可能性大小是_________. 13.计算
22
1
11m m m
---,的正确结果为_____________. 14. 如图,∠ABC =∠BAD ,请你添加一个条件:_________________,使△ABC ≌△BAD (只添一个即可).
15.用一个a 的值说明命题“如果21a ≥,那么1a ≥”是错误的,这个值可以是a = .
读书时间(小时)
7
8
9
10
11
学生人数
6
10
9
8
7
16.
()2
20b -=,那么a b +的值为_______.
17. 如图中的每个小方格都是边长为1的正方形,那么∠ABC 的度数是_____.
18.数学课上,同学们兴致勃勃地尝试着利用不同画图工具画一个角的平分线.小明用直尺画角平分线的方法如下: (1)用直尺的一边贴在∠AOB 的OA 边上,沿着直尺的另一条边画直线m ;
(2)再用直尺的一边贴在∠AOB 的OB 边上,沿着直尺的另一条边画直线n ,直线m 与直线n 交于点D ; (3)作射线
OD .射线OD 是∠AOB 的平分线.
请回答:小明的画图依据是___________________________________________________________.
m
A B
19.某校为了丰富学生的校园生活,准备购买一批陶笛. 已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A
型陶笛与用4500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,根据题意列出正确的方程是 _______________________. 20.给出下列对应的表格:
k =m =n =,那么m n += .(用含k 的代数式表示) 三、解答题(本题共60分,第21~24题,每小题5分,第25~27题,每小题6分,第28~29题,每小题7分,第30题8分)解答应写出文字说明、演算步骤或证明过程. 21. 计算:()0
31π-.
22.解方程:
11
322
x x x -=+--.。

相关文档
最新文档