各种滤波器Matlab程序

合集下载

用MATLAB设计FIR数字滤波器

用MATLAB设计FIR数字滤波器

实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。

2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。

3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。

二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。

由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。

FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。

重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。

本实验重要简介窗函数法。

用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。

(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。

可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。

程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。

如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。

Matlab技术滤波器设计工具

Matlab技术滤波器设计工具

Matlab技术滤波器设计工具概述:滤波器是信号处理中常用的工具,用于去除信号中的噪声或改变信号的频率响应。

Matlab是一个强大的数学工具,提供了丰富的滤波器设计函数和工具,使得滤波器设计变得简单易用。

本文将介绍Matlab中常用的滤波器设计函数和工具,帮助读者了解如何利用Matlab来设计不同类型的滤波器。

I. 常用滤波器设计函数Matlab提供了多个函数用于滤波器设计,包括FIR滤波器和IIR滤波器。

1. FIR滤波器设计函数FIR(Finite Impulse Response)滤波器是一种常见的线性相位滤波器,其特点是无反馈,具有线性相位和稳定的响应。

Matlab中常用的FIR滤波器设计函数包括fir1、fir2、firpm等。

- fir1函数可以设计标准的低通、高通、带通和带阻滤波器,可以指定截止频率、滤波器类型和滤波器阶数。

- fir2函数可以设计任意的线性相位FIR滤波器,可以指定滤波器的频率响应和频率区间。

- firpm函数可以设计最小最大化滤波器,可以指定滤波器的通带、阻带特性和响应类型。

2. IIR滤波器设计函数IIR(Infinite Impulse Response)滤波器是一种常见的递归滤波器,其特点是具有反馈,可以实现更高阶和更复杂的滤波器。

Matlab中常用的IIR滤波器设计函数包括butter、cheby1、cheby2、ellip等。

- butter函数可以设计巴特沃斯滤波器,可以指定滤波器的阶数和截止频率。

- cheby1和cheby2函数可以设计Chebyshev滤波器,可以指定滤波器的阶数、通带/阻带最大衰减和截止频率。

- ellip函数可以设计椭圆滤波器,可以指定滤波器的阶数、通带/阻带最大衰减和截止频率。

II. 滤波器设计工具除了上述的滤波器设计函数外,Matlab还提供了几个可视化的滤波器设计工具,方便用户通过图形界面进行滤波器设计。

1. FDA工具箱Matlab中的FDA工具箱(Filter Design and Analysis)是一个图形界面工具,用于设计、分析和实现各种滤波器。

基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计

基于matlab的切比雪夫及巴特沃斯低通高通滤波器的设计

巴特沃斯低通、切比雪夫低通、高通IIR滤波器设计05941401 1120191454 焦奥一、设计思路IIR滤波器可以分为低通、高通、带通、带阻等不同类型的滤波器,而以系统函数类型又有巴特沃斯、切比雪夫等滤波器。

其中巴特沃斯较为简单,切比雪夫较为复杂;低阶比高阶简单,但却有着不够良好的滤波特性。

在满足特定的指标最低要求下,低阶、巴特沃斯滤波器能更大程度地节省运算量以及复杂程度。

滤波器在不同域内分为数字域和模拟域。

其中数字域运用最广泛。

在设计过程中,一般是导出模拟域的滤波器,之后通过频率转换变为数字域滤波器,实现模拟域到数字域的传递。

在针对高通、带通、带阻的滤波器上,可以又低通到他们的变换公式来进行较为方便的转换。

综上,IIR滤波器的设计思路是,先得到一个满足指标的尽可能简单的低通模拟滤波器,之后用频域变换转换到数字域。

转换方法有双线性变换法、冲激响应不变法等。

虽然方法不同,但具体过程有很多相似之处。

首先将数字滤波器的指标转换为模拟滤波器的指标,之后根据指标设计模拟滤波器,再通过变换,将模拟滤波器变换为数字滤波器,是设计IIR滤波器的最基本框架。

以下先讨论较为简单的巴特沃斯低通滤波器。

二、巴特沃斯低通滤波假设需要一个指标为0~4hz内衰减小于3db、大于60hz时衰减不小于30db的滤波器。

其中抽样频率为400hz。

以双线性变换方法来设计。

首先将滤波器转换到模拟指标。

T =1f f ⁄=1400Ωf ′=2ff f =8ff f =Ωf ′f =0.02fΩf ′=2ff f =120ff f =Ωf ′f =0.3f根据双线性变换Ω=2f tan ⁡(f 2) 得到Ωf =25.14Ωf =407.62这就得到了模拟域的指标。

由巴特沃斯的方程Α2(Ω)=|f f (f Ω)|2=11+(ΩΩf )2f20ff |f f (f Ω)|=−10ff [1+(ΩΩf)2f] {20ff |f f (f Ωf )|≥−320ff |f f (f Ωf )|≤−30ff得到{ −10ff [1+(Ωf Ωf)2f ]≥−3−10ff [1+(Ωf Ωf )2f]≤−30当N取大于最小值的整数时,解出N=2,因此为二阶巴特沃斯低通滤波器。

匹配滤波matlab代码

匹配滤波matlab代码

匹配滤波matlab代码匹配滤波是一种信号处理技术,主要用于检测和分离信号中的特定成分。

它基于将一组滤波器应用于输入信号的思想,每个滤波器用于提取信号中的一个特定频率或时间域成分。

本文将介绍如何在MATLAB中使用匹配滤波器来检测信号中的特定成分。

首先,我们需要定义一个匹配滤波器。

匹配滤波器由两部分组成:信号模板和相关性运算。

信号模板是我们要在输入信号中检测的特定成分的表示。

我们可以手动设置信号模板,也可以根据已知信号的特征来自动生成信号模板。

相关性运算用于比较输入信号与信号模板之间的相似性。

以下是使用匹配滤波器检测方波信号中正脉冲部分的MATLAB代码示例:% 定义方波信号t = 0:0.01:1;y = square(2*pi*5*t);% 定义信号模板template = zeros(size(y));template(1:25) = 1;% 进行相关性运算corr_output = xcorr(y, template);% 找到相关性结果中的峰值[~, max_index] = max(corr_output);% 在原始信号中提取正脉冲部分peak = y(max_index - 24:max_index);解释一下代码如下:我们首先定义了一段方波信号,然后手动定义了一个信号模板,其中表示正脉冲部分的信号模板为25个采样点长度的1序列。

然后使用MATLAB中的xcorr函数对输入信号和信号模板进行相关性运算,得到一个相关性输出结果。

最后我们找到相关性输出结果中的峰值(即正脉冲部分对应的位置),并将原始信号的这部分提取出来。

在下面的代码示例中,我们将使用匹配滤波器来检测一组音频文件中的某个特定的谐波频率的存在。

这个例子将展示如何自动计算信号模板,并检测输入信号中的该频率成分。

我们首先读入了一段音频文件,然后使用MATLAB自带的periodogram函数计算信号的功率谱密度。

然后我们通过找到最大功率的位置,得到了目标频率(也就是该音频文件的某个谐波频率)。

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍

Matlab中的多种滤波器设计方法介绍引言滤波器是数字信号处理中常用的工具,它可以去除噪声、改善信号质量以及实现其他信号处理功能。

在Matlab中,有许多不同的滤波器设计方法可供选择。

本文将介绍一些常见的滤波器设计方法,并详细说明它们的原理和应用场景。

一、FIR滤波器设计1.1 理想低通滤波器设计理想低通滤波器是一种理论上的滤波器,它可以完全去除截止频率之上的频率分量。

在Matlab中,可以使用函数fir1来设计理想低通滤波器。

该函数需要指定滤波器阶数及截止频率,并返回滤波器的系数。

但是,由于理想低通滤波器是非因果、无限长的,因此在实际应用中很少使用。

1.2 窗函数法设计为了解决理想滤波器的限制,窗函数法设计了一种有限长、因果的线性相位FIR滤波器。

该方法利用窗函数对理想滤波器的频率响应进行加权,从而得到实际可用的滤波器。

在Matlab中,可以使用函数fir1来实现窗函数法设计。

1.3 Parks-McClellan算法设计Parks-McClellan算法是一种优化设计方法,它可以根据指定的频率响应要求,自动选择最优的滤波器系数。

在Matlab中,可以使用函数firpm来实现Parks-McClellan算法。

二、IIR滤波器设计2.1 Butterworth滤波器设计Butterworth滤波器是一种常用的IIR滤波器,它具有平坦的幅频响应,并且在通带和阻带之间有宽的过渡带。

在Matlab中,可以使用函数butter来设计Butterworth滤波器。

2.2 Chebyshev滤波器设计Chebyshev滤波器是一种具有较陡的滚降率的IIR滤波器,它在通带和阻带之间有一个相对较小的过渡带。

在Matlab中,可以使用函数cheby1和cheby2来设计Chebyshev滤波器。

2.3 Elliptic滤波器设计Elliptic滤波器是一种在通带和阻带上均具有较陡的滚降率的IIR滤波器,它相较于Chebyshev滤波器在通带和阻带上都具有更好的过渡特性。

利用MATLAB设计IIR滤波器

利用MATLAB设计IIR滤波器

利用MATLAB设计IIR滤波器IIR滤波器是一种数字滤波器,它基于无限脉冲响应(Infinite Impulse Response)的概念。

与FIR滤波器相比,IIR滤波器具有更高的灵活性和更小的计算复杂度。

MATLAB是一种强大的数学软件,它提供了丰富的信号处理工具箱,可以用于设计、分析和实现各种数字滤波器,包括IIR滤波器。

设计IIR滤波器的一种常用方法是脉冲响应不变方法(Impulse Invariance Method)。

下面将以该方法为例,介绍如何使用MATLAB设计IIR滤波器。

首先,我们将使用MATLAB的`iirdesign`函数来设计IIR滤波器。

该函数的语法如下:```matlab[b, a] = iirdesign(wp, ws, rp, rs);```其中,`wp`是通带截止频率,`ws`是阻带截止频率,`rp`是通带衰减,`rs`是阻带衰减。

`b`和`a`分别代表滤波器的分子和分母系数。

例如,我们希望设计一个低通IIR滤波器,通带截止频率为0.4π,阻带截止频率为0.6π,通带衰减为3dB,阻带衰减为40dB。

则可以使用以下代码:```matlabwp = 0.4 * pi;ws = 0.6 * pi;rp = 3;rs = 40;[b, a] = iirdesign(wp, ws, rp, rs);```设计完成后,我们可以使用MATLAB的`freqz`函数来绘制滤波器的频率响应曲线。

代码示例如下:```matlab[H, w] = freqz(b, a);mag = 20 * log10(abs(H));figure;plot(w/pi, mag);xlabel('Normalized Frequency');ylabel('Magnitude (dB)');```上述代码中,`freqz`函数返回滤波器的频率响应`H`和频率向量`w`。

谐波小波滤波的matlab程序

谐波小波滤波的matlab程序

谐波小波滤波的matlab程序谐波小波滤波(Harmonic Wavelet Filter)是一种信号处理方法,用于去除信号中的噪声和干扰。

在Matlab中,可以使用信号处理工具箱中的函数来实现谐波小波滤波。

以下是一个简单的示例程序,演示了如何在Matlab中使用谐波小波滤波。

matlab.% 生成示例信号。

t = 0:0.001:1; % 时间向量。

f1 = 50; % 信号的基本频率。

f2 = 120; % 信号的谐波频率。

x = sin(2pif1t) + 0.5sin(2pif2t); % 含噪信号。

% 添加高斯白噪声。

noise = 0.5randn(size(t)); % 生成高斯白噪声。

x_noisy = x + noise; % 含噪信号。

% 进行小波变换。

wname = 'db4'; % 选取小波基函数。

level = 5; % 分解层数。

[c, l] = wavedec(x_noisy, level, wname); % 进行小波分解。

% 构建谐波小波滤波器。

d = fdesign.bandstop('N,F3dB1,F3dB2', 6, 45, 75, 125); % 设计带阻滤波器。

Hd = design(d, 'butter'); % 设计巴特沃斯滤波器。

% 进行滤波。

c_denoised = wden(c, 'rigrsure', 's', 'sln', level,Hd); % 使用谐波小波滤波器对小波系数进行去噪。

% 重构信号。

x_denoised = waverec(c_denoised, l, wname); % 重构信号。

% 绘制结果。

subplot(3,1,1);plot(t, x, 'b');title('原始信号');subplot(3,1,2);plot(t, x_noisy, 'r');title('含噪信号');subplot(3,1,3);plot(t, x_denoised, 'g');title('去噪后信号');以上是一个简单的谐波小波滤波的Matlab程序示例。

数字滤波器的设计及其MATLAB实现

数字滤波器的设计及其MATLAB实现

设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。

滤波matlab代码

滤波matlab代码

滤波matlab代码滤波是信号处理中常用的技术,用于去除信号中的噪声或者滤波信号以得到感兴趣的频率成分。

在MATLAB中,有多种滤波函数可以使用,例如`filter`、`designfilt`和`fir1`等。

本文将介绍这些函数的用法和原理,并通过实例说明如何使用MATLAB进行滤波。

我们来介绍一下`filter`函数。

该函数可以用于实现各种滤波器,如低通滤波器、高通滤波器和带通滤波器等。

其基本语法为:```Matlaby = filter(b,a,x)```其中,`b`和`a`是滤波器的系数,`x`是输入信号的向量。

这个函数将输出滤波后的信号`y`。

接下来,我们来看一个实例。

假设我们有一个包含噪声的信号`x`,我们希望通过低通滤波器来去除噪声。

我们可以使用`filter`函数来实现这个功能。

首先,我们需要设计一个低通滤波器的系数。

可以使用`fir1`函数来设计一个FIR滤波器的系数。

例如,我们可以使用以下代码来设计一个阶数为10的低通滤波器:```Matlaborder = 10; % 滤波器阶数cutoff = 0.2; % 截止频率b = fir1(order, cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(b, 1, x);```这样,我们就得到了滤波后的信号`y`。

除了`filter`函数,MATLAB还提供了`designfilt`函数用于设计各种类型的滤波器。

该函数可以设计IIR滤波器、带通滤波器、带阻滤波器等。

使用`designfilt`函数需要指定滤波器的类型、阶数以及其他参数。

例如,我们可以使用以下代码来设计一个IIR低通滤波器:```Matlaborder = 6; % 滤波器阶数cutoff = 0.2; % 截止频率d = designfilt('lowpassiir', 'FilterOrder', order, 'PassbandFrequency', cutoff);```然后,我们可以使用这个滤波器对信号进行滤波:```Matlaby = filter(d, x);```同样地,我们得到了滤波后的信号`y`。

fir带阻滤波器matlab代码

fir带阻滤波器matlab代码

《fir带阻滤波器MATLAB代码实现及应用》一、引言在数字信号处理领域,滤波器是一种常见的工具,用于处理数字信号的频率特性。

其中,fir带阻滤波器是一种常用的滤波器类型,它可以在信号频谱中选择性地抑制某些频率分量,从而实现信号的滤波处理。

本文将从fir带阻滤波器的原理和设计入手,结合MATLAB代码实现,探讨fir带障滤波器的应用以及个人的理解。

二、fir带阻滤波器原理与设计1. fir带阻滤波器的原理fir带阻滤波器是一种线性相位滤波器,它具有在给定频率范围内拒绝信号分量的能力。

其原理是利用窗函数的方法对滤波器的频率响应进行设计,从而实现对特定频率范围内信号的抑制。

2. fir带阻滤波器的设计方法fir带阻滤波器的设计方法多种多样,常见的包括频率采样法、窗函数法、优化法等。

在设计过程中,需要考虑滤波器的通带、阻带、过渡带等参数,并选择合适的设计方法和滤波器系数,以满足滤波器的设计要求。

三、MATLAB代码实现下面是一段MATLAB代码,实现了一个简单的fir带阻滤波器:```matlab% 设计fir带阻滤波器fs = 1000; % 采样频率fpass = [100 200]; % 通带频率范围fstop = [150 250]; % 阻带频率范围dpass = 0.01; % 通带最大衰减dstop = 0.01; % 阻带最小衰减% 根据要求设计fir带阻滤波器h = fir1(100, fstop/(fs/2), 'stop', kaiser(101, 5));% 使用fir带阻滤波器进行信号滤波t = 0:1/fs:1-1/fs; % 生成时间序列x = sin(2*pi*100*t) + sin(2*pi*200*t); % 生成测试信号y = filter(h, 1, x); % 对测试信号进行滤波```以上代码首先设定了滤波器的参数,然后利用MATLAB的fir1函数设计了一个带阻滤波器,并对一个测试信号进行了滤波处理。

matlab filter用法

matlab filter用法

Matlab滤波器的使用方法在数字信号处理中,滤波器是一种常用的工具,用于去除信号中的噪音、提取感兴趣的信号分量或改变信号的频率特性。

Matlab作为一个广泛使用的工具,提供了丰富的滤波器设计和应用函数,方便工程师和科研人员进行信号处理与分析。

本文将深入探讨Matlab中滤波器的使用方法,帮助读者更好地理解和应用滤波器处理信号的过程。

1. 滤波器类型与设计Matlab中常用的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

在使用滤波器之前,我们需要先设计滤波器的类型和参数。

Matlab提供了fir1、butter、cheby1等函数,可以根据指定的参数设计出满足要求的滤波器。

我们可以使用butter函数设计Butterworth滤波器,通过指定阶数和截止频率等参数,得到滤波器的系数。

2. 滤波器的应用设计好滤波器之后,接下来就是将滤波器应用到信号中。

在Matlab 中,可以使用filter函数来实现滤波器对信号的处理。

我们可以将设计好的Butterworth滤波器应用到需要处理的信号上,得到滤波后的信号。

除了filter函数外,Matlab还提供了fft、freqz等函数,可以帮助我们分析信号经过滤波器处理后的频谱和幅度特性。

3. 滤波器的评价与优化在应用滤波器之后,我们需要对滤波后的信号进行评价和优化。

Matlab中提供了丰富的工具和函数,比如fdatool、filterbuilder等,可以帮助我们对滤波器的频率响应、幅度响应进行分析和优化。

通过这些工具,我们可以直观地观察滤波器的效果,对滤波器的参数进行调整,使滤波后的信号更好地满足我们的需求。

总结与展望通过本文对Matlab滤波器的使用方法进行深入介绍,我们了解了滤波器的设计、应用和优化过程。

在实际应用中,我们需要根据信号的特点和要求选择合适的滤波器类型,设计滤波器参数,并通过Matlab 的函数和工具进行滤波处理和优化。

频域滤波的matlab程序

频域滤波的matlab程序

频域滤波的matlab程序频域滤波是一种经典的信号处理方法,它通过将信号从时域转换到频域,利用频域上的滤波操作对信号进行处理和改进。

在这篇文章中,我们将学习如何使用Matlab来实现频域滤波的基本步骤。

首先,我们需要明确几个基本的概念。

频域滤波是在频域上进行操作的一种信号处理方法。

频域指的是信号在频率上的表示,而时域则是信号在时间上的表示。

频域滤波通过在频域上对信号进行滤波操作来实现信号处理的目的。

在Matlab中,可以通过使用傅里叶变换函数fft()来将信号从时域转换到频域。

在进行滤波之前,我们需要将信号进行傅里叶变换,得到频率表示的信号。

以下是一步一步实现频域滤波的Matlab程序:步骤1:导入信号数据首先,我们需要导入要处理的信号数据。

可以使用Matlab内置的导入函数,如load()或csvread(),将信号数据从外部文件导入到Matlab的工作空间中。

这里假设我们有一个名为“signal.csv”的文件,其中包含待处理的信号数据。

signal = csvread('signal.csv');步骤2:计算信号的傅里叶变换接下来,我们需要使用fft()函数将信号从时域转换到频域。

Matlab中的fft()函数会返回一个复数数组,其中包含了信号的频域表示。

通常我们只关心信号的幅度谱,可以使用abs()函数获取信号的幅度谱。

matlabsignal_spectrum = abs(fft(signal));步骤3:设计滤波器在进行滤波之前,我们需要设计一个合适的滤波器。

滤波器的设计取决于具体的信号处理目标。

常见的滤波器类型包括低通滤波器、高通滤波器和带通滤波器等。

在这里,我们以低通滤波器为例。

Matlab中可以使用fir1()函数设计滤波器。

该函数需要指定滤波器的阶数和截止频率。

阶数决定了滤波器的复杂度,截止频率决定了滤波器的通带和阻带范围。

order = 50;cutoff_freq = 0.1;filter = fir1(order, cutoff_freq);步骤4:应用滤波器设计好滤波器后,我们可以将其应用于信号的频域表示。

matlab均值滤波代码

matlab均值滤波代码

matlab均值滤波代码Matlab均值滤波代码是一种常用的图像处理技术,它可以有效地去除图像中的噪声,使图像更加清晰。

均值滤波是一种线性滤波方法,它通过对图像中每个像素周围的像素进行平均来消除噪声。

Matlab均值滤波代码的实现非常简单,只需要使用Matlab中的imfilter函数即可。

该函数可以对图像进行各种滤波操作,包括均值滤波、中值滤波、高斯滤波等。

下面是一个简单的Matlab均值滤波代码示例:```matlab% 读取图像img = imread('lena.jpg');% 定义滤波器大小filter_size = 3;% 定义均值滤波器filter = ones(filter_size) / filter_size^2;% 进行均值滤波img_filtered = imfilter(img, filter);% 显示原图和滤波后的图像subplot(1, 2, 1);imshow(img);title('原图');subplot(1, 2, 2);imshow(img_filtered);title('均值滤波后的图像');```在上面的代码中,我们首先读取了一张图像,然后定义了一个3x3的均值滤波器。

接着,我们使用imfilter函数对图像进行均值滤波,并将滤波后的图像显示出来。

需要注意的是,均值滤波器的大小越大,滤波效果越好,但是也会导致图像失去细节。

因此,在实际应用中,需要根据具体情况选择合适的滤波器大小。

Matlab均值滤波代码是一种非常实用的图像处理技术,它可以有效地去除图像中的噪声,使图像更加清晰。

在实际应用中,我们可以根据具体情况选择不同的滤波器大小和类型,以达到最佳的滤波效果。

(完整word版)用MATLAB设计滤波器

(完整word版)用MATLAB设计滤波器

用MATLAB 设计滤波器1 IIR 滤波器的设计freqz功能:数字滤波器的频率响应。

格式:[h ,w ]=freqz (b ,a,n )[h ,f]=freqz(b ,a ,n ,Fs)[h ,w ]=freqz(b ,a,n ,’whole')[h ,f ]=freqz(b,a ,n ,'whole ’,Fs )h=freqz (b ,a ,w)h=freqz (b,a ,f ,Fs)freqz(b ,a)说明:freqz 用于计算由矢量"和b 构成的数字滤波器H (z)=A(z)B(z)= n-1--n -1 l)z a(n ....a(2)z l l)z b(n .... b(2)z b(l)++++++++ 的复频响应H (j ω).[h ,w]=freqz (b,a ,n )可得到数字滤波器的n 点的幅频响应,这n 个点均匀地分布在上半单位圆(即0~π),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。

至于n值的选择没有太多的限制,只要n 〉0的整数,但最好能选取2的幂次方,这样就可采用FFT 算法进行快速计算。

如果缺省,则n=512。

[h ,f ]二freqz(b,a,n ,Fs)允许指定采样终止频率Fs (以Hz 为单位),也即在0~Fs/2频率范围内选取n 个频率点(记录在f 中),并计算相应的频率响应h 。

[h,w]=freqz(b,a,n,’whole’)表示在0~2π之间均匀选取n个点计算频率响应.[h,f]=freqz(b,a,n,'whole',Fs)则在O~Fs之间均匀选取n个点计算频率响应.h=freqz(b,a,w)计算在矢量w中指定的频率处的频率响应,但必须注意,指定的频率必须介于0和2π之间.h=freqz(b,a,f,Fs)计算在矢量f中指定的频率处的频率响应,但指定频率必须介于0和Fs之间。

butter功能:Butterworth(比特沃思)模拟和数字滤波器设计。

FIR数字滤波器的MATLAB详细程序

FIR数字滤波器的MATLAB详细程序

%FIR-DF hd=ideal_lp(wc,M);Fs=32000;a=2*pi*6500;b=2*pi*7000;c=2*pi*9000;n1=0:4096;t=n1/Fs;xa=cos(a*t)+cos(b*t)+cos(c*t);%+cos(d*t);figure(1);y=fft(xa);plot(abs(y));title('fft(xa)变换');grid;Rp=0.25;As=52;%ws=pi*6600*2/Fs;wp=pi*6700*2/Fs;%gao tong%ws=pi*6700*2/Fs;wp=pi*6600*2/Fs;%di tongws=[pi*6600*2/Fs,pi*7400*2/Fs];wp=[pi*6800*2/Fs,pi*7200*2/Fs];%dai tong%ws=[pi*6600*2/Fs,pi*7400*2/Fs,pi*8600*2/Fs,pi*9400*2/Fs];wp=[pi*6800*2/Fs,pi*7200*2/Fs, pi*8800*2/Fs,pi*9200*2/Fs];%dai tong%ws=[pi*6800*2/Fs,pi*7200*2/Fs];wp=[pi*6600*2/Fs,pi*7400*2/Fs];%dai zuDB=abs(ws(1)-wp(1));%DB=abs(ws-wp);M0=ceil((As-8)/(2.285*DB));%阶数M=M0+mod(M0,2);%确保阶数为偶数N=M+1;%长度为奇数%0.112*(As-8.7);As>50;%0.5842*(As-21)^0.4+0.07886*(As-21);21<=As<=50;%0;As<21;if As>50beta=0.112*(As-8.7);elseif21<=As&&As<=50beta=0.5842*(As-21)^0.4+0.07886*(As-21);elsebeta=0;endwn=kaiser(N,beta);wc=(wp+ws)/2/pi;%fir1使用wc归一化%hn=fir1(M,wc,'high',wn);%gao tonghn=fir1(M,wc,wn);%dai tong,di tong%hn=fir1(M,wc,'stop',wn);%dai zufigure(2);plot(abs(wn));title('窗函数');grid;figure(3);[hh,w]=freqz(hn,1);freqzplot(hh,w,'linear');title('幅频/相频特性');%Hn=fft(hn);%plot(abs(Hn));title('FFT(Hn)');%freqz(hn,1);title('幅频特性');y=filter(hn,1,xa);figure(4);y1=fft(y);plot(abs(y1));title('高通滤波器滤波之后');grid;%=========验证=====================%验证%w_kai=wn';%hd=hn;%h=hd.*w_kai;%freqz_mN1=1000;[H,W]=freqz(hn,1,N1,'whole');%[H,W]=freqz(B,A,N1,'whole');delta_w=2*pi/N1;db=20*log10(abs(H)/max(abs(H))+eps);%通带波纹db数%rp1=-(min(db(wp/delta_w+1:1:501)))%gao tong yan zheng%as1=-round(max(db(1:1:ws/delta_w+1)))%rp1=-(min(db(1:1:wp/delta_w+1)))%di tong yan zheng%as1=-round(max(db(ws/delta_w+1:1:501)))rp1=-(min(db(wp(1)/delta_w+1:1:wp(2)/delta_w+1)))%dai tong yan zhengas1=round(max(-max(db(1:1:ws(1)/delta_w+1)),-max(db(ws(2)/delta_w+1:1:501))))%rp1=-min(min(db(1:1:wp(1)/delta_w+1)),min(db(wp(2)/delta_w+1:1: 501)))%dai zu yan zheng%as1=-round(max(db(ws(1)/delta_w+1:1:ws(2)/delta_w+1)))%N1=4096;%Hw=fft(h,N1);%wk=2*pi*[0:N1-1]/N1;%hgw=Hw.*exp(j*wk*N/2);%rp=max(20*log10(abs(hgw)))%%hgmin=min(real(hgw));%rs=20*log10(abs(hgmin))%w_kai=wn';%hd=hn;%h=hd.*w_kai;%d_w=2*pi/1000;%[db,w0]=freqz(h,1);%rp1=-(min(db(wp/d_w+1:1:501))) %as1=-round(max(db(1:1:ws/d_w+1)))。

matlab滤波器设计命令

matlab滤波器设计命令

matlab滤波器设计命令Matlab滤波器设计命令滤波器是数字信号处理中常用的工具,用于去除信号中的噪声、频率干扰或其他不需要的成分。

Matlab提供了一系列有用的滤波器设计命令,使用户能够轻松设计并应用各种类型的滤波器。

在本文中,我们将详细介绍Matlab中常用的滤波器设计命令,包括滤波器设计函数、滤波器类型和设计过程。

I. Matlab中常用的滤波器设计函数在Matlab中,有几种函数可用于设计滤波器,其中最常用的函数是`designfilt`函数和`fir1`函数。

1. designfilt函数`designfilt`函数是Matlab中最灵活和功能强大的滤波器设计函数之一,可用于设计各种类型的IIR和FIR滤波器。

它的基本语法如下:`filt = designfilt(FilterType, 'PropertyName', PropertyValue, ...)`其中,`FilterType`代表滤波器类型,包括低通滤波器(Lowpass)、高通滤波器(Highpass)、带通滤波器(Bandpass)、带阻滤波器(Bandstop)等。

`PropertyName`和`PropertyValue`是可选的参数,用于设置滤波器的各种属性,如阶数(Order)、截止频率(CutoffFrequency)、通带和阻带的最大衰减(MaximumAttenuation)等。

下面是一个使用`designfilt`函数设计低通滤波器的例子:Fs = 1000; 采样频率Fpass = 20; 通带截止频率Fstop = 30; 阻带截止频率designfilt('lowpassiir', 'FilterOrder', 4, 'PassbandFrequency', Fpass, 'StopbandFrequency', Fstop, 'SampleRate', Fs)该命令将设计一个4阶的低通IIR滤波器,其通带截止频率为20Hz,阻带截止频率为30Hz,采样频率为1000Hz。

基于matlab的数字滤波器设计及仿真

基于matlab的数字滤波器设计及仿真
N-1阶FIR滤波器:
滤波器的指标
■ 滤波器的指标常在频域给出 ■ 数字滤波器的频率响应特性曲线:
H(ejw)= |H(ejw)|ej (w) |H(ejw)|为幅频特性函数,表示信号通过该 滤波器后各频率的衰减情况。
(w)为相频特性函数,表示信号通过滤波器 后在时间上的延时情况。
二、MATLAB环境下IIR数字滤波器的设计
四、两个有趣的实验
1、利用MATLAB进行声音滤波: 利用MATLAB读取wav格式的声音文件,对
信号进行离散傅里叶变换,得到其频谱图,给 信号加杂音,然后设计一个数字滤波器将杂音 滤除,得到原音,最后比较滤波器的滤波效果。
语音读取和加噪
■ clear;close all; ■ [Y,Fs,NBITS]=WAVREAD("WindowsXP.wav"); ■ n=length(Y); ■ f=0:Fs/n:Fs*(n-1)/n; ■ K=0:1/(n-1):1; ■ subplot(2,3,1);plot(K,Y);title("语音信号的时域波形"); ■ Y1=fft(Y,n); ■ subplot(2,3,3);plot(f,abs(Y1));title("语音信号的频谱"); ■ noise=0.02*sin(2*pi*4000*K); ■ subplot(2,3,2);plot(K(1:50),noise(1:50));title("噪声的时域波形"); ■ s=length(noise); ■ noise1=fft(noise,s); ■ subplot(2,3,5);plot(f,abs(noise1));title("噪声的频谱"); ■ A=Y"+noise; ■ subplot(2,3,4);plot(K,A);title("含噪语音的时域波形"); ■ A1=fft(A,s); ■ subplot(2,3,6);plot(f,abs(A1));title("含噪语音的频谱");

matlab滤波函数详解 -回复

matlab滤波函数详解 -回复

matlab滤波函数详解-回复Matlab滤波函数详解滤波是信号处理中的重要任务之一,它可以用来去除噪声、强调信号的特定频率成分、或者改变信号的频谱分布。

Matlab作为一款强大的数学计算软件,提供了丰富的滤波函数以供使用。

本文将主要介绍Matlab中常用的滤波函数,并逐步回答关于这些函数的一系列问题。

一、fir1函数fir1函数用于设计FIR滤波器的零点增益。

它采用了窗函数法,通过选择合适的窗函数和截止频率,可以得到所需的滤波器。

1. 如何使用fir1函数设计一个低通滤波器?使用fir1函数设计一个低通滤波器的示例代码如下:matlabfs = 1000; 采样频率fc = 100; 截止频率N = 100; 滤波器的阶数b = fir1(N, fc/(fs/2));以上代码中,fs表示采样频率,fc表示截止频率,N表示滤波器的阶数。

fir1函数会返回滤波器的系数b。

2. fir1函数有哪些可选参数?如何选择窗函数?fir1函数还可以接受其他参数,用于指定窗函数的类型和参数。

常用的窗函数有'hamming'、'hanning'、'blackman'等。

可以使用help fir1查看fir1函数的帮助文档,其中有关于可选参数的详细说明。

二、butter函数butter函数用于设计IIR(无限脉冲响应)滤波器。

它基于巴特沃斯滤波器的设计方法,可以用来设计各种类型的滤波器。

1. 如何使用butter函数设计一个带通滤波器?使用butter函数设计一个带通滤波器的示例代码如下:matlabfs = 1000; 采样频率f1 = 100; 通带1的下限频率f2 = 200; 通带2的上限频率Wn = [f1, f2]/(fs/2);[N, Wn] = buttord(Wn(1), Wn(2), 1, 40);[b, a] = butter(N, Wn);以上代码中,fs表示采样频率,f1和f2分别表示通带的下限和上限频率,Wn表示归一化的通带频率范围,N表示滤波器的阶数,b和a分别表示滤波器的分子和分母系数。

低通滤波的matlab实现

低通滤波的matlab实现

四种低通滤波器:一、理想低通滤波器I=imread('bb.jpg');T=rgb2gray(I);figure(1);subplot(1,2,1),imshow(uint8(I));title('原图像');subplot(1,2,2),imshow(uint8(T));title('理想低通滤波所得图像');[f1,f2]=freqspace(size(T),'meshgrid');H=ones(size(T));r=sqrt(f1.^2+f2.^2);H(r>0.1)=0;Y=fft2(double(T));Y=fftshift(Y);Ya=Y.*H;Ya=ifftshift(Ya);I=ifft2(Ya);figure(2);surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');二、巴特沃斯低通滤波器I=imread('bb.jpg');T=rgb2gray(I);figure(1);subplot(1,2,1),imshow(uint8(I));title('原图像');subplot(1,2,2),imshow(uint8(T));title('巴特沃斯低通滤波所得图像');[f1,f2]=freqspace(size(T),'meshgrid');D=0.3;r=f1.^2+f2.^2;n=4;for i=1:size(T,1)for j=1:size(T,2)t=r(i,j)/(D*D);H(i,j)=1/(t^n+1);endendY=fft2(double(T));Y=fftshift(Y);Ya=Y.*H;Ya=ifftshift(Ya);I=real(ifft2(Ya));figure(2);surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');三、梯形滤波器I=imread('bb.jpg');T=rgb2gray(I);figure(1);subplot(1,2,1),imshow(uint8(I));title('原图像');subplot(1,2,2),imshow(uint8(T));title('梯形低通滤波所得图像');[f1,f2]=freqspace(size(T),'meshgrid');D=100/size(I,1);D0=0.1;D1=0.4;r=sqrt(f1.^2+f2.^2);H=zeros(size(T));H(r<D0)=1;for i=1:size(T,1)for j=1:size(I,2)if r(i,j)>=D0 & r(i,j)<=D1H(i,j)=(D1-r(i,j))/(D1-D0);endendendY=fft2(double(T));Y=fftshift(Y);Ya=Y.*H;Ya=ifftshift(Ya);I=real(ifft2(Ya));figure(2);surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');四、高斯低通滤波器I=imread('bb.jpg');T=rgb2gray(I);figure(1);subplot(1,2,1),imshow(uint8(I));title('原图像');subplot(1,2,2),imshow(uint8(T));title('高斯低通滤波所得图像');[f1,f2]=freqspace(size(T),'meshgrid');D=100/size(I,1);r=f1.^2+f2.^2;H=ones(size(T));for i=1:size(T,1)for j=1:size(T,2)t=r(i,j)/(D*D);H(i,j)=exp(-t);endendY=fft2(double(T));Y=fftshift(Y);Ya=Y.*H;Ya=ifftshift(Ya);I=real(ifft2(Ya));figure(2);surf(H,'Facecolor','interp','Edgecolor','none','Facelighting','phong'); title('频谱图');。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档