绝对值化简专题训练

合集下载

绝对值计算化简专项练习(原30题版精简)

绝对值计算化简专项练习(原30题版精简)

绝对值计算化简专项练习(原30题版精简) 1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b| + |﹣a﹣b|2.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|3.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|4.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|5.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.6.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.7.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求|x﹣13|+ (xy − 1)2的值.8.当x<0时,求| x |+x4x + | x | − x4x的值.9.a|a|+ |b|b+ c|c|= 1,求(|abc|abc)2003÷(bc|ab|×ac|bc|×ab|ac|)的值.10.若a、b、c均为整数,且|a﹣b|3 + |c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.11.若abc<0 ,|a+b|=a+b ,|a|<﹣c ,求a|a|+ b|b|+ c|c|的值.12.若|3a+5|=|2a+10|,求a的值.13.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.14.化简:|3x+1|+|2x﹣1|.15.若x>0,y<0,求:|y| + |x﹣y+2|﹣|y﹣x﹣3|的值.16.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.17.计算:|14﹣13|+|15﹣14|+|16﹣15|+…+|120﹣119|18.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)19.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?(4)问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.。

专题训练绝对值的化简

专题训练绝对值的化简

第6页/共15页
12.下列判断正确的是( )B ①若a=b,则|a|=|b|;②若a+b=0,则|a|=|b|;③若|a|=|b|,则a=b;④若|a| =|b|,则a2=b2. A.①②③ B.①②④ C.②③④ D.①③④
13.有理数a在数轴上的位置如图所示,化简:|a-1|+|a-2|=( ) B
第11页/共15页
20.已知a,b,c都是不为0的有理数,且|-a|+a=0,|ab|=ab,|c|-c=0,化 简:|b|-|a+b|-|c-b|+|a-c|. 解:因为a,b,c都不为0,且|-a|+a=0,所以a<0,又因为|ab|=ab,所以b <0,又因为|c|-c=0,所以c>0,所以a+b<0,c-b>0,a-c<0.所以,原 式=-b-[-(a+b)]-(c-b)-(a-c)=-b+a+b-c+b-a+c=b
A.2a-3 B.1 C.3-2a D.-1
第7页/共15页
14.有理数a,b在数轴上的位置如图所示,则下列选项正确的是( ) C
A.|a+b|=a+b B.|a-1|=a-1 C.|1-b|=1-b D.|a-b|=a-b
15.已知|aa|=1,|bb|=-1,且|a|=|b|,则 a+b=( B ) A.2 B.0 C.2a D.2b 16.已知 a<0,ab>0,bc<0,填空: (1)|a|=__-__a__,|b|=__-__b__,|c|=___c___; (2)|a|-|a+b|+|b|+|2c|=__2_c____.
第13页/共15页
解:(2)原式=(a+1)-[-(c-b)]+[-(b-1)]+[-(b-a)]=a+1+c-b-b+1 -b+a=2a-3b+c+2 (3)因为b与-1的距离和c与-1的距离相等,所以|b- (-1)|=|c-(-1)|,即|b+1|=|c+1|,所以b+1=-(c+1),b+1=-c-1,则b +c=-2.又因为a+b+c=0,所以a+(-2)=0,则a=2.所以-a2+2b-c-(a -4c-b)=-a2+2b-c-a+4c+b=-a2-a+3b+3c=-a2-a+3(b+c)=- 22-2+3×(-2)=-12

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)OK41304

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.【3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.5.当x<0时,求的值.《6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.$7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.、10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.>12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.{14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值:16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.-19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值./20.计算:.24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.>25.认真思考,求下列式子的值..!27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________(直接写出结果)【28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|﹣π|=_________;(2)计算=_________;(3)猜想:=_________,并证明你的猜想.|29.(1)已知|a﹣2|+|b+6|=0,则a+b=_________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.~30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:,1.﹣2a+c﹣12.2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=1$7.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.|所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,!∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,-∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+…+1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=23.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣1.25.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.答案为50 28.解:(1)原式=﹣(﹣π)=π﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值化简110题(含解析)

绝对值化简110题(含解析)

1.(1)|3|=_______;(2)|﹣2|=_______;(3)|0|=_______;(4)绝对值等于4的数有_______个,它们是_______和_______.2.相反数等于它本身的数是_______,绝对值等于它本身的数是_______,3.化简:-(-5)=_______,-|-5|=_______.4.化简下列各数:(1)|-8.2|=_______;(2)-[-(+3)]=_______.5.-[-(-4)]的相反数是_______,|-5|的绝对值是_______.6.(1)|-3|×|-6.2|;(2)|-5|+|-2.49|;(3)-|-|;(4)|-|÷||7.计算:(1)2.7+|-2.7|-|-2.7|;(2)|-16|+|+36|-|-1|8.计算:(1)|-3|+|+5|-|-4|;(2)-(-6)÷|+(-2)|.9..10.绝对值不大于2的整数有_______个,把它们由小到大排列为_______.11.绝对值不大于2004的所有整数的和为_______.12.绝对值比2大比6小的整数共有_______个.13.一个数的相反数是最大的负整数,这个数是_______;若|-x|=5,则x=_______;若|-a|=a,则a_______0.14.若a<0,则=_______.15.如果|a|=-a,则a是_______数.16.已知a=12,b=-3,c=-(|b|-3),求|a|+2|b|+|c|的值.17.写出符合下列条件的数.①大于-3,且小于2的所有整数;②绝对值不小于2且小于5的所有负整数;③在数轴上,与表示-1的点的距离为2的点的表示的数;④不超过(-)3的最大整数.18.去掉下列各数的绝对值符号:(1)若x<0,则|x|=_______;(2)若a<1,则|a-1|=_______;(3)已知x>y>0,则|x+y|=_______;(4)若a>b>0,则|-a-b|=_______.19.若|-x|=|-4|,则x=_______;若|2x-3|=1,则x=_______.20.若|x-2|=4,则x=_______.21.求下列x的值:(1)|x-3|=1;(2)|x+2|=0;(3)|x-1|=-2.22.当3<a<4时,化简:|a-3|-|a-6|得到的结果是_______.23.若,化简|a-|a||.24.已知x<-3,化简:|3+|2-|1+x|||.25.化简|1-a|+|2a+1|+|a|,其中a<-2.26.有理数a、b在数轴上的位置如图所示,则化简|a+b|-a的结果为_______.27.表示a、b两数的点在数轴上的位置如图,则|a-1|+|1+b|=_______.28.数a,b,c在数轴上的位置如图:化简|b-a|-|1-c|=_______.29.已知a,b,c在数轴上的位置如图所示,化简:|b+c|-|a+c|-|a-b|=_______.30.a,b,c在数轴上的位置如图所示,化简|a+c|+|a+b+c|-|a-b|+|b+c|.31.设a<0,且,则|x+1|-|x-2|=_______.32.若|a|=2,|b|=6,a>0>b,则a+b=_______.33.若|a|=3,b=2,且ab<0,则a-b=_______.34.已知|x|=4,|y|=2,且xy<0,则x-y的值等于_______.35.已知:|x|=2,|y|=3,且xy<0,求6x-8y-7的值.36.若a<0,ab<0,则|a-b|-(b-a+3)的化简结果为_______.37.若-a=-(-2),|b|=3,则|a+b|=_______,|a-b|=_______.38.若ab<0,a<b,化简|b-a+1|-|a-b-5|的正确结果为_______.39.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|-2b|-|3b-2a|.40.|a|=3,|b|=1,|c|=5,而且|a+b|=a+b,|a+c|=-(a+c),则a-b+c的值为_______.41.小明做这样一道题“计算|(-3)+…|”,其中“…”表示被墨水污染看不清的一个数,他翻开后面的答案知该题的计算结果是8,那么“…”表示的数是_______.。

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)1.题目中给出了数轴上的位置,求解绝对值计算的结果。

化简后的表达式为:1) |2a| - |a+c| - |1-b| + |-a-b|2) |a-b| + |b-c| + |a-c|2.已知xy<,x<y且|x|=1,|y|=2.根据绝对值的定义,可以列出以下方程:1) x+y=0.x<y。

x=-1.y=12) |x-y|=33.计算绝对值表达式:5 | + |-10| ÷ |-2| = 5 + 5 = 104.当x<0时,求|x+1|+2x的值。

根据绝对值的定义,可以列出以下方程:1) x+1<0.x<-1.|x+1|=-(x+1)。

|x+1|+2x=-x-12) x+1≥0.x>-1.|x+1|=x+1.|x+1|+2x=3x+15.若abc<0,|a+b|=a+b,|a|<-c,求代数式的值。

根据绝对值的定义,可以列出以下方程:a+b|=a+b。

a+b≥0a|=-a。

ac6.若|3a+5|=|2a+10|,求a的值。

根据绝对值的定义,可以列出以下方程:1) 3a+5=2a+10.a=52) 3a+5=-2a-10.a=-57.已知|m-n|=n-m,且|m|=4,|n|=3,求(m+n)的值。

根据绝对值的定义,可以列出以下方程:m-n|=|n-m|。

m-n=n-m。

m=4.n=3.m+n=78.a、b在数轴上的位置如图所示,化简:|a|+|a-b|-|a+b|。

根据绝对值的定义,可以列出以下方程:1) a≥b。

|a|+|a-b|-|a+b|=2a-2b2) a<b。

|a|+|a-b|-|a+b|=2b-2a9.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a-c|-|a-b|-|b-c|+|2a|。

根据绝对值的定义,可以列出以下方程:a-c|=a-c。

a-c≥0a-b|=a-b。

a-b≥0b-c|=b-c。

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道

有理数绝对值化简求值题20道一、基础题型1. 已知a = - 3,求| a|的值。

- 解析:根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

因为a=-3是负数,所以| a|=-a = -(-3)=3。

2. 若b = 5,求| b|的值。

- 解析:由于b = 5是正数,正数的绝对值是它本身,所以| b|=b = 5。

3. 已知c=0,求| c|的值。

- 解析:0的绝对值是0,所以| c| = 0。

二、含有简单运算的题型4. 已知x=-2,求| x + 1|的值。

- 解析:先计算x + 1=-2+1=-1,因为-1是负数,所以| x + 1|=-(x + 1)=-(-1)=1。

5. 若y = 3,求| y-2|的值。

- 解析:先计算y-2 = 3-2 = 1,1是正数,所以| y-2|=y - 2=1。

6. 已知m=-4,求| 2m|的值。

- 解析:先计算2m=2×(-4)=-8,因为-8是负数,所以| 2m|=-2m=-2×(-4)=8。

三、含有多层绝对值的题型7. 已知a=-2,求|| a| - 1|的值。

- 解析:首先| a|=| - 2|=2,然后|| a| - 1|=|2 - 1|=|1| = 1。

8. 若b = 1,求|| b|+2|的值。

- 解析:因为| b|=|1| = 1,所以|| b|+2|=|1 + 2|=|3| = 3。

四、含有字母表达式的题型9. 已知a、b满足a=-b,且b≠0,求| a|+| b|的值。

- 解析:因为a=-b,所以| a|=| - b|=| b|。

则| a|+| b|=| b|+| b| = 2| b|。

10. 若x、y满足x<0,y>0且| x|=| y|,求| x + y|的值。

- 解析:因为x<0,y>0且| x|=| y|,设x=-m,则y = m(m>0)。

那么x + y=-m+m = 0,所以| x + y| = 0。

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.绝对值化简求值参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2 =|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x <﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x <时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x ≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x ﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x ﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011| =1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x 到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x ﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练
1.如图,数轴上的三点A、B、C分别表示有理数a、b、c。

则:
1)b-a < a-c < b+c
2)|b-a| - |a-c| + |b+c|
2.如图,数轴上的a、b、c分别表示有理数a、b、c。

1)①c或-c,②a或-a,③|a-b|
2)|b-a| + |a-b-c| - |a-c|
3.数a,b,c在数轴上的位置如图所示:
化简:|b-a| - |c-b| + |a+b|
4.已知:有理数a、b、c在数轴上如图所示。

化简:|a| +
3|c-a| + |b+c|
5.已知a、b、c这三个有理数在数轴上的位置如图所示。

化简:|b-c| - |a-b| + |a+c|
6.有理数在数轴上的位置如图所示,化简:|c-a| + |b-c| - |a-
b| + |a+b|
7.有理数a,b,c在数轴上如图所示,试化简|2c-b| + |a+b| - |2a-c|
8.已知有理数a、b、c在数轴上的位置如图所示。

化简:|a-b| - |a+c| - |c-a| + |a+b+c| + |b-c|
9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C。

1)填空:A、B之间的距离为|a-b|,B、C之间的距离为|b-c|,A、C之间的距离为|a-c|;
2)化简:|a+b| - |c-b| + |b-a|。

(完整word版)七年级数学--绝对值化简专题训练

(完整word版)七年级数学--绝对值化简专题训练

(完整word版)七年级数学--绝对值化简专题训练亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0=a()0=a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a0,a﹣c0,b+c0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|=;②|a|=;③|a﹣b|=.(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.结尾处,小编送给大家一段话。

七年级数学--绝对值化简专题训练

七年级数学--绝对值化简专题训练

绝对值化简专题训练去绝对值的法则:1、正数的绝对值等于它本身aa=()0〉a2、负数的绝对值等于它的相反数a=()0〈aa-3、零的绝对值等于零。

0a()0==a1.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则(1)b﹣a 0,a﹣c 0,b+c 0(用“>”“<”或“=”填空).(2)化简:|b﹣a|﹣|a﹣c|+|b+c|2.如图,数轴上的a、b、c分别表示有理数a、b、c.(1)化去下列各式的绝对值:①|c|= ;②|a|= ;③|a﹣b|= .(2)化简:|b﹣a|+|a﹣b﹣c|﹣|a﹣c|.3.数a,b,c在数轴上的位置如图所示:化简:|b﹣a|﹣|c﹣b|+|a+b|.4.已知:有理数a、b、c在数轴上如图所示.化简:|a|+3|c﹣a|+|b+c|.5.已知a、b、c这三个有理数在数轴上的位置如图所示,化简:|b﹣c|﹣|a﹣b|+|a+c|.6.有理数在数轴上的位置如图所示,化简:|c﹣a|+|b﹣c|﹣|a﹣b|+|a+b|.7.有理数a,b,c在数轴上如图所示,试化简|2c﹣b|+|a+b|﹣|2a﹣c|.8.已知有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣a|+|a+b+c|+|b﹣c|9.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A,B,C.(1)填空:A、B之间的距离为,B、C之间的距离为,A、C之间的距离为;(2)化简:|a+b|﹣|c﹣b|+|b﹣a|;(3)a、b、c在数轴上的位置如图所示,且c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,求﹣a+2b﹣c﹣2(a﹣4c﹣b)的值.。

绝对值化简例题10道

绝对值化简例题10道

绝对值化简例题10道1.已知数轴上点A表示的数为-3,点B表示的数为5,求A、B两点间的距离(用绝对值表示并化简)。

2.某股票第一天的收盘价为每股12元,第二天上涨了3元,第三天又下跌了5元,用绝对值表示并化简第二天相对于第一天的价格变化量和第三天相对于第二天的价格变化量。

3.一辆汽车从A地出发向东行驶,速度为每小时50千米,3小时后到达B地,然后又向西行驶了2小时到达C地,A地在原点位置,向东为正方向,求汽车从B地到C地的位移的绝对值并化简。

4.一个物体在数轴上运动,初始位置在-2的位置,先向右移动4个单位长度,再向左移动3个单位长度,求该物体最终位置与初始位置距离的绝对值并化简。

5.小明家本月收入为8000元,支出了6000元,下个月收入为7000元,支出了8000元,用绝对值表示并化简本月和下个月收支差值。

6.测量某物体的长度,第一次测量值为12.5厘米,第二次测量值为12.2厘米,第三次测量值为12.8厘米,用绝对值表示并化简第一次测量值与第二次测量值的差值的绝对值,以及第二次测量值与第三次测量值的差值的绝对值。

7.某球队在一场比赛中,上半场进了3个球,下半场丢了2个球,用绝对值表示并化简上半场进球数与下半场丢球数差值的绝对值。

8.气温第一天是10℃,第二天下降了5℃,第三天又上升了3℃,用绝对值表示并化简第二天相对于第一天气温变化的绝对值和第三天相对于第二天气温变化的绝对值。

9.水库的水位第一天为15米,第二天上涨了2米,第三天下降了3米,用绝对值表示并化简第二天相对于第一天水位变化的绝对值和第三天相对于第二天水位变化的绝对值。

10.数轴上有一点P对应的数为x,已知点P到点A(-1)的距离与点P到点B(3)的距离相等,求x的值(先根据距离公式列出含绝对值的方程,这里只要求列出题目)。

化简绝对值练习题

化简绝对值练习题

化简绝对值练习题1. 计算以下表达式的值:|-5|。

答案:52. 判断下列表达式是否为正数:|-3x|。

答案:是正数,因为绝对值总是非负的。

3. 化简表达式:|-2y + 3|。

答案:|-2y + 3|4. 已知a < 0,求|a - 2|的值。

答案:2 - a5. 如果x = -3,求|3x + 4|的值。

答案:|3*(-3) + 4| = 16. 化简表达式:|-4a|。

答案:4|a|7. 已知b > 0,求|b - 5|的值。

答案:b - 58. 计算|-7 + 2|的值。

答案:59. 化简表达式:|3x - 2y|。

答案:|3x - 2y|10. 如果a = -1,求|a + 1|的值。

答案:|-1 + 1| = 011. 已知c < 0,求|c + 3|的值。

答案:3 - c12. 计算|-5 - 3|的值。

答案:813. 化简表达式:|-2z + 5|。

答案:|-2z + 5|14. 如果x = 2,求|-x + 3|的值。

答案:|-2 + 3| = 115. 已知d > 0,求|d - 4|的值。

答案:d - 416. 计算|-8 + 10|的值。

答案:217. 化简表达式:|-3w - 1|。

答案:|-3w - 1|18. 如果a = 0,求|a - 1|的值。

答案:|0 - 1| = 119. 已知e < 0,求|e - 2|的值。

答案:2 - e20. 计算|-9 + 6|的值。

答案:321. 化简表达式:|4f + 1|。

答案:|4f + 1|22. 如果b = -2,求|b - 3|的值。

答案:|-2 - 3| = 523. 已知g > 0,求|g + 2|的值。

答案:g + 224. 计算|-11 + 7|的值。

答案:425. 化简表达式:|-5h - 3|。

答案:|-5h - 3|26. 如果x = 1,求|-2x - 1|的值。

答案:|-2*1 - 1| = 327. 已知i < 0,求|i + 4|的值。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=50 16.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*27.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x 到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。

绝对值计算化简专项练习题

绝对值计算化简专项练习题

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.2020/3/27 8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.2020/3/2721.计算:(1)+|﹣|﹣|﹣| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.2020/3/27 参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,2020/3/27 ∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=+﹣=;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(﹣π)=π﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案

人教版七年级数学上册《绝对值的化简》专题训练-附带答案类型一 绝对值之间是加号的化简1.计算: 34ππ-+-=________.【答案】1【解析】【分析】先化简绝对值 再加减运算即可求解.【详解】解:∵3<π<4 ∵34ππ-+-=34-+-=1故答案为:1.【点睛】本题考查化简绝对值、实数的加减运算 会利用绝对值的性质化简绝对值是解答的关键. 2.a 、b 两个有理数在数轴上的位置如图所示 则|a +b |=____.【答案】a b --##b a --【解析】【分析】 先根据数轴可得0,,b a b a 再确定a b +的符号 再化简绝对值即可.【详解】 解:由题意得:0,,b a b a 0,a b ∴+< .a b a b a b故答案为:.a b【点睛】本题考查的是利用数轴比较有理数的大小 绝对值的含义与化简 有理数的和的符号的确定掌握“0000x x x x xx ”是解本题的关键.3.若有理数,,a b c 在数轴上的位置如图:则b a b c -+-=____________ .【答案】c a -##-a+c【解析】【分析】根据数轴得出0a b c <<< ||||c a > 先去掉绝对值符号 再合并同类项即可.【详解】 解:从数轴可知:0a b c <<< ||||c a >0b c ∴-< 0b a ->||||b a b c b a b c c a ∴-+-=--+=-故答案是:c a -.【点睛】本题考查了数轴 绝对值 整式的加减 解题的关键是能正确去绝对值符号.4.已知32y -<< 化简23y y -++=_____.【答案】5【解析】【分析】根据绝对值的性质去掉绝对值号 然后化简即可.【详解】解:32y -<<23y y ∴-++=-(y -2)+(y +3)23y y =-++5=.故答案为:5.【点睛】本题考查了整式的加减、绝对值的意义 熟练掌握绝对值的意义是解题的关键.5.数a b 在数轴上的位置如图所示 化简:|b ﹣a |+|b |=______.【答案】2a b -##-2b +a【解析】【分析】根据数a b 在数轴上的位置得出2101b a --<<<<<然后化简绝对值即可. 【详解】解:根据数a b 在数轴上的位置可得:2101b a --<<<<<∵0b a -< 0b <∵|b ﹣a |+|b |=()2b a b b a b a b ---=-+-=-故答案为:2a b -.【点睛】本题考查了在数轴上表示有理数 化简绝对值 根据点在数轴上的位置得出相应式子的正负是解本题的关键.6.已知a b c 是∵ABC 的三边 化简:|a +b -c |+|b -a -c |=________.【答案】2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--< 然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边∵00a b c b a c +->--<, ∵||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则 是解题的关键 注意 去绝对值后 要先添加括号 再去括号 这样不容易出错.|a +b -c |+|b -a -c |7.若a 、b 、 c 为整数 且 | a - b |19 + | c - a |99 =1 则| c - a | + | a - b | + | b -c |=________.【答案】2【解析】【分析】根据题意 ,,a b c 三个数中有2个数相等 设a b = 则1c a -= 1b c -= 进而即可求得答案.【详解】解:,,a b c 为整数 则,a b c a --也为整数 且| a - b |19 与| c - a |99 为非负数 和为1 ,,a b c ∴三个数中有2个数相等当a b =时 则1c a -= 1b c -= 0a b -=∴| c - a | + | a - b | + | b -c |=1012++=同理 当a c =或c b =时 均得到| c - a | + | a - b | + | b -c |=2故答案为:2.【点睛】本题考查了非负数的性质 根据题意求出,,a b c 三个数中有2个数相等是解题的关键.8.有理数a b c 在数轴上的位置如图所示 化简:|c ﹣a |+|c ﹣b |+|a +b |=_____.【答案】2b【解析】【分析】根据有理数a b c 在数轴上的位置可得c ﹣a >0 c ﹣b <0 a +b >0 再根据绝对值的意义进行化简即可.【详解】根据有理数a b c 在数轴上的位置可知 a <0<c <b b a >∵c ﹣a >0 c ﹣b <0 a +b >0∵|c ﹣a |+|c ﹣b |+|a +b |=c ﹣a +b ﹣c +a +b=2b故答案为:2b【点睛】本题考查的是利用数轴比较有理数的大小 有理数的加减法的运算法则 绝对值的化简 去括号 整式的加减运算 掌握以上知识是解题的关键.类型二 绝对值之间是减号的化简9.在数轴上数a 、b 、c 所对应的点如图所示 化简:b a c b --+=__________.【答案】a -2b -c【解析】【分析】根据数轴得到b <0<a <c 且b c < 由此得到b -a <0 c+b >0 利用绝对值性质化简合并即可.【详解】解:由数轴得b <0<a <c 且b c <∵b -a <0 c+b >0 ∵b a c b --+=-b+a -c -b=a -2b -c故答案为:a -2b -c .【点睛】此题考查了利用数轴比较数的大小 有理数绝对值的性质化简计算 整式的加减法 正确比较有理数的大小化简绝对值是解题的关键.10.若a <1 化简:31a a ---=__________.【答案】2【解析】【分析】由题意根据a 的取值范围 可以将题目中的式子的绝对值去掉 从而可以解答本题.【详解】解:∵a <1∵|3-a |-|a -1|=3-a +a -1=2故答案为:2.【点睛】本题考查整式的加减、绝对值 解答本题的关键是明确相关的计算方法.11.a 、b 两个数在数轴上的位置如图所示 则化简||||b b a --的结果是________.【答案】a【解析】【分析】由数轴得0b > 0a < 0b a -> 去绝对值有()b b a -- 从而得出结果.【详解】解:0b > 0a <0b a ∴->()b b a b b a b b a a ∴--=--=-+=故答案为:a .【点睛】本题考查了数轴 去绝对值.解题的关键与难点在于判断绝对值里数值的正负.12.a b c 在数轴上的位置如图所示 化简:2a b a c +--=__________.【答案】2a b c --【解析】【分析】 由题意可得:0,,a b c ab c 再判断0,0,a b a c 【详解】 解:0,,a b c a b c 0,0,a b a c∴ ()()22a b a c a b a c +--=-+---⎡⎤⎣⎦2a b a c22a b a c2a b c故答案为:2a b c --【点睛】本题考查的是利用数轴比较有理数的大小 化简绝对值 去括号 合并同类项 熟练的“化简绝对值”是解题的关键.13.若有理数a 、b 、c 在数轴上的位置如图所示 则a b b c --+可化简为__.【答案】a c --##c a --【解析】【分析】根据数轴判断出0a b c <<< b c < 即可得到0a b -< 0b c +> 再利用绝对值性值计算即可;【详解】由数轴可得:0a b c <<< b c <∵原式b a b c a c =---=--;故答案是:a c --.【点睛】本题主要考查了利用数轴比较式子大小 绝对值的性质 准确分析计算是解题的关键.14.若2<x <5 则|x ﹣2|﹣|5﹣x |=_______.【答案】2x -7##-7+2x【解析】【分析】根据2<x <5 得到x -2>0 5-x <0 根据绝对值的意义去绝对值 去括号 合并同类项即可求解.【详解】解:因为2<x <5所以x -2>0 5-x <0所以|x ﹣2|﹣|5﹣x |=(x -2)-(5-x )=2x-7.故答案为:2x-7【点睛】本题考查了绝对值的化简合并同类项去括号等知识根据x的取值脱去绝对值是解题关键.15.有理数a b c在数轴上的对应点如图所示化简代数式:|a|﹣|﹣b|+|c|=_____.【答案】a b c-++【解析】【分析】由数轴知a<b<0<c去绝对值即可求解.【详解】解:由数轴知a<b<0<c∵|a|﹣|﹣b|+|c|=a b c a b c.故答案为:a b c-++.【点睛】本题考查绝对值的性质.确定绝对值符号内代数式的性质符号是解答此类题目的关键.16.若0<a<1 -2<b<-1 则1212a ba b-+--+=_____.【答案】﹣2【解析】【分析】先根据题意得出a﹣1<0 b+2>0 再根据绝对值的性质化简即可解答.【详解】解:∵0<a<1 -2<b<-1∵a﹣1<0 b+2>0∵1212 a ba b-+--+=(1)212 a ba b--+--+=﹣1﹣1故答案为:-2.【点睛】本题考查有理数的减法运算、绝对值的性质 会利用绝对值的性质化简是解答的关键. 类型三 绝对值之间有加有减的化简17.有理数a b c 在数轴上表示的点如图所示 化简||||2||a b a c b c +---+=__________.【答案】33b c --##33c b【解析】【分析】根据数轴得出a b + a c - 1b -的符号 再去绝对值即可.【详解】 由数轴得0a b c b c <<<,< ∵0a b +< 0a c -< 0b c +>∵||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【点睛】本题主要考查了数轴和绝对值 掌握数轴、绝对值以及合并同类项的法则是解题的关键. 18.已知a b c 是有理数 它们在数轴上的对应点如图所示 化简:|a ﹣c |﹣|a ﹣b |+|b ﹣c |=_____.【答案】22a c -##22c a -+【解析】【分析】根据数轴 判断出a b c ,,的符号 从而得到a c a b b c ---,,的符号 化简求解即可.【详解】所以 0a c -> 0a b -< 0b c -> ∵||||22a c a b b c a c a b b c a c --+--+-+--=-=故答案为:22a c -【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.19.若有理数a b c 在数轴上的位置如图所示 则化简:||||||a c b c b ++--+=_________.【答案】a -【解析】【分析】根据有理数在数轴上的位置求得0c b a <<< c a >进而可得0a c +< 0b -> 0c b +< 进而化简绝对值即可【详解】解:根据有理数a b c 在数轴上的位置 可得0c b a <<< c a >∴0a c +< 0b -> 0c b +<∴||||||a c b c b ++--+=()a c b c b ------a c b c b a =---++=-故答案为:a -【点睛】本题考查了根据有理数在数轴上的位置判断式子的符号 绝对值化简 整式的加减运算 正确的判断式子的符号化简绝对值是解题的关键.20.有理数a b c 在数轴上的位置如图所示.化简代数式:323c a b c a b -+--+=_______ .【答案】5c +b##b+5c【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负 利用绝对值的代数意义化简 去括号合并即可.【详解】由图可知a <b <0<c则a +b <0 c -a >0 b -c <0 ∵==,c a c a b c c b a b a b ----+=--,∵原式=3()2()3()c a c b a b -+----332233c a c b a b =-+-++5c b =+故答案为:5c b +.【点睛】本题考查了整式的加减、数轴及绝对值的知识 掌握数轴上右边的数总比左边的数大是解答本题的关键.21.有理数a b c 在数轴上的位置如图所示 若m =|a +b |﹣|b ﹣1|﹣|a ﹣c | 则m =____.【答案】-1-c【解析】【分析】根据数轴上点的位置可得01b a c <<<< 即可推出0a b +< 10b -< 0a c -< 由此化简绝对值求解即可.【详解】解:由数轴上点的位置可知:01b a c <<<<∵0a b +< 10b -< 0a c -< ∵1m a b b a c =+----()()()1a b b c a =-+----1a b b c a =---+-+1c =--故答案为:1c --.【点睛】本题主要考查了根据数轴上点的位置化简绝对值 解题的关键在于能够熟练掌握数轴的相关知识.22.已知a <0 b <0 c >0 化简:2a b c a b a +--+--=________.【答案】3a b c ---【解析】【分析】根据条件分别求得2,,a b c a b a +---的符号 进而化简绝对值即可【详解】a <0b <0c >020,0,0a b c a b a ∴+<->--> ∴2a b c a b a +--+--=()2()a b c a b a ----+--2a b c a b a =---+--3a b c =---故答案为:3a b c ---【点睛】本题考查了化简绝对值 整式的加减 正确的化简绝对值是解题的关键.23.有理数a 、b 、c 在数轴上的位置如下图所示则a c a b b a a c +-+--+-=________.【答案】0【解析】【分析】由数轴上右边的点比左边点表示的数字大可知 c >b >a 且c >0 0>b >a a b c >> 再根据绝对值的性质解答即可.【详解】解:根据数轴可知c >b >a 且c >0 0>b >a a b c >>∵0a c +< 0a b +< 0b a -> 0a c -< ∵a c a b b a a c +-+--+-=()()()()a c a b b a a c -+++----=a c a b b a a c --++-+-+=0.故答案为:0.【点睛】注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号 难度适中. 24.已知a b c 为三个有理数 它们在数轴上的对应位置如图所示 则式子|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=______.【答案】0【解析】【分析】根据点在数轴上的位置判断式子的符号 然后根据绝对值的意义化简即可.【详解】解:根据数轴可知:1012c a b -<<<<<<∵0c b -< 0b a -> 0a c ->∵|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=()()()c b b a a c ------=c b b a a c -+-+-+=0;故答案为:0.【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.25.已知点A 、B 在数轴上表示的数分别是a 和b :化简|2|||3||a a b a b ---++=__________.【答案】44a b --##44b a【解析】【分析】根据A B 两点在数轴上的位置得到 然后进行计算即可.【详解】解:由图可知:a <0<b a b >∵-2a >0 a -b <0 a +b <0∵|2|||3||a a b a b ---++=233a a b a b -+---=44a b --故答案为:44a b --.【点睛】本题考查数轴的基本知识结合绝对值的综合运用 一定要看清题中条件.26.实数a b c 在数轴上的位置如图所示 化简:c b b a c -+--=______.【答案】a【解析】【分析】由题意得 0c b a <<< 0c b -< 0b a -< 根据绝对值的非负性进行解答即可得.【详解】解:由题意得 0c b a <<<∵0c b -< 0b a -< ∵c b b a c -+--=()()b c a b c -+---=b c a b c -+-+=a故答案为:a .【点睛】本题考查了绝对值 解题的关键是掌握绝对值的非负性.27.已知有理数a 、b 在数轴上的对应点位置如图所示 请化简:2a a b a b ++--=____________.【答案】3b -【解析】【分析】根据有理数a 、b 在数轴上的对应点位置 化简即可.【详解】解:根据数轴可知:101a b <-<<< ∵2a a b a b ++--=()2()a a b a b --++-=22a a b a b ---+-=3b -故答案为:3b -.【点睛】本题考查了数轴 化简绝对值根据有理数在数轴上的位置得出相应式子的符号是解本题的关键.。

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)OK

绝对值计算化简专项练习30题(有答案)1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它的最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值是_________ (直接写出结果)28.阅读:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3.14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c,=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b,=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a,=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a 14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示的点到﹣1表示的点的距离为|x+1|,到2表示的点的距离为|x﹣2|,到3表示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2.7+2.7﹣2.7=2.7;=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1的距离与x到2的距离的差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3.14﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值计算化简专项练习题有答案

绝对值计算化简专项练习题有答案

绝对值计算化简专项练习30 题(有答案)1.已知 a、 b、 c 在数轴上的地址以下列图,化简:|2a| ﹣ |a+c| ﹣|1 ﹣ b|+| ﹣ a﹣ b|2.有理数a, b, c 在数轴上的对应地址如图,化简:|a ﹣b|+|b ﹣ c|+|a ﹣ c| .3.已知 xy< 0, x<y 且 |x|=1 , |y|=2 .(1)求 x 和 y 的值;(2)求的值.4.计算: | ﹣ 5|+| ﹣10| ÷ | ﹣2| .5.当 x< 0 时,求的值.6.若 abc< 0, |a+b|=a+b ,|a| <﹣ c,求代数式的值.7.若 |3a+5|=|2a+10|,求a的值.8.已知 |m﹣ n|=n ﹣ m,且 |m|=4 , |n|=3 ,求( m+n)2的值.9. a、 b 在数轴上的地址以下列图,化简:|a|+|a﹣b|﹣|a+b|.10.有理数 a, b, c 在数轴上的地址以下列图,试化简下式:|a ﹣ c| ﹣ |a ﹣ b| ﹣ |b ﹣ c|+|2a|.11.若 |x|=3 , |y|=2 ,且 x>y,求 x﹣y 的值.12.化简: |3x+1|+|2x﹣1|.13.已知:有理数a、 b 在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.200314. ++=1,求()÷(××)的值.15.( 1) |x+1|+|x2|+|x3| 的最小?(2) |x+1|+|x2|+|x3|+|x1| 的最小?(3) |x 2|+|x4|+|x6|+ ⋯ +|x 20| 的最小?16.算: | |+||+||+ ⋯ +| |17.若 a、b、 c 均整数,且|a b| 3+|c a| 2=1,求 |a c|+|c b|+|b a| 的.18.已知 a、 b、 c 三个数在数上点如,其中O原点,化 |b a| |2a b|+|a c||c| .19.求 |x 1|+|x3|+ ⋯ +|x 2003|+|x2005| 的最小.20.算:.21.算:( 1) +| | | |(2)|16|+|+36||1|22.算( 1) | 5|+|10| | 9| ;(2)|3| × | 6| | 7| ×|+2|23.算.( 1);( 2).24.若 x>0, y< 0,求: |y|+|x y+2| |y x 3| 的.25.真思虑,求以下式子的..26.当 x 取何, |x1|+|x2|+|x3|+ ⋯ +|x 2011| 获取最小,并求出最小.27.( 1)当 x 在何范,|x 1||x 2| 有最大,并求出最大.( 2)当 x 在何范, |x1| |x 2|+|x3| |x4| 有最大,并求出它的最大.( 3)代数式 |x1| |x2|+|x3| |x4|+ ⋯ +|x99| |x100| 最大是_________(直接写出果)28.:一个非数的等于它自己,数的等于它的相反数,所以,当a≥ 0 |a|=a ,依照以上完成以下各:( 1) | π |= _________;(2)算 = _________ ;(3)猜想: = _________ ,并明你的猜想.29.( 1)已知 |a2|+|b+6|=0,a+b=_________( 2)求 | 1|+||+ ⋯ +| |+|| 的.30.已知 m, n, p 足 |2m|+m=0, |n|=n , p?|p|=1 ,化 |n||m p 1|+|p+n||2n+1| .参照答案:1.解:∵ a、 c 在原点的左侧,a<﹣ 1,∴a< 0, c< 0,∴2a< 0, a+c< 0,∵ 0< b< 1,∴1﹣ b> 0,∵a<﹣ 1,∴﹣a﹣ b>0∴原式 =﹣ 2a+( a+c)﹣( 1﹣b) +(﹣ a﹣ b)=﹣ 2a+a+c﹣ 1+b﹣ a﹣ b=﹣ 2a+c﹣ 1.故答案为:﹣ 2a+c ﹣12.解:由图可知:b< 0, c>a> 0,∴a﹣ b> 0, b﹣ c< 0, a﹣ c<0,∴|a ﹣ b|+|b ﹣ c|+|a ﹣ c| ,=( a﹣ b)﹣( b﹣ c)﹣( a﹣c),=a﹣ b﹣ b+c﹣ a+c,=2c﹣ 2b3.解:( 1)∵ |x|=1 ,∴ x=±1,∵|y|=2 ,∴ y=± 2,∵x< y,∴当 x 取 1 时, y 取 2,此时与 xy < 0 矛盾,舍去;当 x 取﹣ 1 时, y 取 2,此时与 xy < 0 成立,∴x=﹣ 1, y=2;(2)∵ x=﹣ 1, y=2,∴=| ﹣ 1﹣ |+ (﹣ 1×2﹣ 1)2=| (﹣ 1) +(﹣) |+[ (﹣ 2) +(﹣ 1) ] 2=| ﹣ |+ (﹣ 3)2=+9 =104.解: | ﹣5|+| ﹣ 10| ÷ | ﹣ 2|=5+10÷ 2 =5+5 =105.解:∵ x< 0,∴|x|= ﹣ x,∴原式 ==0+=﹣6.解:∵ |a| <﹣ c,∴c< 0,∵abc< 0,∴ ab> 0,∵|a+b|=a+b ,∴ a> 0, b> 0,∴ =++=1+1﹣ 1=17.解:∵ |3a+5|=|2a+10| ,∴3a+5=2a+10 或3a+5=﹣(2a+10),解得 a=5 或 a=﹣ 38.解:∵ |m﹣ n|=n ﹣ m,∴ m﹣n≤ 0,即 m≤ n.又 |m|=4 , |n|=3 ,∴m=﹣ 4, n=3 或 m=﹣ 4, n=﹣3.∴当 m=﹣ 4, n=3 时,( m+n)2=(﹣ 1)2=1;当m=﹣ 4,n=﹣ 3 时,( m+n)2=(﹣ 7)2=499.解:∵ a< 0, b>0,∴a b< 0;又∵|a| > |b| ,∴a+b< 0;原式 = a+[ ( a b) ] [ ( a+b)] ,= a( a b) +( a+b),= a a+b+a+b,= a+2b10.解:由可知:c< a< 0<b,有 a c> 0, a b< 0, b c> 0, 2a< 0,|a c||a b||b c|+|2a|,=( a c)( b a)( b c) +( 2a),=a c b+a b+c 2a,= 2b.故答案: 2b11.解:因x> y,由|x|=3 , |y|=2 可知, x> 0,即 x=3.( 1)当 y=2 , x y=3 2=1;( 2)当 y= 2 , x y=3( 2) =5.所以 x y 的 1或 512.解:分三种情况以下:( 1)当 x<,原式 =( 3x+1)( 2x 1)= 5x;( 2)当≤ x<,原式 =( 3x+1)( 2x 1) =x+2;( 3)当 x≥ ,原式 =( 3x+1) +( 2x 1) =5x.合起来有: |3x+1|+|2x 1|= .13.解:由数可知:1> a>0, b< 1,所以原式 =a+[ ( a+b) ] ( 1 a) [ ( b+1)]=a14.解:∵ =1 或 1, =1 或 1, =1 或 1,又∵ ++=1,∴,,三个式子中必然有 2 个 1,一个 1,不如, ==1, = 1,即 a>0, b> 0, c< 0,∴|abc|= abc , |ab|=ab , |bc|=bc, |ac|=ac,∴原式 =()2003÷(××) =( 1)2003÷ 1= 115.解:( 1)∵数 x 表示的点到 1 表示的点的距离|x+1| ,到 2 表示的点的距离|x2| ,到 3 表示的点的距离|x 3| ,∴当 x=2 , |x+1|+|x2|+|x3| 的最小 3( 1) =4;( 2)当 x=1 或 x=2 , |x+1|+|x2|+|x3|+|x1| 的最小5;(3)当 x=10 或 x=12 , |x 2|+|x4|+|x6|+ ⋯ +|x 20| 的最小 =5016.解:原式 =() +() +() +⋯+()= + + +⋯ +==17.解:∵ a, b, c 均整数,且|a b| 3+|c a| 2=1,∴a、 b、 c 有两个数相等,不如 a=b,|c a|=1 ,∴c=a+1 或 c=a 1,∴|a c|=|aa 1|=1 或 |a c|=|aa+1|=1 ,∴|a c|+|cb|+|b a|=1+1=218.解:依照数可得c< b< 0< a,∴|b a| |2a b|+|a c| |c|=ab( 2a b) +a c( c)=a b 2a+b+a c+c=019.解:∵ 2005=2 ×1003 1,∴共有 1003 个数,∴ x=502× 2 1=1003 ,两的数关于|x1003| 称,此的和最小,此 |x1|+|x3|+ ⋯ +|x 2003|+|x2005|=( x 1) +( x 3)⋯ +( 1001 x) +( 1003 x) +( 1005 x) +⋯+( 2005 x)=2( 2+4+6+⋯ +1002)=2×=50300420.解:= + + +⋯ +==21.解:( 1)原式 =+=;(2)原式 =16+36 1=5122.解:( 1)原式 =5+10 9=6;(2)原式 =3× 6 7× 2=18 14 =423.解:( 1)原式 = +=;(2)原式 = +=24.解:∵ x> 0, y< 0,∴x y+2>0, y x 3< 0∴|y|+|xy+2| |y x 3|= y+ ( x y+2) +( y x 3) = y+x y+2+y x 3= y 125.解:原式 = + +==26.解: 1 2011 共有 2011 个数,最中一个1006,此最小 |x 1|+|x2|+|x3|+ ⋯ +|x2011|=|1006 1|+|10062|+|10063|+ ⋯+|10062011|=1005+1004+1003+⋯+2+1+0+1+2+3+⋯+1005|x1|+|x2|+|x3|+ ⋯ +|x2011| 获取最小,=101103027.解:( 1)∵ |x1||x2| 表示x 到1 的距离与x 到 2 的距离的差,∴ x≥ 2 有最大 2 1=1;( 2)∵ |x1||x 差的和,∴ x≥ 4 有最大2|+|x3||x1+1=2;4| 表示x 到 1 的距离与x 到 2 的距离的差与x 到3 的距离与x 到4 的距离的(3)由上可知: x≥100 |x 1| |x 2|+|x3| |x 4|+ ⋯ +|x 99| |x 100| 有最大 1× 50=50.故答案 5028.解:( 1)原式 =(π)=π ;( 2)原式 =1 + + +⋯ +=1=;( 3)原式 =1 + + +⋯ +=1=.故答案π ;;29.解:( 1)∵ |a 2|+|b+6|=0,∴a 2=0,b+6=0,∴a=2, b= 6,∴a+b=2 6= 4;(2) | 1|+| |+ ⋯+| |+| | =1 + +⋯+ +=1=.故答案: 4,30.解:由 |2m|+m=0,得: 2|m|= m,∴ m≤ 0,∴ 2m+m=0,即 m=0,∴m=0.由|n|=n ,知 n≥ 0,由p?|p|=1 ,知 p> 0,即 p2=1,且 p> 0,∴p=1,∴原式 =n |0 1 1|+|1+n||2n+1|=n2+1+n 2n 1=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值难题解析
绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。

一、根据题设条件
例1 设化简的结果是()。

(A)(B)(C)(D)
思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.

∴应选(B).
归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.
二、借助数轴
例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().
(A)(B)(C)(D)
思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.
解原式
∴应选(C).
归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:
1.零点的左边都是负数,右边都是正数.
2.右边点表示的数总大于左边点表示的数.
3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.
三、采用零点分段讨论法
例3 化简
思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.
解令得零点:;
令得零点:,
把数轴上的数分为三个部分(如图)
①当时,
∴原式
②当时,,
∴原式
③当时,,
∴原式

归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:
1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).
2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.
3.在各区段内分别考察问题.
4.将各区段内的情形综合起来,得到问题的答案.
误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.
练习:
请用文本例1介绍的方法解答l、2题
1.已知a、b、c、d满足且,那么
2.若,则有()。

(A)(B)(C)(D)
请用本文例2介绍的方法解答3、4题
3.有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().
(A)(B)(C)(D)
4.有理数a、b在数轴上的对应点如图所示,那么下列四个式子,
中负数的个数是().
(A)0 (B)1 (C)2 (D)3
请用本文例3介绍的方法解答5、6题
5.化简
6.设x是实数,下列四个结论中正确的是()。

(A)y没有最小值
(B)有有限多个x使y取到最小值
(C)只有一个x使y取得最小值
(D)有无穷多个x使y取得最小值。

相关文档
最新文档