第九章 常微分方程
常微分方程
dy y
P(
x)dx,
ln | y | P( x)dx lnC1 ,(C1为任意常数)
齐次方程的通解为 y Ce P( x)dx (C eC1 )
17
2. 线性非齐次方程 dy P( x) y Q( x) dx
线性齐次方程是线性非齐次方程的特殊情况.
线性齐次方程的通解是 Ce P( x)dx ,
(3)检验改进模型, 观察所得的解能够在多大程度或范围上反映实际问题,
用实际问题检验该模型, 如果存在问题,则需研究, 改进模型.
27
例 冷却问题 将一个温度为50º的物体,放在20º的恒温 环境中冷却,求物体温度变化的规律.
解 冷却定律:“温度为T的物体,在温度为 T0 的环境中 冷却的速率与温差T T0成正比.” 设物体的温度T与时间 t的函数关系为 T T (t),
(t2 x)dt xdx 0 一阶 z x y 一阶
x
未知函数是一元函数的方程为 常微分方程;
未知函数是多元函数的方程为 偏微分方程.
方程中所出现的导数的最高阶数称为 微分方程的阶.
一般的n阶微分方程为 F ( x, y, y,, y(n) ) 0,
或已解出最高阶导数 y(n) f ( x, y, y,, y(n1) ).
9.4 微分方程的应用问题
例 把“大气压随高度变化而降低的速率与所在高度 处的气压成正比”所含关系表示出来.
解:第一步,设未知函数:
设大气压P和高度x之间的函数关系为 P P(x),
大气压随高度变化的速率为 dP
dx
第二步,根据条件写出方程 dP P, 为比例系数,
dx
第三步,取比例系数为正:因 dP 0, 故 0,
第九章 常微分方程
第九章 常微方程数值解法
第8章 序
许多科学技术问题,例如天文学中的星体运动, 许多科学技术问题,例如天文学中的星体运动,空间 技术中的物体飞行,自动控制中的系统分析, 技术中的物体飞行,自动控制中的系统分析,力学中的振 动,工程问题中的电路分析等,都可归结为常微分方程的 工程问题中的电路分析等, 初值问题。 初值问题。 所谓初值问题, 所谓初值问题,是函数及其必要的导数在积分的起始 点为已知的一类问题,一般形式为: 点为已知的一类问题,一般形式为:
⇒ y n +1 = y n −1 + 2hf ( xn , y n )
第9章 常微分方程数值解法
(8 - 4)
8-10
Euler公式的推导( Euler公式的推导(续5) 公式的推导
上对y )=f 四、利用数值积分公式:在[xn,xn+1]上对y′(x)=f (x,y(x)) 积分 利用数值积分公式:
x0 < x1 < L < xn < L
(i=1,2,…,n)构造插值函数作为近似函数。上述离散点 i=1,2,…,n)构造插值函数作为近似函数。 相 邻两点间的距离h 称为步长, 邻两点间的距离hi=xi-1-xi 称为步长,若hi 都相等为一定数 h, 则称为定步长,否则为变步长。( x, y ( x)) 则称为定步长,否则为变步长。 a≤ x≤b y ′( x) = f 本章重点讨论如下 y (a ) = y0 一阶微分方程: 一阶微分方程: 在此基础上介绍一阶微分方程组与 8-5 第9章 常微分方程数值解法 高阶微分方程的数值解法。 高阶微分方程的数值解法。
⇒ yn +1 = yn + hf ( xn , yn ) + E ( xn , h) ⇒ yn +1 = yn + hf ( xn , yn )
数值分析第九章常微分方程数值解法
松弛法
通过迭代更新函数值并逐步放松约束 条件来逼近解,适用于刚性和非刚性 问题。
利用线性组合迭代函数值来逼近解, 具有更高的收敛速度和稳定性。
03
数值解法的稳定性分析
数值解法的稳定性定义
数值解法的稳定性是指当微分方程的初值有微小的扰动时, 其数值解的近似值的变化情况。如果数值解在微小扰动下变 化较小,则称该数值方法是稳定的。
更高的精度和稳定性。
数值逼近法
泰勒级数法
将微分方程的解展开为泰勒级数,通过截断级数来逼 近解。
多项式逼近法
利用多项式来逼近微分方程的解,通过选取合适的基 函数和系数来提高逼近精度。
样条插值法
利用样条函数来逼近微分方程的解,具有更好的光滑 性和连续性。
迭代法
雅可比迭代法
通过迭代更新函数值来逼近微分方程 的解,具有简单易行的优点。
初值和边界条件的处理
根据实际问题,合理设定初值和边界 条件,以获得更准确的数值解。
收敛性和误差分析
对数值解进行收敛性和误差分析,评 估解的精度和稳定性。
数值解法的应用案例分析
人口增长模型
通过数值解法求解人口增长模型,预测未来人口数量,为政策制 定提供依据。
化学反应动力学
利用数值解法研究化学反应的动力学过程,模拟反应过程和结果。
数值分析第九章常微分方 程数值解法
• 引言 • 常微分方程数值解法的基本思想 • 数值解法的稳定性分析 • 数值解法的收敛性和误差分析 • 数值解法的实现和应用案例
01
引言
常微分方程的应用背景
自然科学
描述物理、化学、生物等自然 现象的变化规律。
工程领域
控制系统设计、航天器轨道计 算等。
数值分析第9章常微分方程数值解法
只要f (x, y)在a,b R1上连续, 且关于 y 满足
Lipschitz 条件,即存在与 x, y无关的常数 L 使 | f (x, y1) f (x, y2 ) | L | y1 y2 |
常微分方程的数值解法分为 (1)初值问题的数值解法 (2)边值问题的数值解法
一、初值问题的数值解法
1、一阶常微分方程初值问题的一般形式
y f (x, y), a x b
y(a)
y0
(1)
2. 迭代格式的构造
(1) 构造思想:将连续的微分方程及初值条件离散为线性方程 组加以求解。由于离散化的出发点不同,产生出各种不同的数 值方法。基本方法有:有限差分法(数值微分)、有限体积法 (数值积分)、有限元法(函数插值)等等。
y( x1 ) h
y( x0 )
y( x ) y h f ( x , y( x ))
1
0
1
1
x0
x1
yi1 yi hf xi1, yi1 i 0, n 1
由于未知数 yi+1 同时出现在等式的两边,不能直接 得到,故称为隐式 /* implicit */ 欧拉公式,而前者 称为显式 /* explicit */ 欧拉公式。
y 2xy2 (0 x 1.2)
y
0
1
取步长 h 0.1。
解: 应用Euler公式于题给初值问题的具体形式为:
yi1 yi 2hxi yi2 i 0,1,...,11
y
0
1
其中 xi 0.1i。 计算结果列于下表:
数值分析 第9章 常微分方程初值问题数值解法
9 .2 .2 梯形方法/* trapezoid formula */— 显、隐式两种算法的平均 为得到比欧拉法精度高的计算公式, 在等式( 2.4) 右端积分 中若用梯形求积公式近似, 并用yn 代替y ( xn ) , yn+1 代替y ( xn+1 ) ,则得
h yn 1 yn [ f ( xn , yn ) f ( xn 1 , yn 1 )], 2
yn 1 yn f ( xn , yn ), xn 1 xn
即 yn+1 = yn + hf ( xn , yn ) . ( 2 .1)
这就是著名的欧拉( Euler ) 公式.
• 若初值y0 已知, 则依公式( 2.1)可逐步算出
• y1 = y0 + hf ( x0 , y0 ) ,
为了分析迭代过程的收敛性, 将( 2. 7) 式与(2. 8 )式相减, 得
h ( k 1) (k ) yn 1 yn [ f ( x , y ) f ( x , y 1 n 1 n 1 n 1 n 1 )] 2
于是有
| yn 1 y
( k 1) n 1
hL (k ) | | yn 1 yn 1 |, 2
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 |, y1, y2 R,
定理1 设f在区域D={(x,y)|a≤x ≤b,y∈R}上连续, 关于y满足利普希茨条件,则对任意x0 ∈[a,b], y0 ∈R,常微分方程初值问题(1.1)式和(1.2)式当x ∈[a,b]时存在唯一的连续可微解y(x). 定理2 设f在区域D上连续,且关于y满足利 普希茨条件,设初值问题
1 2 1 2 dy x ydy xdx y x c 2 2 dx y y (0) 2 y2 x2 4
常微分方程的数值解法
主要内容
§1、引言 §2、初值问题的数值解法--单步法 §3、龙格-库塔方法 §4、收敛性与稳定性 §5、初值问题的数值解法―多步法 §6、方程组和刚性方程 §7、习题和总结
§1、 引 言 主要内容 ➢研究的问题 ➢数值解法的意义
1.什么是微分方程 ? 现实世界中大多数事物
使得对任意的x [a,b]及y1, y2都成立
则称 f (x,y) 对y 满足李普希兹条件,L 称为 Lipschitz常数.
就可保证方程解的存在唯一性
若 f (x,y) 在区域 G连续,关于y
满足李普希兹 条件
一阶常微分方程的初值问题的解存在且唯一. 我们以下的讨论,都在满足上述条件下进行.
一阶常微分方程组常表述为:
y(x0
)
y0
(1.2)
种 数 值 解
法
其中f (x,y)是已知函数,(1.2)是定解条件也称为 初值条件。
常微分方程的理论指出:
当 f (x,y) 定义在区域 G=(a≤x≤b,|y|<∞)
若存在正的常数 L 使:
(Lipschitz)条件
| f (x, y1) f (x, y2) | L | y1 y2 | (1.3)
节点 xi a ihi,一般取hi h( (b a) / n)即等距
要计算出解函数 y(x) 在一系列节点
a x0 x1 xn b
处的近似值 yi y(xi )
y f (x, y)
y
(
x0
)
y0
a xb
(1.1) (1.2)
对微分方程(1.1)两端从 xn到xn1 进行积分
内部联系非常复杂
其状态随着 时间、地点、条件 的不同而不同
《高等数学》各章知识点总结——第9章
《高等数学》各章知识点总结——第9章第9章是《高等数学》中的微分方程章节。
微分方程是研究函数与其导数之间的关系的一门数学学科,是应用数学的基础。
本章主要介绍了常微分方程的基本概念和解法,包括一阶和二阶常微分方程的解法、线性常微分方程、齐次线性常微分方程和非齐次线性常微分方程等。
本章的主要内容如下:1.一阶常微分方程的解法:-可分离变量法:将方程两边进行变量分离,然后分别对两边积分得到解。
-齐次方程法:通过对方程的两边同时除以y的幂次,转化为可分离变量的形式。
- 线性方程法:将方程整理为dy/dx + P(x)y = Q(x)的形式,然后通过积分因子法求解。
2.二阶常微分方程的解法:- 齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = 0的形式,然后通过特征方程求解。
- 非齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = f(x)的形式,然后通过待定系数法求解。
3.线性常微分方程:-线性方程的定义和性质:线性方程是指非齐次线性方程,具有叠加和齐次性质。
-齐次线性方程的通解:通过特征方程求解齐次线性方程,得到通解。
-非齐次线性方程的通解:通过齐次线性方程的通解和非齐次线性方程的一个特解求得非齐次线性方程的通解。
4.齐次线性微分方程:-齐次线性方程的定义和性质:齐次线性方程是指非齐次线性方程中f(x)为零的情况。
-齐次线性方程的解法:通过特征方程求解齐次线性方程,得到通解。
5.非齐次线性微分方程:-非齐次线性方程的定义和性质:非齐次线性方程是指非齐次线性方程中f(x)不为零的情况。
-非齐次线性方程的解法:通过待定系数法求解非齐次线性方程。
6.可降次的非齐次线性微分方程:-可降次的非齐次线性方程的定义和性质:可降次的非齐次线性方程是指非齐次线性方程中f(x)可以表示为x的多项式乘以y(x)的幂函数的形式。
第9章 常微分方程初值问题数值解法
数值分析
第9章 常微分方程初值问题数值解法
《常微分方程》中介绍的微分方程主要有:
(1)变量可分离的方程 (2)一阶线性微分方程(贝努利方程) (3)可降阶的一类高阶方程 (4)二阶常系数齐次微分方程 (5)二阶常系数非齐次微分方程 (6)全微分方程 本章主要介绍一阶常微分方程初值问题的数值解法。
进一步: 令
y n1 y n
xn 1 xn
y n 1 y( x n 1 ) , y n y( x n )
f ( x , y( x ))dx h f ( x n , y n )
宽
9
高
实际上是矩形法
数值分析
第9章 常微分方程初值问题数值解法
(3)
用Taylor多项式近似并可估计误差
解决方法:有的可化为显格式,但有的不行 18
数值分析
第9章 常微分方程初值问题数值解法
与Euler法结合,形成迭代算法 ,对n 0,2, 1,
( yn0 )1 yn hf x n , yn ( k 1) h ( yn1 yn f x n , yn f x n1 , ynk )1 2
7
数值分析
第9章 常微分方程初值问题数值解法
建立数值解法的常用方法
建立微分方程数值解法,首先要将微分方程离散 化. 一般采用以下几种方法: (1) 用差商近似导数
dy yx yx x x dx x y
n 1 n n 1 n
n
,
n
进一步: 令
yn1 y( xn1 ) , yn y( xn )
由 x0 , y0 出发取解曲线 y y x 的切线(存在!),则斜率
常微分方程数值解法
ρ ρ
n+1 n
≤1
三、梯形公式
由 分 径 y ( xn+1) = y ( xn) + 积 途 : xn+1
∫
f ( x, y)dt
(
积分 梯形 式 且令:yn+1 = y( xn+1), yn = y( xn) 用 公 , h 则 yn+1 = yn + ( f (xn , yn) + f (xn+1 , yn+1)) 得: 2
第九章 常微分方程数值解法
§1 、引言
一 常 分 程 初 问 : 阶 微 方 的 值 题 dy dx = f (x, y) y( x0) = y0
'
a ≤ x ≤b
2 y 例 : 方 程 xy -2 y = 4 x ⇒ y = + 4 x 2 y 令 :f ( x , y ) = + 4 且 给 出 初 值 y (1 )= -3 x 就 得 到 一 阶 常 微 分 方 程 的 初 值 问 题 : 2 y dy = f (x, y) = + 4 dx x y(1) = − 3
n n n n n 2 // n n+1
~
y
n+1
= yn + hf ( xn, yn ) = y(xn) + hf
n+1
~
y
n+1
( x , y( x ))
n n
则 T = y( x ) − = h y (ξ ) x y 2 ~
// n+1 n+1
2
n
< ξ < xn+1
令
第9章 常微分方程初值问题数值解法
oa
b
a f ( x)dx (b a) f (b)
中矩形公式
b
ab
a f ( x)dx (b a) f ( 2 )
计算方法
梯形公式
bx
右矩形公式 中矩形公式 左矩形公式
§ 欧拉方法几何意义
y y y(x)
y0 y1 y2 0 x0 x1 x2
计算方法
x
§ 隐式欧拉方法
➢隐式欧拉法 /* implicit Euler method */
初 值 问 题 的 解 必 存 在 且唯 一 。
计算方法
§9.1 引言
三. 数值解法含义
所谓数值解法, 就是设法将常微分方程离散化, 建 立差分方程, 给出解在一些离散点上的近似值。
微分方程的数值解: 设方程问题的解y(x)的存在区 间是[a,b], 令a= x0< x1<…< xn =b, 其中hk=xk+1-xk, 如是等距节点h=(b-a)/n, h称为步长。
yi1 yi1 2h f ( xi , yi ) i 1, ... , n 1
计算方法
预估-校正法
三. 预估 — 校正法
/* predictor-corrector method */
方法 显式欧拉 隐式欧拉 梯形公式
中点公式
简单
稳定性最好
精度提高
精度低
精度低, 计算量大
计算量大
精度提高, 显式
在x0 x X上的数值解法。
四. 误差估计、收敛性
和稳定性
计算方法
§9.2 简单的数值方法与基本概念
一. 欧拉(Euler)格式
设 节 点 为xi a ih (i 0,1,2 , n) 方 法 一 :Taylor展 开 法
数值分析--第9章常微分方程数值解
数值分析--第9章常微分⽅程数值解数值分析--第9章常微分⽅程数值解第九章常微分⽅程数值解法许多实际问题的数学模型是微分⽅程或微分⽅程的定解问题。
如物体运动、电路振荡、化学反映及⽣物群体的变化等。
常微分⽅程可分为线性、⾮线性、⾼阶⽅程与⽅程组等类;线性⽅程包含于⾮线性类中,⾼阶⽅程可化为⼀阶⽅程组。
若⽅程组中的所有未知量视作⼀个向量,则⽅程组可写成向量形式的单个⽅程。
因此研究⼀阶微分⽅程的初值问题=≤≤=0)(),(y a y b x a y x f dx dy , (9-1)的数值解法具有典型性。
常微分⽅程的解能⽤初等函数、特殊函数或它们的级数与积分表达的很少。
⽤解析⽅法只能求出线性常系数等特殊类型的⽅程的解。
对⾮线性⽅程来说,解析⽅法⼀般是⽆能为⼒的,即使某些解具有解析表达式,这个表达式也可能⾮常复杂⽽不便计算。
因此研究微分⽅程的数值解法是⾮常必要的。
只有保证问题(9-1)的解存在唯⼀的前提下,研究其数值解法或者说寻求其数值解才有意义。
由常微分⽅程的理论知,如果(9-1)中的),(y x f 满⾜条件(1)),(y x f 在区域} ),({+∞<<∞-≤≤=y b x a y x D ,上连续;(2)),(y x f 在D 上关于y 满⾜Lipschitz 条件,即存在常数L ,使得y y L y x f y x f -≤-),(),(则初值问题(9-1)在区间],[b a 上存在惟⼀的连续解)(x y y =。
在下⾯的讨论中,我们总假定⽅程满⾜以上两个条件。
所谓数值解法,就是求问题(9-1)的解)(x y y =在若⼲点b x x x x a N =<<<<= 210处的近似值),,2,1(N n y n =的⽅法。
),,2,1(N n y n =称为问题(9-1)的数值解,n n x x h -=+1称为由n x 到1+n x 的步长。
今后如⽆特别说明,我们总假定步长为常量。
第九章 常微分方程数值解法1
x0 < x1 < x2 < ... < xn < ...
N:
xi = a + ih, i = 0,1, L , N .
的解析解及其数值解的几何意义: 几何意义 初值问题 (∗)的解析解及其数值解的几何意义:
y
( xN , y N ) • (x , y ) ( x1 , y1) 2 2 • y= • • • ( x0 , y0) •
Tn+1 = g( xn , y( xn ))h
则称 g ( xn , y( xn ))h
p +1
+ O( h
p+ 2
),
为该方法的局部截断误差的主项。 为该方法的局部截断误差的主项。 主项
3. 若 lim ( y( xn ) − yn ) = 0 ,则称方法是收敛的。 则称方法是收敛的。 h→ h→ 0 向前Euler法局部截断误差: 法局部截断误差: 截断误差 向前
第九章 常微分方程数值解法
本章主要介绍一阶常微分方程初值问题的数值解法。 本章主要介绍一阶常微分方程初值问题的数值解法。 一阶常微分方程初值问题的数值解法 本章内容: 本章内容:
1、引言 Euler法 2、Euler法 Rung-Kutta( 3、Rung-Kutta(R-K)法 线性多步法与预估4、线性多步法与预估-校正格式
G = {a ≤ x ≤ b;| y |< ∞ }
且关于 y满足Lipschitz条件,即存在常数 L > 0,使 满足 条件, 条件
| f ( x , y1 ) − f ( x , y2 ) |≤ L | y1 − y2 |; ∀x , y ∈ G
存在唯一解,且解是连续可微 连续可微的 则初值问题 (∗)存在唯一解,且解是连续可微的。
数值分析李庆扬第9章常微分方程初值问题数值解法讲义.
② 由 x0 , y0 f x0 , y0 切线 P0P1 ,
切线与 x x1 交点 P1 : y1 的近似值 ;
③ 再由 x1 , y1 向前推进到 P2 , 得到折线 P0P1 Pn ,近似 y yx 。
7
2021年5月4日
《数值分析》 黄龙主讲
h
yxn
yxn1
yn1 yn f
h
xn1 , yn1
yn1 yn h f xn1 , yn1
——后退的欧拉公式(隐式)
注意:① 显式计算方便,隐式稳定性较好;
② 上式隐含 yn1 ? ,采用迭代法求解。
12
2021年5月4日
《数值分析》 黄龙主讲来自欧拉公式的另一种理解:
将常微分方程 y f x, y 改写 dy f t , ytdt
“步进式”:顺着节点排列顺序,一步一步地向前推进。
步长:常用等步长 hn xn1 xn ,节点为 xn x0 nh 单步法:计算 yn1 时,只用到前一点的值 yn k 步法:计算 yn1 时,用到前面 k 点的值 yn , yn1 , , ynk1
5
2021年5月4日
《数值分析》 黄龙主讲
对微分方程从 xn 到 xn1 积分
y xn1 yxn
xn1 f t , yt dt
xn
由积分左矩形公式得
xn1 xn
f
t ,
yt dt
hf
xn ,
yxn
例如:
lim
h0
yxn1
h
yxn
yxn
yxn1
h
yxn
yxn
f xn , yxn
09第九章 常微分方程
两端恒等,则该函数称为微分方程的解. 两端恒等,则该函数称为微分方程的解. 如果微分方程的解中含有相互独立的任意常数 任 ( 意常数不能合并)的个数与方程的阶数相同, 意常数不能合并)的个数与方程的阶数相同,则称此解 为该微分方程的通解.不含任意常数的解, 为该微分方程的通解 . 不含任意常数的解 , 称为微分方 程的特解. 程的特解.
例1 求一阶线性微分方程 y′ −
9.2.2 可降阶的高阶微分方程
1. y ( n ) = f ( x ) 型的微分方程 对上述方程只需连续积分 n 次即得通解
的通解. 例 1 求微分方程 y′′′ = e 2 x + x 的通解. 解 对 所 给 的 方 程 连 续 积 分 三 次 , 得 1 2x x 2 y′′ = ∫ (e 2x +x)dx = e + + C1 , 2 2 2 1 2x x 1 2 x x3 y ' = ∫ ( e + +C1 )dx = e + + C1 x + C2 , 2 2 4 6 1 2 x x3 1 2 x x 4 C1 2 y = ∫ ( e + +C1 x +C2 )dx = e + + x + C2 x + C3 . 4 6 8 24 2 1 2x x 4 C1 2 故原方程的通解为 y = e + + x + C2 x + C3 8 24 2 C 其中 C1 = . 2
3. y′′ = f ( y, y ') 型的微分方程 x 作变量代换将其降阶. 方程特点: 方程特点:右端不显含自变量 ,作变量代换将其降阶. 令 y ′ = p ( y ) ,则 dP dP dy dP y′′ = = ⋅ =p dx dy dx dy 从而将所给方程化为一阶微分方程 dP dP p = f ( y, p) dy 若能求出其解 p = ϕ ( y, c1 ) , 再由 y′ = ϕ ( y, c1 ) 求出原方程的 解.
第九章 常微分方程数值解
k 0, 1, 2,...
( ( 应用改进欧拉法,如果序列 yn0)1 , yn1)1 , 收敛,它的极限便
满足方程
y n 1 h yn f ( xn , yn ) f ( xn1 , yn1 ) 2
3.公式的截断误差
二元泰勒公式: 设 z=f(x,y) 在点 ( x 0 , y 0 ) 的某一邻域内连续且直到有n+1阶
首先希望能确定系数 1、2、p,使得到的算法格式有2阶 dy f x ( x, y) yi y( x i ) 的前提假设下,使得 f y ( x , y ) 精度,即在 dx 3 Ri y( xi 1 ) yi 1 Oh ( x , y ) f ( x , y ) f ( x , y ) ( f )
2
Q: 为获得更高的精度,应该如何进一步推广?
yi1 yi h[ 1 K1 2 K2 ... m Km] K1 f ( xi , yi ) K2 f ( xi 2 h, yi 21 hK1 ) K3 f ( xi 3 h, yi 31 hK1 32 hK2 )
最常用为四级4阶经典龙格-库塔法
4 阶龙格――库塔法
h y n 1 y n ( k1 2 k 2 2 k 3 k 4 ) 6 k1 f ( x n , y n ) 1 h k 2 f x n h, y n k1 2 2 1 h k 3 f x n h, y n k 2 2 2 k f x h, y hk n n 3 4
y( x ) y0 f (t , y(t ))dt
x0
x
是等价的,当x = x1时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程组是由n个微分方程,n+1个变量构成的方程组。利用 Mathematica求解微分方程组的过程与求解单个微分方程是类似的。 例6 在给定初始条件时,也可以不只是指定f在某一点的函数值以及导数 值,而是指定它在两个不同点的值。这是求解微分方程的问题就成为边 值问题。然而与初值问题不同(它对一大类情形都可以证明解是唯一存 在的),即使对于最简单的方程,边值问题也可能没有解。
第九章 常微分方程
9.1 常微分方程的解析解
简单地说,常微分方程就是表示函数及其一个或多个导数关系的 方程。满足微分方程的函数称为微分方程的解。 Mathematica命令DSolve用于求解微分方程。 1) DSolve[方程,y[x], x]给出独立变量为x的微分方程的一般解y[x]. 2) DSolve[方程,y, x ]给出微分方程的一般解y,这里把解表示为列 表内的纯粹函数。 例1 有一点非常重要,那就是在微分方程中未知函数要表示成y[x],而 不能只用y。类似地,它的导数要表示成y’[x], y’’[x]等等。否则则会出 错。 例2
虽然对绝大多数微分方程而言,利用默认设置得到的效果 都很好,Mathematica还是提供了一些选项,以设置相应参 数,处理某些反常情形。
例7
9.2 常微分方程的数值解
虽然有些方程的解可以用初等函数表示出来,但在实际问题中遇到 的许多微分方程的解做不到这一点。即使可以证明存在唯一的解,但 也只能给出解的数值近似。NDSolve就是为此设计的。 NDSolve[方程,y, {x, xmin, xmax} ]给出在方程中定义的微分方程 以及初始条件所确定的解y的数值近似,其中独立变量x满足 xmin≤x≤xmaxห้องสมุดไป่ตู้ 由于NDSolve给出的是微分方程或者微分方程组的一个数值解, 因此为了保证解的唯一性,必须指定适当数目的初始条件。 由于数值方法是在优先个点上构造近似值,因此Mathematica对近 似值进行插值,即构造一个过这些店的的光滑函数,并以 InterpolatingFunction 对象的形式返回解。 例8
高阶微分方程也可以类似求解。导数用y’[x], y’’[x], ….表示,另外,也 可以用D或Derivative指定导数。 例3 对于复杂的微分方程,如果有可能的话,Mathematica就会用特殊函数 给出其解答。如果Mathematica无法求解该方程,它就会返回未求解的方 程,或者用未计算出来的积分表示方程的解。对于这些情况,比较适宜 的方法是给出方程的数值解。(下节) 例4 如果在给定微分方程的同时,也给出了y的值,以及有时也给出它的导 数值,这是求解y的任务就称为初值问题。微分方程与初始条件是在 DSolve 命令中用一个列表来指定的。如果给出的初始条件数目足够,那 么就会返回唯一解。 例5