数学建模(层次分析法(AHP法))PPT课件

合集下载

第1章:层次分析法PPT课件

第1章:层次分析法PPT课件

g1 / g1
A
(aij
)33
g2
/
g1
g3 / g1
g1 / g2 g2 / g2 g3 / g2
g1 / g3
g2
/
g3
g3 / g3
-
6
1.1 AHP方法的基本原理
二、判断矩阵及其特征向量
设3个物体重量组成的向量为 G ( g1 , g2 , g3 )T
g1 / g1
A
G
g2
阶数 1
2
3
4
5
6
7
8
R.I. 0 阶数 9
0 0.52 0.89 1.12 1.26 1.36 1.41 10 11 12 13 14 15
R.I. 1.46 1.49 1.52 1.54 1.56 1.58 1.59
一致性指标C.I与同阶平均随机一致性指标R.I的比较值,称为一致性比率
C.R C.I
设判断矩阵A的全部特征值为:1= max,2,,m
由于A是互反矩阵,aii=1,(i=1,2,,m)。由矩阵理论有
max 2 m m aii m , 即 | m i | max m
i 1
i2
为达到满意一致性,除了max之外,其余特征值尽量接近于零。取
m
| i2 i | max m C .I
-
7
1.1 AHP方法的基本原理
二、判断矩阵及其特征向量
a11 a12 a13 g1 / g1 g1 / g2 g1 / g3 1 g1 / g2 g1 / g3
判断矩阵
A
a21
a22
a23
g2
/
g1
g2 / g2

层次分析法AHP法ppt课件

层次分析法AHP法ppt课件
②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
18
目标层
工作选择
准则层 方案层
贡收 发 声 工 生 作活 环环
献入 展 誉 境 境
可供选择的单位P1’ P2 , Pn
19
建立层次结构模型的思维过程的归纳
1
w2
wn
wi wi wk
wj
wk w j
wn
wn
1
w1 w2
27
即 aik akj aij i, j 1,2,, n
A
但在例2的成对比较矩阵中, a23 7, a21 2, a13 4 a23 a21 a13
在正互反矩阵A中,若 aik akj aij ,(A 的元素具有 传递性)则称A为一致阵。
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)2。6
3 层次单排序及其一致性检验
用权值表示影响程度,先从一个简单的例子看如何确 定权值。
例如 一块石头重量记为1,打碎分成n小块,各块的重
量分别记为:w1,w2,…wn
则可得成对比较矩阵
1
w1 w2
w1
wn
由右面矩阵可以看出,
w2
A
w1
层次分析法所要解决的问题是关于最低层对最高层的相 对权重问题,按此相对权重可以对最低层中的各种方案、 措施进行排序,从而在不同的方案中作出选择或形成选择 方案的原则。
20
2 构造判断(成对比较)矩阵
在建立递阶层次结构以后,上下层次之 间元素的隶属关系就被确定了。假定上一层 次 的 元 素 Ck 作 为 准 则 , 对 下 一 层 次 的 元 素 A1, …, An 有支配关系,我们的目的是在准则 Ck 之下按它们相对重要性赋予 A1, …, An 相 应的权重。

《AHP层次分析法》课件

《AHP层次分析法》课件

AHP层次分析法法在人力资源管理中发挥着重要的作用。通过比较和权重计算, 帮助组织招聘、培训和绩效评估等人力资源决策,提高人力资源的管理效果。
AHP层次分析法在市场营销中的应用
市场营销决策需要考虑多个因素,AHP层次分析法可以帮助决策者制定和评估不同的市场策略。通过比较和权 重计算,帮助企业选择最适合的市场营销方案。
AHP层次分析法在战略决策中起到至关重要的作用。通过权重计算和层次结构 图,帮助组织制定和评估战略选项,提高决策的准确性和一致性。
AHP层次分析法在风险评估中的应用
风险评估是AHP层次分析法的另一个重要应用领域。通过对不同风险因素的比较和权重计算,帮助决策者识别、 评估和应对不同的风险,降低决策的风险。
AHP层次分析法与其他决策方法的比较
AHP层次分析法与其他决策方法相比具有独特的优势。与TOPSIS方法相比,AHP更强调准则的相对重要性;与 加权平均法相比,AHP能更好地处理多层次的决策问题。
TOPSIS方法
更强调准则的相对重要性
加权平均法
能够处理多层次的决策问题
AHP层次分析法在战略决策中 的应用
求和计算
将归一化后的值按照列求和,得到每个准则和方案的权重。
AHP层次分析法的优点和不足
AHP层次分析法有许多优点,如能够处理复杂的决策问题、提供量化的结果和灵活性强。但也存在一些不足, 如对决策者的主观判断依赖较大。
1 优点
处理复杂问题、量化结果、灵活性强
2 不足
主观判断依赖、计算复杂度高、数据要求较高
准则层
制定评估决策的准则和标准,帮助做出合理的选择。
方案层
列出可选方案,进行比较和权重分配,为最终决策
子标准化判断矩阵
子标准化判断矩阵是AHP层次分析法中的关键步骤。通过比较和归一化处理,确定不同准则和方 案的相对重要性。

层次分析法AHP课件共30页

层次分析法AHP课件共30页

1/a13 1/a23 a33

a3n
……




Cn
1/a1n 1/a2n 1/a3n …
ann
a11
Aaij nn a21
a1 2
a2 2
a1n a2n
an1
an2
an
n
aij
1 a ji
aij 0
三、基本步骤
1、建立系统的递阶层次结构(如图)
(分析系统中各个因素的关系)
2、构造两两比较判断矩阵(正互反矩阵) (如图)
背景:决策问题----在多种方案中依据一定的标准选择某一种方案。
(购物、旅游、排队、择业……)
人物: T. L. Saaty----美国著名运筹学专家,皮斯堡大学教授 历史:曾研究应急计划、电力分配、运输业研究, 1979正式提出层次分析法。
美国高等教育事业 1985-2000展望,1985年世界石油价格预测等。
工具:矩阵理论,Matlab 作用:层次分析法在决策工作中有广泛的应用。
主要用于确定综合评价的权重数。
-------能源系统分析、城市规划、经济管理、科研评价、决策
二、基本思路
先分解后综合的系统思想:
首先将所要分析的问题层次化:根据问题的性质和要达到的总目标,将问题分解 成不同的组成因素,按照因素间的相互关系及隶属关系,按不同层次聚集组合, 形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)相对于 最高层(总目标)相对重要程度的权值或相对优劣次序的问题。
C4
1/3 1/5
21Biblioteka 1C51/3 1/5
3
1
1
成对比较阵和权向量
1 1/2 4

层次分析法(AHP法) ppt课件

层次分析法(AHP法)  ppt课件

w1 w2 1
wn w2
w1 wn w2 wn 1 27

a ik a kj a ij
i, j 1,2,, n
A
但在例2的成对比较矩阵中, a23 7, a21 2, a13 4
a23 a21 a13
在正互反矩阵A中,若 a ik a kj a ij ,(A 的元素具有 传递性)则称A为一致阵。 定理:n 阶正互反阵A的最大特征根max n, 当且仅当
心理学家认为成对比较的因素不宜超过9个,即 每层不要超过9个因素。
ppt课件 22
成对比较阵和权向量 比较尺度aij
a ij 尺度
1 相同
Saaty等人提出1~9尺度——aij 取值 1,2,… , 9及其互反数1,1/2, … , 1/9
2 3 稍强 4 5 强 6 7 8 9 绝对强
• 便于定性到定量的转化:
3
层次单排序及其一致性检验
用权值表示影响程度,先从一个简单的例子看如何确 定权值。 例如 一块石头重量记为1,打碎分成n小块,各块的重 量分别记为:w1,w2,…wn
则可得成对比较矩阵 1 w2 由右面矩阵可以看出, A w1 wi wi wk wj wk w j wn ppt课件 w1
C1 1 2 A 1/ 4 1/ 3 1/ 3
1 1/ 7 1/ 5 1/ 5
7 1 2 3
C5 3 5 5 1/ 2 1/ 3 1 1 1 1
C4 3
A~成对比较阵 稍加分析就发 现上述成对比 较矩阵有问题
26 ppt课件 旅游问题的成对比较矩阵共有 6个(一个5阶,5个3阶)。

层次分析法(AHP法课件

层次分析法(AHP法课件

一致性检验
一致性检验是检验判断矩阵是否满足一致性的过程,即判断 矩阵中的元素是否满足传递性。
一致性检验的方法包括计算一致性指标CI和随机一致性指标 RI,通过比较CI和RI的值可以判断判断矩阵的一致性。如果 一致性不满足要求,需要对判断矩阵进行调整。
03
层次分析法的实施步骤
建立递阶层次结构
明确问题
详细描述
科研项目评估需要考虑多个指标,如项目的 创新性、可行性、预期成果等。层次分析法 可以将这些指标分为不同的层次,并确定各 指标之间的相对重要性,从而帮助科研管理 者更加科学地选择和资助科研项目。
05
层次分析法的优缺点与改进
方向
优点
01 02
系统性强
层次分析法能够将复杂的问题分解成不同的组成因素,并根据因素间的 相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多 层次的分析结构模型。
特点
简单易懂、系统性、实用性、灵活性。
应用领域
资源分配
根据资源有限性,合理 分配资源,实现资源利
用最大化。
方案选择
在多个备选方案中选出 最优方案,满足特定目
标或标准。
风险评估
对风险进行定性和定量 分析,确定风险优先级
和应对策略。
决策分析
在多准则或多目标决策 问题中,为决策者提供
决策依据。
层次分析法的发展历程
确定研究的问题,明确目标层和准则 层,将决策问题分解成不同的组成因 素。
构建层次结构
将决策问题分解成不同的组成因素, 并根据因素间的相互关联影响以及隶 属关系将因素按不同的层次聚集组合 ,形成一个多层次的分析结构模型。
构造判断矩阵
确定判断标度
根据因素间的相对重要性,确定 因素间的判断尺度。常用的判断 尺度有1-9标度法。

层次分析法ppt

层次分析法ppt

当 C.R.< 0.10 时,便认为 判断矩阵具有可以接受的一致 性。当C.R. ≥0.10 时,就需要调 整和修正判断矩阵,使其满足 C.R.< 0.10 ,从而具有满意的 一致性。
6/20/2013
层次分析法(AHP)具体步骤:
层次单排序 层次单排序就是把本层所有各 元素对上一层来说,排出评比顺序 ,这就要计算判断矩阵的最大特征 向量,最常用的方法是和积法和方 根法。
6/20/2013
对于多阶判断矩阵,引入平 均随机一致性指标 R.I.(Random Index),下表给出了1-15阶正互反矩 阵计算1000次得到的平均随机一致 性指标 。
6/20/2013
n
1
2
3
4
5
6
7
8
RI
0
0
0.58
0.90
1.12
1.24
1.32
1.41
n
9
10
11
12
13
14
15
6/20/2013
标 度
1 3
定义与说明 两个元素对某个属性具有同样重要性 两个元素比较,一元素比另一元素稍微重要
5
7 9 2,4,6,8
两个元素比较,一元素比另一元素明显重要
两个元素比较,一元素比另一元素重要得多 两个元素比较,一元素比另一元素极端重要 表示需要在上述两个标准之间拆衷时的标度 两个元素的反比较
6/20/2013
1/bij
判断矩阵B具有如下特征: o bii = 1 o bji = 1/ bij o bij = bik/ bjk (i,j,k=1,2,….n)
6/20/2013
判断矩阵中的bij是根据资料 数据、专家的意见和系统分析人 员的经验经过反复研究后确定。 应用层次分析法保持判断思维的 一致性是非常重要的,只要矩阵 中的bij满足上述三条关系式时, 就说明判断矩阵具有完全的一致 性。

AHP层级分析法PPT教学课件

AHP层级分析法PPT教学课件
11
第11页/共77页
四、层次单排序中的一致性检验
为了检验判断矩阵的一致性,需要计算它的一致性指标
max- n
CI=
n-1
将CI与平均随机一致性指标RI比较,RI可从下表查得:
阶数
1 23 4 56 7 8 9
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45
Ck
P1
P2

Pn
P1 P2
b11
b12
...
b21
b22
...
b1n

b2n 阵B
...
... ... ...
Pn
bn1
bn2
...bnn9源自第9页/共77页其中bij通常取为1,2,3,…9及它们的倒数,其含义是:
bij=1,表示Pi与Pj一样重要; bij=3,表示Pi比Pj重要一点(稍微重要); bij=5,表示Pi比Pj重要(明显重要); bij=7,表示Pi比Pj重要得多(强烈重要); bij=9,表示Pi比Pj极端重要(绝对重要)。
1
0.405 3.871
0.105
2.466 W2 3.871 0.637
W3
1 3.871
0.258
W= [0.105,0.637,0.258] T
29
第29页/共77页
(4)计算判断矩阵最大特征根
max
此处与和积法相同,略。本例有:
n i 1
(BW )i nWi
max=3.037
30
第30页/共77页
两两比较非常必要,应保证每次比较能够独 立进行。
32
第32页/共77页
• 例:

数学建模AHP

数学建模AHP

思考+讨论 :
(1)如何建立一个胜任力模型,从而对应聘者 的胜任力进行评价?
(2)通过招聘人员对一名牌院校毕业的博 士生的打分,基于(1)所建模型,对其胜 任力进行评价。
(1)构建高校教师招聘胜任评价模型:
4
F X i �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

第4讲 AHP 课件2022

第4讲 AHP 课件2022

,n
2. AT也是一致阵
3. A的各行成比例,则 rankA 1
4. A的最大特征根(值)为λ n,其余n -1个
特征根均等于0。
5. A 的任一列(行)都是对应于特征根 n 的特征向量。
若成对比较矩阵是一致阵,则我们自然会取对应于最
大特征根 n的归一化特征向量
w1, w2,, wn
,且
n
由于经费等因素,有时不能同时开展几个课 题,一般要综合依据课题的可行性、理论价值、 应用价值、被培养人才等因素进行选题。
面临各种各样的方案,要进行比较、判断、 评价、最后作出决策。这个决策过程主观因素占 有相当的比重,给用数学方法解决问题带来不便。 T.L. Saaty等人在20世纪七十年代提出了一种能 有效处理这类问题的实用方法。
层次分析法
Analytic Hierarchy Process AHP
T.L. Saaty
层次分析法建模
一、 问题的提出
决策是指在面临多种方案时需要综合依据一 定的标准选择某一种方案。
例1 购物
买钢笔,一般要综合依据质量、颜色、实用 性、价格、外形等方面的因素选择某一支钢笔。
买饭,则要综合依据色、香、味、价格等方 面的因素选择某种饭菜。
RI
CI1
CI2
CI 500
1
2 500
500
n
500
n 1
随机一致性指标 RI 的数值:
n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
一般,当一致性比率
CR
CI RI
0.1
时,认为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
2
这种方法的特点是在对复杂的决策问题的 本质、影响因素及其内在关系等进行深入 分析的基础上,利用较少的定量信息使决 策的思维过程数学化,从而为多目标、多 准则或无结构特性的复杂决策问题提供简 便的决策方法。
是对难于完全定量的复杂系统作出决策的
模型和方法。
-
3
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。
可供选择的单位P1’ P2 , Pn
-
18
建立层次结构模型的思维过程的归纳
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析
要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、
政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、政 策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。
-
5
然后再考虑各种型号冰箱在上述各中间标 准下的优劣排序。借助这种排序,最终作 出选购决策。在决策时,由于6种电冰箱对 于每个中间标准的优劣排序一般是不一致 的,因此,决策者首先要对这7个标准的重 要度作一个估计,给出一种排序,然后把6 种冰箱分别对每一个标准的排序权重找出 来,最后把这些信息数据综合,得到针对 总目标即购买电冰箱的排序权重。有了这 个权重向量,决策就很容易了。
如:
①能发挥自己才干作出较好贡献(即工作岗位适合
发挥自己的专长);
②工作收入较好(待遇好);
③生活环境好(大城市、气候等工作条件等);
④单位名声好(声誉等);
⑤工作环境好(人际关系和谐等)
⑥发展晋升机会多(如新单位或前景好)等。
-
17
目标层
工作选择
准则层 方案层
贡收 发 声 工 生 作活 环环
献入 展 誉 境 境
-
6
例2 旅游 假期旅游,是去风光秀丽的苏州,还是
去凉爽宜人的北戴河,或者是去山水甲天下 的桂林?通常会依据景色、费用、食宿条件、 旅途等因素选择去哪个地方。
-
7
例3 择业 面临毕业,可能有高校、科研单位、企
业等单位可以去选择,一般依据工作环境、 工资待遇、发展前途、住房条件等因素择业。
-
8
例4 科研课题的选择 由于经费等因素,有时不能同时开展几
个课题,一般依据课题的可行性、应用价值、 理论价值、被培养人才等因素进行选题。
-
9
一、层次分析法基本原理
分解
建立
实际问题
多个因素
层次结构
确定 诸因素的相 计算 对重要性
权向量
判断 综合决策
-
10
二、层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可 以分为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
层次分析法所要解决的问题是关于最低层对最高层的相
对权重问题,按此相对权重可以对最低层中的各种方案、
措施进行排序,从而在不同的方案中作出选择或形成选择
方案的原则。
-
19
2 构造判断(成对比较)矩阵
在建立递阶层次结构以后,上下层次之 间元素的隶属关系就被确定了。假定上一层 次 的 元 素 Ck 作 为 准 则 , 对 下 一 层 次 的 元 素 A1, …, An 有支配关系,我们的目的是在准则 Ck 之下按它们相对重要性赋予 A1, …, An 相应 的权重。
目标层
如何在3个目的地中按照景色、 费用、居住条件等因素选择.
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
-
16
例2 大学毕业生就业选择问题
获得大学毕业学位的毕业生,在“双向选择”时,
用人单位与毕业生都有各自的选择标准和要求。就
毕业生来说选择单位的标准和要求是多方面的,例
-
11
1 建立层次结构模型
将决策的目标、考虑的因素(决策准则) 和决策对象按它们之间的相互关系分为最 高层、中间层和最低层,绘出层次结构图。
最高层:决策的目的、要解决的问题。
最低层:决策时的备选方案。
中间层:考虑的因素、决策的准则。
对于相邻的两层,称高层为目标层,低
层为因素层。
-
12
一个典型的层次可以用下图表示出来:
一层中包含数目过多的元素会给两两比较判断带
来困难。
3.一个好的层次结构对于解决问题是极为重要的。 层次结构建立在决策者对所面临的问题具有全面
深入的认识基础上,如果在层次的划分和确定层
次之间的支配关系上举棋不定,最好重新分析问
题,弄清问题各部分相互之间的关系,以确保建
立一个合理的层次结构。
-
15
例1. 选择旅游地
比较同一层次中每个因素关于上一层次 的同一个因素的相对重要性
-
20
在确定各层次各因素之间的权重时,如果只是定 性的结果,则常常不容易被别人接受,因而Saaty 等人提出构造:成对比较矩阵A = (aij)nn,即: 1. 不把所有因素放在一起比较,而是两两相互比较。
层次分析法(AHP法)
Analytic Hie层次分析法(AHP)是美国运筹学家匹茨 堡大学教授萨蒂(T.L.Saaty)于上世纪70年代 初,为美国国防部研究“根据各个工业部 门对国家福利的贡献大小而进行电力分配” 课题时,应用网络系统理论和多目标综合 评价方法,提出的一种层次权重决策分析 方法。
-
13
几点注意
1.处于最上面的的层次通常只有一个元素, 一般是分析问题的预定目标或理想结果。 中间层次一般是准则、子准则。最低一层 包括决策的方案。层次之间元素的支配关 系不一定是完全的,即可以存在这样的元 素,它并不支配下一层次的所有元素。
-
14
2.层次数与问题的复杂程度和所需要分析的详尽 程度有关。每一层次中的元素一般不超过9个,因
常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
-
4
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。决策是指
在面临多种方案时需要依据一定的标准选择 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6种不同类型的电冰箱进行了解 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等。
相关文档
最新文档